Package ‘speedycode’

October 14, 2022
Version 0.3.0
Date 2022-03-30

Title Automate Code for Adding Labels, Recoding and Renaming
Variables, and Converting ASCII Files

Author Jacob Harris [aut, cre]
Suggests labelled, readroper

Description Label, recode, rename, and convert datasets and ASCII files more efficiently. 'speedy-
code' automates the code necessary for labeling variables with the 'labelled' package, recod-
ing and renaming variables with 'dplyr' syntax, and converting ASCII files with the 'read-
roper' package. Most functions require only the name of the dataset and the code will be automat-
ically written. Some convenience functions useful for converting ASCII files are also included.

License GPL-3

Imports dplyr, stringr, purrr

Encoding UTF-8

NeedsCompilation no

Maintainer Jacob Harris <jh2689@cornell.edu>
Repository CRAN

Date/Publication 2022-03-31 06:40:05 UTC

R topics documented:

debug_ascii 2
speedy_classes e 3
speedy_labels 4
speedy_mutate e e 5
SPEEdY_IENAME v v v v e e e e e e e e e e e e e e e 6
Speedy_varnames e e e e e e e e e e e e e e e e 7
Index 8

2 debug_ascii

debug_ascii Debug errors when converting ASCII files with the readroper package

Description

A common issue when converting ASCII files is getting the column positions, variable widths, and
new variable names to align. A simple way to debug errors is to compare the lengths of each which
must be equivalent to convert ASCII files with the readroper package. debug_ascii calculates the
lengths of each of these inputs so you can quickly diagnose errors. Each argument can be copied
directly from the 'read_rpr’ function within the readroper package.

Usage

debug_ascii(col_positions_input, widths_input, col_names_input)

Arguments
col_positions_input
The col_positions argument in the read_rpr function
widths_input The widths argument in the read_rpr function
col_names_input
The col_names argument in the read_rpr function

Value

A dataframe containing the lengths of the col_positions, widths, and col_names arguments

Author(s)

Jacob Harris

Examples

Not run: For ease of replicability, the examples here
come from generated data rather than data from

an ASCII file.

End(Not run)

col_positions <- c(1, 2, 3, 5, 8)
widths <- c(1, 1, 2, 3, 1)
COl_naITIeS <_ C(IIQ1 YI, IIQZII’ "Q:))"y "Q4"y "QSH)

debug_ascii(col_positions, widths, col_names)

Not run: Now, if the lengths differ from an error
(see the missing "Q4" variable), the function

will throw a warning.

End(Not run)

speedy_classes 3

col_positions <- c¢(1, 2, 3, 5, 8)
widths <- c(1, 1, 2, 3, 1)
COl_nameS <_ C(”Q1 n s IIQZII s HQ3II s IIQ5II)

debug_ascii(col_positions, widths, col_names)

speedy_classes Automate code for changing variable classes

Description

’speedy_classes’ automates the code for changing variable classes for many variables at time. The
default is for each variable to be saved back to the its original class so the new classes are the only
required input. Variables that do not need to be changed may be kept or removed from the code.

Usage
speedy_classes(data, path = "")
Arguments
data name of dataset
path If saving code to a new R script file, specify the file path here. Leave blank if
not saving code.
Details

’speedy_classes’ automates the code for changing the classes of a large number of variables at once.
The code may be copied and pasted from the console or saved out to a separate R script. The *dplyr’
package is not required to run the package, but the automated code uses ’dplyr’ syntax so you will
need to load it to run the code.

Value

Formatted code written with *dplyr’ syntax for changing the classes of all variables in a dataset. The
automated code maintains the original class for each variable so the only required input is a different
class for the variables that need it. You can run the entire code chuck created by ’speedy_classes’
without changing anything in the generated code.

Author(s)

Jacob Harris

Examples

speedy_classes(data = iris)

Not run: speedy_classes(data = iris, path = "~/INPUT-FILE-PATH")

4 speedy_labels

speedy_labels Automate code for labelling variables and values with the ’labelled’
package

Description

’speedy_labels’ automates the code for labelling variables and values. With ’speedy_labels’, all the
code is automatically written other than the new labels. It is primarily designed for working with
survey data but can be used for any data that requires labels.

Usage
speedy_labels(data, nrows = 5, path = "")
Arguments
data name of dataset
Nrows Number of rows for value labels of each variable. The minimum number of rows
allowed is 2 and the maximum is 10. Extra rows without values are set to NA.
path If saving code to a new R script file, specify the file path here. Leave blank if
not saving code.
Details

’speedy_labels’ automatically writes all the code necessary to add labels to a dataset. The code
may be copied and pasted from the console or saved out to a separate R script. The ’dplyr’ and
’labelled’ packages are not required to run the package, but the automated code uses syntax from
these packages so you will need to load them to run the code.

Value

Formatted code written with dplyr’ syntax for labelling variables with the ’labelled’ package. The
automated code maintains the original class for each variable so the only required input is a different
class for the variables that need it. Replace the final comma with a parenthese and press "Cmd + I"
(or Ctrl + I for PC users) to format the code indentations.

Note

For ease, the iris dataset is used as an example. However, the usage of ’speedy_labels’ is more
intuitive with actual survey data with categorical responses since it usually doesn’t make sense to
label continuous values.

Author(s)

Jacob Harris

speedy_mutate 5

See Also

This function is particularly useful for adding labels to data files that were converted from ASCII
format. Click here to learn more about ASCII converions in R.

Examples

speedy_labels(iris, nrows = 5)

Not run: speedy_labels(data = iris, nrows = 5, path = "~/INPUT-FILE-PATH")

speedy_mutate Automate code for recoding variables with the ’mutate’ and
‘case_when’ functions

Description

‘speedy_mutate automates the code for quickly recoding variables with a large number of unique
levels with ‘dplyr® syntax. The user only needs to supply the variable to recode and whether or not
those variables should be quoted or not.

Usage
speedy_mutate(data, var, var_classes = "sn", path = "")
Arguments
data Name of dataset
var String of the name of the variable being recoded
var_classes Specifies whether or not the current variable and the new variable being created
should have quotes around them. There are four possible inputs ("ss", "sn",
"nn", "ns"). "ss" means the current and new variable with both have quotes.
"sn" means the first will have quotes and the second will not and so forth.
path If saving code to a new R script file, specify the file path here. Leave blank if
not saving code.
Details

‘speedy_mutate‘ generates a formatted chunk of the code for creating a new variable using the
‘mutate‘ and ‘case_when* functions. The code may be copied and pasted from the console or saved
out to a separate R script. This is useful when a new variable needs to be created with many different
levels based on the values in another variable.

Value

Formatted code written with *dplyr’ syntax for recoding variables with ‘mutate and ‘case_when".

https://jacob-harris.com/

6 speedy_rename
Examples
Not run: A simple applications is to add geographical FIPS codes to U.S. states

states <- as.data.frame(state.abb)
speedy_mutate(data = states, var = "state.abb")

speedy_rename Automate code for renaming variables

Description

’speedy_rename’ automates the code for renaming variables. With ’speedy_rename’, all the code is
automatically written with dplyr syntax. The user only needs to provide the new variable names.

Usage
speedy_rename(data, path = "")
Arguments
data name of dataset
path If saving code to a new R script file, specify the file path here. Leave blank if
not saving code.
Details

’speedy_rename’ automatically writes all the code necessary to rename a large number of variables
at once with the exception of the new variable names. The code may be copied and pasted from the
console or saved out to a separate R script. The dplyr package is not required to run the package,
but the automated code uses "dplyr’ syntax so you will need to load it to run the code.

Value

Formatted code written with *dplyr’ syntax for renaming all the variables in a dataset which may be
copied and pasted from the console or saved out to a separate R script.

Author(s)

Jacob Harris <jh2689@cornell.edu>

Examples

speedy_rename(data = iris)

Not run: speedy_rename(data = iris, path = "~/INPUT-FILE-PATH")

speedy_varnames 7

speedy_varnames Quickly generate a vector of new variable names

Description

speedy_varnames generates a vector of new, generic variable names beginning with a given charac-
ter value through the number of new names desired. This is espeically useful for converting ASCII
files when a large number of new variable names must be created.

Usage

n

speedy_varnames(prefix = "Q", first_number = 1, last_number = 25)

Arguments

prefix A character value to precede all of the new variable names
first_number The beginning number of the new variable name vector

last_number The final number of the new variable name vector

Value

A vector of new variable names

Note

If using this function for ASCII conversions, you can paste the new vector of names into the
col_names argument of the 'read_rpr’ function.

Author(s)

Jacob Harris

Examples

speedy_varnames("Q"”, 1, 25)

Index

debug_ascii, 2

speedy_classes, 3
speedy_labels, 4
speedy_mutate, 5
speedy_rename, 6
speedy_varnames, 7

	debug_ascii
	speedy_classes
	speedy_labels
	speedy_mutate
	speedy_rename
	speedy_varnames
	Index

