
Reprinted from the

Proceedings of the
Linux Symposium

Volume One

July 21th–24th, 2004
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

The State of ACPI in the Linux Kernel

A. Leonard Brown
Intel

len.brown@intel.com

Abstract

ACPI puts Linux in control of configuration
and power management. It abstracts the plat-
form BIOS and hardware so Linux and the
platform can interoperate while evolving inde-
pendently.

This paper starts with some background on the
ACPI specification, followed by the state of
ACPI deployment on Linux.

It describes the implementation architecture of
ACPI on Linux, followed by details on the con-
figuration and power management features.

It closes with a summary of ACPI bugzilla ac-
tivity, and a list of what is next for ACPI in
Linux.

1 ACPI Specification Background

“ACPI (Advanced Configuration and
Power Interface) is an open in-
dustry specification co-developed by
Hewlett-Packard, Intel, Microsoft,
Phoenix, and Toshiba.

ACPI establishes industry-standard
interfaces for OS-directed configura-
tion and power management on lap-
tops, desktops, and servers.

ACPI evolves the existing collec-
tion of power management BIOS
code, Advanced Power Manage-
ment (APM) application program-

ming interfaces (APIs, PNPBIOS
APIs, Multiprocessor Specification
(MPS) tables and so on into a well-
defined power management and con-
figuration interface specification.”1

ACPI 1.0 was published in 1996. 2.0 added
64-bit support in 2000. ACPI 3.0 is expected
in summer 2004.

2 Linux ACPI Deployment

Linux supports ACPI on three architectures:
ia64 , i386 , andx86_64 .

2.1 ia64 Linux/ACPI support

Most ia64 platforms require ACPI support,
as they do not have the legacy configuration
methods seen oni386 . All the Linux distribu-
tions that supportia64 include ACPI support,
whether they’re based on Linux-2.4 or Linux-
2.6.

2.2 i386 Linux/ACPI support

Not all Linux-2.4 distributions enabled ACPI
by default on i386 . Often they used
just enough table parsing to enable Hyper-
Threading (HT), alaacpi=ht below, and re-
lied on MPS and PIRQ routers to configure the

1http://www.acpi.info

122 • Linux Symposium 2004 • Volume One

setup_arch()
dmi_scan_machine()

Scan DMI blacklist
BIOS Date vs Jan 1, 2001

acpi_boot_init()
acpi_table_init()

locate and checksum all ACPI tables
print table headers to console

acpi_blacklisted()
ACPI table headers vs. blacklist

parse(BOOT) /* Simple Boot Flags */
parse(FADT) /* PM timer address */
parse(MADT) /* LAPIC, IOAPIC */
parse(HPET) /* HiPrecision Timer */
parse(MCFG) /* PCI Express base */

Figure 1: Early ACPI init oni386

machine. Some included ACPI support by de-
fault, but required the user to addacpi=on to
the cmdline to enable it.

So far, the major Linux 2.6 distributions all
support ACPI enabled by default oni386 .

Several methods are used to make it more prac-
tical to deploy ACPI ontoi386 installed base.
Figure 1 shows the early ACPI startup on the
i386 and where these methods hook in.

1. Most modern system BIOS support DMI,
which exports the date of the BIOS. Linux
DMI scan ini386 disables ACPI on plat-
forms with a BIOS older than January 1,
2001. There is nothing magic about this
date, except it allowed developers to focus
on recent platforms without getting dis-
tracted debugging issues on very old plat-
forms that:

(a) had been running Linux w/o ACPI
support for years.

(b) had virtually no chance of a BIOS
update from the OEM.

Boot parameteracpi=force is avail-
able to enable ACPI on platforms older
than the cutoff date.

2. DMI also exports the hardware man-
ufacturer, baseboard name, BIOS ver-

sion, etc. that you can observe with
dmidecode .2 dmi_scan.c has a gen-
eral purpose blacklist that keys off this in-
formation, and invokes various platform-
specific workarounds.acpi=off is the
most severe—disabling all ACPI support,
even the simple table parsing needed to
enable Hyper-Threading (HT).acpi=ht
does the same, excepts parses enough ta-
bles to enable HT.pci=noacpi disables
ACPI for PCI enumeration and interrupt
configuration. Andacpi=noirq dis-
ables ACPI just for interrupt configura-
tion.

3. The ACPI tables also contain header in-
formation, which you see near the top
of the kernel messages. ACPI maintains
a blacklist based on the table headers.
But this blacklist is somewhat primitive.
When an entry matches the system, it ei-
ther prints warnings or invokesacpi=
off .

All three of these methods share the problem
that if they are successful, they tend to hide
root-cause issues in Linux that should be fixed.
For this reason, adding to the blacklists is dis-
couraged in the upstream kernel. Their main
value is to allow Linux distributors to quickly
react to deployment issues when they need to
support deviant platforms.

2.3 x86_64 Linux/ACPI support

All x86_64 platforms I’ve seen include ACPI
support. The majorx86_64 Linux distribu-
tions, whether Linux-2.4 or Linux-2.6 based,
all support ACPI.

2http://www.nongnu.org/dmidecode

Linux Symposium 2004 • Volume One • 123

3 Implementation Overview

The ACPI specification describes platform reg-
isters, ACPI tables, and operation of the ACPI
BIOS. Figure 2 shows these ACPI components
logically as a layer above the platform specific
hardware and firmware.

The ACPI kernel support centers around the
ACPICA (ACPI Component Architecture3)
core. ACPICA includes the AML4 interpreter
that implements ACPI’s hardware abstraction.
ACPICA also implements other OS-agnostic
parts of the ACPI specification. The ACPICA
code does not implement any policy, that is the
realm of the Linux-specific code. A single file,
osl.c , glues ACPICA to the Linux-specific
functions it requires.

The box in Figure 2 labeled “Linux/ACPI” rep-
resents the Linux-specific ACPI code, includ-
ing boot-time configuration.

Optional “ACPI drivers,” such as Button, Bat-
tery, Processor, etc. are (optionally loadable)
modules that implement policy related to those
specific features and devices.

3.1 Events

ACPI registers for a “System Control Inter-
rupt” (SCI) and all ACPI events come through
that interrupt.

The kernel interrupt handler de-multiplexes the
possible events using ACPI constructs. In
some cases, it then delivers events to a user-
space application such asacpid via /proc/
acpi/events .

3http://www.intel.com/technology/
iapc/acpi

4AML, ACPI Machine Language.

�����
���	
�

�	��
����������
�������

�	��
����
�������

�����
�
����
��

�����
����

����������

����� ����

�!"��

 "��! �!"�

#�
�

$
��
	

���

������

���!
����

����
�%

��

�&
���	 ���

������"
!�
�!�����

�	��
����'

��
�

Figure 2: Implementation Architecture

4 ACPI Configuration

Interrupt configuration oni386 dominated the
ACPI bug fixing activity over the last year.

The algorithm to configure interrupts on an
i386 system with an IOAPIC is shown in Fig-
ure 3. ACPI mandates that all PIC mode IRQs
be identity mapped to IOAPIC pins. Excep-
tions are specified in MADT5 interrupt source
override entries.

Over-rides are often used, for example, to spec-
ify that the 8254 timer on IRQ0 in PIC mode
does not use pin0 on the IOAPIC, but uses
pin2. Over-rides also often move the ACPI SCI
to a different pin in IOAPIC mode than it had
in PIC mode, or change its polarity or trigger
from the default.

5MADT, Multiple APIC Description Table.

124 • Linux Symposium 2004 • Volume One

setup_arch()
acpi_boot_init()

parse(MADT);
parse(LAPIC); /* processors */
parse(IOAPIC)

parse(INT_SRC_OVERRIDE);
add_identity_legacy_mappings();
/* mp_irqs[] initialized */

init()
smp_boot_cpus()

setup_IO_APIC()
enable_IO_APIC();
setup_IO_APIC_irqs(); /* mp_irqs[] */

do_initcalls()
acpi_init()

"ACPI: Subsystem revision 20040326"
acpi_initialize_subsystem();
/* AML interpreter */
acpi_load_tables(); /* DSDT */
acpi_enable_subsystem();
/* HW into ACPI mode */

"ACPI: Interpreter enabled"
acpi_bus_init_irq();

AML(_PIC, PIC | IOAPIC | IOSAPIC);

acpi_pci_link_init()
for(every PCI Link in DSDT)

acpi_pci_link_add(Link)
AML(_PRS, Link);
AML(_CRS, Link);

"... Link [LNKA] (IRQs 9 10 *11)"

pci_acpi_init()
"PCI: Using ACPI for IRQ routing"

acpi_irq_penalty_init();
for (PCI devices)

acpi_pci_irq_enable(device)
acpi_pci_irq_lookup()

find _PRT entry
if (Link) {

acpi_pci_link_get_irq()
acpi_pci_link_allocate()

examine possible & current IRQs
AML(_SRS, Link)

} else {
use hard-coded IRQ in _PRT entry

}
acpi_register_gsi()

mp_register_gsi()
io_apic_set_pci_routing()

"PCI: PCI interrupt 00:06.0[A] ->
GSI 26 (level, low) -> IRQ 26"

Figure 3: Interrupt Initialization

So after identifying that the system will be in
IOAPIC mode, the 1st step is to record all the
Interrupt Source Overrides inmp_irqs[] .
The second step is to add the legacy identity
mappings where pins and IRQs have not been
consumed by the over-rides.

Step three is to digestmp_irqs[] in
setup_IO_APIC_irqs() , just like it
would be if the system were running in legacy
MPS mode.

But that is just the start of interrupt configu-
ration in ACPI mode. The system still needs
to enable the mappings for PCI devices, which
are stored in the DSDT6 _PRT7 entries. Fur-
ther, the _PRT can contain both static entries,
analogous to MPS table entries, or it can con-
tain dynamic _PRT entries that use PCI Inter-
rupt Link Devices.

So Linux enables the AML interpreter and in-
forms the ACPI BIOS that it plans to run the
system in IOAPIC mode.

Next the PCI Interrupt Link Devices are
parsed. These “links” are abstract versions of
what used to be called PIRQ-routers, though
they are more general.acpi_pci_link_
init() searches the DSDT for Link Devices
and queries each about the IRQs it can be set
to (_PRS)8 and the IRQ that it is already set to
(_CRS)9

A penalty table is used to help decide how
to program the PCI Interrupt Link Devices.
Weights are statically compiled into the ta-
ble to avoid programming the links to well
known legacy IRQs.acpi_irq_penalty_
init() updates the table to add penalties to
the IRQs where the Links have possible set-

6DSDT, Differentiated Services Description Table,
written in AML

7_PRT, PCI Routing Table
8PRS, Possible Resource Settings.
9CRS, Current Resource Settings.

Linux Symposium 2004 • Volume One • 125

tings. The idea is to minimize IRQ shar-
ing, while not conflicting with legacy IRQ use.
While it works reasonably well in practice, this
heuristic is inherently flawed because it as-
sumes the legacy IRQs rather than asking the
DSDT what legacy IRQs are actually in use.10

The PCI sub-system callsacpi_pci_irq_
enable() for every device. ACPI looks up
the device in the _PRT by device-id and if it
a simple static entry, programs the IOAPIC.
If it is a dynamic entry,acpi_pci_link_
allocate() chooses an IRQ for the link and
programs the link via AML (_SRS).11 Then the
associated IOAPIC entry is programmed.

Later, the drivers initialize and callrequest_
irq(IRQ) with the IRQ the PCI sub-system
told it to request.

One issue we have with this scheme is that it
can’t automatically recover when the heuris-
tic balancing act fails. For example when the
parallel port grabs IRQ7 and a PCI Interrupt
Links gets programmed to the same IRQ, then
request_irq(IRQ) correctly fails to put
ISA and PCI interrupts on the same pin. But
the system doesn’t realize that one of the con-
tenders could actually be re-programmed to a
different IRQ.

The fix for this issue will be to delete the
heuristic weights from the IRQ penalty table.
Instead the kernel should scan the DSDT to
enumerate exactly what legacy devices reserve
exactly what IRQs.12

10In PIC mode, the default is to keep the BIOS pro-
vided current IRQ setting, unless cmdlineacpi_irq_
balance is used. Balancing is always enabled in
IOAPIC mode.

11SRS, Set Resource Setting
12bugzilla 2733

4.1 Issues With PCI Interrupt Link Devices

Most of the issues have been with PCI Interrupt
Link Devices, an ACPI mechanism primarily
used to replace the chip-set-specific Legacy
PIRQ code.

• The status (_STA) returned by a PCI Inter-
rupt Link Device does not matter. Some
systems mark the ones we should use as
enabled, some do not.

• The status set by Linux on a link is im-
portant on some chip sets. If we do
not explicitly disable some unused links,
they result in tying together IRQs and can
cause spurious interrupts.

• The current setting returned by a link
(_CRS) can not always be trusted. Some
systems return invalid settings always.
Linux must assume that when it sets a
link, the setting was successful.

• Some systems return a current setting that
is outside the list of possible settings. Per
above, this must be ignored and a new set-
ting selected from the possible-list.

4.2 Issues With ACPI SCI Configuration

Another area that was ironed out this year
was the ACPI SCI (System Control Interrupt).
Originally, the SCI was always configured as
level/low, but SCI failures didn’t stop until
we implemented the algorithm in Figure 4.
During debugging, the kernel gained the cmd-
line option that applies to either PIC or IOAPIC
mode: acpi_sci={level,edge,high,
low} but production systems seem to be work-
ing properly and this has seen use recently only
to work around prototype BIOS bugs.

126 • Linux Symposium 2004 • Volume One

if (PIC mode) {
set ELCR to level trigger();

} else { /* IOAPIC mode */
if (Interrupt Source Override) {

Use IRQ specified in override
if(trigger edge or level)

use edge or level
else (compatible trigger)

use level

if (polarity high or low)
use high or low

else
use low

} else { /* no Override */
use level-trigger
use low-polarity

}
}

Figure 4: SCI configuration algorithm

4.3 Unresolved: Local APIC Timer Issue

The most troublesome configuration issue to-
day is that many systems with no IO-APIC will
hang during boot unless their LOCAL-APIC
has been disabled, eg. by bootingnolapic .
While this issue has gone away on several sys-
tems with BIOS upgrades, entire product lines
from high-volume OEMS appear to be subject
to this failure. The current workaround to dis-
able the LAPIC timer for the duration of the
SMI-CMD update that enables ACPI mode.13

4.4 Wanted: Generic Linux Driver Manager

The ACPI DSDT enumerates motherboard de-
vices via PNP identifiers. This method is used
to load the ACPI specific devices today, eg.
battery, button, fan, thermal etc. as well as
8550_acpi . PCI devices are enumerated via
PCI-ids from PCI config space. Legacy devices
probe out using hard-coded address values.

But a device driver should not have to know or
13http://bugzilla.kernel.org 1269

�������
��	
��

������������

�����
����

������������

�����
����

�����
����

��	������

���� ���

������� ��!"

�#���
$�!�	� ��

������������

�����%��&
��'���''

���&�(�����''

)�
 �"

Figure 5: ACPI Global, CPU, and Sleep states.

care how it is enumerated by its parent bus. An
8250 driver should worry about the 8250 and
not if it is being discovered by legacy means,
ACPI enumeration, or PCI.

One fix would be to be to abstract the PCI-ids,
PNP-ids, and perhaps even some hard-coded
values into a generic device manager directory
that maps them to device drivers.

This would simply add a veneer to the PCI
device configuration, simplifying a very small
number of drivers that can be configured by
PCI or ACPI. However, it would also fix the
real issue that the configuration information in
the ACPI DSDT for most motherboard devices
is currently not parsed and not communicated
to any Linux drivers.

The Device driver manager would also be
able to tell the power management sub-system
which methods are used to power-manage the
device. Eg. PCI or ACPI.

5 ACPI Power Management

The Global System States defined by ACPI are
illustrated in Figure 5. G0 is the working state,
G1 is sleeping, G2 is soft-off and G3 is me-
chanical off. The “Legacy” state illustrates
where the system is not in ACPI mode.

Linux Symposium 2004 • Volume One • 127

5.1 P-states

In the context of G0 – Global Working State,
and C0 – CPU Executing State, P-states (Per-
formance states) are available to reduce power
of the running processor. P-states simultane-
ously modulate both the MHz and the voltage.
As power varies by voltage squared, P-states
are extremely effective at saving power.

While P-states are extremely important, the
cpufreq sub-system handles P-states on a
number of different platforms, and the topic is
best addressed in that larger context.

5.2 Throttling

In the context of the G0-Working, C0-
Executing state, Throttling states are defined to
modulate the frequency of the running proces-
sor.

Power varies (almost) directly with MHz, so
when the MHz is cut if half, so is the power.
Unfortunately, so is the performance.

Linux currently uses Throttling only in re-
sponse to thermal events where the processor
is too hot. However, in the future, Linux could
add throttling when the processor is already in
the lowest P-state to save additional power.

Note that most processors also include a
backup Thermal Monitor throttling mecha-
nism in hardware, set with higher temperature
thresholds than ACPI throttling. Most proces-
sors also have in hardware an thermal emer-
gency shutdown mechanism.

5.3 C-states

In the context of G0 Working system state, C-
state (CPU-state) C0 is used to refer to the exe-
cuting state. Higher number C-states are en-
tered to save successively more power when

the processor is idle. No instructions are ex-
ecuted when in C1, C2, or C3.

ACPI replaces the default idle loop so it can
enter C1, C2 or C3. The deeper the C-state,
the more power savings, but the higher the la-
tency to enter/exit the C-state. You can ob-
serve the C-states supported by the system and
the success at using them in/proc/acpi/
processor/CPU0/power

C1 is included in every processor and has
negligible latency. C1 is implemented with
the HALT or MONITOR/MWAIT instructions.
Any interrupt will automatically wake the pro-
cessor from C1.

C2 has higher latency (though always under
100 usec) and higher power savings than C1.
It is entered through writes to ACPI registers
and exits automatically with any interrupt.

C3 has higher latency (though always under
1000 usec) and higher power savings than C2.
It is entered through writes to ACPI registers
and exits automatically with any interrupt or
bus master activity. The processor does not
snoop its cache when in C3, which is why bus-
master (DMA) activity will wake it up. Linux
sees several implementation issues with C3 to-
day:

1. C3 is enabled even if the latency is up to
1000 usec. This compares with the Linux
2.6 clock tick rate of 1000Hz = 1ms =
1000usec. So when a clock tick causes
C3 to exit, it may take all the way to the
next clock tick to execute the next kernel
instruction. So the benefit of C3 is lost
because the system effectively pays C3 la-
tency and gets negligible C3 residency to
save power.

2. Some devices do not tolerate the DMA
latency introduced by C3. Their device
buffers underrun or overflow. This is cur-

128 • Linux Symposium 2004 • Volume One

rently an issue with the ipw2100 WLAN
NIC.

3. Some platforms can lie about C3 latency
and transparently put the system into a
higher latency C4 when we ask for C3—
particularly when running on batteries.

4. Many processors halt their local APIC
timer (a.k.a. TSC – Timer Stamp Counter)
when in C3. You can observe this
by watching LOC fall behind IRQ0 in
/proc/interrupts.

5. USB makes it virtually impossible to en-
ter C3 because of constant bus master ac-
tivity. The workaround at the moment is
to unplug your USB devices when idle.
Longer term, it will take enhancements
to the USB sub-system to address this is-
sue. Ie. USB software needs to recognize
when devices are present but idle, and re-
duce the frequency of bus master activity.

Linux decides which C-state to enter on idle
based on a promotion/demotion algorithm.
The current algorithm measures the residency
in the current C-state. If it meets a threshold
the processor is promoted to the deeper C-state
on re-entrance into idle. If it was too short, then
the processor is demoted to a lower-numbered
C-state.

Unfortunately, the demotion rules are overly
simplistic, as Linux tracks only its previous
success at being idle, and doesn’t yet account
for the load on the system.

Support for deeper C-states via the _CST
method is currently in prototype. Hopefully
this method will also give the OS more accu-
rate data than the FADT about the latency as-
sociated with C3. If it does not, then we may
need to consider discarding the table-provided
latencies and measuring the actual latency at
boot time.

5.4 Sleep States

ACPI names sleeps states S0 – S5. S0 is the
non-sleep state, synonymous with G0. S1 is
standby, it halts the processor and turns off the
display. Of course turning off the display on an
idle system saves the same amount of power
without taking the system off line, so S1 isn’t
worth much. S2 is deprecated. S3 is suspend to
RAM. S4 is hibernate to disk. S5 is soft-power
off, AKA G2.

Sleep states are unreliable enough on Linux to-
day that they’re best considered “experimen-
tal.” Suspend/Resume suffers from (at least)
two systematic problems:

• _init() and_initdata() on items
that may be referenced after boot, say,
during resume, is a bad idea.

• PCI configuration space is not uniformly
saved and restored either for devices or
for PCI bridges. This can be observed
by using lspci before and after a sus-
pend/resume cycle. Sometimessetpci
can be used to repair this damage from
user-space.

5.5 Device States

Not shown on the diagram, ACPI defines
power saving states for devices: D0 – D3. D0
is on, D3 is off, D1 and D2 are intermediate.
Higher device states have

1. more power savings,

2. less device context saved by hardware,

3. more device driver state restoring,

4. higher restore latency.

Linux Symposium 2004 • Volume One • 129

ACPI defines semantics for each device state in
each device class. In practice, D1 and D2 are
often optional - as many devices support only
on and off either because they are low-latency,
or because they are simple.

Linux-2.6 includes an updated device driver
model to accommodate power management.14

This model is highly compatible with PCI and
ACPI. However, this vision is not yet fully re-
alized. To do so, Linux needs a global power
policy manager.

5.6 Wanted: Generic Linux Run-time Power
Policy Manager

PCI device drivers today callpci_set_
power_state() to enter D-states. This uses
the power management capabilities in the PCI
power management specification.

The ACPI DSDT supplies methods for ACPI
enumerated devices to access ACPI D-states.
However, no driver calls into ACPI to enter D-
states today.15

Drivers shouldn’t have to care if they are power
managed by PCI or by ACPI. Drivers should be
able to up-call to a generic run-time power pol-
icy manager. That manager should know about
calling the PCI layer or the ACPI layer as ap-
propriate.

The power manager should also put those re-
quests in the context of user-specified power
policy. Eg. Does the user want maximum per-
formance, or maximum battery life? Currently
there is no method to specify the detailed pol-
icy, and the kernel wouldn’t know how to han-
dle it anyway.

In a related point, it appears that devices cur-

14Patrick Mochel, Linux Kernel Power Management,
OLS 2003.

15Actually, the ACPI hot-plug driver invokes D-states,
but that is the only exception.

rently only suspend upon system suspend. This
is probably not the path to industry leading bat-
tery life.

Device drivers should recognize when their de-
vice has gone idle. They should invoke a sus-
pend up-call to a power manager layer which
will decide if it really is a good idea to grant
that request now, and if so, how. In this case by
calling the PCI or ACPI layer as appropriate.

6 ACPI as seen by bugzilla

Over the last year the ACPI developers have
made heavy use of bugzilla16 to help prioritize
and track 460 bugs. 300 bugs are closed or re-
solved, 160 are open.17

We cc: acpi-bugzilla@lists.
sourceforge.net on these bugs, and
we encourage the community to add that alias
to ACPI-specific bugs in other bugzillas so that
the team can help out wherever the problems
are found.

We haven’t really used the bugzilla priority
field. Instead we’ve split the bugs into cate-
gories and have addressed the configuration is-
sues first. This explains why most of the in-
terrupt bugs are resolved, and most of the sus-
pend/resume bugs are unresolved.

We’ve seen an incoming bug rate of 10-
bugs/week for many months, but the new re-
ports favor the power management features
over configuration, so we’re hopeful that the
torrent of configuration issues is behind us.

16http://bugzilla.kernel.org/
17The resolved state indicates that a patch is available

for testing, but that it is not yet checked into the ker-
nel.org kernel.

130 • Linux Symposium 2004 • Volume One

����

�����

	
������

���

�������

�������

���

�������

	�
����
�

	
���
��

���

�
��� ���

���������

!
����

�� "�	#

��$���

% &' '% (')%%

���� *�"
�
�+��

��
���

Figure 6: ACPI bug profile

7 Future Work

7.1 Linux 2.4

Going forward, I expect to back-port only crit-
ical configuration related fixes to Linux-2.4.
For the latest power management code, users
need to migrate to Linux-2.6.

7.2 Linux 2.6

Linux-2.6 is a “stable” release, so it is not
appropriate to integrate significant new fea-
tures. However, the power management side
of ACPI is widely used in 2.6 and there will be
plenty of bug-fixes necessary. The most visi-
ble will probably be anything that makes Sus-
pend/Resume work on more platforms.

7.3 Linux 2.7

These feature gaps will not be addressed in
Linux 2.6, and so are candidates for Linux 2.7:

• Device enumeration is not abstracted in
a generic device driver manager that can
shield drivers from knowing if they’re
enumerated by ACPI, PCI, or other.

• Motherboard devices enumerated by
ACPI in the DSDT are ignored, and
probed instead via legacy methods. This
can lead to resource conflicts.

• Device power states are not abstracted in
a generic device power manager that can
shield drivers from knowing whether to
call ACPI or PCI to handle D-states.

• There is no power policy manager to
translate the user-requested power policy
into kernel policy.

• No devices invoke ACPI methods to enter
D-states.

• Devices do not detect that they are idle
and request of a power manager whether
they should enter power saving device
states.

• There is no MP/SMT coordination of P-
states. Today, P-states are disabled on
SMP systems. Coordination needs to ac-
count for multiple threads and multiple
cores per package.

• Coordinate P-states and T-states. Throt-
tling should be used only after the system
is put in the lowest P-state.

• Idle states above C1 are disabled on SMP.

• Enable Suspend in PAE mode.18

18PAE, Physical Address Extended—MMU mode to
handle > 4GB RAM—optional oni386 , always used
onx86_64 .

Linux Symposium 2004 • Volume One • 131

• Enable Suspend on SMP.

• Tick timer modulation for idle power sav-
ings.

• Video control extensions. Video is a large
power consumer. The ACPI spec Video
extensions are currently in prototype.

• Docking Station support is completely ab-
sent from Linux.

• ACPI 3.0 features. TBD after the specifi-
cation is published.

7.4 ACPI 3.0

Although ACPI 3.0 has not yet been published,
two ACPI 3.0 tidbits are already in Linux.

• PCI Express table scanning. This is the
basic PCI Express support, there will be
more coming. Those in the PCI SIG
can read all about it in the PCI Express
Firmware Specification.

• Several clarifications to the ACPI 2.0b
spec resulted directly from open source
development,19 and the text of ACPI 3.0
has been updated accordingly. For exam-
ple, some subtleties of SCI interrupt con-
figuration and device enumeration.

When the ACPI 3.0 specification is published
there will instantly be a multiple additions to
the ACPI/Linux feature to-do list.

7.5 Tougher Issues

• Battery Life on Linux is not yet compet-
itive. This single metric is the sum of all
the power savings features in the platform,
and if any of them are not working prop-
erly, it comes out on this bottom line.

19FreeBSD deserves kudos in addition to Linux

• Laptop Hot Keys are used to control
things such as video brightness, etc. ACPI
does not specify Hot Keys. But when they
work in APM mode and don’t work in
ACPI mode, ACPI gets blamed. There are
4 ways to implement hot keys:

1. SMI20 handler, the BIOS handles
interrupts from the keys, and con-
trols the device directly. This acts
like “hardware” control as the OS
doesn’t know it is happening. But
on many systems this SMI method is
disabled as soon as the system tran-
sitions into ACPI mode. Thus the
complaint “the button works in APM
mode, but doesn’t work in ACPI
mode.”
But ACPI doesn’t specify how hot
keys work, so in ACPI mode one of
the other methods listed here needs
to handle the keys.

2. Keyboard Extension driver, such as
i8k . Here the keys return scan
codes like any other keys on the key-
board, and the keyboard driver needs
to understand those scan code. This
is independent of ACPI, and gener-
ally OEM specific.

3. OEM-specific ACPI hot key driver.
Some OEMs enumerate the hot
keys as OEM-specific devices in the
ACPI tables. While the device is
described in AML, such devices are
not described in the ACPI spec so
we can’t build generic ACPI support
for them. The OEM must supply
the appropriate hot-key driver since
only they know how it is supposed
to work.

4. Platform-specific “ACPI” driver. To-
day Linux includes Toshiba and

20SMI, System Management Interrupt; invisible to the
OS, handled by the BIOS, generally considered evil.

132 • Linux Symposium 2004 • Volume One

Asus platform specific extension
drivers to ACPI. They do not use
portable ACPI compliant methods to
recognize and talk to the hot keys,
but generally use the methods above.

The correct solution to the the Hot Key is-
sue on Linux will require direct support
from the OEMs, either by supplying doc-
umentation, or code to the community.

8 Summary

This past year has seen great strides in the con-
figuration aspects of ACPI. Multiple Linux dis-
tributors now enable ACPI on multiple archi-
tectures.

This sets the foundation for the next era of
ACPI on Linux where we can evolve the more
advanced ACPI features to meet the expecta-
tions of the community.

9 Resources

The ACPI specification is published athttp:
//www.acpi.info .

The home page for the Linux ACPI de-
velopment community is here:http://
acpi.sourceforge.net/ It contains nu-
merous useful pointers, including one to the
acpi-devel mailing list.

The latest ACPI code can be found against var-
ious recent releases in the BitKeeper repos-
itories: http://linux-acpi.bkbits.
net/

Plain patches are available onkernel.
org .21 Note that Andrew Morton currently
includes the latest ACPI test tree in the-mm

21http://ftp.kernel.org/pub/linux/
kernel/people/lenb/acpi/patches/

patch, so you can test the latest ACPI code
combined with other recent updates there.22

10 Acknowledgments

Many thanks to the following people whose di-
rect contributions have significantly improved
the quality of the ACPI code in the last
year: Jesse Barnes, John Belmonte, Dominik
Brodowski, Bruno Ducrot, Bjorn Helgaas,
Nitin, Kamble, Andi Kleen, Karol Kozimor,
Pavel Machek, Andrew Morton, Jun Naka-
jima, Venkatesh Pallipadi, Nate Lawson, David
Shaohua Li, Suresh Siddha, Jes Sorensen, An-
drew de Quincey, Arjan van de Ven, Matt
Wilcox, and Luming Yu. Thanks also to all
the bug submitters, and the enthusiasts on
acpi-devel .

Special thanks to Intel’s Mobile Platforms
Group, which created ACPICA, particularly
Bob Moore and Andy Grover.

Linux is a trademark of Linus Torvalds. Bit-
Keeper is a trademark of BitMover, Inc.

22http://ftp.kernel.org/pub/linux/
kernel/people/akpm/patches/

