MicroProfile Telemetry

MicroProfile Telemetry Team (Roberto Cortez, Emily Jiang, Bruno Baptista, Jan
Westerkamp, Felix Wong, Yasmin Aumeeruddy, Patrik Dudits)

2.0-RC2, July 02, 2024: Draft

Table of Contents

Copyright
Eclipse Foundation Specification License - v1.1
Disclaimers
Introduction
Architecture
SDK integration
Enabling OpenTelemetry support
Configuration
OTLP support
Service Providers support
Access to OpenTelemetry API
API classes
Tracing
Tracing Instrumentation
Automatic Instrumentation
Manual Instrumentation
@WithSpan
Obtain a SpanBuilder
Obtain the current Span
Agent Instrumentation
Access to the OpenTelemetry Tracing API
Trace Semantic Conventions
MicroProfile Attributes
Routing Traces
Tracing Enablement
MicroProfile OpenTracing

MicroProfile Telemetry and MicroProfile OpenTracing

Metrics
Routing Metrics
Access to the OpenTelemetry Metrics API
Required Metrics
Metrics Enablement
Logs
Routing Logs
Logs Enablement
Configuration
Required Configuration Properties
Optional Configuration Properties

© O©W 0 00 00 0 00 N N N 909 N9 o o Uk N NN

[N T T S S S Y Y
W © © 0 00 00 1 U1 Ul i B W N N =B = = = O

Service Loader Support
Supported OpenTelemetry API Classes
OpenTelemetry API
Context API
Resource SDK
Metrics SDK
Autoconfigure SPI
Tracing Annotations
Release Notes
Release Notes for MicroProfile Telemetry 2.0
Incompatible Changes
API/SPI Changes
Other Changes
Release Notes for MicroProfile Telemetry 1.1
Incompatible Changes
API/SPI Changes
Other Changes

26
28
28
28
28
28
28
29
30
30
30
30
30
31
31
31
31

Specification: MicroProfile Telemetry
Version: 2.0-RC2

Status: Draft

Release: July 02, 2024

Copyright

Copyright (c) 2022, 2024 Eclipse Foundation.

Eclipse Foundation Specification License - v1.1

By using and/or copying this document, or the Eclipse Foundation document from which this
statement is linked or incorporated by reference, you (the licensee) agree that you have read,
understood, and will comply with the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation
document from which this statement is linked, in any medium for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the document,
or portions thereof, that you use:

¢ link or URL to the original Eclipse Foundation document.

* All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a
textual representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse
Foundation AISBL [url] to this license] "

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution
be provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted
pursuant to this license, except anyone may prepare and distribute derivative works and portions
of this document in software that implements the specification, in supporting materials
accompanying such software, and in documentation of such software, PROVIDED that all such
works include the notice below. HOWEVER, the publication of derivative works of this document
for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) [$date-of-document] Eclipse Foundation AISBL. This software or document includes
material copied from or derived from [title and URI of the Eclipse Foundation specification
document]."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND TO THE EXTENT PERMITTED BY APPLICABLE LAW
THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION AISBL MAKE NO REPRESENTATIONS
OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT
THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

TO THE EXTENT PERMITTED BY APPLICABLE LAW THE COPYRIGHT HOLDERS AND THE ECLIPSE

FOUNDATION AISBL WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation AISBL may NOT be
used in advertising or publicity pertaining to this document or its contents without specific, written
prior permission. Title to copyright in this document will at all times remain with copyright
holders. :sectnums:

Introduction

In cloud-native technology stacks, distributed and polyglot architectures are the norm. Distributed
architectures introduce a variety of operational challenges including how to solve availability and
performance issues quickly. These challenges have led to the rise of observability.

Telemetry data is needed to power observability products. Traditionally, telemetry data has been
provided by either open-source projects or commercial vendors. With a lack of standardization, the
net result is the lack of data portability and the burden on the user to maintain the
instrumentation.

The OpenTelemetry project solves these problems by providing a single, vendor-agnostic solution.

https://opentelemetry.io

Architecture

OpenTelemetry is a set of APIs, SDKs, tooling and integrations that are designed for the creation and
management of telemetry data such as traces, metrics, and logs.

This specification defines the behaviors that allow MicroProfile applications to easily participate in
an environment where distributed tracing is enabled via OpenTelemetry.

The OpenTelemetry specification describes the cross-language requirements and expectations for
all OpenTelemetry implementations. This specification is based on the Java implementation v1.39.0
of OpenTelemetry. An implementation of this MicroProfile Telemetry MAY consume a later patch
release of the Java implementation as long as the required TCKs pass successfully.

Refer to the OpenTelemetry specification repo to understand some essential terms.

* OpenTelemetry Overview

Tracing API
» Baggage API
* Context API

e Resource SDK

The Logging integrations of OpenTelemetry are out of scope of this
IMPORTANT specification. Implementations are free to provide support for Logging if
desired.

https://opentelemetry.io
https://opentelemetry.io
https://github.com/open-telemetry/opentelemetry-java/tree/v1.39.0
https://opentelemetry.io/docs/specs/otel/overview/
https://opentelemetry.io/docs/specs/otel/trace/api/
https://opentelemetry.io/docs/specs/otel/baggage/api/
https://opentelemetry.io/docs/specs/otel/context/
https://opentelemetry.io/docs/specs/otel/resource/sdk/
https://opentelemetry.io

SDK integration

Implementations SHALL provide integration by appropriately configuring one or more compatible
OpenTelemetry SDK instances for the application runtime. Regardless of signal type being
considered — traces, logs or metrics — the following requirements SHALL be met.

Enabling OpenTelemetry support
By default, MicroProfile Telemetry is deactivated.

In order to enable any aspects of integration, the configuration otel.sdk.disabled=false MUST be
specified.

If the otel.sdk.disabled=false configuration setting is visible to the runtime at initialization time
then the runtime MUST provide a SINGLE OpenTelemetry SDK instance which MUST be used by the
runtime and all applications.

If the otel.sdk.disabled=false configuration setting is only visible to the application(s) at
initialization time, then runtime telemetry MUST be disabled and the application(s) MUST be
configured using the visible otel.* properties.

Implementations that do not support use of MicroProfile Config during runtime initialization may
use the OTEL_SDK_DISABLED environment variable or otel.sdk.disabled Java system property to
specify this setting.

At application initialization time runtimes MUST use configuration sources available via
MicroProfile Config for configuration.

Runtimes MAY provide additional means of configuring per-application SDKs or runtime
extensions.

This is a breaking change for runtimes that can simultaneously run multiple
applications. In MicroProfile Telemetry 1.1 the OTEL_SDK_DISABLED environment
variable could be used to indicate whether to enable or disable the application
instance(s) of OpenTelemetry. Users that want to enable/disable individual

NOTE application instances can do so using any MicroProfile Config configuration source
that is only visible to applications. Users that want to enable an OpenTelemetry
instance to be used by the runtime and all applications need to provide any
OpenTelemetry configuration settings in a way that is visible to the runtime at
initialization time (for example, using environment variables).

This is a deviation from the OpenTelemetry Specification that specifies the
otel.sdk.disabled configuration property officially, where OpenTelemetry is
activated by default!

IMPORTANT
But in fact, it will be activated only by adding its dependency to the

application or platform project. To be able to add MicroProfile Telemetry to
MicroProfile implementations by default without side effects, this deviating

https://opentelemetry.io

behaviour has been defined here (see also MicroProfile Telemetry and
MicroProfile OpenTracing).

This property is read once when the application is starting. Any changes afterwards will not take
effect unless the application is restarted.

Configuration

OpenTelemetry MUST be configured by MicroProfile Config following the semantics of
configuration properties of OpenTelemetry SDK Autoconfigure extension.

Full list of required configuration property names are listed in Configuration.

OTLP support

OpenTelemetry data can be exported in various ways. Implementation MUST support exporting
data via OTLP protocol and relevant configuration properties for OTLP exporter.

Service Providers support

Additional OpenTelemetry SDK components can be integrated by means of Java Service Loader
mechanism.

Full list of supported service providers is listed in Service Loader Support.

Access to OpenTelemetry API

An implementation of MicroProfile Telemetry MUST provide the following CDI beans for
supporting contextual instance injection:

* jo.opentelemetry.api.OpenTelemetry
Implementations MAY support:
* io.opentelemetry.api.GlobalOpenTelemetry.get()

To obtain the access to OpenTelemetry instance. The consumer MUST use the exact same
instrumentation name and version used by the implementation. Failure to do so, MAY result in a
different tracing and metrics components to be used.

Later sections provide more beans for particular signal types.

API classes

In order to provide integration with OpenTelemetry the implementations SHALL make a number of
OpenTelemetry packages available to applications. The full list of packages is listed in Supported
OpenTelemetry API Classes.

https://github.com/open-telemetry/opentelemetry-java/tree/v1.39.0/sdk-extensions/autoconfigure

Tracing

In the observability, Tracing is used to diagnose problems. Tracing instrumentation is used to
generate traces.

Tracing Instrumentation

This specification supports the following three types of instrumentation:

¢ Automatic Instrumentation
* Manual Instrumentation

* Agent Instrumentation

Automatic Instrumentation

Jakarta RESTful Web Services (server and client) and MicroProfile REST Clients are automatically
enlisted to participate in distributed tracing without code modification as specified in the Tracing
API.

These SHOULD follow the rules specified in the Trace Semantic Conventions section.

Manual Instrumentation

Explicit manual instrumentation can be added into a MicroProfile application in the following
ways:

@WithSpan

Annotating a method in any Jakarta CDI aware beans with the
io.opentelemetry.instrumentation.annotations.WithSpan annotation. This will create a new Span
and establish any required relationships with the current Trace context.

Method parameters can be annotated with the
io.opentelemetry.instrumentation.annotations.SpanAttribute annotation to indicate which method
parameters SHOULD be part of the Trace.

Example:

class SpanBean {
void span() {

}

(unamen)
void spanName() {

(kind = SpanKind.SERVER)
void spanKind() {

}
void spanArgs((value = "arg") String arg) {
}
}
Obtain a SpanBuilder

By obtaining a SpanBuilder from the current Tracer and calling
io.opentelemetry.api.trace.Tracer.spanBuilder(String). In this case, it is the developer’s
responsibility to ensure that the Span is properly created, closed, and propagated.

Example:

"/")

public class SpanResource {

Tracer tracer;

("/span/new")
public Response spanNew() {

Span span = tracer.spanBuilder("span.new")
.setSpanKind(SpanKind.INTERNAL)
.setParent(Context.current().with(this.span))
.setAttribute("my.attribute", "value")
.startSpan();

span.end();

return Response.ok().build();

Start and end a new Span will add a child Span to the current one enlisted by the

NOTE .. . N
automatic instrumentation of Jakarta REST applications.

Obtain the current Span

By obtaining the current Span to add attributes. The Span lifecycle is managed by the

implementation.

Example:

@RequestScoped
@Path("/")
public class SpanResource {
@GET
@Path("/span/current")
public Response spanCurrent() {
Span span = Span.current();
span.setAttribute("my.attribute", "value");
return Response.ok().build();

}
}
Or with CDI:
@RequestScoped
@Path("/")
public class SpanResource {
@Inject
Span span;
@GET
@Path("/span/current")
public Response spanCurrent() {
span.setAttribute("my.attribute", "value");
return Response.ok().build();
}
}

Agent Instrumentation

Implementations are free to support the OpenTelemetry Agent Instrumentation. This provides the
ability to gather telemetry data without code modifications by attaching a Java Agent JAR to the
running JVM.

If an implementation of MicroProfile Telemetry Tracing provides such support, it MUST conform to
the instructions detailed in the OpenTelemetry Java Instrumentation project, including:

» Agent Configuration

* Suppressing Instrumentation

Both Agent and MicroProfile Telemetry Tracing Instrumentation (if any), MUST coexist with each
other.

10

https://github.com/open-telemetry/opentelemetry-java-instrumentation/tree/v1.39.0
https://opentelemetry.io/docs/instrumentation/java/automatic/agent-config/
https://opentelemetry.io/docs/instrumentation/java/automatic/agent-config/#suppressing-specific-auto-instrumentation

Access to the OpenTelemetry Tracing API

An implementation of MicroProfile Telemetry Tracing MUST provide the following CDI beans for
supporting contextual instance injection:

* jo.opentelemetry.api.trace.Tracer
* jo.opentelemetry.api.trace.Span

* jo.opentelemetry.api.baggage.Baggage
Calling the OpenTelemetry API directly MUST work in the same way and yield the same results:

* jo.opentelemetry.api.trace.Span.current()

* io.opentelemetry.api.baggage.Baggage.current()

Trace Semantic Conventions

The Semantic Conventions for HTTP Spans MUST be followed by any compatible implementation.

This is a breaking change from MicroProfile Telemetry 1.1 due to stabilization of
NOTE HTTP semantic conventions in OpenTelemetry. Changes to attributes are described
in HTTP semantic convention stability migration guide.

Semantic Conventions distinguish several Requirement Levels for attributes. All Span attributes
marked as Required and Conditionally Required MUST be present in the context of the Span where
they are defined. Any other attribute is optional. Implementations MAY also add their own
attributes, or provide means of configuring Opt-In attribute emission.

MicroProfile Attributes

Other MicroProfile specifications can add their own attributes under their own attribute name
following the convention mp.[specification short name].[attribute name].

Implementation libraries can set the library name using the following property:

mp.telemetry.tracing.name

Routing Traces

OpenTelemetry can be enabled selectively for each application, or globally for the runtime and all
applications as described in Enabling OpenTelemetry support. Traces and spans may be emitted by
applications or on behalf of a component in the runtime. For example, spans created by an app to
track the execution of a database call are application spans, whereas spans created to track the
execution of a call to the runtime’s /health endpoint are runtime spans.

For spans that originate from an application:

* if the OpenTelemetry SDK instance is shared by the runtime and applications then application
spans should be routed to this instance

11

https://github.com/open-telemetry/semantic-conventions/blob/v1.26.0/docs/http/http-spans.md
https://github.com/open-telemetry/semantic-conventions/blob/v1.26.0/docs/http/migration-guide.md
https://github.com/open-telemetry/semantic-conventions/blob/v1.26.0/docs/general/attribute-requirement-level.md

 if an OpenTelemetry SDK instance is enabled for the application that is creating spans then
spans from that application should be routed to this instance

* if no OpenTelemetry SDK instance is enabled for the application that is creating spans then
spans from that application should be discarded (typically by sending the request to a noop
OpenTelemetry SDK instance)

For spans that originate from the runtime:

* if the OpenTelemetry SDK instance is shared by the runtime and applications then runtime
spans should be routed to this instance

* if no OpenTelemetry SDK instance is shared by the runtime and applications then spans from
the runtime should be discarded (typically by sending the request to a noop OpenTelemetry SDK
instance)

Tracing Enablement

Tracing is activated whenever Microprofile Telemetry is enabled, as described in Enabling
OpenTelemetry support.

MicroProfile OpenTracing

MicroProfile Telemetry Tracing supersedes MicroProfile OpenTracing. Even if the end goal is the
same, there are some considerable differences:

Different API (between OpenTracing and OpenTelemetry)

No @Traced annotation
* No specific MicroProfile configuration
* No customization of Span name through MicroProfile API

* Differences in attribute names and mandatory ones

For these reasons, the MicroProfile Telemetry Tracing specification does not provide any migration
path between both projects. While it is certainly possible to achieve a migration path at the code
level and at the specification level (at the expense of not following the main OpenTelemetry
specification), it is unlikely to be able to achieve the same compatibility at the data layer.
Regardless, implementations are still free to provide migration paths between MicroProfile
OpenTracing and MicroProfile Telemetry Tracing.

If a migration path is provided, the bridge layer provided by OpenTelemetry SHOULD be used. This
bridge layer implements OpenTracing APIs using OpenTelemetry API. The bridge layer takes
OpenTelemetry Tracer and exposes as OpenTracing Tracer. See the example below.

//From the global OpenTelemetry configuration

Tracer tracer1 = OpenTracingShim.createTracerShim();
//From a provided OpenTelemetry instance oTel

Tracer tracer2 = OpenTracingShim.createTracerShim(oTel);

12

Afterwards, you can then register the tracer as the OpenTracing Global Tracer:

GlobalTracer.registerIfAbsent(tracer);

MicroProfile Telemetry and MicroProfile OpenTracing

If MicroProfile Telemetry and MicroProfile OpenTracing are both present in one application, it is
recommended to only enable one of them, otherwise non-portable behaviour MAY occur.

13

Metrics

Metrics are captured measurements of applications' and runtime’s behavior. An application may
provide metrics of its own in addition to the metrics provided by the runtime.

Implementations are required to capture certain required metrics such as JVM performance
counters and HTTP request processing times. Custom metrics can be defined by utilizing Metrics
API as following example demostrates:

class WithCounter {
Meter meter;

private LongCounter counter;

public void init() {
counter = meter
.counterBuilder("new_subscriptions")
.setDescription("Number of new subscriptions")
.setUnit("1")
.build();

void subscribe(String plan) {
counter.add(1,
Attributes.of (AttributeKey.stringKey("plan"), plan));

In this example Meter is used to define an instrument, in this case a Counter and application code
then can record measurement values along with additional attributes. Measurement aggregations
are computed separately for each unique combination of attributes.

Routing Metrics

OpenTelemetry can be enabled selectively for each application, or globally for the runtime and all
applications as described in Enabling OpenTelemetry support. Metrics may be registered by
applications or on behalf of a component in the runtime. For example, a counter metric that is
registered by an application to track the number of cars driving over a bridge is an application
metric, whereas a gauge tracking the amount of memory used by the JVM is a runtime metric.

For metrics that are registered by an application:

+ if the OpenTelemetry SDK instance is shared by the runtime and applications then application-
registered metrics should be routed to this instance

* if an OpenTelemetry SDK instance is enabled for the application that is registering a metric then

14

that metric should be routed to this instance

* if no OpenTelemetry SDK instance is enabled for the application that is registering a metric then
that metric should be discarded (typically by sending the registration request to a noop
OpenTelemetry SDK instance)

For metrics that originate from the runtime:
* if the OpenTelemetry SDK instance is shared by the runtime and applications then runtime-

registered metrics should be routed to this instance

* if no OpenTelemetry SDK instance is shared by the runtime and applications then runtime-
registered metrics from the runtime should be discarded (typically by sending the registration
request to a noop OpenTelemetry SDK instance)

Access to the OpenTelemetry Metrics API

An implementation of MicroProfile Telemetry Metrics MUST provide the following CDI beans for
supporting contextual instance injection:

* jo.opentelemetry.api.metrics.Meter

Required Metrics

The following metrics MUST be provided by runtimes. These are as defined in the OpenTelemetry
Semantic Conventions v1.26.0

All attributes that are listed as required and stable in the OpenTelemetry Semantic Conventions
MUST be included.

All attributes that are listed as conditionally required and stable in the OpenTelemetry Semantic
Conventions MUST be included when the condition described in the OpenTelemetry Semantic
Conventions is satisfied.

All attributes that are listed as recommended and stable in the OpenTelemetry Semantic
Conventions SHOULD be included if they are readily available and can be efficiently populated.

All attributes that are listed as opt-in and stable in the OpenTelemetry Semantic Conventions MUST
NOT be included unless the implementation provides a means for users to configure which opt-in
attributes to enable. This requirement is based on OpenTelemetry Semantic Conventions
documentation indicating that opt-in attributes MUST NOT be included unless the user has a way to
choose if they are enabled/disabled.

Attribute values and usage guidelines as defined in the semantic conventions document MUST be
followed.

Metric Name Type Attributes
HTTP Server

15

Metric Name

http.server.request.duration

JVM Memory

jvm.memory.used

jvm.memory.committed

jvm.memory.limit

jvm.memory.used_after_last_gc

JVM Garbage Collection

jvm.gc.duration

16

Type

Histogram

UpDownCounter

UpDownCounter

UpDownCounter

UpDownCounter

Histogram

Attributes

required attributes

* http.request.method

* url.scheme
conditionally required

* error.type
* http.response.status_code
* http.route

* network.protocol.name
recommended

* network.protocol.version
opt-in

e server.address

* server.port

recommended

* jvm.memory.pool.name
* jvm.memory.type

recommended

* jvm.memory.pool.name
* jvm.memory.type

recommended

* jvm.memory.pool.name
* jvm.memory.type

recommended

* jvm.memory.pool.name

* jvm.memory.type

recommended

* jvm.gc.action

* jvm.gc.name

Metric Name Type Attributes

JVM Threads

jvm.thread.count UpDownCounter recommended
* jvm.thread.daemon
* jvm.thread.state

JVM Classes

jvm.class.loaded Counter

jvm.class.unloaded Counter

jvm.class.count UpDownCounter

JVM CPU

jvm.cpu.time Counter

jvm.cpu.count UpDownCounter

jvm.cpu.recent_utilization Gauge

Metrics Enablement

Metrics are activated whenever Microprofile Telemetry is enabled, as described in Enabling
OpenTelemetry support.

17

Logs

The OpenTelemetry Logs bridge API exists to enable bridging logs from other log frameworks (e.g.
SLF4], Log4j, JUL, Logback, etc) into OpenTelemetry. It does not define new Log APIs and the Logs
bridge APIs in OpenTelemetry are not for application but for runtime to bridge log frameworks.
Therefore, this specification does not expose any Log APIs.

Routing Logs

OpenTelemetry can be enabled selectively for each application, or globally for the runtime and all
applications as described in Enabling OpenTelemetry support. Logs may be emitted by applications
or on behalf of a component in the runtime. For example, logs written from a RESTful web service
that is part of a banking application are application logs, whereas logs written from the kernel of a
runtime before any application has started are runtime logs.

For logs that originate from an application:
+ if the OpenTelemetry SDK instance is shared by the runtime and applications then application

logs should be routed to this instance

* if an OpenTelemetry SDK instance is enabled for the application that is logging then logs from
that application should be routed to this instance

* if no OpenTelemetry SDK instance is enabled for the application that is logging then logs from
that application should be discarded (typically by sending the logging request to a noop
OpenTelemetry SDK instance)

For logs that originate from the runtime:

+ if the OpenTelemetry SDK instance is shared by the runtime and applications then runtime logs
should be routed to this instance

 if no OpenTelemetry SDK instance is shared by the runtime and applications then logs from the
runtime should be discarded (typically by sending the logging request to a noop OpenTelemetry
SDK instance)

Logs Enablement

Logging is activated whenever Microprofile Telemetry is enabled, as described in Enabling
OpenTelemetry support.

18

Configuration

OpenTelemetry MUST be configured by MicroProfile Config following the semantics of
configuration properties detailed in OpenTelemetry SDK Autoconfigure 1.39.0. Following properties
MUST be supported:

Required Configuration Properties

Property Name Description
Global Configuration

otel.sdk.disabled Set to false to enable OpenTelemetry.

Default value: true
Exporters configuration

otel.traces.exporter List of exporters to be used for tracing,
separated by commas. none means no
autoconfigured exporter. Values other than none,
otlp or console might require additional
libraries. Implementations of the otlp and
console exporters MUST be from the
OpenTelemetry SDK.

Default value: ot1p

otel.metrics.exporter List of exporters to be used for metrics,
separated by commas. none means no
autoconfigured exporter. Values other than none,
otlp or console might require additional
libraries. Implementations of the otlp and
console exporters MUST be from the
OpenTelemetry SDK.

Default value: ot1p

otel.logs.exporter List of exporters to be used for logs, separated
by commas. none means no autoconfigured
exporter. Values other than none, otlp or console
might require additional libraries.
Implementations of the ot1lp and console
exporters MUST be from the OpenTelemetry
SDK.

Default value: ot1p

19

https://github.com/open-telemetry/opentelemetry-java/tree/v1.39.0/sdk-extensions/autoconfigure
#sec:service-loader-support
#sec:service-loader-support
#sec:service-loader-support
#sec:service-loader-support
#sec:service-loader-support

Property Name

otel.propagators

Resource attributes

otel.resource.attributes

otel.service.name

Batch Span Processor

otel.bsp.schedule.delay

otel.bsp.max.queue.size

otel.bsp.max.export.batch.size

otel.bsp.export.timeout

Sampler

20

Description

The propagators to be used. Values other than
none, tracecontext and baggage might require
additional libraries

Default value: tracecontext, baggage

Specify resource attributes in the following
format: key1=vall, key2=val2, key3=val3

Specify logical service name. Takes precedence
over service.name defined with
otel.resource.attributes

Default value: application name (if applicable)

The interval, in milliseconds, between two
consecutive exports.

Default value: 5000

The maximum queue size.

Default value: 2048

The maximum batch size.

Default value: 512

The maximum allowed time, in milliseconds, to
export data.

Default value: 30000

#sec:service-loader-support
#sec:service-loader-support

Property Name

otel.traces.sampler

otel.traces.sampler.arg

OTLP Exporter

otel.exporter.otlp.protocol

otel.exporter.otlp.endpoint

otel.exporter.otlp.certificate

Description

The sampler to use for tracing. Supported values
are:

* always_on

* always_off

» traceidratio

» parentbased_always_on
» parentbased_always_off

» parentbased_traceidratio

Support for other samplers might be added with
additional libraries

Default value: parentbased_always_on

An argument to the configured tracer if
supported, for example a ratio. Consult
OpenTelemetry documentation for details.

The transport protocol to use on OTLP trace,
metric, and log requests. Options include grpc
and http/protobuf.

Default value: grpc

The OTLP traces, metrics, and logs endpoint to
connect to. MUST be a URL with a scheme of
either http or https based on the use of TLS. If
protocol is http/protobuf the version and signal
will be appended to the path (e.g. v1/traces,
v1/metrics, or v1/logs)

Default value: http://localhost:4317 when
protocol is grpc, http://localhost:4318/v1/
{signal} when protocol is http/protobuf

The path to the file containing trusted
certificates to use when verifying an OTLP trace,
metric, or log server’s TLS credentials. The file
SHOULD contain one or more X.509 certificates
in PEM format.

By default the host platform’s trusted root
certificates are used.

21

#sec:service-loader-support
http://localhost:4317
http://localhost:4318/v1/{signal}
http://localhost:4318/v1/{signal}

Property Name

otel.exporter.otlp.client.key

otel.exporter.otlp.client.certificate

otel.exporter.otlp.headers

otel.exporter.otlp.compression

otel.exporter.otlp.timeout

otel.exporter.otlp.metrics.temporality.prefere
nce

otel.exporter.otlp.metrics.default.histogram.a
ggregation

22

Description

The path to the file containing private client key
to use when verifying an OTLP trace, metric, or
log client’s TLS credentials. The file SHOULD
contain one private key PKCS8 PEM format.

By default no client key is used.

The path to the file containing trusted
certificates to use when verifying an OTLP trace,
metric, or log client’s TLS credentials. The file
SHOULD contain one or more X.509 certificates
in PEM format. By default no chain file is used.

Key-value pairs separated by commas to pass as
request headers on OTLP trace, metric, and log
requests.

The compression type to use on OTLP trace,
metric, and log requests. Options include gzip.

By default no compression will be used.

The maximum waiting time, in milliseconds,
allowed to send each OTLP trace, metric, and log
batch.

Default value: 10000

The preferred output aggregation temporality.

o CUMULATIVE: all instruments will have
cumulative temporality.
* DELTA: counter (sync and async) and

histograms will be delta, up down counters
(sync and async) will be cumulative.

* LOWMEMORY: sync counter and histograms will
be delta, async counter and up down
counters (sync and async) be
cumulative.

will

Default value: CUMULATIVE.

The preferred default histogram aggregation.
Options include
BASE2_EXPONENTIAL_BUCKET_HISTOGRAM and
EXPLICIT_BUCKET_HISTOGRAM.

Default value: EXPLICIT_BUCKET_HISTOGRAM.

Property Name

otel.metrics.exemplar.filter

otel.metric.export.interval

Batch log record processor

otel.blrp.schedule.delay

otel.blrp.max.queue.size

otel.blrp.max.export.batch.size

otel.blrp.export.timeout

Description

The filter for exemplar sampling. Can be
ALWAYS_OFF, ALWAYS_ON or TRACE_BASED.

Default value: TRACE _BASED

The interval, in milliseconds, between the start
of two export attempts.

The interval, in milliseconds, between two
consecutive exports.

Default value: 1000

The maximum batch size.

Default value: 512

The maximum queue size.

Default value: 2048

The maximum allowed time, in milliseconds, to
export data.

Default value: 30000

If Environment Config Source is enabled for MicroProfile Config, then the environment variables as
described by the OpenTelemetry SDK Autoconfigure are also supported.

Optional Configuration Properties

An implementation MAY support additional configuration properties. Notable examples include

per-signal configuration of exporters:

Property Name

OTLP Exporter

otel.exporter.otlp.traces.protocol

otel.exporter.otlp.metrics.protocol

Description

The transport protocol to use on OTLP trace
requests. Options include grpc and
http/protobuf.

Default value: grpc

The transport protocol to use on OTLP metric
requests. Options include grpc and
http/protobuf.

Default value: grpc

23

Property Name

otel.exporter.otlp.logs.protocol

otel.exporter.otlp.traces.endpoint

otel.exporter.otlp.metrics.endpoint

otel.exporter.otlp.logs.endpoint

otel.exporter.otlp.traces.certificate

otel.exporter.otlp.metrics.certificate

24

Description

The transport protocol to use on OTLP log
requests. Options include grpc and
http/protobuf.

Default value: grpc

The OTLP traces endpoint to connect to. MUST
be a URL with a scheme of either http or https
based on the use of TLS.

Default value: http://localhost:4317 when
protocol is grpc, and http://localhost:4318/v1/
traces when protocol is http/protobuf

The OTLP metrics endpoint to connect to. MUST
be a URL with a scheme of either http or https
based on the use of TLS.

Default value: http://localhost:4317 when
protocol is grpc, and http://localhost:4318/v1/
metrics when protocol is http/protobuf

The OTLP logs endpoint to connect to. MUST be a
URL with a scheme of either http or https based
on the use of TLS.

Default value: http://localhost:4317 when
protocol is grpc, and http://localhost:4318/v1/
logs when protocol is http/protobuf

The path to the file containing trusted
certificates to use when verifying an OTLP trace
server’s TLS credentials. The file SHOULD
contain one or more X.509 certificates in PEM
format.

By default the host platform’s trusted root
certificates are used.

The path to the file containing trusted
certificates to use when verifying an OTLP
metric server’s TLS credentials. The file SHOULD
contain one or more X.509 certificates in PEM
format.

By default the host platform’s trusted root
certificates are used.

http://localhost:4317
http://localhost:4318/v1/traces
http://localhost:4318/v1/traces
http://localhost:4317
http://localhost:4318/v1/metrics
http://localhost:4318/v1/metrics
http://localhost:4317
http://localhost:4318/v1/logs
http://localhost:4318/v1/logs

Property Name

otel.exporter.otlp.logs.certificate

otel.exporter.otlp.traces.client.key

otel.exporter.otlp.metrics.client.key

otel.exporter.otlp.logs.client.key

otel.exporter.otlp.traces.client.certificate

otel.exporter.otlp.metrics.client.certificate

Description

The path to the file containing trusted
certificates to use when verifying an OTLP log
server’s TLS credentials. The file SHOULD
contain one or more X.509 certificates in PEM
format.

By default the host platform’s trusted root
certificates are used.

The path to the file containing private client key
to use when verifying an OTLP trace client’s TLS
credentials. The file SHOULD contain one
private key PKCS8 PEM format.

By default no client key file is used.

The path to the file containing private client key
to use when verifying an OTLP metric client’s
TLS credentials. The file SHOULD contain one
private key PKCS8 PEM format.

By default no client key file is used.

The path to the file containing private client key
to use when verifying an OTLP log client’s TLS
credentials. The file SHOULD contain one
private key PKCS8 PEM format.

By default no client key file is used.

The path to the file containing trusted
certificates to use when verifying an OTLP trace
server’s TLS credentials. The file SHOULD
contain one or more X.509 certificates in PEM
format.

By default no chain file is used.

The path to the file containing trusted
certificates to use when verifying an OTLP
metric server’s TLS credentials. The file SHOULD
contain one or more X.509 certificates in PEM
format.

By default no chain file is used.

25

Property Name Description

otel.exporter.otlp.logs.client.certificate The path to the file containing trusted
certificates to use when verifying an OTLP log
server’s TLS credentials. The file SHOULD
contain one or more X.509 certificates in PEM
format.

By default no chain file is used.

otel.exporter.otlp.traces.headers Key-value pairs separated by commas to pass as
request headers on OTLP trace requests.

otel.exporter.otlp.metrics.headers Key-value pairs separated by commas to pass as
request headers on OTLP metric requests.

otel.exporter.otlp.logs.headers Key-value pairs separated by commas to pass as
request headers on OTLP log requests.

otel.exporter.otlp.traces.compression The compression type to use on OTLP trace
requests. Options include gzip.

By default no compression will be used.

otel.exporter.otlp.metrics.compression The compression type to use on OTLP metric
requests. Options include gzip.

By default no compression will be used.

otel.exporter.otlp.logs.compression The compression type to use on OTLP log
requests. Options include gzip.

By default no compression will be used.

otel.exporter.otlp.traces.timeout The maximum waiting time, in milliseconds,
allowed to send each OTLP trace batch.

Default value: 10000

otel.exporter.otlp.metrics.timeout The maximum waiting time, in milliseconds,
allowed to send each OTLP metric batch.

Default value: 10000

otel.exporter.otlp.logs.timeout The maximum waiting time, in milliseconds,
allowed to send each OTLP log batch.

Default value: 10000

Service Loader Support

Implementation will load additional configuration related components by means of service loader.
This allows the application or runtime extender to define their own metadata and trace / metrics /

26

log handling behavior. The following components are supported

Component interface

ConfigurablePropagatorProvider

ConfigurableSpanExporterProvider

ConfigurableSamplerProvider

AutoConfigurationCustomizerProvider

ResourceProvider

ConfigurableMetricExporterProvider

ConfigurableLogRecordExporterProvider

Purpose

Provides implementation for a name referred in
otel.propagators

Provides implementation for a name referred in
otel.traces.exporter

Provides implementation for a name referred in
otel.traces.sampler

Customizes configuration properties before they
are applied to the SDK

Defines resource attributes describing the
application

Provides implementation for a name referred in
otel.metrics.exporter

Provides implementation for a name referred in
otel.logs.exporter

Behavior when multiple implementations are found for a given component name is undefined.
Behavior when customizer changes other properties than those listed in the spec is also undefined.

27

https://javadoc.io/doc/io.opentelemetry/opentelemetry-sdk-extension-autoconfigure-spi/1.39.0/io/opentelemetry/sdk/autoconfigure/spi/ConfigurablePropagatorProvider.html
https://javadoc.io/doc/io.opentelemetry/opentelemetry-sdk-extension-autoconfigure-spi/1.39.0/io/opentelemetry/sdk/autoconfigure/spi/traces/ConfigurableSpanExporterProvider.html
https://javadoc.io/doc/io.opentelemetry/opentelemetry-sdk-extension-autoconfigure-spi/1.39.0/io/opentelemetry/sdk/autoconfigure/spi/traces/ConfigurableSamplerProvider.html
https://javadoc.io/doc/io.opentelemetry/opentelemetry-sdk-extension-autoconfigure-spi/1.39.0/io/opentelemetry/sdk/autoconfigure/spi/AutoConfigurationCustomizerProvider.html
https://javadoc.io/doc/io.opentelemetry/opentelemetry-sdk-extension-autoconfigure-spi/1.39.0/io/opentelemetry/sdk/autoconfigure/spi/ResourceProvider.html
https://javadoc.io/doc/io.opentelemetry/opentelemetry-sdk-extension-autoconfigure-spi/1.39.0/io/opentelemetry/sdk/autoconfigure/spi/metrics/ConfigurableMetricExporterProvider.html
https://javadoc.io/doc/io.opentelemetry/opentelemetry-sdk-extension-autoconfigure-spi/1.39.0/io/opentelemetry/sdk/autoconfigure/spi/logs/ConfigurableLogRecordExporterProvider.html

Supported OpenTelemetry API Classes

Classes from the following API packages MUST be available to applications by implementations of
this specification, though this specification does not prevent additional API classes from being
available. Implementations are allowed to pull in a more recent patch version of the API classes.

OpenTelemetry API

Common API

* i0o.opentelemetry.api (except GlobalOpenTelemetry)
* io.opentelemetry.api.common

Tracing API

* io.opentelemetry.api.trace

Baggage API

* io.opentelemetry.api.baggage
* io.opentelemetry.api.baggage.propagation
Metrics API

* io.opentelemetry.api.metrics

Context API

* io.opentelemetry.context

* io.opentelemetry.context.propagation

Resource SDK

* io.opentelemetry.sdk.resources

Metrics SDK

* jo.opentelemetry.sdk.metrics

Autoconfigure SPI

This is the programmatic interface that allows users to register extensions when using the SDK
Autoconfigure Extension (which we use for configuration).

* io.opentelemetry.sdk.autoconfigure.spi
* io.opentelemetry.sdk.autoconfigure.spi.traces

* io.opentelemetry.sdk.autoconfigure.spi.metrics

The above packages have dependencies on the following packages which MUST be supported to the

28

https://www.javadoc.io/static/io.opentelemetry/opentelemetry-api/1.39.0/io/opentelemetry/api/package-summary.html
https://www.javadoc.io/static/io.opentelemetry/opentelemetry-api/1.39.0/io/opentelemetry/api/common/package-summary.html
https://www.javadoc.io/static/io.opentelemetry/opentelemetry-api/1.39.0/io/opentelemetry/api/trace/package-summary.html
https://www.javadoc.io/static/io.opentelemetry/opentelemetry-api/1.39.0/io/opentelemetry/api/baggage/package-summary.html
https://www.javadoc.io/static/io.opentelemetry/opentelemetry-api/1.39.0/io/opentelemetry/api/baggage/propagation/package-summary.html
https://www.javadoc.io/static/io.opentelemetry/opentelemetry-api/1.39.0/io/opentelemetry/api/metrics/package-summary.html
https://www.javadoc.io/static/io.opentelemetry/opentelemetry-context/1.39.0/io/opentelemetry/context/package-summary.html
https://www.javadoc.io/static/io.opentelemetry/opentelemetry-context/1.39.0/io/opentelemetry/context/propagation/package-summary.html
https://www.javadoc.io/static/io.opentelemetry/opentelemetry-sdk-common/1.39.0/io/opentelemetry/sdk/resources/package-summary.html
https://www.javadoc.io/static/io.opentelemetry/opentelemetry-sdk-metrics/1.39.0/io/opentelemetry/sdk/metrics/package-summary.html
https://www.javadoc.io/static/io.opentelemetry/opentelemetry-sdk-extension-autoconfigure-spi/1.39.0/io/opentelemetry/sdk/autoconfigure/spi/package-summary.html
https://www.javadoc.io/static/io.opentelemetry/opentelemetry-sdk-extension-autoconfigure-spi/1.39.0/io/opentelemetry/sdk/autoconfigure/spi/traces/package-summary.html
https://www.javadoc.io/static/io.opentelemetry/opentelemetry-sdk-extension-autoconfigure-spi/1.39.0/io/opentelemetry/sdk/autoconfigure/spi/metrics/package-summary.html

extent that they are required by the Autoconfigure SPI classes:

io.opentelemetry.sdk.trace
io.opentelemetry.sdk.trace.data
io.opentelemetry.sdk.trace.export
io.opentelemetry.sdk.trace.samplers
io.opentelemetry.sdk.common
io.opentelemetry.sdk.metrics
io.opentelemetry.sdk.metrics.data

io.opentelemetry.sdk.metrics.export

Tracing Annotations

* io.opentelemetry.instrumentation.annotations (WithSpan and SpanAttribute only)

29

https://www.javadoc.io/static/io.opentelemetry/opentelemetry-sdk-trace/1.39.0/io/opentelemetry/sdk/trace/package-summary.html
https://www.javadoc.io/static/io.opentelemetry/opentelemetry-sdk-trace/1.39.0/io/opentelemetry/sdk/trace/data/package-summary.html
https://www.javadoc.io/static/io.opentelemetry/opentelemetry-sdk-trace/1.39.0/io/opentelemetry/sdk/trace/export/package-summary.html
https://www.javadoc.io/static/io.opentelemetry/opentelemetry-sdk-trace/1.39.0/io/opentelemetry/sdk/trace/samplers/package-summary.html
https://www.javadoc.io/static/io.opentelemetry/opentelemetry-sdk-common/1.39.0/io/opentelemetry/sdk/common/package-summary.html
https://www.javadoc.io/static/io.opentelemetry/opentelemetry-sdk-metrics/1.39.0/io/opentelemetry/sdk/metrics/package-summary.html
https://www.javadoc.io/static/io.opentelemetry/opentelemetry-sdk-metrics/1.39.0/io/opentelemetry/sdk/metrics/data/package-summary.html
https://www.javadoc.io/static/io.opentelemetry/opentelemetry-sdk-metrics/1.39.0/io/opentelemetry/sdk/metrics/export/package-summary.html
https://www.javadoc.io/doc/io.opentelemetry.instrumentation/opentelemetry-instrumentation-annotations/2.5.0/io/opentelemetry/instrumentation/annotations/package-summary.html

Release Notes

This section documents the changes introduced by individual releases.

Release Notes for MicroProfile Telemetry 2.0

A full list of changes delivered in the 2.0 release can be found at MicroProfile Telemetry 2.0
Milestone.

Incompatible Changes

The Semantic Conventions for HTTP Spans differ from the conventions used with MicroProfile
Telemetry 1.1 due to stabilization of HTTP semantic conventions in OpenTelemetry. Changes to
attributes are described in HTTP semantic convention stability migration guide.

For runtimes that can simultaneously run multiple applications, in MicroProfile Telemetry 1.1
the OTEL_SDK_DISABLED environment variable could be set to false to enable all applications to
use separate OpenTelemetry SDK instances. Setting OTEL_SDK_DISABLED to false in MicroProfile
Telemetry 2.0 results in a single OpenTelemetry SDK instance being created for shared use
between the runtime and applications. To enable all applications to use separate
OpenTelemetry SDK instances in MicroProfile Telemetry 2.0, do not set the OTEL_SDK_DISABLED
environment variable and set otel.sdk.disabled to false in a microprofile-config.properties
file packaged with each application or using any other MicroProfile Config source that is only
visible to applications.

API/SPI Changes

Consume the OpenTelemetry Java release v1.39.0. The full comparison with the v1.29.0
supported by MicroProfile Telemetry 1.1 can be found here.

Adopt OpenTelemetry Metrics API (141, 149)

Add an API maven artifact which depends on the relevant Open Telemetry API artifacts (210)

Other Changes

30

Consume the latest OpenTelemetry API (150)

Adopt OpenTelemetry Logging (146)

Provide a way to specify runtime configuration for OpenTelemetry (169)
Specify metrics provided by platform (151)

TCK: Test required metrics present (143)

TCK: support Meter injection (145)

TCK: remove the dependency on Jakarta Concurrency (137)

https://github.com/eclipse/microprofile-telemetry/milestone/2?closed=1
https://github.com/eclipse/microprofile-telemetry/milestone/2?closed=1
https://github.com/open-telemetry/semantic-conventions/blob/v1.26.0/docs/http/http-spans.md
https://github.com/open-telemetry/semantic-conventions/blob/main/docs/http/migration-guide.md
https://github.com/open-telemetry/opentelemetry-java/releases/tag/v1.39.0
https://github.com/open-telemetry/opentelemetry-java/releases/tag/v1.29.0
https://github.com/open-telemetry/opentelemetry-java/compare/v1.29.0…​v1.39.0
https://github.com/eclipse/microprofile-telemetry/issues/141
https://github.com/eclipse/microprofile-telemetry/issues/149
https://github.com/eclipse/microprofile-telemetry/issues/210
https://github.com/eclipse/microprofile-telemetry/issues/150
https://github.com/eclipse/microprofile-telemetry/issues/146
https://github.com/eclipse/microprofile-telemetry/issues/169
https://github.com/eclipse/microprofile-telemetry/issues/151
https://github.com/eclipse/microprofile-telemetry/issues/143
https://github.com/eclipse/microprofile-telemetry/issues/145
https://github.com/eclipse/microprofile-telemetry/issues/137

Release Notes for MicroProfile Telemetry 1.1

A full list of changes delivered in the 1.1 release can be found at MicroProfile Telemetry 1.1
Milestone.

Incompatible Changes

None.

API/SPI Changes

Consume the OpenTelemetry Java release v1.29.0. The full comparison with the v1.19.0 supported
by MicroProfile Telemetry 1.0 can be found here.

Other Changes

* Consume the latest OpenTelemetry Tracing (88)
* Clarify which API classes MUST be available to users (91)

* Clarify the behaviour of Span and Baggage beans when the current span or baggage changes
(Ihttps://github.com/eclipse/microprofile-telemetry/issues/90[90])

* TCK: Implement tests in a way that is not timestamp dependent (44)

* TCK: TCK RestClientSpanTest Span Name Doesn’t Follow Semantic Conv (86)
* TCK: Adding missing TCKs (89)

* TCK: TCK cannot be run using the Arquillian REST protocol (72)

* Typos in spec document (80)

31

https://github.com/eclipse/microprofile-telemetry/milestone/1?closed=1
https://github.com/eclipse/microprofile-telemetry/milestone/1?closed=1
https://github.com/open-telemetry/opentelemetry-java/releases/tag/v1.29.0
https://github.com/open-telemetry/opentelemetry-java/releases/tag/v1.19.0
https://github.com/open-telemetry/opentelemetry-java/compare/v1.19.0…​v1.29.0
https://github.com/eclipse/microprofile-telemetry/issues/88
https://github.com/eclipse/microprofile-telemetry/issues/91
https://github.com/eclipse/microprofile-telemetry/issues/44
https://github.com/eclipse/microprofile-telemetry/issues/86
https://github.com/eclipse/microprofile-telemetry/issues/89
https://github.com/eclipse/microprofile-telemetry/issues/72
https://github.com/eclipse/microprofile-telemetry/issues/80

	MicroProfile Telemetry
	Table of Contents
	Copyright
	Eclipse Foundation Specification License - v1.1
	Disclaimers

	Introduction
	Architecture
	SDK integration
	Enabling OpenTelemetry support
	Configuration
	OTLP support
	Service Providers support

	Access to OpenTelemetry API
	API classes

	Tracing
	Tracing Instrumentation
	Automatic Instrumentation
	Manual Instrumentation
	@WithSpan
	Obtain a SpanBuilder
	Obtain the current Span

	Agent Instrumentation

	Access to the OpenTelemetry Tracing API
	Trace Semantic Conventions
	MicroProfile Attributes

	Routing Traces
	Tracing Enablement
	MicroProfile OpenTracing
	MicroProfile Telemetry and MicroProfile OpenTracing

	Metrics
	Routing Metrics
	Access to the OpenTelemetry Metrics API
	Required Metrics
	Metrics Enablement

	Logs
	Routing Logs
	Logs Enablement

	Configuration
	Required Configuration Properties
	Optional Configuration Properties
	Service Loader Support

	Supported OpenTelemetry API Classes
	OpenTelemetry API
	Context API
	Resource SDK
	Metrics SDK
	Autoconfigure SPI
	Tracing Annotations

	Release Notes
	Release Notes for MicroProfile Telemetry 2.0
	Incompatible Changes
	API/SPI Changes
	Other Changes

	Release Notes for MicroProfile Telemetry 1.1
	Incompatible Changes
	API/SPI Changes
	Other Changes

