Package ‘teal.transform’

February 12, 2025

Title Functions for Extracting and Merging Data in the 'teal’
Framework

Version 0.6.0
Date 2025-02-06

Description A standardized user interface for column selection, that
facilitates dataset merging in 'teal' framework.

License Apache License 2.0

URL https://insightsengineering.github.io/teal.transform/,
https://github.com/insightsengineering/teal.transform/

BugReports https://github.com/insightsengineering/teal.transform/issues
Depends R (>=3.6)

Imports checkmate (>=2.1.0), dplyr (>= 1.1.0), lifecycle (>= 0.2.0),
logger (>= 0.2.0), methods, rlang (>= 1.0.0), shiny (>= 1.6.0),
shinyjs, shinyvalidate (>= 0.1.3), stats, teal.data (>= 0.7.0),
teal.logger (>= 0.3.1), teal.widgets (>= 0.4.3), tidyr (>=
1.0.0), tidyselect, utils

Suggests knitr (>= 1.42), rmarkdown (>= 2.23), roxy.shinylive (>=
1.0.0), testthat (>= 3.1.5), withr (>= 2.0.0)

VignetteBuilder knitr, rmarkdown
RdMacros lifecycle

Config/Needs/verdepcheck mllg/checkmate, tidyverse/dplyr,
r-lib/lifecycle, daroczig/logger, r-lib/rlang, rstudio/shiny,
daattali/shinyjs, rstudio/shinyvalidate,
insightsengineering/teal.data, insightsengineering/teal.logger,
insightsengineering/teal.widgets, tidyverse/tidyr,
r-lib/tidyselect, yihui/knitr, rstudio/rmarkdown,
r-lib/testthat, r-lib/withr

Config/Needs/website insightsengineering/nesttemplate
Encoding UTF-8
Language en-US

https://insightsengineering.github.io/teal.transform/
https://github.com/insightsengineering/teal.transform/
https://github.com/insightsengineering/teal.transform/issues

2 Contents
RoxygenNote 7.3.2
NeedsCompilation no
Author Dawid Kaledkowski [aut, cre],
Pawel Rucki [aut],
Mahmoud Hallal [aut],
Nikolas Burkoff [aut],
Maciej Nasinski [aut],
Konrad Pagacz [aut],
Junlue Zhao [aut],
F. Hoffmann-La Roche AG [cph, fnd]
Maintainer Dawid Kaledkowski <dawid.kaledkowski@roche.com>
Repository CRAN
Date/Publication 2025-02-12 06:00:02 UTC
Contents
add_no_selected_choices 3
check_no_multiple_selection 3
choices_labeled e 4
choices_selected e 5
compose_and_enable_validators L oo 8
datanames_input L. L e e e e e 10
data_extract_multiple_srv.o 11
data_extraCt_SPeC i i i e e e e e e e e e e e e e e 14
data_extraCt_SIV e e e e e e e e e e e e e e e e e 16
data_extract_Ul e e e e e 20
delayed_choices 21
filter_spec 23
format_data_extract e e e e e 25
get_anl_relabel_call 26
get_dataset_prefixed_col_names Lo 27
get_extract_datanamesl e 27
get_merge_call 28
get_relabel_call e 29
is_single_dataset e e 29
LISt_eXtract_Spec v o i e e e e e e e e e 30
merge_datasets L. e e e e e e e e 30
merge_expression_module 33
MEerge_eXPression_SIV o v v vttt e e e e e e 36
no_selected_as_ NULL e 40
resolve_delayed L 40
SEleCt_SPEC e e e 42
SPlit_by_Sep 45
value_choices e 45
variable_choices e 46
Index 49

add_no_selected_choices

add_no_selected_choices
Add empty choice to choices selected

Description

[Stable]

Usage
add_no_selected_choices(x, multiple = FALSE)

Arguments

X (choices_selected) object.

multiple (logical(1)) whether multiple selections are allowed or not.
Value

choices_selected object with an empty option added to the choices.

check_no_multiple_selection
Checks that the extract_input specification does not allow multiple
selection

Description

[Stable]

Usage

check_no_multiple_selection(extract_input)

Arguments

extract_input (list orNULL) alist of data_extract_spec

Details

Stops if condition not met.

Value

Raises an error when check fails, otherwise, it returns NULL, invisibly.

4 choices_labeled

choices_labeled Set "<choice>:<label>" type of names

Description

[Stable]

This is often useful for choices_selected() as it marks up the drop-down boxes for shiny: :selectInput().

Usage

choices_labeled(choices, labels, subset = NULL, types = NULL)

S3 method for class 'choices_labeled'

print(x, ...)
Arguments
choices (character or factor or numeric or logical) vector.
labels (character) vector containing labels to be applied to choices. If NA then "La-
bel Missing" will be used.
subset (character or factor or numeric or logical) vector that is a subset of choices.
This is useful if only a few variables need to be named. If this argument is used,
the returned vector will match its order.
types (character) vector containing the types of the columns to be used for applying
the appropriate icons to the choices_selected drop down box (e.g. "numeric").
X an object used to select a method.
further arguments passed to or from other methods.
Details

If either choices or labels are factors, they are coerced to character. Duplicated elements from
choices get removed.

Value

Named character vector.

Methods (by generic)

* print(choices_labeled): Print choices_labeled object

choices_selected 5

Examples

library(teal.data)
library(shiny)

ADSL <- rADSL
ADTTE <- rADTTE

choices1 <- choices_labeled(names(ADSL), col_labels(ADSL, fill = FALSE))
choices?2 <- choices_labeled(ADTTE$PARAMCD, ADTTES$PARAM)

if only a subset of variables are needed, use subset argument
choices3 <- choices_labeled(

names (ADSL),

col_labels(ADSL, fill = FALSE),

subset = c("ARMCD", "ARM")
)

ui <- fluidPage(
selectInput(”cl1”,
label = "Choices from ADSL",
choices = choicesT,
selected = choices1[1]
),
selectInput(”c2”,
label = "Choices from ADTTE",
choices = choices2,
selected = choices2[1]
),
selectInput(”c3”,
label = "Arm choices from ADSL",
choices = choices3,
selected = choices3[1]
)
)

server <- function(input, output) {3}

if (interactive()) {
shinyApp(ui, server)

3

choices_selected Choices selected

Description

[Stable]

Construct a single list containing available choices, the default selected value, and additional set-
tings such as to order the choices with the selected elements appearing first or whether to block the
user from making selections.

Can be used in Ul input elements such as teal .widgets: :optionalSelectInput().

6 choices_selected

Usage

choices_selected(
choices,
selected = if (inherits(choices, "delayed_data”)) NULL else choices[1],
keep_order = FALSE,
fixed = FALSE
)

is.choices_selected(x)

Arguments
choices (character) vector of possible choices or delayed_data object.
See variable_choices() and value_choices().
selected (character) vector of preselected options, (delayed_choices) object or (delayed_data)
object.
If delayed_data object then choices must also be delayed_data object. If not
supplied it will default to the first element of choices if choices is a vector, or
NULL if choices is a delayed_data object.
keep_order (logical) In case of FALSE the selected variables will be on top of the drop-
down field.
fixed (logical) optional, whether to block user to select choices.
X (choices_selected) object to check.
Details

Please note that the order of selected will always follow the order of choices. The keep_order
argument is set to false which will run the following code inside:

choices <- c(selected, setdiff(choices, selected))

In case you want to keep your specific order of choices, set keep_order to TRUE.

Value

choices_selectedreturns list of choices_selected, encapsulating the specified choices, selected,
keep_order and fixed.

is.choices_selected returns TRUE if x inherits from a choices_selected object, FALSE other-
wise.

Functions

* is.choices_selected(): Check if an object is a choices_selected class

choices_selected 7

Examples

library(shiny)
library(teal.widgets)

ADSL <- teal.data::rADSL
choices_selected(variable_choices(ADSL), "SEX")

How to select nothing
use an empty character
choices_selected(
choices = c("", "A", "B", "C"),
selected = ""

)

How to allow the user to select nothing
use an empty character
choices_selected(
choices = c("A", "", "B", "C"),
selected = "A"

How to make Nothing the Xth choice
just use keep_order
choices_selected(
choices = c("A", "", "B", "C"),
selected = "A",
keep_order = TRUE
)

How to give labels to selections
by adding names - choices will be replaced by "name” in UI, not in code
choices_selected(

choices = c("name for A" = "A", "Name for nothing” ="", "name for b” = "B", "name for C" = "C"),
selected = "A"
)
by using choices_labeled
labels will be shown behind the choice
choices_selected(
choices = choices_labeled(
c("A", ", "B", "C"),
c("name for A", "nothing”, "name for B"”, "name for C")
),
selected = "A"
)

Passing a “delayed_data” object to “selected”
choices_selected(

choices = variable_choices("ADSL"),

selected = variable_choices(”ADSL", subset = c("STUDYID"))

8 compose_and_enable_validators

)

Passing ~delayed_choices™ object - semantically identical objects:
choices_selected(choices = letters, selected = letters)
choices_selected(choices = letters, selected = all_choices())

choices_selected(
choices = setNames(LETTERS[1:5], paste("Letter”, LETTERS[1:51)),
selected = "E"

)

choices_selected(
choices = setNames(LETTERS[1:5], paste(”Letter”, LETTERS[1:51)),
selected = last_choice()

)

functional form (subsetting for factor variables only) of choices_selected
with delayed data loading
choices_selected(variable_choices("ADSL", subset = function(data) {
idx <- vapply(data, is.factor, logical(1))
names (data)[idx]
1))

cs <- choices_selected(
choices = c("A”, "B", "C"),
selected = "A"

)
ui <- fluidPage(
optionalSelectInput(
inputIld = "id",

choices = cs$choices,
selected = cs$selected
)
)

server <- function(input, output, session) {}
if (interactive()) {
shinyApp(ui, server)

3

compose_and_enable_validators
Function to compose validators from
data_extract_multiple_srv

Description

This function takes the output from data_extract_multiple_srv and collates the shinyvalidate: : InputValidators
returned into a single validator and enables this.

compose_and_enable_validators 9

Usage

compose_and_enable_validators(iv, selector_list, validator_names = NULL)

Arguments

iv (shinyvalidate: :InputValidator) A validator.

selector_list (reactive named list of reactives). Typically this is the output from data_extract_multiple_srv.
The validators in this list (specifically selector_list()[[validator_names]]()iv)
will be added into iv.
validator_names
(character or NULL). If character then only validators in the elements
of selector_list() whose name is in this list will be added. If NULL all
validators will be added

Value

(shinyvalidate::InputValidator) enabled iv with appropriate validators added into it.

Examples

library(shiny)
library(shinyvalidate)
library(shinyjs)
library(teal.widgets)

iris_extract <- data_extract_spec(

dataname = "iris",
select = select_spec(
label = "Select variable:",

choices = variable_choices(iris, colnames(iris)),
selected = "Sepal.Length”,
multiple = TRUE,
fixed = FALSE
)
)

data_list <- list(iris = reactive(iris))

ui <- fluidPage(
useShinyjs(),
standard_layout(
output = verbatimTextOutput(”out1”),
encoding = taglList(
data_extract_ui(

id = "x_var",
label = "Please select an X column”,
data_extract_spec = iris_extract

),

data_extract_ui(

id = "y_var”,
label = "Please select a Y column”,

10 datanames_input

data_extract_spec = iris_extract

),

data_extract_ui(
id = "col_var",
label = "Please select a color column”,
data_extract_spec = iris_extract

)

)
)
)

server <- function(input, output, session) {
selector_list <- data_extract_multiple_srv(
list(x_var = iris_extract, y_var = iris_extract, col_var = iris_extract),
datasets = data_list,
select_validation_rule = list(
x_var = sv_required("Please select an X column”),
y_var = compose_rules(
sv_required("Exactly 2 'Y' column variables must be chosen”),
function(x) if (length(x) != 2) "Exactly 2 'Y' column variables must be chosen”

)
)
)
iv_r <- reactive({
iv <- InputValidator$new()
compose_and_enable_validators(
iv,
selector_list,
if validator_names = NULL then all validators are used
to turn on only "x_var"” then set this argument to "x_var”
validator_names = NULL

)
D

output$outl <- renderPrint({
if (Av_r()$is_valid()) {
ans <- lapply(selector_list(), function(x) {
cat(format_data_extract(x()), "\n\n")
1))
} else {
"Check that you have made a valid selection”
3
H
3

if (interactive()) {
shinyApp(ui, server)

3

datanames_input Help text with available datasets input

data_extract_multiple_srv 11

Description

[Stable]

Creates shiny: :helpText() with the names of available datasets for the current module.

Usage

datanames_input(data_extracts)

Arguments

data_extracts (list) of data extracts for single variable.

Value

shiny. tag defining help-text element that can be added to a UI element.

data_extract_multiple_srv
Creates a named list of data_extract_srv output

Description

[Experimental]

data_extract_multiple_srv loops over the list of data_extract given and runs data_extract_srv
for each one returning a list of reactive objects.

Usage

data_extract_multiple_srv(data_extract, datasets, ...)

S3 method for class 'reactive'
data_extract_multiple_srv(data_extract, datasets, ...)

S3 method for class 'FilteredData'
data_extract_multiple_srv(data_extract, datasets, ...)

S3 method for class 'list'
data_extract_multiple_srv(
data_extract,
datasets,
join_keys = NULL,
select_validation_rule = NULL,
filter_validation_rule = NULL,
dataset_validation_rule = if (is.null(select_validation_rule) &&
is.null(filter_validation_rule)) {
NULL

12 data_extract_multiple_srv

} else {

shinyvalidate::sv_required("Please select a dataset”)

},

Arguments

data_extract (named list of data_extract_spec objects) the list data_extract_spec ob-
jects. The names of the elements in the list need to correspond to the ids passed
to data_extract_ui.

See example for details.

datasets (FilteredData or list of reactive or non-reactive data.frame) object
containing data either in the form of FilteredData or as a list of data. frame.
When passing a list of non-reactive data. frame objects, they are converted to
reactive data. frames internally. When passing a list of reactive or non-reactive
data.frame objects, the argument join_keys is required also.

An additional argument join_keys is required when datasetsis alistof data. frame.
It shall contain the keys per dataset in datasets.
join_keys (join_keys or NULL) of join keys per dataset in datasets.
select_validation_rule
(NULL or function or named list of function) Should there be any shinyvalidate
input validation of the select parts of the data_extract_ui. If all data_extract
require the same validation function then this can be used directly (i.e. select_validation_rule
=shinyvalidate: :sv_required()).
For more fine-grained control use a list:
select_validation_rule = list(extract_1=sv_required(), extract2 =
~if (length(.) >2) "Error")
If NULL then no validation will be added.
See example for more details.
filter_validation_rule
(NULL or function or named list of function) Same as select_validation_rule
but for the filter (values) part of the data_extract_ui.
dataset_validation_rule
(NULL or function or named list of function) Same as select_validation_rule
but for the choose dataset part of the data_extract_ui

Value
reactive named list containing outputs from data_extract_srv(). Output list names are the
same as data_extract input argument.

Examples

library(shiny)
library(shinyvalidate)

data_extract_multiple_srv

library(shinyjs)
library(teal.widgets)

iris_select <- data_extract_spec(

dataname = "iris",

select = select_spec(
label = "Select variable:",
choices = variable_choices(iris, colnames(iris)),
selected = "Sepal.Length”,
multiple = TRUE,
fixed = FALSE

)
)
iris_filter <- data_extract_spec(
dataname = "iris",
filter = filter_spec(
vars = "Species”,
choices = c("setosa”, "versicolor”, "virginica"),
selected = "setosa”,
multiple = TRUE
)

data_list <- list(iris = reactive(iris))

ui <- fluidPage(
useShinyjs(),
standard_layout(
output = verbatimTextOutput(”out1”),
encoding = taglList(
data_extract_ui(

id = "x_var",
label = "Please select an X column”,
data_extract_spec = iris_select
),
data_extract_ui(
id = "species_var",

label = "Please select 2 Species”,
data_extract_spec = iris_filter
)
)
)
)

server <- function(input, output, session) {
selector_list <- data_extract_multiple_srv(

list(x_var = iris_select, species_var = iris_filter),

datasets = data_list,
select_validation_rule = list(

x_var = sv_required(”"Please select an X column™)

)’

filter_validation_rule = list(

13

14 data_extract_spec

species_var = compose_rules(
sv_required("Exactly 2 Species must be chosen”),
function(x) if (length(x) != 2) "Exactly 2 Species must be chosen”
)
)
)
iv_r <- reactive({
iv <- InputValidator$new()
compose_and_enable_validators(
iv,
selector_list,
validator_names = NULL
)
1))

output$outl <- renderPrint({
if (Av_r()$is_valid()) {
ans <- lapply(selector_list(), function(x) {
cat(format_data_extract(x()), "\n\n")
1))
} else {
"Please fix errors in your selection”
}
1))
}

if (interactive()) {
shinyApp(ui, server)

}

data_extract_spec Data extract input for teal modules

Description

[Stable]

The Data extract input can be used to filter and select columns from a data set. This function enables
such an input in teal. Please use the constructor function data_extract_spec to set it up.

Usage
data_extract_spec(dataname, select = NULL, filter = NULL, reshape = FALSE)

Arguments
dataname (character) The name of the dataset to be extracted.
select (NULL or select_spec-S3 class or delayed_select_spec) Columns to be se-

lected from the input dataset mentioned in dataname. The setup can be created
using select_spec function.

data_extract_spec 15

filter

reshape

Value

(NULL or filter_spec or its respective delayed version) Setup of the filtering of
key columns inside the dataset. This setup can be created using the filter_spec
function. Please note that if both select and filter are set to NULL, then the result
will be a filter spec UI with all variables as possible choices and a select spec
with multiple set to TRUE.

(logical) whether reshape long to wide. Note that it will be used only in case
of long dataset with multiple keys selected in filter part.

data_extract_spec object.

Module Development

teal. transform uses this object to construct a UI element in a module.

Note

No checks based on columns can be done because the data is only referred to by name.

References

select_spec filter_spec

Examples

adtte_filters <- filter_spec(
vars = c("PARAMCD"”, "CNSR"),

n_n

sep =
choices = c("0S-1" = "0S-1", "0S-0" = "0S-0", "PFS-1" = "PFS-1"),
selected = "0S-1",
multiple = FALSE,
label = "Choose endpoint and Censor”
)
data_extract_spec(
dataname = "ADTTE",
filter = adtte_filters,
select = select_spec(
choices = c("AVAL", "BMRKR1", "AGE"),

selected = c("AVAL", "BMRKR1"),
multiple = TRUE,

fixed =

FALSE,

label = "Column”

)
)

data_extract_spec(

dataname
filter =
select =

= "ADSL",
NULL,
select_spec(

16 data_extract_srv

choices = c("AGE", "SEX", "USUBJID"),
selected = c("SEX"),
multiple = FALSE,
fixed = FALSE
)
)
data_extract_spec(
dataname = "ADSL",
filter = filter_spec(
vars = variable_choices("ADSL", subset = c("AGE"))
)
)

dynamic_filter <- filter_spec(
vars = choices_selected(variable_choices("ADSL"), "COUNTRY"),
multiple = TRUE
)
data_extract_spec(
dataname = "ADSL",
filter = dynamic_filter

data_extract_srv Extraction of the selector(s) details

Description

[Stable]

Extracting details of the selection(s) in data_extract_ui elements.

Usage

data_extract_srv(id, datasets, data_extract_spec, ...)

S3 method for class 'FilteredData'
data_extract_srv(id, datasets, data_extract_spec, ...)

S3 method for class 'list'
data_extract_srv(
id,
datasets,
data_extract_spec,
join_keys = NULL,
select_validation_rule = NULL,
filter_validation_rule = NULL,
dataset_validation_rule = if (is.null(select_validation_rule) &&
is.null(filter_validation_rule)) {
NULL

data_extract_srv 17

} else {

shinyvalidate::sv_required("Please select a dataset”)

}!
)
Arguments
id An ID string that corresponds with the ID used to call the module’s UI function.
datasets (FilteredData or list of reactive or non-reactive data.frame) object

containing data either in the form of FilteredData or as a list of data. frame.

When passing a list of non-reactive data. frame objects, they are converted to

reactive data. frames internally. When passing a list of reactive or non-reactive

data. frame objects, the argument join_keys is required also.
data_extract_spec

(data_extract_spec or a list of data_extract_spec) A list of data filter and

select information constructed by data_extract_spec.

An additional argument join_keys is required when datasetsis alistof data. frame.

It shall contain the keys per dataset in datasets.
join_keys (join_keys or NULL) of keys per dataset in datasets.
select_validation_rule
(NULL or function) Should there be any shinyvalidate input validation of the
select parts of the data_extract_ui.
You can use a validation function directly (i.e. select_validation_rule =
shinyvalidate: :sv_required()) or for more fine-grained control use a func-
tion:
select_validation_rule =~ if (length(.) >2) "Error".
If NULL then no validation will be added. See example for more details.
filter_validation_rule
(NULL or function) Same as select_validation_rule but for the filter (val-
ues) part of the data_extract_ui.
dataset_validation_rule
(NULL or function) Same as select_validation_rule but for the choose
dataset part of the data_extract_ui

Value
A reactive list containing following fields:

» filters: A list with the information on the filters that are applied to the data set.

* select: The variables that are selected from the dataset.

* always_selected: The column names from the data set that should always be selected.
* reshape: Whether reshape long to wide should be applied or not.

* dataname: The name of the data set.

e internal_id: The id of the corresponding shiny input element.

18 data_extract_srv

* keys: The names of the columns that can be used to merge the data set.

e iv: A shinyvalidate::InputValidator containing validator for this data_extract

References

data_extract_srv

Examples

library(shiny)
library(shinyvalidate)
library(teal.data)
library(teal.widgets)

Sample ADSL dataset

ADSL <- data.frame(
STUDYID = "A",
USUBJID = LETTERS[1:10],
SEX = rep(c("F", "M"), 5),
AGE = rpois(10, 30),
BMRKR1 = rlnorm(10)

)

Specification for data extraction
adsl_extract <- data_extract_spec(
dataname = "ADSL",
filter = filter_spec(vars = "SEX", choices = c("F", "M"), selected = "F"),
select = select_spec(
label = "Select variable:",
choices = variable_choices(ADSL, c("AGE", "BMRKR1")),
selected = "AGE",
multiple = TRUE,
fixed = FALSE
)
)

Using reactive list of data.frames
data_list <- list(ADSL = reactive(ADSL))

join_keys <- join_keys(join_key(”ADSL”, "ADSL", c("STUDYID", "USUBJID")))

App: data extraction with validation
ui <- fluidPage(
standard_layout(
output = verbatimTextOutput("out1"),
encoding = taglList(
data_extract_ui(
id = "adsl_var”,
label = "ADSL selection”,
data_extract_spec = adsl_extract
)
)

data_extract_srv

)
)

server <- function(input, output, session) {
adsl_reactive_input <- data_extract_srv(
id = "adsl_var”,
datasets = data_list,
data_extract_spec = adsl_extract,
join_keys = join_keys,
select_validation_rule = sv_required(”"Please select a variable.")

)

iv_r <- reactive({
iv <- InputValidator$new()
iv$add_validator(adsl_reactive_input()$iv)
iv$enable()
iv

D

output$outl <- renderPrint({
if (iv_r(QQ$is_valid()) {
cat(format_data_extract(adsl_reactive_input()))
} else {
"Please fix errors in your selection”
}
b))
3

if (interactive()) {
shinyApp(ui, server)

3

App: simplified data extraction
ui <- fluidPage(
standard_layout(
output = verbatimTextOutput(”out1”),
encoding = taglList(
data_extract_ui(
id = "adsl_var”,
label = "ADSL selection”,
data_extract_spec = adsl_extract
)
)
)
)

server <- function(input, output, session) {
adsl_reactive_input <- data_extract_srv(
id = "adsl_var”,
datasets = data_list,
data_extract_spec = adsl_extract

)

output$outl <- renderPrint(adsl_reactive_input())

19

20 data_extract_ui

}

if (interactive()) {
shinyApp(ui, server)

}

data_extract_ui teal data extraction module user-interface

Description

[Experimental]

Usage

data_extract_ui(id, label, data_extract_spec, is_single_dataset = FALSE)

Arguments
id (character) shiny input unique identifier.
label (character) Label above the data extract input.

data_extract_spec
(list of data_extract_spec) This is the outcome of listing data_extract_spec()
constructor calls.

is_single_dataset
(logical) FALSE to display the dataset widget.

Details

There are three inputs that will be rendered
1. Dataset select Optional. If more than one data_extract_spec is handed over to the function, a
shiny shiny::selectInput will be rendered. Else just the name of the dataset is given.

2. Filter Panel Optional. If the data_extract_spec contains a filter element a shiny shiny::selectInput
will be rendered with the options to filter the dataset.

3. Select panel A shiny shiny::selectInput to select columns from the dataset to go into the anal-
ysis.
The output can be analyzed using data_extract_srv(...).

This functionality should be used in the encoding panel of your teal app. It will allow app-
developers to specify a data_extract_spec() object. This object should be used to teal module
variables being filtered data from CDISC datasets.

You can use this function in the same way as any shiny module UL The corresponding server
module can be found in data_extract_srv().

https://shiny.rstudio.com/articles/modules.html

delayed_choices 21

Value

Shiny shiny: :selectInputs that allow to define how to extract data from a specific dataset. The
input elements will be returned inside a shiny::div container.

Examples

library(shiny)
library(teal.widgets)

adtte_filters <- filter_spec(
vars = c("PARAMCD"”, "CNSR"),
sep = "-",
choices = ¢("0S-1" = "0S-1", "0S-@" = "0S-@", "PFS-1" = "PFS-1"),
selected = "0S-1",
multiple = FALSE,
label = "Choose endpoint and Censor”

)

response_spec <- data_extract_spec(
dataname = "ADTTE",
filter = adtte_filters,
select = select_spec(
choices = c("AVAL", "BMRKR1", "AGE"),
selected = c("AVAL"”, "BMRKR1"),
multiple = TRUE,
fixed = FALSE,
label = "Column”
)
)
Call to use inside your teal module UI function
standard_layout(
output = tableOutput(”table"),
encoding = tags$div(
data_extract_ui(
id = "regressor”,
label = "Regressor Variable”,
data_extract_spec = response_spec
)
)
)

delayed_choices Bare constructor for delayed_choices object

Description

[Experimental]

Special S3 structures that delay selection of possible choices in a filter_spec, select_spec or
choices_selected object.

22

Usage
all_choices()
first_choice()
last_choice()
first_choices(n)

last_choices(n)

Arguments

delayed_choices

n positive (integer-like) number of first/last items to subset to

Value

Object of class delayed_data, delayed_choices, which is a function that returns the appropriate
subset of its argument. all_choices, first_choices, and last_choices structures also have an

additional class for internal use.

Examples

These pairs of structures represent semantically identical specifications:

choices_selected(choices = letters, selected
choices_selected(choices = letters, selected
choices_selected(choices = letters, selected
choices_selected(choices = letters, selected
choices_selected(choices = letters, selected
choices_selected(choices = letters, selected
choices_selected(choices = letters, selected
choices_selected(choices = letters, selected
choices_selected(choices = letters, selected
choices_selected(choices = letters, selected
filter_spec(

vars = c("selected_variable"),

choices = c("valuel”, "value2"”, "value3"),

selected = "value3”
)
filter_spec(

vars = c("selected_variable"),

choices = c("valuel”, "value2", "value3"),

selected = last_choice()

)

letters)
all_choices())

letters[1])
first_choice())

letters[length(letters)])
last_choice())

head(letters, 4))
first_choices(4))

tail(letters, 4))
last_choices(4))

filter_spec

23

filter_spec

Data extract filter specification

Description

[Stable]

It consists in choices and additionally the variable names for the choices.

Usage

filter_spec(

vars,

choices

NULL,

selected = if (inherits(choices, "delayed_data")) NULL else choices[1],
multiple = length(selected) > 1 || inherits(selected, "multiple_choices"),
label = "Filter by",

sep = attr(choices, "sep"),

drop_keys

Arguments

vars

choices

selected

multiple
label

FALSE

(character or delayed_data) object. Character vector giving the columns

to be filtered. These should be key variables of the data set to be filtered.
delayed_data objects can be created via variable_choices(), value_choices(),
or choices_selected().

(character or numeric or logical or (delayed_data) object. Named char-

acter vector to define the choices of a shiny shiny::selectInput(). These
choices will be used to filter the dataset.

These shall be filter values of the vars input separated by the separator(sep).
Please watch out that the filter values have to follow the order of the vars input.

In the following example we will show how to filter two columns:

vars = c("PARAMCD", "AVISIT") and choices = c("CRP - BASELINE", "ALT -
BASELINE") will lead to a filtering of (PARAMCD == "CRP" & AVISIT == "BASELINE")

| (PARAMCD == "ALT" & AVISIT == "BASELINE").

The sep input has to be " - " in this case.

delayed_data objects can be created via variable_choices() or value_choices().
(character or numeric or logical or (delayed_data or delayed_choices)
object. Named character vector to define the selected values of a shiny shiny: :selectInput()

(default values). This value will be displayed inside the shiny app upon start.
delayed_choices objects resolve selection when choices become available.

(logical) Whether multiple values shall be allowed in the shiny shiny: :selectInput().

(character) optional, defines a label on top of this specific shiny shiny: : selectInput().
The default value is "Filter by".

24 filter_spec

sep (character) A separator string to split the choices or selected inputs into the
values of the different columns.
drop_keys (logical) optional, whether to drop filter column from the dataset keys, TRUE
on default.
Details

The filter_spec is used inside teal apps to allow filtering datasets for their key variables. Imag-
ine having an adverse events table. It has the columns PARAMCD and CNSR. PARAMCD contains the
levels "0S", "PFS", "EFS". CNSR contains the levels "0" and "1". The first example should show
how a filter_spec setup will influence the drop-down menu the app user will see.

Value

filter_spec-S3-class object or delayed_filter_spec-S3-class object.

Examples

for Adverse Events table
filter_spec(
vars = c("PARAMCD", "CNSR"),
sep = "-",
choices = c("0S-1" = "0S-1", "0S-@" = "0S-0", "PFS-1" = "PFS-1"),
selected = "0S-1",
multiple = FALSE,
label = "Choose endpoint and Censor”

)

filtering a single variable
filter_spec(

vars = c("PARAMCD"),

sep = "-",

choices = c("0S", "PFS", "EFS"),

selected = "0S",

multiple = FALSE,

label = "Choose endpoint”

)

filtering a single variable by multiple levels of the variable
filter_spec(

vars = c("PARAMCD"),

sep = "-",

choices = c("0S", "PFS", "EFS"),

selected = c("0S", "PFS"),

multiple = TRUE,

label = "Choose endpoint”

)

delayed version
filter_spec(
vars = variable_choices("ADSL", "SEX"),

n_n

sep =)

format_data_extract 25

choices = value_choices("ADSL", "SEX", "SEX"),
selected = "F",
multiple = FALSE,
label = "Choose endpoint and Censor”
)
using “choices_selected()"
filter_spec(
vars = choices_selected(variable_choices("ADSL", subset = c("SEX", "AGE")), "SEX", fixed = FALSE),
multiple = TRUE
)

filter_spec(
vars = choices_selected(variable_choices("ADSL"), "SEX", fixed = TRUE),
multiple = TRUE

)

choose all choices

adsl_filter <- filter_spec(
vars = choices_selected(variable_choices("ADSL"), "SEX", fixed = FALSE),
choices = value_choices("ADSL", "SEX"),
selected = all_choices()

)

format_data_extract Formatting data extracts

Description

Returns a human-readable string representation of an extracted data_extract_spec object.

Usage

format_data_extract(data_extract)

Arguments

data_extract list the list output of data_extract_srv.

Details

This function formats the output of data_extract_srv. See the example for more information.

Value

character (1) representation of the data_extract object.

26 get_anl_relabel_call

Examples

library(shiny)

simple_des <- data_extract_spec(

dataname = "iris",
filter = filter_spec(vars = "Petal.Length”, choices = c("1.4", "1.5")),
select = select_spec(choices = c("Petal.Length”, "Species"))

)

ui <- fluidPage(
data_extract_ui(
id = "extract”,
label = "data extract ui”,
data_extract_spec = simple_des,
is_single_dataset = TRUE
),
verbatimTextOutput("formatted_extract”)
)
server <- function(input, output, session) {
extracted_input <- data_extract_srv(
id = "extract”,
datasets = list(iris = iris),
data_extract_spec = simple_des
)
output$formatted_extract <- renderPrint({
cat(format_data_extract(extracted_input()))
b))
3

if (interactive()) {
shinyApp(ui, server)

}

get_anl_relabel_call Gets the relabel call

Description

[Stable]

Usage

get_anl_relabel_call(columns_source, datasets, anl_name = "ANL")

Arguments

columns_source (named list) where names are column names, values are labels + additional
attribute dataname

get_dataset_prefixed_col_names 27

datasets (named list of reactive or non-reactive data.frame) object containing
data as a list of data.frame. When passing a list of non-reactive data. frame
objects, they are converted to reactive data. frame objects internally.

anl_name (character (1)) Name of the analysis dataset.

Value

(call) to relabel dataset and assign to anl_name.

get_dataset_prefixed_col_names
Returns non-key column names from data

Description

[Stable]

Usage

get_dataset_prefixed_col_names(data)

Arguments
data (data.frame) Data with attribute filter_and_columns. This can only be cre-
ated by data_extract_srv(), which returns a shiny shiny: :reactive().
Value

A named character vector with the non-key columns of the data.

References

data_extract_srv()

get_extract_datanames Gets names of the datasets from a list of data_extract_spec objects

Description

[Stable]

Fetches dataname slot per data_extract_spec from a list of data_extract_spec.

Usage

get_extract_datanames(data_extracts)

28 get_merge_call

Arguments

data_extracts (data_extract_spec(1)) object or a list (of lists) of data_extract_spec.

Value

character vector with the unique dataname set.

get_merge_call Get merge call from a list of selectors

Description

[Stable]

Creates list of calls depending on selector(s) and type of the merge. The merge order is the same as
in selectors passed to the function.

Usage

get_merge_call(
selector_list,
join_keys = teal.data::join_keys(),
dplyr_call_data = get_dplyr_call_data(selector_list, join_keys = join_keys),
merge_function = "dplyr::full_join",
anl_name = "ANL"

Arguments

selector_list (reactive) output from data_extract_multiple_srv() or a reactive named
list of outputs from data_extract_srv(). When using a reactive named list,
the names must be identical to the shiny ids of the respective data_extract_ui().

join_keys (join_keys) nested list of keys used for joining.

dplyr_call_data
(1list) simplified selectors with aggregated set of filters.

merge_function (character(1) or reactive) A character string of a function that accepts the
arguments x, y and by to perform the merging of datasets.

anl_name (character (1)) Name of the analysis dataset.

Value

List with merge call elements.

get_relabel_call 29

get_relabel_call Create relabel call from named character

Description

[Stable]

Function creates relabel call from named character.

Usage
get_relabel_call(labels)

Arguments
labels (named character) where name is name is function argument name and value
is a function argument value.
Value

call object with relabel step.

Examples

get_relabel_call(

labels = c(
X = as.name("ANL"),
AGE = "Age",
AVAL = "Continuous variable”
)
)
get_relabel_call(
labels = c(
AGE = "Age",
AVAL = "Continuous variable”
)
)
is_single_dataset Verify uniform dataset source across data extract specification
Description
[Stable]

Checks if the input data_extract_spec objects all come from the same dataset.

30 merge_datasets

Usage

is_single_dataset(...)

Arguments

either data_extract_spec objects or lists of data_extract_spec objects that
do not contain NULL

Value

TRUE if all data_extract_spec objects come from the same dataset, FALSE otherwise.

list_extract_spec Make sure that the extract specification is in list format

Description

[Stable]

Usage

list_extract_spec(x, allow_null = FALSE)

Arguments
X (data_extract_spec or list) of data_extract_spec elements.
allow_null (logical) whether x can be NULL.

Value

x as a list if it is not already.

merge_datasets Merge the datasets on the keys

Description

[Experimental]

Combines/merges multiple datasets with specified keys attribute.

merge_datasets 31

Usage

merge_datasets(
selector_list,

datasets,
join_keys,
merge_function = "dplyr::full_join",
anl_name = "ANL"
)
Arguments

selector_list (reactive) output from data_extract_multiple_srv() or a reactive named
list of outputs from data_extract_srv(). When using a reactive named list,
the names must be identical to the shiny ids of the respective data_extract_ui().

datasets (named list of reactive or non-reactive data.frame) object containing
data as a list of data.frame. When passing a list of non-reactive data. frame
objects, they are converted to reactive data. frame objects internally.

join_keys (join_keys) of variables used as join keys for each of the datasets in datasets.
This will be used to extract the keys of every dataset.

merge_function (character(1) or reactive) A character string of a function that accepts the
arguments X, y and by to perform the merging of datasets.

anl_name (character (1)) Name of the analysis dataset.

Details

Internally this function uses calls to allow reproducibility.

This function is often used inside a teal module server function with the selectors being the
output of data_extract_srv or data_extract_multiple_srv.

inside teal module server function

response <- data_extract_srv(
id = "reponse”,
data_extract_spec = response_spec,
datasets = datasets

)

regressor <- data_extract_srv(
id = "regressor”,
data_extract_spec = regressor_spec,
datasets = datasets

)

merged_data <- merge_datasets(list(regressor(), response()))

Value
merged_dataset list containing:

* expr (list of call) code needed to replicate merged dataset;

32

merge_datasets

e columns_source (1list) of column names selected for particular selector; Each list element

contains named character vector where:

— Values are the names of the columns in the ANL. In case if the same column name is
selected in more than one selector it gets prefixed by the id of the selector. For example if
two data_extract have id x, y, then their duplicated selected variable (for example AGE)

is prefixed to be x.AGE and y . AGE;

— Names of the vector denote names of the variables in the input dataset;

— attr(,"dataname") to indicate which dataset variable is merged from;

— attr(, "always selected”) to denote the names of the variables which need to be al-

ways selected;

* keys (list) the keys of the merged dataset;

e filter_info (list) The information given by the user. This information defines the filters
that are applied on the data. Additionally it defines the variables that are selected from the

data sets.

Examples

library(shiny)
library(teal.data)

X <- data.frame(A = c(1, 1:3), B =2:5, D = 1:4, E = letters[1:4], G = letters[6:9])
Y <- data.frame(A = c(1, 1, 2), B=2:4, C = c(4, 4:5), E = letters[4:6], G = letters[1:3])

join_keys <- join_keys(join_key("X", "Y", c("A", "B")))

selector_list <- list(

list(
dataname = "X",
filters = NULL,
select = "E",

keys = c("A", "B"),
reshape = FALSE,
internal_id = "x"

),

list(
dataname = "Y",
filters = NULL,
select = "G",
keys = c("A", "C"),
reshape = FALSE,
internal_id = "y"

)

)

data_list <- list(X = reactive(X), Y = reactive(Y))

merged_datasets <- isolate(
merge_datasets(
selector_list = selector_list,
datasets = data_list,
join_keys = join_keys

merge_expression_module 33

)
)

paste(merged_datasets$expr)

merge_expression_module
Merge expression module

Description

[Experimental]

Convenient wrapper to combine data_extract_multiple_srv() and merge_expression_srv()
when no additional processing is required. Compare the example below with that found in merge_expression_srv().

Usage

merge_expression_module(
datasets,
join_keys = NULL,
data_extract,
merge_function = "dplyr::full_join",
anl_name = "ANL",
id = "merge_id"

S3 method for class 'reactive'
merge_expression_module(

datasets,

join_keys = NULL,

data_extract,

merge_function = "dplyr::full_join",

anl_name = "ANL",

id = "merge_id"

S3 method for class 'list'
merge_expression_module(

datasets,

join_keys = NULL,

data_extract,

merge_function = "dplyr::full_join",

anl_name = "ANL",

id = "merge_id"

34 merge_expression_module

Arguments
datasets (named list of reactive or non-reactive data.frame) object containing
data as a list of data.frame. When passing a list of non-reactive data.frame
objects, they are converted to reactive data. frame objects internally.
join_keys (join_keys) of variables used as join keys for each of the datasets in datasets.

This will be used to extract the keys of every dataset.
data_extract (named list of data_extract_spec).

merge_function (character(1)) A character string of a function that accepts the arguments x, y
and by to perform the merging of datasets.

anl_name (character (1)) Name of the analysis dataset.
id An ID string that corresponds with the ID used to call the module’s UI function.
Value

Reactive expression with output from merge_expression_srv().

See Also

merge_expression_srv()

Examples

library(shiny)
library(teal.data)
library(teal.widgets)

ADSL <- data.frame(
STUDYID = "A",
USUBJID = LETTERS[1:10],
SEX = rep(c("F", "M"), 5),
AGE = rpois(10, 30),
BMRKRT = rlnorm(10)
)
ADLB <- expand.grid(
STUDYID = "A",
USUBJID = LETTERS[1:10],
PARAMCD = c("ALT", "CRP", "IGA"),
AVISIT = c("SCREENING", "BASELINE", "WEEK 1 DAY 8", "WEEK 2 DAY 15")
)
ADLB$AVAL <- rlnorm(120)
ADLB$CHG <- rnorm(120)

data_list <- list(
ADSL = reactive(ADSL),
ADLB = reactive(ADLB)

)

join_keys <- join_keys(
join_key("ADSL", "ADSL", c("STUDYID", "USUBJID")),

merge_expression_module

join_key("ADSL", "ADLB", c(”STUDYID", "USUBJID")),

join_key("ADLB”, "ADLB"”, c("STUDYID", "USUBJID”, "PARAMCD"”, "AVISIT"))

)

adsl_extract <- data_extract_spec(

dataname = "ADSL",

select = select_spec(
label = "Select variable:",
choices = c("AGE", "BMRKR1"),
selected = "AGE",
multiple = TRUE,
fixed = FALSE

)
)

adlb_extract <- data_extract_spec(
dataname = "ADLB",

35

filter = filter_spec(vars = "PARAMCD", choices = c("ALT", "CRP", "IGA"), selected = "ALT"),

select = select_spec(
label = "Select variable:",
choices = c("AVAL", "CHG"),
selected = "AVAL",
multiple = TRUE,
fixed = FALSE

)

)

ui <- fluidPage(
standard_layout(
output = tags$div(
verbatimTextOutput("expr"),
dataTableOutput(”data")

)!
encoding = taglList(

data_extract_ui("adsl_var”, label = "ADSL selection”
"ADLB selection”, adlb_extract)

data_extract_ui("adlb_var”, label

)
)
)

server <- function(input, output, session) {
data_g <- genv()

data_g <- eval_code(

data_q,

"ADSL <- data.frame(
STUDYID = 'A',
USUBJID = LETTERS[1:1@1],

SEX = rep(c('F', 'M"), 5),
AGE = rpois(10, 30),
BMRKR1 = rlnorm(10)

, adsl_extract),

36 merge_expression_srv

data_g <- eval_code(
data_q,
"ADLB <- expand.grid(
STUDYID = 'A',
USUBJID = LETTERS[1:10],
PARAMCD = c('ALT', 'CRP', "IGA'),
AVISIT = c('SCREENING', 'BASELINE', 'WEEK 1 DAY 8', 'WEEK 2 DAY 15'),
AVAL = rlnorm(120),
CHG = rlnorm(120)
)"
)

merged_data <- merge_expression_module(
data_extract = list(adsl_var = adsl_extract, adlb_var = adlb_extract),
datasets = data_list,
join_keys = join_keys,
merge_function = "dplyr::left_join"

)

code_merge <- reactive({
for (exp in merged_data()$expr) data_g <- eval_code(data_q, exp)
data_qg

D)

output$expr <- renderText(paste(merged_data()$expr, collapse = "\n"))
output$data <- renderDataTable(code_merge()[["ANL"]1])

3

if (interactive()) {
shinyApp(ui, server)

}

merge_expression_srv Data merge module server

Description

[Experimental]

Usage

merge_expression_srv(
id = "merge_id",
selector_list,
datasets,
join_keys,
merge_function = "dplyr::full_join",
anl_name = "ANL"

merge_expression_srv 37

S3 method for class 'reactive'
merge_expression_srv(

id = "merge_id",

selector_list,

datasets,

join_keys,

merge_function = "dplyr::full_join",

anl_name = "ANL"

)

S3 method for class 'list'
merge_expression_srv(

id = "merge_id",
selector_list,
datasets,
join_keys,
merge_function = "dplyr::full_join",
anl_name = "ANL"

)

Arguments
id An ID string that corresponds with the ID used to call the module’s UI function.

selector_list (reactive) output from data_extract_multiple_srv() or a reactive named
list of outputs from data_extract_srv(). When using a reactive named list,
the names must be identical to the shiny ids of the respective data_extract_ui().

datasets (named list of reactive or non-reactive data.frame) object containing
data as a list of data.frame. When passing a list of non-reactive data.frame
objects, they are converted to reactive data. frame objects internally.

join_keys (join_keys) of variables used as join keys for each of the datasets in datasets.
This will be used to extract the keys of every dataset.

merge_function (character(1) or reactive) A character string of a function that accepts the
arguments X, y and by to perform the merging of datasets.

anl_name (character (1)) Name of the analysis dataset.

Details

When additional processing of the data_extract list input is required, merge_expression_srv()
can be combined with data_extract_multiple_srv() or data_extract_srv() to influence the
selector_list input. Compare the example below with that found in merge_expression_module().

Value

Reactive expression with output from merge_expression_srv().

See Also

merge_expression_module()

38

merge_expression_srv

Examples

library(shiny)
library(teal.data)
library(teal.widgets)

ADSL <- data.frame(
STUDYID = "A",
USUBJID = LETTERS[1:10],
SEX = rep(c("F", "M"), 5),
AGE = rpois(10, 30),
BMRKRT = rlnorm(10)

ADLB <- expand.grid(
STUDYID = "A",
USUBJID = LETTERS[1:10],
PARAMCD = c("ALT", "CRP", "IGA"),
AVISIT = c("SCREENING"”, "BASELINE", "WEEK 1 DAY 8", "WEEK 2 DAY 15")
)
ADLB$AVAL <- rlnorm(120)
ADLB$CHG <- rlnorm(120)

data_list <- list(
ADSL = reactive(ADSL),
ADLB = reactive(ADLB)
)

join_keys <- join_keys(
join_key("ADSL", "ADSL", c("”STUDYID", "USUBJID")),
join_key("ADSL", "ADLB", c("STUDYID", "USUBJID")),
join_key("ADLB", "ADLB", c("STUDYID", "USUBJID", "PARAMCD", "AVISIT"))

)

adsl_extract <- data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = c("AGE", "BMRKR1"),
selected = "AGE",
multiple = TRUE,
fixed = FALSE
)
)

adlb_extract <- data_extract_spec(
dataname = "ADLB",
filter = filter_spec(vars = "PARAMCD", choices = c("ALT", "CRP", "IGA"), selected = "ALT"),
select = select_spec(
label = "Select variable:",
choices = c("AVAL", "CHG"),
selected = "AVAL",
multiple = TRUE,
fixed = FALSE

merge_expression_srv

)
)

ui <- fluidPage(
standard_layout(

output = tags$div(
verbatimTextOutput("expr"),
dataTableOutput("data")

),

encoding = taglList(
data_extract_ui("adsl_var”, label
data_extract_ui("adlb_var"”, label

)

"ADSL selection”, adsl_extract),
"ADLB selection”, adlb_extract)

)
)

server <- function(input, output, session) {
data_g <- genv()

data_g <- eval_code(

data_q,

"ADSL <- data.frame(
STUDYID = 'A',
USUBJID = LETTERS[1:10],

SEX = rep(c('F', 'M'), 5),
AGE = rpois(10, 30),
BMRKRT = rlnorm(10)
)Il
)

data_g <- eval_code(
data_q,
"ADLB <- expand.grid(
STUDYID = 'A',
USUBJID = LETTERS[1:101],
PARAMCD = c('ALT', 'CRP', "IGA'),
AVISIT = c('SCREENING', 'BASELINE', 'WEEK 1 DAY 8', 'WEEK 2 DAY 15'),
AVAL = rlnorm(120),
CHG = rlnorm(120)
3
)

selector_list <- data_extract_multiple_srv(
list(adsl_var = adsl_extract, adlb_var = adlb_extract),
datasets = data_list

)

merged_data <- merge_expression_srv(
selector_list = selector_list,
datasets = data_list,
join_keys = join_keys,
merge_function = "dplyr::left_join”

40

code_merge <- reactive({

for (exp in merged_data()$expr) data_g <- eval_code(data_q, exp)

data_qg
b))

output$expr <- renderText(paste(merged_data()$expr, collapse = "\n"))

output$data <- renderDataTable(code_merge()L["ANL"]])
3

if (interactive()) {
shinyApp(ui, server)

}

resolve_delayed

no_selected_as_NULL Check select choices for no choice made

Description

[Stable]

Usage

no_selected_as_NULL (x)

Arguments
X (character) Word that shall be checked for NULL, empty, "-no-selection".
Value
The word or NULL.
resolve_delayed Resolve delayed inputs by evaluating the code within the provided
datasets
Description

[Stable]

resolve_delayed 41

Usage

resolve_delayed(x, datasets, keys)

S3 method for class 'FilteredData'
resolve_delayed(

X,

datasets,

keys = sapply(datasets$datanames(), datasets$get_keys, simplify = FALSE)
)

S3 method for class 'list'
resolve_delayed(x, datasets, keys = NULL)

Arguments
X (delayed_data, list) to resolve.
datasets (FilteredData or named list) to use as a reference to resolve x.
keys (named list) with primary keys for each dataset from datasets. names(keys)
should match names(datasets).
Value

Resolved object.

Methods (by class)

* resolve_delayed(FilteredData): Default values for keys parameters is extracted from
datasets.

* resolve_delayed(list): Generic method when datasets argument is a named list.

Examples

library(shiny)

ADSL <- teal.data::rADSL
isolate({
data_list <- list(ADSL = reactive(ADSL))

value_choices example

vl <- value_choices("ADSL", "SEX", "SEX")
v

resolve_delayed(v1l, data_list)

variable_choices example

v2 <- variable_choices("ADSL", c("BMRKR1", "BMRKR2"))
v2

resolve_delayed(v2, data_list)

data_extract_spec example

42

adsl_filter <- filter_spec(
vars = variable_choices("ADSL", "SEX"),
sep = "-",
choices = value_choices("ADSL", "SEX", "SEX"),
selected = "F",
multiple = FALSE,
label = "Choose endpoint and Censor”

)

adsl_select <- select_spec(
label = "Select variable:",

choices = variable_choices("ADSL", c("BMRKR1", "BMRKR2")),

selected = "BMRKR1",
multiple = FALSE,
fixed = FALSE

adsl_de <- data_extract_spec(
dataname = "ADSL",
select = adsl_select,
filter = adsl_filter

)

resolve_delayed(adsl_filter, datasets = data_list)
resolve_delayed(adsl_select, datasets = data_list)

resolve_delayed(adsl_de, datasets = data_list)

nested list (arm_ref_comp)
arm_ref_comp <- list(
ARMCD = list(
ref = variable_choices("ADSL"),
comp = variable_choices("ADSL")
)
)

resolve_delayed(arm_ref_comp, datasets = data_list)

select_spec

select_spec

Column selection input specification

Description

[Stable]

select_spec is used inside teal to create a shiny: :selectInput() that will select columns from
a dataset.

select_spec

Usage

select_spec(

choices,
selected
multiple

43

if (inherits(choices, "delayed_data”)) NULL else choices[1],
length(selected) > 1 || inherits(selected, "multiple_choices"),
fixed = FALSE,

always_selected = NULL,
ordered = FALSE,
label = "Select”

)

select_spec.delayed_data(

choices,
selected
multiple

NULL,
length(selected) > 1,

fixed = FALSE,
always_selected = NULL,
ordered = FALSE,

label = NULL

)

select_spec.default(

choices,

selected = choices[1],

multiple

length(selected) > 1,

fixed = FALSE,
always_selected = NULL,
ordered = FALSE,

label = NULL

Arguments

choices

selected

multiple
fixed

(character or delayed_data) object. Named character vector to define the
choices of a shiny shiny::selectInput(). These have to be columns in the
dataset defined in the data_extract_spec() where this is called. delayed_data
objects can be created via variable_choices() or value_choices().

(character or NULL or delayed_choices or delayed_data) optional named
character vector to define the selected values of a shiny shiny: :selectInput().
Passing a delayed_choices object defers selection until data is available. De-
faults to the first value of choices or NULL for delayed data loading.

(logical) Whether multiple values shall be allowed in the shiny shiny: :selectInput().

(logical) optional data_extract_spec() specific feature to hide the choices
selected in case they are not needed. Setting fixed to TRUE will not allow the
user to select columns. It will then lead to a selection of columns in the dataset
that is defined by the developer of the app.

44 select_spec

always_selected
(character) Additional column names from the data set that should always be

selected
ordered (logical(1)) Flags whether selection order should be tracked.
label (character) optional, defines a label on top of this specific shiny shiny: :selectInput().

The default value is "Select”.

Value

A select_spec-S3 class object or delayed_select_spec-S3-class object. It contains all input
values.

If select_spec, then the function double checks the choices and selected inputs.

Examples

Selection with just one column allowed
select_spec(
choices = c("AVAL", "BMRKR1", "AGE"),
selected = c("AVAL"),
multiple = FALSE,
fixed = FALSE,
label = "Column”

)

Selection with just multiple columns allowed
select_spec(
choices = c("AVAL", "BMRKR1", "AGE"),
selected = c("AVAL", "BMRKR1"),
multiple = TRUE,
fixed = FALSE,
label = "Columns”

)

Selection without user access
select_spec(
choices = c("AVAL", "BMRKR1"),
selected = c("AVAL", "BMRKR1"),
multiple = TRUE,
fixed = TRUE,
label = "Columns”

)

Delayed version
select_spec(
label = "Select variable:",
choices = variable_choices("ADSL", c("BMRKR1", "BMRKR2")),
selected = "BMRKR1",
multiple = FALSE,
fixed = FALSE

split_by_sep 45

delayed_choices passed to selected

select_spec(
label = "Select variable:",
choices = variable_choices("ADSL", c("BMRKR1", "BMRKR2")),
selected = all_choices()

)

Both below objects are semantically the same
select_spec(choices = variable_choices(”ADSL"), selected = variable_choices("ADSL"))
select_spec(choices = variable_choices("ADSL"), selected = all_choices())

split_by_sep Split by separator (matched exactly)

Description

[Stable]

Usage

split_by_sep(x, sep)

Arguments
X (character) Character vector, each element of which is to be split. Other inputs,
including a factor return themselves.
sep (character) separator to use for splitting.
Value

List of character vectors split by sep. Self if x is not a character.

value_choices Value labeling and filtering based on variable relationship

Description

[Stable]

Wrapper on choices_labeled to label variable values basing on other variable values.

Usage
value_choices(data, var_choices, var_label = NULL, subset = NULL, sep =" - ")
S3 method for class 'character’
value_choices(data, var_choices, var_label = NULL, subset = NULL, sep =" - ")
S3 method for class 'data.frame'
value_choices(data, var_choices, var_label = NULL, subset = NULL, sep =" - ")

46 variable_choices

Arguments
data (data.frame, character) If data.frame, then data to extract labels from. If
character, then name of the dataset to extract data from once available.
var_choices (character, delayed_variable_choices) Choice of column names.
var_label (character) vector with labels column names.
subset (character or function) If character, vector with values to subset. If function,
then this function is used to determine the possible columns (e.g. all factor
columns). In this case, the function must take only single argument "data" and
return a character vector.
See examples for more details.
sep (character) separator used in case of multiple column names.
Value

named character vector or delayed_data object.

Examples

ADRS <- teal.data::rADRS
value_choices(ADRS, "PARAMCD”, "PARAM", subset = c(”BESRSPI”, "INVET"))
value_choices(ADRS, c(”PARAMCD”, "ARMCD"), c("PARAM”, "ARM"))
value_choices(ADRS, c("PARAMCD", "ARMCD"), c("PARAM", "ARM"),

subset = c("BESRSPI - ARM A", "INVET - ARM A", "OVRINV - ARM A")

)
value_choices(ADRS, c("PARAMCD"”, "ARMCD"), c("PARAM", "ARM"), sep = " --- ")

delayed version
value_choices("ADRS", c("PARAMCD", "ARMCD"), c("PARAM", "ARM"))

functional subset

value_choices(ADRS, "PARAMCD"”, "PARAM" 6 subset = function(data) {
levels(data$PARAMCD)[1:2]

»

variable_choices Variable label extraction and custom selection from data

Description

[Stable]

Wrapper on choices_labeled to label variables basing on existing labels in data.

variable_choices 47

Usage
variable_choices(data, subset = NULL, fill = FALSE, key = NULL)
S3 method for class 'character'
variable_choices(data, subset = NULL, fill = FALSE, key = NULL)

S3 method for class 'data.frame'
variable_choices(data, subset = NULL, fill

TRUE, key = NULL)

Arguments

data (data.frame or character) If data. frame, then data to extract labels from. If
character, then name of the dataset to extract data from once available.

subset (character or function) If character, then a vector of column names. If
function, then this function is used to determine the possible columns (e.g. all
factor columns). In this case, the function must take only single argument "data"
and return a character vector.

See examples for more details.

fill (logical (1)) if TRUE, the function will return variable names for columns with
non-existent labels; otherwise will return NA for them.

key (character) vector with names of the variables, which are part of the primary
key of the data argument.

This is an optional argument, which allows to identify variables associated with
the primary key and display the appropriate icon for them in the teal.widgets: :optionalSelectInput
widget.

Value

Named character vector with additional attributes or delayed_data object.

Examples

library(teal.data)

ADRS <- rADRS

variable_choices(ADRS)

variable_choices(ADRS, subset = c("PARAM", "PARAMCD"))

variable_choices(ADRS, subset = c("", "PARAM", "PARAMCD"))
variable_choices(

ADRS,

subset = c(””, "PARAM”, "PARAMCD"),

key = default_cdisc_join_keys["ADRS", "ADRS"]
)

delayed version
variable_choices("ADRS"”, subset = c("USUBJID", "STUDYID"))

functional subset (with delayed data) - return only factor variables
variable_choices("ADRS"”, subset = function(data) {
idx <- vapply(data, is.factor, logical(1l))

48

b

names(data)[idx]

variable_choices

Index

add_no_selected_choices, 3
all_choices (delayed_choices), 21

check_no_multiple_selection, 3
choices_labeled, 4, 45, 46
choices_selected, 4,5
choices_selected(), 4, 23
compose_and_enable_validators, 8

data_extract_multiple_srv, 11
data_extract_multiple_srv(), 28, 31, 37
data_extract_spec, 14, 14, 17, 20
data_extract_spec(), 20, 43
data_extract_srv, 16, 18, 25
data_extract_srv(), 12, 20, 27, 28, 31, 37
data_extract_ui, 716, 20
data_extract_ui(), 28, 31, 37
datanames_input, 10
delayed_choices, 21

filter_spec, 15,23

first_choice (delayed_choices), 21
first_choices (delayed_choices), 21
format_data_extract, 25

get_anl_relabel_call, 26
get_dataset_prefixed_col_names, 27
get_extract_datanames, 27
get_merge_call, 28
get_relabel_call, 29

is.choices_selected (choices_selected),
5
is_single_dataset, 29

last_choice (delayed_choices), 21
last_choices (delayed_choices), 21
list_extract_spec, 30

merge_datasets, 30
merge_expression_module, 33

merge_expression_module(), 37
merge_expression_srv, 36
merge_expression_srv(), 33, 34,37

no_selected_as_NULL, 40

print.choices_labeled
(choices_labeled), 4

resolve_delayed, 40

select_spec, 14, 15,42

shiny: :div, 21

shiny: :helpText(), 11

shiny: :reactive(), 27
shiny::selectInput, 20, 21
shiny::selectInput(), 4, 23, 42—44
split_by_sep, 45

teal .widgets::optionalSelectInput(), 5,
47

value_choices, 45
value_choices(), 6, 23, 43
variable_choices, 46
variable_choices(), 6, 23,43

	add_no_selected_choices
	check_no_multiple_selection
	choices_labeled
	choices_selected
	compose_and_enable_validators
	datanames_input
	data_extract_multiple_srv
	data_extract_spec
	data_extract_srv
	data_extract_ui
	delayed_choices
	filter_spec
	format_data_extract
	get_anl_relabel_call
	get_dataset_prefixed_col_names
	get_extract_datanames
	get_merge_call
	get_relabel_call
	is_single_dataset
	list_extract_spec
	merge_datasets
	merge_expression_module
	merge_expression_srv
	no_selected_as_NULL
	resolve_delayed
	select_spec
	split_by_sep
	value_choices
	variable_choices
	Index

