Package ‘styler’

April 8, 2024
Type Package
Title Non-Invasive Pretty Printing of R Code
Version 1.10.3

Description Pretty-prints R code without changing the user's formatting
intent.

License MIT + file LICENSE
URL https://github.com/r-1ib/styler, https://styler.r-1lib.org

BugReports https://github.com/r-1ib/styler/issues
Depends R (>=3.6.0)

Imports cli (>=3.1.1), magrittr (>= 2.0.0), purrr (>= 0.2.3), R.cache
(>=0.15.0), rlang (>= 1.0.0), rprojroot (>= 1.1), tools, vctrs
(>=0.4.1), withr (>=2.3.0),

Suggests data.tree (>= 0.1.6), digest, here, knitr, prettycode,
rmarkdown, roxygen2, rstudioapi (>= 0.7), tibble (>= 1.4.2),
testthat (>= 3.0.0)

VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 7.3.1
Config/testthat/edition 3
Config/testthat/parallel true

Collate 'addins.R' 'communicate.R' 'compat-dplyr.R' 'compat-tidyr.R'
'detect-alignment-utils.R' 'detect-alignment.R'
'environments.R' 'expr-is.R' 'indent.R' 'initialize.R' io.R’
'nest.R' 'nested-to-tree.R' 'parse.R' reindent.R'
'token-define.R' 'relevel.R' 'roxygen-examples-add-remove.R'
'roxygen-examples-find.R' 'roxygen-examples-parse.R’
'roxygen-examples.R' 'rules-indention.R' 'rules-line-breaks.R’
'rules-spaces.R' 'rules-tokens.R' 'serialize.R'
'set-assert-args.R' 'style-guides.R' 'styler-package.R'
'stylerignore.R' 'testing-mocks.R' 'testing-public-api.R’
'ui-caching.R' 'testing.R' 'token-create.R' 'transform-block.R’

1

https://github.com/r-lib/styler
https://styler.r-lib.org
https://github.com/r-lib/styler/issues

R topics documented:

'transform-code.R' 'transform-files.R' 'ui-styling.R'
'unindent.R' 'utils-cache.R' 'utils-files.R'
'utils-navigate-nest.R' 'utils-strings.R' 'utils.R’
'vertical.R' 'visit.R' 'zzz.R'

NeedsCompilation no

Author Kirill Miiller [aut] (<https://orcid.org/0000-0002-1416-3412>),

Lorenz Walthert [cre, aut],
Indrajeet Patil [ctb] (<https://orcid.org/0000-0003-1995-6531>,
@patilindrajeets)

Maintainer Lorenz Walthert <lorenz.walthert@icloud.com>

Repository CRAN

Date/Publication 2024-04-07 23:00:02 UTC

R topics documented:

Index

styler-package 3
cache _activate s 4
cache clear s 4
cache Info L e 5
caching e 5
compute_parse_data_nested L. 6
create_style_guide 7
math_token_spacing e 9
NeXt_NON_COMMENt v v vt it bt e et e e e e e e e e e 10
PAIS . o e e e e 11
print.vertical L L L e e e e 13
reindention L. e e e e e 13
scope_normalize e e e e e e e e e 14
specify_transformers_drop L. e 15
stylerignore L. e 16
styler_addins L. 17
style_dir o 18
style_file oL 21
style_pkgo 23
style_texto 25
tidyverse_style 26

https://orcid.org/0000-0002-1416-3412
https://orcid.org/0000-0003-1995-6531

styler-package 3

styler-package styler: Non-Invasive Pretty Printing of R Code

Description
styler allows you to format . gmd, .R, .Rmd, .Rmarkdown, .Rnw, and/or .Rprofile files, R packages,
or entire R source trees according to a style guide. The following functions can be used for styling:
* style_text() to style a character vector.
* style_file() to style a single file.
* style_dir() to style all files in a directory.
* style_pkg() to style the source files of an R package.
* RStudio Addins to style either selected code or the active file.

Author(s)

Maintainer: Lorenz Walthert <lorenz.walthert@icloud.com>

Authors:
* Kirill Miiller <kirill@cynkra.com> (ORCID)
Other contributors:

* Indrajeet Patil <patilindrajeet.science@gmail.com> (ORCID) (@patilindrajeets) [con-
tributor]

See Also
Useful links:

e https://github.com/r-1ib/styler
* https://styler.r-1lib.org
* Report bugs at https://github.com/r-1ib/styler/issues

Examples

style_text("call(1)")

style_text("1 + 1", strict = FALSE)
style_text("a%>%b", scope = "spaces")
style_text("a%>%b; a", scope = "line_breaks")
style_text("a%>%b; a", scope = "tokens")

https://orcid.org/0000-0002-1416-3412
https://orcid.org/0000-0003-1995-6531
https://github.com/r-lib/styler
https://styler.r-lib.org
https://github.com/r-lib/styler/issues

4 cache_clear

cache_activate Activate or deactivate the styler cache

Description

Helper functions to control the behavior of caching. Simple wrappers around base: :options().

Usage

cache_activate(cache_name = NULL, verbose = !getOption(”styler.quiet”, FALSE))

cache_deactivate(verbose = !getOption("styler.quiet”, FALSE))

Arguments
cache_name The name of the styler cache to use. If NULL, the option "styler.cache_name" is
considered which defaults to the version of styler used.
verbose Whether or not to print an informative message about what the function is doing.
See Also

Other cache managers: cache_clear(), cache_info(), caching

cache_clear Clear the cache

Description

Clears the cache that stores which files are already styled. You won’t be able to undo this. Note
that the file corresponding to the cache (a folder on your file system) won’t be deleted, but it will be
empty after calling cache_clear.

Usage

cache_clear(cache_name = NULL, ask = TRUE)

Arguments
cache_name The name of the styler cache to use. If NULL, the option "styler.cache_name" is
considered which defaults to the version of styler used.
ask Whether or not to interactively ask the user again.
Details

Each version of styler has its own cache by default, because styling is potentially different with
different versions of styler.

cache_info 5

See Also

Other cache managers: cache_activate(), cache_info(), caching

cache_info Show information about the styler cache

Description

Gives information about the cache. Note that the size consumed by the cache will always be dis-
played as zero because all the cache does is creating an empty file of size 0 bytes for every cached
expression. The inode is excluded from this displayed size but negligible.

Usage
cache_info(cache_name = NULL, format = "both")
Arguments
cache_name The name of the cache for which to show details. If NULL, the active cache is
used. If none is active the cache corresponding to the installed styler version is
used.
format Either "lucid" for a summary emitted with base: :cat (), "tabular” for a tabular
summary from base: :file.info() or "both" for both.
See Also

Other cache managers: cache_activate(), cache_clear(), caching

caching Remember the past to be quicker in the future

Description

Caching makes styler faster on repeated styling and is shared across all APIs (e.g. style_text()
and Addin). That means if you style code that already complies to a style guide and you have
previously styled that code, it will be quicker.

Configuring the cache
To comply with the CRAN policy, {styler} will by default clean up cache files that are older than 6
days. This implies that you loose the benefit of the cache for the files not styled in the last 6 days.

If you want to avoid this, i.e., if you want the cache to last longer, you can use the R option
styler.cache_root to opt for an indefinitely long-lived cache by setting it to options(styler.cache_root
="styler-perm").

If you are happy with the cache being cleared after 6 days, you can confirm the default and silence
this message by setting it instead to options(styler.cache_root = "styler").

You can make this change in your .Rprofile using usethis::edit_r_profile().

compute_parse_data_nested

Manage the cache

See cache_info(),cache_activate() or cache_clear () for utilities to manage the cache. You
can deactivate it altogether with cache_deactivate(). Since we leverage {R.cache} to manage
the cache, you can also use any {R. cache?} functionality to manipulate it.

In some cases, you want to use a non-standard cache location. In that situation, you can set the path
to the cache with the R option R. cache. rootPath or the environment variable R_CACHE_ROOTPATH
to an existent path before you call the styler APIL.

Invalidation

The cache is specific to a version of styler by default, because different versions potentially format
code differently. This means after upgrading styler or a style guide you use, the cache will be
re-built.

Mechanism and size

The cache works by storing hashed output code as a whole and by expression, which is why it takes
zero space on disk (the cache is a directory with empty files which have the hash of output code as
name).

The cache literally takes zero space on your disk, only the inode, and you can always manu-
ally clean up with cache_clear() or just go to the directory where the cache lives (find it with
cache_info()) and manually delete files.

Using a cache for styler in CI/CD

If you want to set up caching in a CI/CD pipeline, we suggest to set the {R. cache} root path to a
directory for which you have the cache enabled. This can often be set in config files of CI/CD tools,
e.g. see the Travis documentation on caching.

See Also

Other cache managers: cache_activate(), cache_clear(), cache_info()

compute_parse_data_nested
Obtain a nested parse table from a character vector

Description

Parses text to a flat parse table and subsequently changes its representation into a nested parse
table with nest_parse_data().

https://docs.travis-ci.com/user/caching

create_style_guide 7

Usage

compute_parse_data_nested(
text,
transformers = tidyverse_style(),
more_specs = NULL

)
Arguments
text The text to parse.
transformers Passed to cache_make_key () to generate a key.
more_specs Passed to cache_make_key () to generate a key.
Value

A nested parse table. See tokenize() for details on the columns of the parse table.

Examples

”n

code <-
ab <- 1L # some comment
abcdef <- 2L

writeLines(code)
compute_parse_data_nested(code)

create_style_guide Create a style guide

Description

This is a helper function to create a style guide, which is technically speaking a named list of groups
of transformer functions where each transformer function corresponds to one styling rule. The out-
put of this function can be used as an argument for style in top-level functions like style_text()
and friends. Note that for caching to work properly, unquote all inputs to the transformer func-
tion if possible with rlang’s !!, otherwise, they will be passed as references (generic variable
names) instead of literals and styler:::is_cached() won’t pick up changes. See how it’s done
in tidyverse_style() with indent_by and other arguments.

Usage

create_style_guide(
initialize = default_style_guide_attributes,
line_break = NULL,
space = NULL,
token = NULL,
indention = NULL,

8 create_style_guide

use_raw_indention = FALSE,

reindention = tidyverse_reindention(),
style_guide_name = NULL,

style_guide_version = NULL,
more_specs_style_guide = NULL,

transformers_drop = specify_transformers_drop(),
indent_character = " "

)
Arguments
initialize The bare name of a function that initializes various variables on each level of
nesting.
line_break A list of transformer functions that manipulate line_break information.
space A list of transformer functions that manipulate spacing information.
token A list of transformer functions that manipulate token text.
indention A list of transformer functions that manipulate indention.

use_raw_indention
Boolean indicating whether or not the raw indention should be used.

reindention A list of parameters for regex re-indention, most conveniently constructed using
specify_reindention().

style_guide_name
The name of the style guide. Used as a meta attribute inside the created style
guide, for example for caching. By convention, this is the style guide qualified
by the package namespace plus the location of the style guide, separated by @.
For example, "styler::tidyverse_style@https://github.com/r-1ib".

style_guide_version
The version of the style guide. Used as a meta attribute inside the created style
guide, for example for caching. This should correspond to the version of the R
package that exports the style guide.

more_specs_style_guide
Named vector (coercible to character) with all arguments passed to the style
guide and used for cache invalidation. You can easily capture them in your style
guide function declaration with as.list(environment()) (compare source
code of tidyverse_style()).

transformers_drop
A list specifying under which conditions transformer functions can be dropped
since they have no effect on the code to format, most easily constructed with
specify_transformers_drop(). This is argument experimental and may change
in future releases without prior notification. It was mainly introduced to improve
speed. Listing transformers here that occur almost always in code does not make
sense because the process of excluding them also takes some time.

indent_character
The character that is used for indention. We strongly advise for using spaces as
indention characters.

math_token_spacing 9

Examples

set_line_break_before_curly_opening <- function(pd_flat) {
op <- pd_flat$token %in% "'{""
pd_flat$lag_newlines[op] <- 1L
pd_flat
3
set_line_break_before_curly_opening_style <- function() {
create_style_guide(
line_break = list(set_line_break_before_curly_opening),
style_guide_name = "some-style-guide”,
style_guide_version = "some-version”
)
}
style_text(
"a <= function(x) { x }",
style = set_line_break_before_curly_opening_style

)

math_token_spacing Specify spacing around math tokens

Description

Helper function to create the input for the argument math_token_spacingin tidyverse_style().

Usage

nraAn

specify_math_token_spacing(zero = , one = ("N, NSt i /Yy

tidyverse_math_token_spacing()

Arguments
zero Character vector of tokens that should be surrounded with zero spaces.
one Character vector with tokens that should be surrounded by at least one space (de-
pending on strict = TRUE in the styling functions style_text() and friends).
See ’Examples’.
Functions

* specify_math_token_spacing(): Allows to fully specify the math token spacing.

e tidyverse_math_token_spacing(): Simple forwarder to specify_math_token_spacing
with spacing around math tokens according to the tidyverse style guide.

10 next_non_comment

Examples

style_text(

"1+ =37,
math_token_spacing = specify_math_token_spacing(zero = "'+'"),
strict = FALSE
)
style_text(
"1+1 -3",
math_token_spacing = specify_math_token_spacing(zero = "'+'"),
strict = TRUE
)
style_text(
"1+1 -3",

math_token_spacing = tidyverse_math_token_spacing(),
strict = FALSE

)

style_text(
"+l =37,
math_token_spacing = tidyverse_math_token_spacing(),
strict = TRUE

next_non_comment Find the index of the next or previous non-comment in a parse table.

Description

Find the index of the next or previous non-comment in a parse table.

Usage

next_non_comment(pd, pos)

previous_non_comment(pd, pos)

Arguments

pd A parse table.

pos The position of the token to start the search from.
See Also

Other third-party style guide helpers: pd_is, scope_normalize()

pd_is 11

Examples

code <- "a <= # hi \n x %% b()"
writeLines(code)

pd <- compute_parse_data_nested(code)
child <- pd$child[[1]1]
previous_non_comment(child, 4L)
next_non_comment(child, 2L)

pd_is What is a parse table representing?

Description

Check whether a parse table corresponds to a certain expression.

Usage

is_curly_expr(pd)

is_for_expr(pd)

is_conditional_expr(pd)
is_while_expr(pd)

is_function_call(pd)
is_function_declaration(pd)
is_comment(pd)

is_tilde_expr(pd, tilde_pos = c(1L, 2L))
is_asymmetric_tilde_expr(pd)

is_symmetric_tilde_expr(pd)

Arguments
pd A parse table.
tilde_pos Integer vector indicating row-indices that should be checked for tilde. See *De-
tails’.
Details

A tilde is on the top row in the parse table if it is an asymmetric tilde expression (like ~column), in
the second row if it is a symmetric tilde expression (like a~b).

12

pd_is

Functions

See Also

is_curly_expr(): Checks whether pd contains an expression wrapped in curly brackets.
is_for_expr(): Checks whether pd contains a for loop.

is_conditional_expr(): Checks whether pd contains is a conditional expression.
is_while_expr(): Checks whether pd contains a while loop.
is_function_call(): Checks whether pd is a function call.
is_function_declaration(): Checks whether pd is a function declaration.
is_comment(): Checks for every token whether or not it is a comment.
is_tilde_expr(): Checks whether pd contains a tilde.

is_asymmetric_tilde_expr(): If pd contains a tilde, checks whether it is asymmetrical.

is_symmetric_tilde_expr(): If pd contains a tilde, checks whether it is symmetrical.

Other third-party style guide helpers: next_non_comment (), scope_normalize()

Examples

code <- "if (TRUE) { 1 }"

pd <- compute_parse_data_nested(code)
is_curly_expr(pd)

child_of_child <- pd$child[[1]]1$child[[5]]
is_curly_expr(child_of_child)

code <- "for (i in 1:5) print(1:i)"
pd <- compute_parse_data_nested(code)
is_for_expr(pd)
is_for_expr(pd$child[[1]1]1)

code <- "if (TRUE) x <- 1 else x <- 0"
pd <- compute_parse_data_nested(code)
is_conditional_expr(pd)
is_conditional_expr(pd$child[[1]])

code <- "x <- list(1:3)"

pd <- compute_parse_data_nested(code)
is_function_call(pd)

child_of_child <- pd$child[[1]]1$child[[3]1]
is_function_call(child_of_child)

code <- "foo <- function() NULL"

pd <- compute_parse_data_nested(code)
is_function_declaration(pd)

child_of_child <- pd$child[[1]]1$child[[3]1]
is_function_declaration(child_of_child)

code <- "x <- 1 # TODO: check value”
pd <- compute_parse_data_nested(code)

print.vertical 13

is_comment (pd)

code <- "Im(wt ~ mpg, mtcars)”

pd <- compute_parse_data_nested(code)
is_tilde_expr(pd$child[[1]11$child[[3]11)
is_symmetric_tilde_expr(pd$child[[1]11$child[[3]1])
is_asymmetric_tilde_expr(pd$child[[1]]1$child[[3]1])

print.vertical Print styled code

Description

Print styled code

Usage

S3 method for class 'vertical'

print(
X)
colored = getOption("styler.colored_print.vertical”),
style = prettycode::default_style()

)
Arguments
X A character vector, one element corresponds to one line of code.
Not currently used.
colored Whether or not the output should be colored with prettycode: :highlight().
style Passed to prettycode: :highlight ().
reindention Specify what is re-indented how
Description

This function returns a list that can be used as an input for the argument reindention of the
function tidyverse_style(). It features sensible defaults, so the user can specify deviations from
them conveniently without the need of setting all arguments explicitly.

Usage

specify_reindention(regex_pattern = NULL, indention = @OL, comments_only = TRUE)

tidyverse_reindention()

14 scope_normalize

Arguments
regex_pattern Character vector with regular expression patterns that are to be re-indented with
spaces, NULL if no reindention needed.
indention The indention tokens should have if they match regex_pattern.
comments_only Whether the regex_reindention_pattern should only be matched against

comments or against all tokens. Mainly added for performance.
Functions

* specify_reindention(): Allows to specify which tokens are reindented and how.

e tidyverse_reindention(): Simple forwarder to specify_reindention with reindention
according to the tidyverse style guide.

Examples

style_text("a <- xyz", reindention = specify_reindention(

n n

regex_pattern = "xyz", indention = 4, comments_only = FALSE

)

style_text("a <- xyz", reindention = tidyverse_reindention())

scope_normalize Convert the styling scope to its lower-level representation

Description

If scope is of class character and of length one, the value of the argument and all less-invasive
levels are included too (e.g. styling tokens includes styling spaces). If scope is of class AsIs,
every level to be included has to be declared individually. See compare tidyverse_style() for
the possible levels and their order.

Usage

scope_normalize(scope, name = substitute(scope))

Arguments
scope A character vector of length one or a vector of class AsIs.
name The name of the character vector to be displayed if the construction of the factor
fails.
See Also

Other third-party style guide helpers: next_non_comment (), pd_is

Examples

scope_normalize(I("tokens"))
scope_normalize(I(c("indention”, "tokens")))

specify_transformers_drop 15

specify_transformers_drop
Specify which tokens must be absent for a transformer to be dropped

Description

{styler} can remove transformer functions safely removed from the list of transformers to be
applied on every nest with transformers_drop() if the tokens that trigger a manipulation of the
parse data are absent in the text to style. specify_transformers_drop() helps you specify these
conditions.

Usage

specify_transformers_drop(
spaces = NULL,
indention = NULL,
line_breaks = NULL,
tokens = NULL

Arguments

spaces, indention, line_breaks, tokens
Each a list (or NULL) where the name of each element is the concerning trans-
former, the value is an unnamed vector with tokens that match the rule. See
’Examples’.

Details

Note that the negative formulation (must be absent in order to be dropped) means that when you
add a new rule and you forget to add a rule for when to drop it, it will not be dropped. If we
required to specify the complement (which tokens must be present for the transformer to be kept),
the transformer would be silently removed, which is less save.

Warning

It is the responsibility of the developer to ensure expected behavior, in particular that:

* the name of the supplied dropping criteria matches the name of the transformer function.

* the dropping criteria (name + token) reflects correctly under which circumstances the trans-
former does not have an impact on styling and can therefore be safely removed without affect-
ing the styling outcome.

You can use the unexported function test_transformers_drop() for some checks.

16 stylerignore

Examples

dropping <- specify_transformers_drop(
spaces = c(remove_space_after_excl = "'!'")
)
style_guide <- create_style_guide(
space = list(remove_space_after_excl = styler:::remove_space_after_excl),
transformers_drop = dropping
)
transformers_drop() will remove the transformer when the code does not
contain an exclamation mark
style_guide_with_some_transformers_dropped <- styler:::transformers_drop(
"x <= 3;2", style_guide
)
setdiff(
names(style_guide$space),
names(style_guide_with_some_transformers_dropped)
)
note that dropping all transformers of a scope means that this scope
has an empty named list for this scope
style_guide_with_some_transformers_dropped$space
this is not the same as if this scope was never specified.
tidyverse_style(scope = "none")$space
Hence, styler should check for length @ to decide if a scope is present or
not, not via ‘is.null()‘ and we can use the ‘is.null()‘ check to see if
this scope was initially required by the user.

stylerignore Turn off styling for parts of the code

Description

Using stylerignore markers, you can temporarily turn off styler. Beware that for styler > 1.2.0,
some alignment is detected by styler, making stylerignore redundant. See a few illustrative exam-
ples below.

Details

Styling is on for all lines by default when you run styler.

» To mark the start of a sequence where you want to turn styling off, use # styler: off.

» To mark the end of this sequence, put # styler: on in your code. After that line, styler will
again format your code.

* To ignore an inline statement (i.e. just one line), place # styler: off at the end of the line.
To use something else as start and stop markers, set the R options styler.ignore_start and
styler.ignore_stop using options(). For styler version > 1.6.2, the option supports char-
acter vectors longer than one and the marker are not exactly matched, but using a regular ex-
pression, which means you can have multiple marker on one line, e.g. # nolint start styler: off.

https://styler.r-lib.org/articles/detect-alignment.html

styler_addins 17

Examples

as long as the order of the markers is correct, the lines are ignored.
style_text(

1+1

styler: off

T+1

styler: on

1+1

n

if there is a stop marker before a start marker, styler won't be able
to figure out which lines you want to ignore and won't ignore anything,
issuing a warning.
Not run:
style_text(

T+1

styler: off

1+1

styler: off

1+1

n

)

End(Not run)
some alignment of code is detected, so you don't need to use stylerignore
style_text(

"call(
xyz = 3,
x =1
) n
)
styler_addins Stylers for RStudio Addins
Description

Helper functions for styling via RStudio Addins.

Addins

» Set style: Select the style transformers to use. For flexibility, the user input is passed to the
transformers argument, not the style argument, so entering styler: :tidyverse_style(scope
= "spaces") in the Addin is equivalentto styler: :style_text("1+1", scope = "spaces”)
and styler::style_text("1+1", transformers = styler: :tidyverse_style(scope = "spaces"))
if the text to style is 1+1. The style transformers are memorized within an R session via the R

18 style_dir

option styler.addins_style_transformer so if you want it to persist over sessions, set the
option styler.addins_style_transformer in your .Rprofile.

* Style active file: Styles the active file, by default with tidyverse_style() or the value of the
option styler.addins_style_transformer if specified.

* Style selection: Same as Style active file, but styles the highlighted code instead of the whole
file.

Auto-Save Option

By default, both of the RStudio Addins will apply styling to the (selected) file contents without sav-
ing changes. Automatic saving can be enabled by setting the R option styler.save_after_styling
to TRUE. Consider setting this in your .Rprofile file if you want to persist this setting across mul-
tiple sessions. Untitled files will always need to be saved manually after styling.

Life cycle

The way of specifying the style in the Addin as well as the auto-save option (see below) are exper-
imental. We are currently considering letting the user specify the defaults for other style APIs like
style_text(), either via R options, config files or other ways as well. See r-lib/styler#319 for the
current status of this.

See Also

Other stylers: style_dir(), style_file(), style_pkg(), style_text()

Examples

Not run:
save after styling when using the Addin
options(styler.save_after_styling = TRUE)
only style with scope = "spaces” when using the Addin
val <- "styler::tidyverse_style(scope = 'spaces')"”
options(

styler.addins_style_transformer = val

)

End(Not run)

style_dir Prettify arbitrary R code

Description

Performs various substitutions in all .R, .Rmd, .Rmarkdown, gmd and/or .Rnw files in a directory
(by default only .R files are styled - see filetype argument). Carefully examine the results after
running this function!

https://github.com/r-lib/styler/issues/319

style_dir 19
Usage
style_dir(

path - H‘ n,

style = tidyverse_style,

transformers = style(...),

filetype = c("R", "Rprofile”, "Rmd"”, "Rmarkdown”, "Rnw", "Qmd"),

recursive = TRUE,

exclude_files = NULL,

exclude_dirs = c("packrat”, "renv"),

include_roxygen_examples =
base_indention =

dry = "off"

Arguments

path

style

transformers

filetype

recursive

exclude_files

exclude_dirs

TRUE,
oL,

Path to a directory with files to transform.

Arguments passed on to the style function, see tidyverse_style() for the
default argument.

A function that creates a style guide to use, by default tidyverse_style. Not
used further except to construct the argument transformers. See style_guides()
for details.

A set of transformer functions. This argument is most conveniently constructed
via the style argument and See ’Examples’.

Vector of file extensions indicating which file types should be styled. Case
is ignored, and the . is optional, e.g. c(”.R",”.Rmd"), or c("r", "rmd").
Supported values (after standardization) are: "qmd", "r", "rmd", "rmarkdown",
"rnw", and "rprofile". Rmarkdown is treated as Rmd.

A logical value indicating whether or not files in sub directories of path should
be styled as well.

Character vector with regular expressions to files that should be excluded from
styling.

Character vector with directories to exclude (recursively).

include_roxygen_examples

base_indention

dry

Whether or not to style code in roxygen examples.

Integer scalar indicating by how many spaces the whole output text should be in-
dented. Note that this is not the same as splitting by line and add a base_indention
spaces before the code in the case multi-line strings are present. See ’Examples’.

To indicate whether styler should run in dry mode, i.e. refrain from writing back
to files ."on" and "fail” both don’t write back, the latter returns an error if the
input code is not identical to the result of styling. "oft", the default, writes back
if the input and output of styling are not identical.

20 style_dir

Value

Invisibly returns a data frame that indicates for each file considered for styling whether or not it was
actually changed (or would be changed when dry is not "off").

Warning

This function overwrites files (if styling results in a change of the code to be formatted and dry
="off"). It is strongly suggested to only style files that are under version control or to create a
backup copy.

We suggest to first style with scope < "tokens"” and inspect and commit changes, because these
changes are guaranteed to leave the abstract syntax tree (AST) unchanged. See section ’Round trip
validation’ for details.

Then, we suggest to style with scope = "tokens” (if desired) and carefully inspect the changes to
make sure the AST is not changed in an unexpected way that invalidates code.

Round trip validation

The following section describes when and how styling is guaranteed to yield correct code.

If tokens are not in the styling scope (as specified with the scope argument), no tokens are changed
and the abstract syntax tree (AST) should not change. Hence, it is possible to validate the styling
by comparing whether the parsed expression before and after styling have the same AST. This
comparison omits roxygen code examples and comments. styler throws an error if the AST has
changed through styling.

Note that if tokens are to be styled, such a comparison is not conducted because the AST might well
change and such a change is intended. There is no way styler can validate styling, that is why we
inform the user to carefully inspect the changes.

See section *Warning’ for a good strategy to apply styling safely.

See Also

Other stylers: style_file(), style_pkg(), style_text(), styler_addins

Examples
style_dir("path/to/dir", filetype = c("rmd"”, ".R"))
the following is identical (because of ... and defaults)

but the first is most convenient:

style_dir(strict = TRUE)

style_dir(style = tidyverse_style, strict = TRUE)
style_dir(transformers = tidyverse_style(strict = TRUE))

style_file

21

style_file

Style files with R source code

Description

Performs various substitutions in the files specified. Carefully examine the results after running this

function!

Usage

style_file(
path,

style = tidyverse_style,

transformers

= style(...),

include_roxygen_examples = TRUE,
base_indention = 0L,

dry = "off"
)
Arguments
path
style
transformers

A character vector with paths to files to style. Supported extensions: .R, .Rmd,
.Rmarkdown, .gmd and .Rnw.

Arguments passed on to the style function, see tidyverse_style() for the
default argument.

A function that creates a style guide to use, by default tidyverse_style. Not
used further except to construct the argument transformers. See style_guides()
for details.

A set of transformer functions. This argument is most conveniently constructed
via the style argument and See "Examples’.

include_roxygen_examples

base_indention

dry

Encoding

Whether or not to style code in roxygen examples.

Integer scalar indicating by how many spaces the whole output text should be in-
dented. Note that this is not the same as splitting by line and add a base_indention
spaces before the code in the case multi-line strings are present. See ’Examples’.

To indicate whether styler should run in dry mode, i.e. refrain from writing back
to files ."on" and "fail” both don’t write back, the latter returns an error if the
input code is not identical to the result of styling. "off", the default, writes back
if the input and output of styling are not identical.

UTF-8 encoding is assumed. Please convert your code to UTF-8 if necessary before applying styler.

22 style_file

Value

Invisibly returns a data frame that indicates for each file considered for styling whether or not it was
actually changed (or would be changed when dry is not "off").

Warning

This function overwrites files (if styling results in a change of the code to be formatted and dry
="off"). It is strongly suggested to only style files that are under version control or to create a
backup copy.

We suggest to first style with scope < "tokens” and inspect and commit changes, because these
changes are guaranteed to leave the abstract syntax tree (AST) unchanged. See section ’Round trip
validation’ for details.

Then, we suggest to style with scope = "tokens" (if desired) and carefully inspect the changes to
make sure the AST is not changed in an unexpected way that invalidates code.

Round trip validation

The following section describes when and how styling is guaranteed to yield correct code.

If tokens are not in the styling scope (as specified with the scope argument), no tokens are changed
and the abstract syntax tree (AST) should not change. Hence, it is possible to validate the styling
by comparing whether the parsed expression before and after styling have the same AST. This
comparison omits roxygen code examples and comments. styler throws an error if the AST has
changed through styling.

Note that if tokens are to be styled, such a comparison is not conducted because the AST might well
change and such a change is intended. There is no way styler can validate styling, that is why we
inform the user to carefully inspect the changes.

See section *Warning’ for a good strategy to apply styling safely.

See Also

Other stylers: style_dir(), style_pkg(), style_text(), styler_addins

Examples

file <- tempfile("styler"”, fileext = ".R")
writeLines("1++1", file)

the following is identical (because of ... and defaults),

but the first is most convenient:

style_file(file, strict = TRUE)

style_file(file, style = tidyverse_style, strict = TRUE)
style_file(file, transformers = tidyverse_style(strict = TRUE))

only style indention and less invasive levels (i.e. spaces)
style_file(file, scope = "indention”, strict = TRUE)

name levels explicitly to not style less invasive levels
style_file(file, scope = I(c("tokens"”, "spaces"”)), strict = TRUE)

style_pkg

readLines(file)

unlink(file)

23

style_pkg

Prettify R source code

Description

Performs various substitutions in all . R files in a package (code and tests), .Rmd, . Rmarkdown and/or
.gmd, .Rnw files (vignettes and readme). Carefully examine the results after running this function!

Usage
style_pkg(

n o n

pkg = ".",

style = tidyverse_style,

transformers

= style(...),

filetype = c("R", "Rprofile”, "Rmd”, "Rmarkdown", "Rnw", "qgmd"),

exclude_files = c("R/RcppExports\\.R", "R/cppl11\\.R",
"R/import-standalone.*\\.R"),

exclude_dirs = c("packrat”, "renv"),

include_roxygen_examples = TRUE,

base_indention = oL,

dry = "off"

Arguments

pkg

style

transformers

filetype

exclude_files

exclude_dirs

Path to a (subdirectory of an) R package.

Arguments passed on to the style function, see tidyverse_style() for the
default argument.

A function that creates a style guide to use, by default tidyverse_style. Not
used further except to construct the argument transformers. See style_guides()
for details.

A set of transformer functions. This argument is most conveniently constructed
via the style argument and See "Examples’.

Vector of file extensions indicating which file types should be styled. Case
is ignored, and the . is optional, e.g. c(".R",".Rmd"), or c("r", "rmd").
Supported values (after standardization) are: "qmd", "r", "rmd", "rmarkdown",
"rw", and "rprofile". Rmarkdown is treated as Rmd.

Character vector with regular expressions to files that should be excluded from
styling.
Character vector with directories to exclude (recursively). Note that the default

values were set for consistency with style_dir() and as these directories are
anyways not styled.

24 style_pkg

include_roxygen_examples
Whether or not to style code in roxygen examples.
base_indention Integer scalar indicating by how many spaces the whole output text should be in-

dented. Note that this is not the same as splitting by line and add a base_indention
spaces before the code in the case multi-line strings are present. See ’Examples’.

dry To indicate whether styler should run in dry mode, i.e. refrain from writing back
to files .”"on" and "fail” both don’t write back, the latter returns an error if the
input code is not identical to the result of styling. "off", the default, writes back
if the input and output of styling are not identical.

Warning

This function overwrites files (if styling results in a change of the code to be formatted and dry
= "off"). It is strongly suggested to only style files that are under version control or to create a
backup copy.

We suggest to first style with scope < "tokens"” and inspect and commit changes, because these
changes are guaranteed to leave the abstract syntax tree (AST) unchanged. See section 'Round trip
validation’ for details.

Then, we suggest to style with scope = "tokens” (if desired) and carefully inspect the changes to
make sure the AST is not changed in an unexpected way that invalidates code.

Round trip validation

The following section describes when and how styling is guaranteed to yield correct code.

If tokens are not in the styling scope (as specified with the scope argument), no tokens are changed
and the abstract syntax tree (AST) should not change. Hence, it is possible to validate the styling
by comparing whether the parsed expression before and after styling have the same AST. This
comparison omits roxygen code examples and comments. styler throws an error if the AST has
changed through styling.

Note that if tokens are to be styled, such a comparison is not conducted because the AST might well
change and such a change is intended. There is no way styler can validate styling, that is why we
inform the user to carefully inspect the changes.

See section *Warning’ for a good strategy to apply styling safely.

Value

Invisibly returns a data frame that indicates for each file considered for styling whether or not it was
actually changed (or would be changed when dry is not "off").

See Also

Other stylers: style_dir(), style_file(), style_text(), styler_addins

Examples

the following is identical (because of ... and defaults)
but the first is most convenient:

style_text 25

style_pkg(strict = TRUE)
style_pkg(style = tidyverse_style, strict = TRUE)
style_pkg(transformers = tidyverse_style(strict = TRUE))

more options from ‘tidyverse_style()*
style_pkg(
scope = "line_breaks"”,
math_token_spacing = specify_math_token_spacing(zero = "'+'")

)

don't write back and fail if input is not already styled
style_pkg("/path/to/pkg/", dry = "fail")

style_text Style a string

Description

Styles a character vector. Each element of the character vector corresponds to one line of code.

Usage

style_text(
text,

style = tidyverse_style,
transformers = style(...),
include_roxygen_examples = TRUE,
base_indention = @L

)
Arguments
text A character vector with text to style.
Arguments passed on to the style function, see tidyverse_style() for the
default argument.
style A function that creates a style guide to use, by default tidyverse_style. Not

used further except to construct the argument transformers. See style_guides()
for details.

transformers A set of transformer functions. This argument is most conveniently constructed
via the style argument and See "Examples’.
include_roxygen_examples
Whether or not to style code in roxygen examples.
base_indention Integer scalar indicating by how many spaces the whole output text should be in-

dented. Note that this is not the same as splitting by line and add a base_indention
spaces before the code in the case multi-line strings are present. See ’Examples’.

26 tidyverse_style

See Also

Other stylers: style_dir(), style_file(), style_pkg(), styler_addins

Examples

style_text("call(1)")
style_text("1 + 1", strict = FALSE)

the following is identical (because of ... and defaults)

but the first is most convenient:

style_text("a<-3++1", strict = TRUE)

style_text("a<-3++1", style = tidyverse_style, strict = TRUE)
style_text("a<-3++1", transformers = tidyverse_style(strict = TRUE))

more invasive scopes include less invasive scopes by default
style_text("a%>%b", scope = "spaces")

style_text("a%>%b; a", scope = "line_breaks")
style_text("a%>%b; a", scope = "tokens")

opt out with I() to only style specific levels
style_text("a%>%b; a", scope = I("tokens"))

tidyverse_style The tidyverse style

Description

Style code according to the tidyverse style guide.

Usage

tidyverse_style(
scope = "tokens",
strict = TRUE,
indent_by = 2L,
start_comments_with_one_space = FALSE,
reindention = tidyverse_reindention(),
math_token_spacing = tidyverse_math_token_spacing()

Arguments

scope The extent of manipulation. Can range from "none" (least invasive) to "tokens"
(most invasive). See ’Details’. This argument is a string or a vector of class
AsIs.

tidyverse_style 27

strict A logical value indicating whether a set of strict or not so strict transformer
functions should be returned. Compare the functions returned with or without
strict = TRUE. For example, strict = TRUE means force one space e.g. after
"." and one line break e.g. after a closing curly brace. strict = FALSE means to

)

set spaces and line breaks to one if there is none and leave the code untouched
otherwise. See "Examples’.

indent_by How many spaces of indention should be inserted after operators such as *(’.

start_comments_with_one_space
Whether or not comments should start with only one space (see start_comments_with_space()).

reindention A list of parameters for regex re-indention, most conveniently constructed using
specify_reindention().

math_token_spacing
A list of parameters that define spacing around math token, conveniently con-
structed using specify_math_token_spacing().

Details
The following levels for scope are available:

* "none": Performs no transformation at all.

* "spaces": Manipulates spacing between token on the same line.

* "indention": Manipulates the indention, i.e. number of spaces at the beginning of each line.
 "line_breaks": Manipulates line breaks between tokens.

* "tokens": manipulates tokens.
scope can be specified in two ways:

* As astring: In this case all less invasive scope levels are implied, e.g. "line_breaks" includes

non

"indention", "spaces". This is brief and what most users need.
* As vector of class AsIs: Each level has to be listed explicitly by wrapping one ore more levels
of the scope in I(). This offers more granular control at the expense of more verbosity.

See ’Examples’ for details.

Examples

style_text("call(1)", style = tidyverse_style, scope = "spaces")
style_text("call(1)", transformers = tidyverse_style(strict = TRUE))
style_text(c("ab <- 3", "a <-3"), strict = FALSE) # keeps alignment of "<-"
style_text(c("ab <- 3", "a <-3"), strict = TRUE) # drops alignment of "<-"

styling line breaks only without spaces
style_text(c("ab <- 3", "a =3"), strict = TRUE, scope = I(c("line_breaks”, "tokens")))

Index

* cache managers
cache_activate, 4
cache_clear, 4
cache_info, 5
caching, 5

+ obtain transformers
tidyverse_style, 26

x style_guides
tidyverse_style, 26

* stylers
style_dir, 18
style_file, 21
style_pkg, 23
style_text, 25
styler_addins, 17

* third-party style guide helpers
next_non_comment, 10
pd_is, 11
scope_normalize, 14

base::cat(), 5
base::file.info(), 5
base::options(), 4

cache_activate, 4, 5, 6
cache_activate(), 6
cache_clear, 4,4, 5, 6
cache_clear(), 6
cache_deactivate (cache_activate), 4
cache_deactivate(), 6
cache_info,4, 5,5,6
cache_info(), 6
cache_make_key(), 7
caching, 4, 5,5
compute_parse_data_nested, 6
create_style_guide, 7

10,27
is_asymmetric_tilde_expr (pd_is), 11
is_comment (pd_is), 11

28

is_conditional_expr (pd_is), 11
is_curly_expr (pd_is), 11
is_for_expr (pd_is), 11
is_function_call (pd_is), 11
is_function_declaration (pd_is), 11
is_symmetric_tilde_expr (pd_is), 11
is_tilde_expr (pd_is), 11
is_while_expr (pd_is), 11

math_token_spacing, 9

nest_parse_data(), 6
next_non_comment, 10, 12, 14

options(), 16

pd_is, 10, 11, 14

previous_non_comment
(next_non_comment), 10

print.vertical, 13

reindention, 13
RStudio Addins, 3

scope_normalize, 10, 12, 14
specify_math_token_spacing
(math_token_spacing), 9
specify_math_token_spacing(), 27
specify_reindention (reindention), 13
specify_reindention(), 8, 27
specify_transformers_drop, 15
specify_transformers_drop(), 8
start_comments_with_space(), 27
style_dir, 18, 18, 22, 24, 26
style_dir(), 3, 23
style_file, I8, 20, 21, 24, 26
style_file(), 3
style_guides(), 19, 21, 23, 25
style_pkg, 18, 20, 22, 23, 26
style_pkg(), 3
style_text, 18, 20, 22, 24, 25

INDEX

style_text(),3,7,9, 18

styler (styler-package), 3
styler-package, 3
styler_addins, 17, 20, 22, 24, 26
stylerignore, 16

test_transformers_drop(), 15

tidyverse_math_token_spacing
(math_token_spacing), 9

tidyverse_reindention (reindention), 13

tidyverse_style, 19, 21, 23, 25, 26

tidyverse_style(), 7,9, 13, 14,18, 19, 21,
23,25

tokenize(), 7

transformers_drop(), 15

29

	styler-package
	cache_activate
	cache_clear
	cache_info
	caching
	compute_parse_data_nested
	create_style_guide
	math_token_spacing
	next_non_comment
	pd_is
	print.vertical
	reindention
	scope_normalize
	specify_transformers_drop
	stylerignore
	styler_addins
	style_dir
	style_file
	style_pkg
	style_text
	tidyverse_style
	Index

