/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2000, 2001 Kanoj Sarcar * Copyright (C) 2000, 2001 Ralf Baechle * Copyright (C) 2000, 2001 Silicon Graphics, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* The 'big kernel lock' */ spinlock_t kernel_flag __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED; int smp_threads_ready; /* Not used */ atomic_t smp_commenced = ATOMIC_INIT(0); struct cpuinfo_mips cpu_data[NR_CPUS]; void (*volatile smp_cpu0_finalize)(void); // static atomic_t cpus_booted = ATOMIC_INIT(0); atomic_t cpus_booted = ATOMIC_INIT(0); int smp_num_cpus = 1; /* Number that came online. */ cpumask_t cpu_online_map; /* Bitmask of currently online CPUs */ int __cpu_number_map[NR_CPUS]; int __cpu_logical_map[NR_CPUS]; cycles_t cacheflush_time; // static void smp_tune_scheduling (void) void smp_tune_scheduling (void) { } void __init smp_callin(void) { #if 0 calibrate_delay(); smp_store_cpu_info(cpuid); #endif } #ifndef CONFIG_SGI_IP27 /* * Hook for doing final board-specific setup after the generic smp setup * is done */ asmlinkage void start_secondary(void) { unsigned int cpu = smp_processor_id(); prom_init_secondary(); per_cpu_trap_init(); /* * XXX parity protection should be folded in here when it's converted * to an option instead of something based on .cputype */ pgd_current[cpu] = init_mm.pgd; cpu_data[cpu].udelay_val = loops_per_jiffy; prom_smp_finish(); printk("Slave cpu booted successfully\n"); CPUMASK_SETB(cpu_online_map, cpu); atomic_inc(&cpus_booted); cpu_idle(); } #endif /* CONFIG_SGI_IP27 */ void __init smp_commence(void) { wmb(); atomic_set(&smp_commenced, 1); } /* * this function sends a 'reschedule' IPI to another CPU. * it goes straight through and wastes no time serializing * anything. Worst case is that we lose a reschedule ... */ void smp_send_reschedule(int cpu) { core_send_ipi(cpu, SMP_RESCHEDULE_YOURSELF); } /* Not really SMP stuff ... */ int setup_profiling_timer(unsigned int multiplier) { return 0; } static spinlock_t call_lock = SPIN_LOCK_UNLOCKED; struct call_data_struct *call_data; /* * Run a function on all other CPUs. * The function to run. This must be fast and non-blocking. * An arbitrary pointer to pass to the function. * If true, keep retrying until ready. * If true, wait until function has completed on other CPUs. * [RETURNS] 0 on success, else a negative status code. * * Does not return until remote CPUs are nearly ready to execute * or are or have executed. */ int smp_call_function (void (*func) (void *info), void *info, int retry, int wait) { struct call_data_struct data; int i, cpus = smp_num_cpus - 1; int cpu = smp_processor_id(); if (!cpus) return 0; data.func = func; data.info = info; atomic_set(&data.started, 0); data.wait = wait; if (wait) atomic_set(&data.finished, 0); spin_lock_bh(&call_lock); call_data = &data; /* Send a message to all other CPUs and wait for them to respond */ for (i = 0; i < smp_num_cpus; i++) if (i != cpu) core_send_ipi(i, SMP_CALL_FUNCTION); /* Wait for response */ /* FIXME: lock-up detection, backtrace on lock-up */ while (atomic_read(&data.started) != cpus) barrier(); if (wait) while (atomic_read(&data.finished) != cpus) barrier(); spin_unlock_bh(&call_lock); return 0; } void smp_call_function_interrupt(void) { void (*func) (void *info) = call_data->func; void *info = call_data->info; int wait = call_data->wait; int cpu = smp_processor_id(); irq_enter(cpu, 0); /* XXX choose an irq number? */ /* * Notify initiating CPU that I've grabbed the data and am * about to execute the function. */ mb(); atomic_inc(&call_data->started); /* * At this point the info structure may be out of scope unless wait==1. */ (*func)(info); if (wait) { mb(); atomic_inc(&call_data->finished); } irq_exit(cpu, 0); /* XXX choose an irq number? */ } static void stop_this_cpu(void *dummy) { int cpu = smp_processor_id(); if (cpu) for (;;); /* XXX Use halt like i386 */ /* XXXKW this isn't quite there yet */ while (!smp_cpu0_finalize) ; smp_cpu0_finalize(); } void smp_send_stop(void) { smp_call_function(stop_this_cpu, NULL, 1, 0); smp_num_cpus = 1; } static void flush_tlb_all_ipi(void *info) { local_flush_tlb_all(); } void flush_tlb_all(void) { smp_call_function(flush_tlb_all_ipi, 0, 1, 1); local_flush_tlb_all(); } static void flush_tlb_mm_ipi(void *mm) { local_flush_tlb_mm((struct mm_struct *)mm); } /* * The following tlb flush calls are invoked when old translations are * being torn down, or pte attributes are changing. For single threaded * address spaces, a new context is obtained on the current cpu, and tlb * context on other cpus are invalidated to force a new context allocation * at switch_mm time, should the mm ever be used on other cpus. For * multithreaded address spaces, intercpu interrupts have to be sent. * Another case where intercpu interrupts are required is when the target * mm might be active on another cpu (eg debuggers doing the flushes on * behalf of debugees, kswapd stealing pages from another process etc). * Kanoj 07/00. */ void flush_tlb_mm(struct mm_struct *mm) { if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1, 1); } else { int i; for (i = 0; i < smp_num_cpus; i++) if (smp_processor_id() != i) CPU_CONTEXT(i, mm) = 0; } local_flush_tlb_mm(mm); } struct flush_tlb_data { struct mm_struct *mm; struct vm_area_struct *vma; unsigned long addr1; unsigned long addr2; }; static void flush_tlb_range_ipi(void *info) { struct flush_tlb_data *fd = (struct flush_tlb_data *)info; local_flush_tlb_range(fd->mm, fd->addr1, fd->addr2); } void flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { struct flush_tlb_data fd; fd.mm = mm; fd.addr1 = start; fd.addr2 = end; smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1, 1); } else { int i; for (i = 0; i < smp_num_cpus; i++) if (smp_processor_id() != i) CPU_CONTEXT(i, mm) = 0; } local_flush_tlb_range(mm, start, end); } static void flush_tlb_page_ipi(void *info) { struct flush_tlb_data *fd = (struct flush_tlb_data *)info; local_flush_tlb_page(fd->vma, fd->addr1); } void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { struct flush_tlb_data fd; fd.vma = vma; fd.addr1 = page; smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1, 1); } else { int i; for (i = 0; i < smp_num_cpus; i++) if (smp_processor_id() != i) CPU_CONTEXT(i, vma->vm_mm) = 0; } local_flush_tlb_page(vma, page); } EXPORT_SYMBOL(flush_tlb_page); EXPORT_SYMBOL(cpu_data); EXPORT_SYMBOL(synchronize_irq); EXPORT_SYMBOL(kernel_flag); EXPORT_SYMBOL(__global_sti); EXPORT_SYMBOL(__global_cli); EXPORT_SYMBOL(__global_save_flags); EXPORT_SYMBOL(__global_restore_flags);