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Abstract

Probabilistic forecasts in the form of probability distributions over future events have
become popular in several fields including meteorology, hydrology, economics, and demog-
raphy. In typical applications, many alternative statistical models and data sources can be
used to produce probabilistic forecasts. Hence, evaluating and selecting among competing
methods is an important task. The scoringRules package for R provides functionality for
comparative evaluation of probabilistic models based on proper scoring rules, covering a
wide range of situations in applied work. This paper discusses implementation and usage
details, presents case studies from meteorology and economics, and points to the relevant
background literature.
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Preface

This vignette corresponds to an article of the same name in the Journal of Statistical Software

(Jordan et al. 2019). The two articles are close to identical at the time of this writing (May
23, 2023). Starting with version 1.1.1 (released on CRAN in May 2023), scoringRules also
covers threshold and outcome weighted scoring rules. The latter are described in a further
vignette called ’Weighted scoringRules’ (Allen 2023).

1. Introduction: Forecast evaluation

Forecasts are generally surrounded by uncertainty, and being able to quantify this uncertainty
is key to good decision making. Accordingly, probabilistic forecasts in the form of predictive
probability distributions over future quantities or events have become popular over the last
decades in various fields including meteorology, climate science, hydrology, seismology, eco-
nomics, finance, demography and political science. Important examples include the United
Nation’s probabilistic population forecasts (Raftery et al. 2014), inflation projections issued
by the Bank of England (e.g., Clements 2004), or the now widespread use of probabilistic
ensemble methods in meteorology (Gneiting and Raftery 2005; Leutbecher and Palmer 2008).
For recent reviews see Gneiting and Katzfuss (2014) and Raftery (2016).
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With the proliferation of probabilistic models arises the need for tools to evaluate the appropri-
ateness of models and forecasts in a principled way. Various measures of forecast performance
have been developed over the past decades to address this demand. Scoring rules are func-
tions S(F, y) that evaluate the accuracy of a forecast distribution F , given that an outcome
y was observed. As such, they allow to compare alternative models, a crucial ability given
the variety of theories, data sources and statistical specifications available in many situations.
Conceptually, scoring rules can be thought of as error measures for distribution functions:
While the squared error SE(x, y) = (y − x)2 measures the performance of a point forecast x,
a scoring rule S(F, y) measures the performance of a distribution forecast F .

This paper introduces the R (R Core Team 2017) software package scoringRules (Jordan et al.

2022), which provides functions to compute scoring rules for a variety of distributions F that
come up in applied work, and popular choices of S. Two main classes of probabilistic fore-
casts are parametric distributions and distributions that are not known analytically, but are
indirectly described through a sample of simulation draws. For example, Bayesian forecasts
produced via Markov chain Monte Carlo (MCMC) methods take the latter form. Hence, the
scoringRules package provides a general framework for model evaluation that covers both
classical (frequentist) and Bayesian forecasting methods.

The scoringRules package aims to be a comprehensive library for computing scoring rules. We
offer implementations of several known (but not routinely applied) formulas, and implement
some closed-form expressions that were previously unavailable. Whenever more than one
implementation variant exists, we offer statistically principled default choices. The package
contains the continuous ranked probability score (CRPS) and the logarithmic score, as well
as the multivariate energy score and variogram score. All of these scoring rules are proper,
which means that forecasters have an incentive to state their true belief, see Section 2.

It is worth emphasizing that scoring rules are designed for comparative forecast evaluation.
That is, one wants to know whether model A or model B provides better forecasts, in terms
of a proper scoring rule. Comparative forecast evaluation is of interest either for choosing a
specification for future use, or for comparing various scientific approaches. A distinct, com-
plementary issue is to check the suitability of a given model via tools for absolute forecast
evaluation. Here, the focus typically lies in diagnostics, e.g., whether the predictive distribu-
tions match the observations statistically (see probability integral transform histogram, e.g.,
in Gneiting and Katzfuss 2014). To retain focus, the scoringRules package does not cover
absolute forecast evaluation.

Comparative forecast evaluation shares key aspects with out-of-sample model comparison. In
that sense, scoringRules is broadly related to all software packages which help users determine
an appropriate model for the data at hand. Perhaps most fundamentally, the stats (R Core
Team 2017) package provides the traditional Akaike and Bayes information criteria to select
among linear models in in-sample evaluation. The packages caret (Kuhn et al. 2018) and
forecast (Hyndman and Khandakar 2008) provide cross-validation tools suitable for cross-
sectional and time series data, respectively. The loo (Vehtari et al. 2018) package implements
recent proposals to select among Bayesian models. In contrast to existing software, a key
novelty of the scoringRules package is its extensive coverage of the CRPS. This scoring rule
is attractive for both practical and theoretical reasons (Gneiting and Raftery 2007; Krüger
et al. 2021), yet more widespread use has been hampered by computational challenges. In
providing analytical formulas and efficient numerical implementations, we hope to enable
convenient use of the CRPS in applied work.
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To the best of our knowledge, scoringRules is the first R package designed as a library for
computing proper scoring rules for many types of forecast distributions. However, a number
of existing R packages include scoring rule computations for more specific empirical situa-
tions: The ensembleBMA (Fraley et al. 2018) and ensembleMOS (Yuen et al. 2018) packages
contain formulas for the CRPS of a small subset of the distributions listed in Table 1 which
are relevant for post-processing ensemble weather forecasts (Fraley et al. 2011), and can only
be applied to specific data structures utilized in the packages. The surveillance (Meyer et al.

2017) package provides functions to compute the logarithmic score and other scoring rules for
count data models in epidemiology. By contrast, the distributions contained in scoringRules

are relevant in applications across disciplines and the score functions are generally applicable.
The scoring (Merkle and Steyvers 2013) package focuses on discrete (categorical) outcomes,
for which it offers a large number of proper scoring rules. It is thus complementary to scor-

ingRules which supports a wide range of forecast distributions while focusing on a smaller
number of scoring rules. Furthermore, the verification (NCAR - Research Applications Lab-
oratory 2015) and SpecsVerification (Siegert 2017) packages contain implementations of the
CRPS for simulated forecast distributions. Our contribution in that domain is twofold: First,
we offer efficient implementations to deal with predictive distributions given as large samples.
MCMC methods are popular across the disciplines, and many sophisticated R implementa-
tions are available (e.g., Kastner 2016; Carpenter et al. 2017). Second, we include various
implementation options, and propose principled default settings based on recent research
(Krüger et al. 2021).

For programming languages other than R, implementations of proper scoring rules are sparse,
and generally cover a much narrower score computation functionality than the scoringRules

package. The properscoring (The Climate Corporation 2015) package for the Python (Python

Software Foundation 2017) language provides implementations of the CRPS for Gaussian
distributions and for forecast distributions given by a discrete sample. Several institutionally
supported software packages include tools to compute scoring rules, but typically require input
in specific data formats and are tailored towards operational use at meteorological institutions.
The Model Evaluation Tools (Developmental Testbed Center 2018) software provides code to
compute the CRPS based on a sample from the forecast distribution. However, note that a
Gaussian approximation is applied which can be problematic if the underlying distribution is
not Gaussian, see Krüger et al. (2021). The Ensemble Verification System (Brown et al. 2010)
also provides an implementation of the CRPS for discrete samples. For a general overview of
software for forecast evaluation in meteorology, see Pocernich (2012).

The remainder of this paper is organized as follows. Section 2 provides some theoretical
background on scoring rules, and introduces the logarithmic score and the continuous ranked
probability score. Section 3 gives an overview of the score computation functionality in the
scoringRules package and presents the implementation of univariate proper scoring rules. In
Section 4, we give usage examples by application in case studies. In a meteorological example
of accumulated precipitation forecasts, we compare ensemble system output from numerical
weather prediction models to parametric forecast distributions from statistical post-processing
models. A second case study shows how using analytical information of a Bayesian time series
model for the growth rate of the US economy’s gross domestic product (GDP) can help in
evaluating the model’s simulation output. Definitions and details on the use of multivariate
scoring rules are provided in Section 5. The paper closes with a discussion in Section 6.
Two appendices contain various closed-form expressions for the CRPS, as well as details on
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evaluating multivariate forecast distributions.

2. Theoretical background

Probabilistic forecasts usually fit one of two categories, parametric distributions or simulated
samples. The former type is represented by its cumulative distribution function (CDF) or
its probability density function (PDF), whereas the latter is often used if the predictive
distribution is not available analytically. Here, we give a brief overview of the theoretical
background for comparative forecast evaluation in both cases.

2.1. Proper scoring rules

Let Ω denote the set of possible values of the quantity of interest, Y , and let F denote a
convex class of probability distributions on Ω. A scoring rule is a function

S : F × Ω −→ R ∪ ¶∞♢

that assigns numerical values to pairs of forecasts F ∈ F and observations y ∈ Ω. For now,
we restrict our attention to univariate observations and set Ω = R or subsets thereof, and
identify probabilistic forecasts F with the associated CDF F or PDF f . In Section 5, we will
consider multivariate scoring rules for which Ω = R

d.

We consider scoring rules to be negatively oriented, such that a lower score indicates a better
forecast. For a proper scoring rule, the expected score is optimized if the true distribution of
the observation is issued as a forecast, i.e., if

EY ∼G S(G, Y ) ≤ EY ∼G S(F, Y )

for all F, G ∈ F . A scoring rule is further called strictly proper if equality holds only if
F = G. Using a proper scoring rule is critical for comparative evaluation, i.e., the ranking of
forecasts. In practice, the lowest average score over multiple forecast cases among competing
forecasters indicates the best predictive performance, and in this setup, proper scoring rules
compel forecasters to truthfully report what they think is the true distribution. See Gneiting
and Raftery (2007) for a more detailed review of the mathematical properties.

Popular examples of proper scoring rules for Ω = R include the logarithmic score and the
continuous ranked probability score. The logarithmic score (LogS; Good 1952) is defined as

LogS(F, y) = − log(f(y)),

where F admits a PDF f , and is a strictly proper scoring rule relative to the class of probability
distributions with densities. The continuous ranked probability score (Matheson and Winkler
1976) is defined in terms of the predictive CDF F and is given by

CRPS(F, y) =

∫

R

(F (z) − 1¶y ≤ z♢)2 dz, (1)

where 1¶y ≤ z♢ denotes the indicator function which is one if y ≤ z and zero otherwise. If
the first moment of F is finite, the CRPS can be written as

CRPS(F, y) = EF ♣X1 − y♣ − 1

2
EF,F ♣X1 − X2♣,
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Distribution Family arg. CRPS LogS Additional parameters

Distributions for variables on the real line

Laplace "lapl" ✓ ✓

logistic "logis" ✓ ✓

normal "norm" ✓ ✓

mixture of normals "mixnorm" ✓ ✓

Student’s t "t" ✓ ✓

two-piece exponential "2pexp" ✓ ✓

two-piece normal "2pnorm" ✓ ✓

Distributions for non-negative variables

exponential "exp" ✓ ✓

gamma "gamma" ✓ ✓

log-Laplace "llapl" ✓ ✓

log-logistic "llogis" ✓ ✓

log-normal "lnorm" ✓ ✓

Distributions with flexible support and/or point masses

beta "beta" ✓ ✓ limits

uniform "unif" ✓ ✓ limits, point masses

exponential "exp2" ✓ location, scale

"expM" ✓ location, scale, point mass

gen. extreme value "gev" ✓ ✓

gen. Pareto "gpd" ✓ ✓ point mass (CRPS only)

logistic "tlogis" ✓ ✓ limits (truncation)

"clogis" ✓ limits (censoring)

"gtclogis" ✓ limits, point masses

normal "tnorm" ✓ ✓ limits (truncation)

"cnorm" ✓ limits (censoring)

"gtcnorm" ✓ limits, point masses

Student’s t "tt" ✓ ✓ limits (truncation)

"ct" ✓ limits (censoring)

"gtct" ✓ limits, point masses

Distributions for discrete variables

binomial "binom" ✓ ✓

hypergeometric "hyper" ✓ ✓

negative binomial "nbinom" ✓ ✓

Poisson "pois" ✓ ✓

Table 1: List of implemented parametric families for which CRPS and LogS can be computed
via crps() and logs(). The character string is the corresponding value for the family

argument. The CRPS formulas are given in Appendix A.
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where X1 and X2 are independent random variables with distribution F , see Gneiting and
Raftery (2007). The CRPS is a strictly proper scoring rule for the class of probability distri-
butions with finite first moment. Closed-form expressions of the integral in Equation 1 can
be obtained for many parametric distributions and allow for exact and efficient computation
of the CRPS. They are implemented in the scoringRules package for a range of parametric
families, see Table 1 for an overview, and are provided in Appendix A.

2.2. Model assessment based on simulated forecast distributions

In various applications, the forecast distribution of interest F is not available in an analytic
form, but only through a simulated sample X1, . . . , Xm ∼ F . Examples include Bayesian
forecasting applications where the sample is generated by a MCMC algorithm, or ensemble
weather forecasting applications where the different sample values are generated by numerical
weather prediction models with different model physics and/or initial conditions. In order
to compute the value of a proper scoring rule, the simulated sample needs to be converted
into an estimated distribution (say, F̂m(z)) that can be evaluated at any point z ∈ R. The
implementation choices and default settings in the scoringRules package follow the findings
of Krüger et al. (2021) who provide a systematic analysis of probabilistic forecasting based
on MCMC output.

For the CRPS, the empirical CDF

F̂m(z) =
1

m

m
∑

i=1

1¶Xi ≤ z♢

is a natural approximation of the predictive CDF. In this case, the CRPS reduces to

CRPS(F̂m, y) =
1

m

m
∑

i=1

♣Xi − y♣ − 1

2m2

m
∑

i=1

m
∑

j=1

♣Xi − Xj ♣ (2)

which allows one to compute the CRPS directly from the simulated sample, see Grimit
et al. (2006). Implementations of Equation 2 are rather inefficient with computational com-
plexity O(m2), and can be improved upon with representations using the order statistics
X(1), . . . , X(m), i.e., the sorted simulated sample, thus achieving an average O(m log m) per-
formance. In the scoringRules package, we use an algebraically equivalent representation of
the CRPS based on the generalized quantile function (Laio and Tamea 2007), leading to

CRPS(F̂m, y) =
2

m2

m
∑

i=1

(X(i) − y)



m1¶y < X(i)♢ − i +
1

2



, (3)

which Murphy (1970) reported in the context of the precursory, discrete version of the CRPS.
We refer to Jordan (2016) for details.

In contrast to the CRPS, the computation of LogS requires a predictive density. An estimator
can be obtained with classical nonparametric kernel density estimation (KDE, e.g. Silverman
1986). However, this estimator is valid only under stringent theoretical assumptions and can
be fragile in practice: If the outcome falls into the tails of the simulated forecast distribution,
the estimated score may be highly sensitive to the choice of the bandwidth tuning parameter.
In an MCMC context, a mixture-of-parameters estimator that utilizes a simulated sample
of parameter draws, rather than draws from the posterior predictive distribution, is a better
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and often much more efficient choice, see Krüger et al. (2021). This mixture-of-parameters
estimator is specific to the model being used, in that one needs to know the analytic form of
the forecast distribution conditional on the parameter draws. If such knowledge is available,
the mixture-of-parameters estimator can be implemented using functionality for paramet-
ric forecast distributions. We provide an example in Section 4.2. This example features a
conditionally Gaussian forecast distribution, a typical case in applications.

3. Package design and functionality

The main functionality of scoringRules is the computation of scores. The essential functions
for this purpose follow the naming convention [score]_[suffix](), where the two maturest
choices for [score] are crps and logs. Regarding the [suffix], we aim for analogy to
the usual d/p/q/r functions for parametric families of distributions, both in terms of naming
convention and usage details, e.g.,

crps_norm(y, mean = 0, sd = 1, location = mean, scale = sd)

Based on these computation functions, package developers may write S3 methods that hook
into the respective S3 generic functions, currently limited to

crps(y, ...)

logs(y, ...)

As the implementation of additional scoring rules matures, this list will be extended. We
reserve methods for the class ‘numeric’, e.g.,

crps.numeric(y, family, ...)

which are pedantic wrappers for the corresponding [score]_[family]() functions, but with
meaningful error messages, making the ‘numeric’ class methods more suitable for interactive
use as opposed to numerical score optimization or package integration. Table 1 gives a list of
the implemented parametric families, as does the ‘numeric’ class method documentation for
the respective score, e.g., see ?crps.numeric.

Echoing the distinction in Section 2 between parametric and empirical predictive distributions,
we note that computation functions following the naming scheme [score]_sample(), see
Sections 3.2 and 5, have a special status and cannot be called via the ‘numeric’ class method.

3.1. Parametric predictive distributions

When the predictive distribution comes from a parametric family, we have two options to
perform the score computation and get the resulting vector of score values, i.e., via the score
generics or the computation function. For a Gaussian distribution:

R> library("scoringRules")

R> obs <- rnorm(10)

R> crps(obs, "norm", mean = c(1:10), sd = c(1:10))

[1] 0.288 1.625 1.570 2.003 2.744 3.688 3.270 4.884 4.162 6.067
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Figure 1: Score values for a gamma distribution with shape = 2 and scale = 1.5, dependent
on the observation (functions crps_y() and logs_y() defined in the text). A scaled version
of the predictive density is shown in gray.

R> crps_norm(obs, mean = c(1:10), sd = c(1:10))

[1] 0.288 1.625 1.570 2.003 2.744 3.688 3.270 4.884 4.162 6.067

The results are identical, except when the much stricter input checks of the ‘numeric’ class
method are violated. This helps in detecting manual errors during interactive use, or in de-
bugging automated model fitting and evaluation. Other restrictions in the ‘numeric’ class
method include the necessity to pass input to all arguments, i.e., default values in the com-
putation functions are ignored, and that all numerical arguments should be vectors of the
same length, with the exception that vectors of length one will be recycled. In contrast, the
computation functions aim to closely obey standard R conventions.

In package development, we expect predominant use of the computation functions, where
developers will handle regularity checks themselves. As a trivial example, we define func-
tions that only depend on the argument y and compute scores for a fixed predictive gamma
distribution:

R> crps_y <- function(y) crps_gamma(y, shape = 2, scale = 1.5)

R> logs_y <- function(y) logs_gamma(y, shape = 2, scale = 1.5)

In Figure 1 these functions are used to illustrate the dependence between the score value
and the observation in an example of a gamma distribution as forecast. The logarithmic
score rapidly increases at the right-sided limit of zero, and the minimum score value is at-
tained if the observation equals the predictive distribution’s mode. By contrast, the CRPS
is more symmetric around the minimum that is attained at the median value of the forecast
distribution, particularly, it increases more slowly as the observation approaches zero.
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3.2. Simulated predictive distributions

Often forecast distributions can only be given as simulated samples, e.g., ensemble systems in
weather prediction (Section 4.1) or MCMC output in econometrics (Section 4.2). We provide
functions for both univariate and multivariate samples. The latter are discussed in Section 5,
whereas the former are presented here:

crps_sample(y, dat, method = "edf", w = NULL, bw = NULL,

num_int = FALSE, show_messages = TRUE)

logs_sample(y, dat, bw = NULL, show_messages = FALSE)

The input for y is a vector of observations, and the input for dat is a matrix with the number
of rows matching the length of y and each row comprising one simulated sample, e.g., for a
Gaussian predictive distribution:

R> obs_n <- c(0, 1, 2)

R> sample_nm <- matrix(rnorm(3e4, mean = 2, sd = 3), nrow = 3)

R> crps_sample(obs_n, dat = sample_nm)

[1] 1.216 0.833 0.710

R> logs_sample(obs_n, dat = sample_nm)

[1] 2.29 2.10 2.04

When y has length one then dat may also be a vector. Random sampling from the forecast
distribution can be seen as an option to approximate the values of the proper scoring rules.
To empirically assess the quality of this approximation and to illustrate the use of the score
functions, consider the following Gaussian toy example, where we examine the performance of
forecasts given as samples of size up to 5 000. The approximation experiment is independently
repeated 200 times:

R> R <- 200

R> M <- 5e3

R> mgrid <- exp(seq(log(50), log(M), length.out = 51))

R> crps_approx <- matrix(NA, nrow = R, ncol = length(mgrid))

R> logs_approx <- matrix(NA, nrow = R, ncol = length(mgrid))

R> obs_1 <- 2

R> for (r in 1:R) {

+ sample_M <- rnorm(M, mean = 2, sd = 3)

+ for (i in seq_along(mgrid)) {

+ m <- mgrid[i]

+ crps_approx[r, i] <- crps_sample(obs_1, dat = sample_M[1:m])

+ logs_approx[r, i] <- logs_sample(obs_1, dat = sample_M[1:m])

+ }

+ }
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Figure 2: The scores of a Gaussian forecast distribution with mean 2 and standard deviation
3 when a value of 0 is observed, estimated from an independent sample from the predictive
distribution, and shown as a function of the size of the (expanding) sample. The horizontal
dashed line represents the analytically calculated score. The gray area indicates empirical
90% confidence intervals for each sample size computed from 200 independent replications
of the simulation experiment, and the gray line shows the corresponding mean value over all
repetitions.

In this case, the true CRPS and LogS values can be computed using the crps() and logs()

functions. Figure 2 graphically illustrates how the scores based on sampling approximations
become more accurate as the sample size increases.

The method argument controls which approximation method is used in crps_sample(), with
possible choices given by "edf" (empirical distribution function) and "kde" (kernel density
estimation). The default choice "edf" corresponds to computing the approximation from
Equation 2, implemented as in Equation 3. A vector or matrix of weights, matching the
input for dat, can be passed to the argument w to compute the CRPS, for any distribution
with a finite number of outcomes.

For kernel density estimation, i.e., the default in logs_sample() and the corresponding
method in crps_sample(), we use a Gaussian kernel to estimate the predictive distribu-
tion. Kernel density estimation is an unusual choice in the case of the CRPS, but it is the
only implemented option for evaluating the LogS of a simulated sample. In particular, the
empirical distribution function is not applicable to LogS because an estimated density is re-
quired. The bw argument allows one to manually select a bandwidth parameter for kernel
density estimation; by default, the bw.nrd() function from the stats (R Core Team 2017)
package is employed.

4. Usage examples

4.1. Probabilistic weather forecasting via ensemble post-processing

In numerical weather prediction (NWP), physical processes in the atmosphere are mod-
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eled through systems of partial differential equations that are solved numerically on three-
dimensional grids. To account for major sources of uncertainty, weather forecasts are typically
obtained from multiple runs of NWP models with varying initial conditions and model physics
resulting in a set of deterministic predictions, called the forecast ensemble. While ensemble
predictions are an important step from deterministic to probabilistic forecasts, they tend to
be biased and underdispersive (such that, empirically, the actual observation falls outside
the range of the ensemble too frequently). Hence, ensembles require some form of statistical
post-processing. Over the past decade, a variety of approaches to statistical post-processing
has been proposed, including non-homogeneous regression (Gneiting et al. 2005) and Bayesian
model averaging (Raftery et al. 2005).

Here we illustrate how to evaluate post-processed ensemble forecasts of precipitation, based
on data and methods from the crch (Messner et al. 2016) package for R. (The corresponding
code chunks are run only if the crch package has been installed, as indicated by the logical
variable use_crch). We model the conditional distribution of precipitation accumulation,
Y ≥ 0, given the ensemble forecasts X1, . . . , Xm using censored non-homogeneous regression
models of the form

P(Y = 0♣X1, . . . , Xm) = Fθ(0), (4)

P(Y ≤ y♣X1, . . . , Xm) = Fθ(y), for y > 0, (5)

where Fθ is the CDF of a continuous parametric distribution with parameters θ. Equations 4
and 5 specify a mixed discrete-continuous forecast distribution for precipitation: There is a
positive probability of observing no precipitation at all (Y = 0), however, if Y > 0, it can take
many possible values y. In order to incorporate information from the raw forecast ensemble,
we let θ be a function of X1, . . . , Xm, i.e., we use features of the raw ensemble to determine
the parameters of the forecast distribution. Specifically, we consider different location-scale
families Fθ and model the location parameter µ as a linear function of the ensemble mean
X̄ = 1

m

∑m
i=1 Xi,

µ = a0 + a1X̄,

and the scale parameter σ as a linear function of the logarithm of the standard deviation s
of the ensemble,

log(σ) = b0 + b1 log (s) .

A logarithmic link function is used to ensure positivity of the scale parameter. The coefficients
a0, a1, b0, b1 can be estimated using maximum likelihood approaches implemented in the crch

package. The choice of a suitable parametric family Fθ is not obvious. Following Messner
et al. (2016), we thus consider three alternative choices: the logistic, Gaussian, and Student’s
t distributions. For details and further alternatives, see, e.g., Messner et al. (2014); Scheuerer
(2014) and Scheuerer and Hamill (2015a).

The crch package contains a data set RainIbk of precipitation for Innsbruck, Austria. It
comprises ensemble forecasts rainfc.1, . . . , rainfc.11 and observations rain for 4971 cases
from January 2000 to September 2013. The precipitation amounts are accumulated over
three days, and the corresponding 11 member ensemble consists of accumulated precipitation
amount forecasts between five and eight days ahead. Following Messner et al. (2016) we
model the square root of precipitation amounts, and omit forecast cases where the ensemble
has a standard deviation of zero. From Messner et al. (2016):
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R> if (use_crch){

+ library("crch")

+ data("RainIbk", package = "crch")

+ RainIbk <- sqrt(RainIbk)

+ ensfc <- RainIbk[, grep('^rainfc', names(RainIbk))]

+ RainIbk$ensmean <- apply(ensfc, 1, mean)

+ RainIbk$enssd <- apply(ensfc, 1, sd)

+ RainIbk <- subset(RainIbk, enssd > 0)

+ }

We split the data into a training set until November 2004, and an out-of-sample evaluation
period (or test sample) from January 2005.

R> if (use_crch){

+ data_train <- subset(RainIbk, as.Date(rownames(RainIbk)) <= "2004-11-30")

+ data_eval <- subset(RainIbk, as.Date(rownames(RainIbk)) >= "2005-01-01")

+ }

Then, we estimate the censored regression models that are based on the logistic, Student’s t,
and Gaussian distributions, and produce the parameters of the forecast distributions for the
evaluation period using built-in functionality of the crch package. We only show the code for
the Gaussian model since it can be adapted straightforwardly for the logistic and Student’s t
models.

R> if (use_crch){

+ CRCHgauss <- crch(rain ~ ensmean | log(enssd), data_train,

+ dist = "gaussian", left = 0)

+ gauss_mu <- predict(CRCHgauss, data_eval, type = "location")

+ gauss_sc <- predict(CRCHgauss, data_eval, type = "scale")

+ }

The raw ensemble of forecasts is a natural benchmark for comparison since interest commonly
lies in quantifying the gains in forecast accuracy that result from post-processing:

R> if (use_crch){

+ ens_fc <- data_eval[, grep('^rainfc', names(RainIbk))]

+ }

Figure 3 shows the models’ forecast distributions in three illustrative cases. To evaluate
forecast performance in the entire out of sample period, we use the function crps() for the
model outputs and the function crps_sample() to compute the CRPS of the raw ensemble.
Note that we have to turn ens_fc into an object of class ‘matrix’ manually.

R> if (use_crch){

+ obs <- data_eval$rain

+ gauss_crps <- crps(obs, family = "cnorm", location = gauss_mu,

+ scale = gauss_sc, lower = 0, upper = Inf)

+ ens_crps <- crps_sample(obs, dat = as.matrix(ens_fc))

+ }
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Figure 3: Illustration of the forecast distributions of the censored regression models for three
illustrative 3-day accumulation periods (plot title indicates end of period). The predicted
probabilities of zero precipitation are shown as solid thick vertical lines at 0, and the colored
thin lines indicate the upper tail on the positive half axis of the forecast densities fθ, c.f.,
Equations 4 and 5. The raw ensemble forecasts are shown as short line segments at the
bottom, and the realizing observation is indicated by the long dashed line.

The mean CRPS values indicate that all post-processing models substantially improve upon
the raw ensemble forecasts. There are only small differences between the censored regression
models, with the models based on the logistic and Student’s t distributions slightly outper-
forming the model based on a normal distribution.

R> if (use_crch){

+ scores <- data.frame(CRCHlogis = logis_crps, CRCHgauss = gauss_crps,

+ CRCHstud = stud_crps, Ensemble = ens_crps)

+ sapply(scores, mean)

+ }

CRCHlogis CRCHgauss CRCHstud Ensemble

0.875 0.876 0.875 1.321

4.2. Bayesian forecasts of US GDP growth rate

We next present a representative example from economics, where the predictive distribution
is given as a simulated sample. Hamilton (1989) first proposed the Markov switching au-
toregressive model to allow regime-dependent modeling, i.e., to capture different recurring
time-series characteristics. We consider the following simple variant of the model:

Yt = c0 + c1 Yt−1 + εt,

εt ∼ N (0, σ2
st

),

where Yt is the observed GDP growth rate of quarter t, and st ∈ ¶1, 2♢ is a latent state
variable that represents two regimes in the residual variance σ2

st
. Since st evolves according

to a first-order Markov chain, the specification allows for the possibility that periods of high
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(or low) volatility cluster over time. The latter is a salient feature of the US GDP growth
rate: For example, the series was much more volatile in the 1970s than in the 1990s. The
model is estimated using Bayesian Markov chain Monte Carlo methods (Frühwirth-Schnatter
2006, e.g.,). Our implementation closely follows Krüger et al. (2021, Section 5), and uses the
ar_ms() function, and the data set gdp, included in the scoringRules package.

The data set gdp comprises US GDP growth observations val, and the corresponding quarters
dt and vintages vint. Measuring economic variables is challenging, hence records tend to be
revised and each quarter has its own time-series, or vintage, of past observations. As a result,
the data set for 271 quarters from 1947 to 2014 contains 33616 records.

We split the data into a training sample of observations containing the data before 2014’s
first quarter, and an evaluation period containing only the four quarters of 2014, using the
most recent vintage in both cases:

R> data("gdp", package = "scoringRules")

R> data_train <- subset(gdp, vint == "2014Q1")

R> data_eval <- subset(gdp, vint == "2015Q1" & grepl("2014", dt))

As is typical for MCMC-based analysis, the model’s forecast distribution F0 is not available
as an analytical formula, but must be approximated in some way. Following Krüger et al.

(2021), a generic MCMC algorithm to generate samples of the parameter vector θ and sample
from the posterior predictive distribution proceeds as follows:

• fix θ0 ∈ Θ

• for i = 1, . . . , m,

– draw θi ∼ K(·♣θi−1), where K is a transition kernel that is specific to the model
under use

– draw Xi ∼ Fc(·♣θi), where Fc denotes the conditional distribution given the pa-
rameter values.

We use the function ar_ms() to fit the model and produce forecasts for the four quarters of
2014 based on the information available at the end of year 2013, i.e., a single prediction case
where the forecast horizon extends from one to four quarters ahead. Here, the conditional
distribution Fc is Gaussian. For illustration, we run the chain for 5 000 iterations. (A larger
number of iterations, say at least 20 000, is advisable in empirical analyses.)

R> h <- 4

R> m <- 5000

R> fc_params <- ar_ms(data_train$val, forecast_periods = h, n_rep = m)

This function call yields a simulated sample corresponding to ¶θ1, . . . , θm♢, where we obtain
matrices of parameters for the mean and standard deviation. We transpose these matrices
to have the rows correspond to the observations, and columns represent the position in the
Markov chain:

R> mu <- t(fc_params$fcMeans)

R> Sd <- t(fc_params$fcSds)
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Figure 4: Forecast distributions for the growth rate of US GDP. The forecasts stem from a
Bayesian time series model, as detailed in Krüger et al. (2021, Section 5). Histograms summa-
rize simulated forecast draws at each date. Mixture-of-normals approximation to distribution
shown in black; realizing observations shown by dashed line.

Next, we draw the sample of possible observations corresponding to ¶X1, . . . , Xm♢ conditional
on the Gaussian assumption and the available parameter information:

R> X <- matrix(rnorm(h * m, mean = mu, sd = Sd), nrow = h, ncol = m)

We consider two competing estimators of the posterior predictive distribution F0. The
mixture-of-parameters estimator (MPE)

F̂ MP
m (z) =

1

m

m
∑

i=1

Fc(z♣θi), (6)

builds on the simulated parameter values by mixing a series of Gaussian distributions uni-
formly, whereas the empirical CDF based approximation

F̂ ECDF
m (z) =

1

m

m
∑

i=1

1¶Xi ≤ z♢

utilizes the simulated sample from the conditional distribution given the parameter values,
instead of building on the simulated parameter values directly. A standard choice for a
smoother approximation is to replace the indicator function with a Gaussian kernel, as in the
logs_sample() function.

The two alternative estimators are illustrated in Figure 4: For each date, the histogram
represents a simulated sample from the model’s forecast distribution, and the black line
indicates the mixture-of-parameters estimator. We can observe a distinct decrease in the
forecast’s certainty as the forecast horizon increases from one to four quarters ahead.

Finally, we evaluate CRPS and LogS for the approximated forecast distributions described
above. The mixture-of-parameters estimator F̂ MP

m can be evaluated with the functions crps()

and logs(), and F̂ ECDF
m can be evaluated with the functions crps_sample() and logs_sample():

R> obs <- data_eval$val

R> names(obs) <- data_eval$dt
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R> w <- matrix(1/m, nrow = h, ncol = m)

R> crps_mpe <- crps(obs, "normal-mixture", m = mu, s = Sd, w = w)

R> logs_mpe <- logs(obs, "normal-mixture", m = mu, s = Sd, w = w)

R> crps_ecdf <- crps_sample(obs, X)

R> logs_kde <- logs_sample(obs, X)

R> print(cbind(crps_mpe, crps_ecdf, logs_mpe, logs_kde))

crps_mpe crps_ecdf logs_mpe logs_kde

2014Q1 3.472 3.456 4.04 4.26

2014Q2 1.346 1.345 2.28 2.29

2014Q3 1.699 1.714 2.52 2.48

2014Q4 0.718 0.705 1.96 1.95

Note that for the logarithmic score, the MPE is generally preferable to the KDE based
estimator on theoretical grounds, see Krüger et al. (2021).

The algorithm and approximation methods just sketched are not idiosyncratic to our example,
but arise whenever a Bayesian model is used for forecasting. For illustrative R implementations
of other Bayesian models, see, e.g., the packages bayesgarch (Ardia and Hoogerheide 2010)
and stochvol (Kastner 2016).

4.3. Parameter estimation with scoring rules

Apart from comparative forecast evaluation, proper scoring rules also provide useful tools for
parameter estimation. In the optimum score estimation framework of Gneiting and Raftery
(2007, Section 9.1), the parameters of a model’s forecast distribution are determined by op-
timizing the value of a proper scoring rule, on average over a training sample. Optimum
score estimation based on the LogS corresponds to classical maximum likelihood estimation.
The score functions to compute CRPS and LogS for parametric forecast distributions in-
cluded in scoringRules (see Table 1) thus offer tools for the straightforward implementation
of such optimum score estimation approaches. Specifically, the worker functions of the form
[crps]_[family]() and [logs]_[family]() entail little overhead in terms of input checks
and are thus well suited for use in numerical optimization procedures such as optim(). Fur-
thermore, functions to compute gradients and Hessian matrices of the CRPS have been imple-
mented for a subset of parametric families, and can be supplied to assist numerical optimizers.
Such functions are available for the "logis", "norm" and "t" families and truncated and cen-
sored versions thereof ("clogis", "tlogis", "cnorm", "tnorm", "ct", "tt"). The cor-
responding computation functions follow the naming scheme [gradcrps]_[family]() and
[hesscrps]_[family](). However, we emphasize that implementing minimum CRPS or
LogS estimation approaches is possible for all parametric families listed in Table 1, even
if analytical gradient and Hessian functions are not supplied but are instead approximated
numerically by optim().

Gebetsberger et al. (2018) provide a detailed comparison of maximum likelihood and minimum
CRPS estimation in the context of non-homogeneous regression models for post-processing
ensemble weather forecasts. Here we illustrate the use for minimum CRPS estimation in
a simple simulation example. Consider an independent sample y1, . . . , yn from a normal
distribution with mean µ and standard deviation σ. The analytical maximum likelihood
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estimates µ̂ML and σ̂ML are given by

µ̂ML =
1

n

n
∑

i=1

yi and σ̂ML =

√

√

√

√

1

n

n
∑

i=1

(yi − µ̂ML)2.

To determine the corresponding estimates by numerically minimizing the CRPS define wrap-
per functions which compute the mean CRPS and corresponding gradient for a vector of
training data y_train and distribution parameters param.

R> meancrps <- function(y_train, param) mean(crps_norm(y = y_train,

+ mean = param[1], sd = param[2]))

R> grad_meancrps <- function(y_train, param) apply(gradcrps_norm(y_train,

+ param[1], param[2]), 2, mean)

These functions can then be passed to optim(), for example, mean and standard deviation
of a normal distribution with true values −1 and 2 can be estimated as illustrated in the
following. The estimation with sample size 500 is repeated 1 000 times.

R> R <- 1000

R> n <- 500

R> mu_true <- -1

R> sigma_true <- 2

R> estimates_ml <- matrix(NA, nrow = R, ncol = 2)

R> estimates_crps <- matrix(NA, nrow = R, ncol = 2)

R> for (r in 1:R) {

+ dat <- rnorm(n, mu_true, sigma_true)

+ estimates_crps[r, ] <- optim(par = c(1, 1), fn = meancrps,

+ gr = grad_meancrps, method = "BFGS", y_train = dat)$par

+ estimates_ml[r, ] <- c(mean(dat), sd(dat) * sqrt((n - 1) / n))

+ }

Figure 5 compares minimum CRPS and minimum LogS (i.e., maximum likelihood) parameter
estimates. The differences to the true values show very similar distributions and illustrate the
consistency of general optimum score estimates (Gneiting and Raftery 2007, Equation 59). For
the standard deviation parameter σ, the difference between estimate and true value exhibits
slightly less variability for the maximum likelihood method.

5. Multivariate scoring rules

The basic concept of proper scoring rules can be extended to multivariate forecast distributions
for which the support Ω is given by R

d, d ∈ ¶2, 3, . . .♢. A variety of multivariate proper
scoring rules has been proposed in the literature. For example, the univariate LogS allows
for a straightforward generalization towards multivariate forecast distributions. However,
parametric modeling and forecasting of multivariate observations is challenging, and when
sampling is a feasible alternative we encounter the same, even exacerbated, problems in
kernel density estimation as for univariate samples. As another example, the univariate CRPS
can also be generalized to multivariate forecast distributions, and one such generalization is
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Figure 5: Boxplots of deviations from the true parameter values for estimates obtained via
minimum CRPS and minimum LogS (i.e., maximum likelihood) estimation based on 1 000
independent samples of size 500 from a normal distribution with mean µ = −1 and standard
deviation σ = 2.

discussed in this chapter, the energy score. Finding closed form expressions for parametric
distributions is even more involved than for the univariate CRPS, but the robustness in the
evaluation of sample forecasts is retained. We refer to Gneiting et al. (2008) and Scheuerer
and Hamill (2015b) for a detailed discussion of multivariate proper scoring rules and limit
our attention to the case where probabilistic forecasts are given as samples from the forecast
distributions.

Let y = (y(1), . . . , y(d)) ∈ Ω = R
d, and let F denote a forecast distribution on R

d given through

m discrete samples X1, . . . , Xm from F with Xi = (X
(1)
i , . . . , X

(d)
i ) ∈ R

d, i = 1, . . . , m. The
scoringRules package provides implementations of the energy score (ES; Gneiting et al. 2008),

ES(F, y) =
1

m

m
∑

i=1

∥Xi − y∥ − 1

2m2

m
∑

i=1

m
∑

j=1

∥Xi − Xj∥,

where ∥ · ∥ denotes the Euclidean norm on R
d, and the variogram score of order p (VSp;

Scheuerer and Hamill 2015b),

VSp(F, y) =
d
∑

i=1

d
∑

j=1

wi,j



∣

∣

∣y(i) − y(j)
∣

∣

∣

p
− 1

m

m
∑

k=1

∣

∣

∣X
(i)
k − X

(j)
k

∣

∣

∣

p
2

.

In the definition of VSp, wi,j is a non-negative weight that allows one to emphasize or down-
weight pairs of component combinations based on subjective expert decisions, and p is the
order of the variogram score. Typical choices of p include 0.5 and 1.

ES and VSp are implemented for multivariate forecast distributions given through simulated
samples as functions

es_sample(y, dat)

vs_sample(y, dat, w = NULL, p = 0.5)

These functions can only evaluate a single multivariate forecast case and always return a
single number to simplify use and documentation, see Appendix B for an example on how
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to use apply() functions or for loops to sequentially apply them to multiple forecast cases.
The observation input for y is required to be a vector of length d, and the corresponding
forecast input for dat has to be given as a d × m matrix, the columns of which are the
simulated samples X1, . . . , Xm from the multivariate forecast distribution. In vs_sample()

it is possible to specify a d × d matrix for w of non-negative weights as described in the text.
The entry in the i-th row and j-th column of w corresponds to the weight assigned to the
combination of the i-th and j-th component. If no weights are specified, constant weights with
wi,j = 1 for all i, j ∈ ¶1, . . . , d♢ are used. For details and examples on choosing appropriate
weights, see Scheuerer and Hamill (2015b).

In the following, we give a usage example of the multivariate scoring rules using the results
from the economic case study in Section 4.2. Instead of evaluating the forecasts separately
for each horizon (as we did before), we now jointly evaluate the forecast performance over the
four forecast horizons based on the four-variate simulated sample.

R> names(obs) <- NULL

R> es_sample(obs, dat = X)

[1] 4.11

R> vs_sample(obs, dat = X)

[1] 7.22

While this simple example refers to a single forecast case and a single model, a typical empir-
ical analysis would consider the average scores (across several forecast cases) of two or more
models.

6. Summary and discussion

The scoringRules package enables computing proper scoring rules for parametric and sim-
ulated forecast distributions. The package covers a wide range of situations prevalent in
work on modeling and forecasting, and provides generally applicable and numerically efficient
implementations based on recent theoretical considerations.

The main functions of the package – crps() and logs() – are S3 generics, for which we pro-
vide methods crps.numeric() and logs.numeric(). The package can be extended naturally
by defining S3 methods for classes other than ‘numeric’. For example, consider a fitted model
object of class ‘crch’, obtained by the R package of the same name (Messner et al. 2016). An
object of this class contains a detailed specification of the fitted model’s forecast distribution
(such as the parametric family of distributions and the values of the fitted parameters). This
information could be utilized to write a specific method that computes the CRPS of a fitted
model object.

The choice of an appropriate proper scoring rule for model evaluation or parameter estimation
is a non-trivial task. We have implemented the widely used LogS and CRPS along with the
multivariate ES and VSp. Possible future extension of the scoringRules package include
the addition of novel proper scoring rules such as the Dawid-Sebastiani score (Dawid and
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Sebastiani 1999) which has been partially implemented. Further, given the availability of
appropriate analytical expressions, the list of covered parametric families can be extended as
demand arises and time allows.
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A. Formulas for the CRPS

A.1. Notation

Symbol Name

γ Euler-Mascheroni constant
⌊x⌋ floor function
sgn(x) sign function
Ei(x) exponential integral
φ(x) standard Gaussian density function
Φ(x) standard Gaussian distribution function
Γ(a) gamma function
Γl(a, x) lower incomplete gamma function
Γu(a, x) upper incomplete gamma function
B(a, b) beta function
I(a, b, x) regularized incomplete beta function
Im(x) modified Bessel function of the first kind

2F1(a, b; c; x) hypergeometric function

A.2. Distributions for variables on the real line

Laplace distribution

The function crps_lapl() computes the CRPS for the standard distribution, and generalizes
via location parameter µ ∈ R and scale parameter σ > 0,

CRPS(F, y) = ♣y♣ + exp(−♣y♣) − 3

4
,

CRPS(Fµ,σ, y) = σ CRPS


F, y−µ
σ



.

The CDFs are given by Fµ,σ(x) = F


x−µ
σ



and

F (x) =

{

1
2 exp(x), x < 0,

1 − 1
2 exp(−x), x ≥ 0.

Logistic distribution

The function crps_logis() computes the CRPS for the standard distribution, and generalizes
via location parameter µ ∈ R and scale parameter σ > 0,

CRPS(F, y) = y − 2 log(F (y)) − 1,

CRPS(Fµ,σ, y) = σ CRPS


F, y−µ
σ



.

The CDFs are given by Fµ,σ(x) = F


x−µ
σ



and F (x) = (1 + exp(−x))−1.
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Normal distribution

The function crps_norm() computes the CRPS for the standard distribution, and generalizes
via mean parameter µ ∈ R and sd parameter σ > 0, or alternatively, location and scale,

CRPS(Φ, y) = y (2Φ(y) − 1) + 2φ(y) − 1√
π

,

CRPS(Fµ,σ, y) = σ CRPS


Φ, y−µ
σ



.

The CDFs are given by Φ and Fµ,σ(x) = Φ


x−µ
σ



. Derived by Gneiting et al. (2005).

Mixture of normal distributions

The function crps_mixnorm() computes the CRPS for a mixture of normal distributions with
mean parameters µ1, . . . , µM ∈ R comprising m, scale parameters σ1, . . . , σM > 0 comprising
s, and (automatically rescaled) weight parameters ω1, . . . , ωM > 0 comprising w,

CRPS(F, y) =
M
∑

i=1

ωiA


y − µi, σ2
i



− 1

2

M
∑

i=1

M
∑

j=1

ωiωjA


µi − µj , σ2
i + σ2

j



.

The CDF is F (x) =
∑M

i=1 ωiΦ


x−µi

σi



, and A
(

µ, σ2
)

= µ
(

2Φ
(µ

σ

)− 1
)

+ 2σφ
(µ

σ

)

. Derived by

Grimit et al. (2006).

Student’s t distribution

The function crps_t() computes the CRPS for Student’s t distribution with df parameter
ν > 1, and generalizes via location parameter µ ∈ R and scale parameter σ > 0,

CRPS(Fν , y) = y


2Fν(y) − 1


+ 2fν(y)



ν + y2

ν − 1



− 2
√

ν

ν − 1

B(1
2 , ν − 1

2)

B(1
2 , ν

2 )2
,

CRPS(Fν,µ,σ, y) = σ CRPS


Fν , y−µ
σ



.

The CDFs and PDF are given by Fν,µ,σ(x) = Fν



x−µ
σ



and

Fν(x) =
1

2
+

x 2F1(1
2 , ν+1

2 ; 3
2 ; −x2

ν )√
νB(1

2 , ν
2 )

,

fν(x) =
1√

νB(1
2 , ν

2 )



1 +
x2

ν

− ν+1
2

.

Two-piece exponential distribution

The function crps_2pexp() computes the CRPS for the two-piece exponential distribution
with scale1 and scale2 parameters σ1, σ2 > 0, and generalizes via location parameter
µ ∈ R,

CRPS(Fσ1,σ2
, y) =







♣y♣ +
2σ2

1

σ1+σ2
exp



−
∣

∣

∣

y
σ1

∣

∣

∣



− 2σ2
1

σ1+σ2
+

σ3
1
+σ3

2

2(σ1+σ2)2 , y < 0,

♣y♣ +
2σ2

2

σ1+σ2
exp



−
∣

∣

∣

y
σ2

∣

∣

∣



− 2σ2
2

σ1+σ2
+

σ3
1
+σ3

2

2(σ1+σ2)2 , y ≥ 0,

CRPS(Fµ,σ1,σ2
, y) = CRPS(Fσ1,σ2

, y − µ).
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The CDFs are given by Fµ,σ1,σ2
(x) = Fσ1,σ2

(x − µ) and

Fσ1,σ2
(x) =







σ1

σ1+σ2
exp



x
σ1



, x < 0,

1 − σ2

σ1+σ2
exp



− x
σ2



, x ≥ 0.

Two-piece normal distribution

The function crps_2pnorm() computes the CRPS for the two-piece exponential distribution
with scale1 and scale2 parameters σ1, σ2 > 0, and generalizes via location parameter
µ ∈ R,

CRPS(Fσ1,σ2
, y) = σ1 CRPS



F
0,σ2/(σ1+σ2)
−∞,0 , min(0,y)

σ1



+ σ2 CRPS


F ∞,0
0,σ1/(σ1+σ2),

max(0,y)
σ2



,

CRPS(Fµ,σ1,σ2
, y) = CRPS(Fσ1,σ2

, y − µ),

where F u,U
l,L is the CDF of the generalized truncated/censored normal distribution as in Sec-

tion A.4.7. The CDFs for the two-piece normal distribution are given by

Fσ1,σ2
(x) =







2σ1

σ1+σ2
Φ


x
σ1



, x < 0,
σ1−σ2

σ1+σ2
+ 2σ2

σ1+σ2
Φ


x
σ2



, x ≥ 0,

Fµ,σ1,σ2
(x) = Fσ1,σ2

(x − µ).

Gneiting and Thorarinsdottir (2010) give an explicit CRPS formula.

A.3. Distributions for non-negative variables

Exponential distribution

The function crps_exp() computes the CRPS for the exponential distribution with rate

parameter λ > 0,

CRPS(Fλ, y) = ♣y♣ − 2Fλ(y)

λ
+

1

2λ
.

The CDF is given by

Fλ(x) =

{

1 − exp(−λx), x ≥ 0,

0, x < 0.

Gamma distribution

The function crps_gamma() computes the CRPS for the gamma distribution with shape

parameter α > 0 and rate parameter β > 0, or alternatively scale = 1/rate,

CRPS(Fα,β , y) = y (2Fα,β(y) − 1) − α

β
(2Fα+1,β(y) − 1) − 1

βB


1
2 , α

 .

The CDF is given by

Fα,β(x) =







Γl(α,βx)
Γ(α) , x ≥ 0,

0, x < 0.
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Derived by Möller and Scheuerer (2015).

Log-Laplace distribution

The function crps_llapl() computes the CRPS for the log-Laplace distribution with locationlog

parameter µ ∈ R and scalelog parameter σ ∈ (0, 1),

CRPS(Fµ,σ, y) = y (2Fµ,σ(y) − 1) + exp(µ)


σ
4−σ2 + A(y)



.

The CDF and otherwise required functions are given by

Fµ,σ(x) =















0, x ≤ 0,
1
2 exp



log x−µ
σ



, 0 < x < exp(µ),

1 − 1
2 exp



− log x−µ
σ



, x ≥ exp(µ),

A(x) =







1
1+σ



1 − (2Fµ,σ(x))1+σ


, x < exp(µ),

− 1
1−σ



1 − (2(1 − Fµ,σ(x)))1−σ


, y ≥ exp(µ).

Log-logistic distribution

The function crps_llogis() computes the CRPS for the log-logistic distribution with locationlog

parameter µ ∈ R and scalelog parameter σ ∈ (0, 1),

CRPS(Fµ,σ, y) = y (2Fµ,σ(y) − 1)

− exp(µ)B(1 + σ, 1 − σ) (2 I(1 + σ, 1 − σ, Fµ,σ(y)) + σ − 1) .

The CDF is given by

Fµ,σ(x) =







0, x ≤ 0,


1 + exp


− log x−µ
σ

−1
, x > 0.

Taillardat et al. (2016) give an alternative CRPS formula.

Log-normal distribution

The function crps_lnorm() computes the CRPS for the log-logistic distribution with locationlog

parameter µ ∈ R and scalelog parameter σ > 0,

CRPS(Fµ,σ, y) = y (2Fµ,σ(y) − 1) − 2 exp(µ + σ2/2)


Φ


log y−µ−σ2

σ



+ Φ


σ√
2



− 1


.

The CDF is given by

Fµ,σ(x) =







0, x ≤ 0,

Φ


log x−µ
σ



, x > 0.

Derived by Baran and Lerch (2015).
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A.4. Distribution with flexible support and/or point masses

Beta distribution

The function crps_beta() computes the CRPS for the beta distribution with shape1 and
shape2 parameters α, β > 0, and generalizes via lower and upper parameters l, u ∈ R, l < u,

CRPS(Fα,β , y) = y(2Fα,β(y) − 1) +
α

α + β



1 − 2Fα+1,β(y) − 2B(2α, 2β)

αB(α, β)2



,

CRPS(F u
l,α,β , y) = (u − l) CRPS



Fα,β , y−l
u−l



.

The CDFs are given by F u
l,α,β(x) = Fα,β



x−l
u−l



and

Fα,β(x) =















0, x < 0,

I(α, β, x), 0 ≤ x < 1,

1, x ≥ 1.

Taillardat et al. (2016) give an equivalent expression.

Continuous uniform distribution

The function crps_unif() computes the CRPS for the continuous uniform distribution on
the unit interval, and generalizes via min and max parameters l, u ∈ R, l < u, and by allowing
point masses in the boundaries, i.e., lmass and umass parameters L, U ≥ 0, L + U < 1,

CRPS(F, y) = ♣y − F (y)♣ + F (y)2 − F (y) +
1

3
,

CRPS(F U
L , y) = ♣y − F (y)♣ + F (y)2(1 − L − U) − F (y)(1 − 2L)

+
(1 − L − U)2

3
+ (1 − L)U,

CRPS(F u,U
l,L , y) = (u − l) CRPS



F U
L , y−l

u−l



.

The CDFs are given by F u,U
l,L (x) = F U

L



x−l
u−l



and

F (x) =















0, x < 0,

x, 0 ≤ x < 1,

1, x ≥ 1,

F U
L (x) =















0, x < 0,

L + (1 − L − U)x, 0 ≤ x < 1,

1, x ≥ 1.

Exponential distribution with point mass

The function crps_expM() computes the CRPS for the standard exponential distribution,
and generalizes via location parameter µ ∈ R and scale parameter σ > 0, and by allowing
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a point mass in the boundary, i.e., a mass parameter M ∈ [0, 1],

CRPS(FM , y) = ♣y♣ − 2(1 − M)F (y) +
(1 − M)2

2
,

CRPS(FM,µ,σ, y) = σ CRPS


FM , y−µ
σ



.

The CDFs are given by FM,µ,σ(x) = FM



x−µ
σ



and

F (x) =

{

1 − exp(−x), x ≥ 0,

0, x < 0,

FM (x) =

{

M + (1 − M)F (x), x ≥ 0,

0, x < 0.

Generalized extreme value distribution

The function crps_gev() computes the CRPS for the generalized extreme value distribution
with shape parameter ξ < 1, and generalizes via location parameter µ ∈ R and scale

parameter σ > 0,

CRPS(Fξ, y) =







−y − 2 Ei(log Fξ(y)) + γ − log 2, ξ = 0,

y (2Fξ(y) − 1) − 2Gξ(y) − 1−(2−2ξ)Γ(1−ξ)

ξ , ξ ̸= 0,

CRPS(Fξ,µ,σ, y) = σ CRPS


Fξ, y−µ
σ



.

The CDFs and otherwise required functions are given by Fξ,µ,σ(x) = Fξ



x−µ
σ



and

for ξ = 0: Fξ(x) = exp (− exp(−x))

for ξ > 0: Fξ(x) =







0, x ≤ −1
ξ ,

exp


−(1 + ξx)−1/ξ


, x > −1
ξ ,

Gξ(x) =







0, x ≤ −1
ξ ,

−Fξ(x)
ξ +

Γu(1−ξ,− log Fξ(x))
ξ , x > −1

ξ ,

for ξ < 0: Fξ(x) =







exp


−(1 + ξx)−1/ξ


, x < −1
ξ ,

1, x ≥ −1
ξ ,

Gξ(x) =







−Fξ(x)
ξ +

Γu(1−ξ,− log Fξ(x))
ξ , x < −1

ξ ,

−1
ξ + Γ(1−ξ)

ξ , x ≥ −1
ξ .

Friederichs and Thorarinsdottir (2012) give an equivalent expression.

Generalized Pareto distribution with point mass

The function crps_gpd() computes the CRPS for the generalized extreme value distribution
with shape parameter ξ < 1, and generalizes via location parameter µ ∈ R and scale
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parameter σ > 0, and by allowing a point mass in the lower boundary, i.e., a mass parameter
M ∈ [0, 1],

CRPS(FM,ξ, y) = ♣y♣ − 2(1 − M)

1 − ξ



1 − (1 − Fξ(y))1−ξ


+
(1 − M)2

2 − ξ
,

CRPS(FM,ξ,µ,σ, y) = σ CRPS


FM,ξ, y−µ
σ



.

The CDFs are given by FM,ξ,µ,σ(x) = FM,ξ



x−µ
σ



and

FM,ξ(x) =

{

M + (1 − M)Fξ(x), x ≥ 0,

0, x < 0,

for ξ = 0: Fξ(x) =

{

0, x < 0,

1 − exp(−x), x ≥ 0,

for ξ > 0: Fξ(x) =

{

0, x < 0,

1 − (1 + ξx)−1/ξ, x ≥ 0,

for ξ < 0: Fξ(x) =















0, x < 0,

1 − (1 + ξx)−1/ξ, 0 ≤ x < ♣ξ♣−1,

1, x ≥ ♣ξ♣−1.

Friederichs and Thorarinsdottir (2012) give a CRPS formula for the generalized Pareto dis-
tribution without a point mass.

Generalized truncated/censored logistic distribution

The function crps_gtclogis() computes the CRPS for the generalized truncated/censored
logistic distribution with location parameter µ ∈ R, scale parameter σ > 0, lower and
upper boundary parameters l, u ∈ R, l < u, and by allowing point masses in the boundaries,
i.e., lmass and umass parameters L, U ≥ 0, L + U < 1,

CRPS


F u,U
l,L , y



= ♣y − z♣ + uU2 − lL2

−


1 − L − U

F (u) − F (l)



z



(1 − 2L)F (u) + (1 − 2U)F (l)

1 − L − U



−


1 − L − U

F (u) − F (l)



(2 log F (−z) − 2G(u)U − 2G(l)L)

−


1 − L − U

F (u) − F (l)

2

(H(u) − H(l)),

CRPS(F u,U
l,L,µ,σ, y) = σ CRPS



F
(u−µ)/σ,U
(l−µ)/σ,L , y−µ

σ



,

The CDFs are given by F (x) = (1 + exp(−x))−1 and

F u,U
l,L (x) =















0, x < l,
1−L−U

F (u)−F (l)F (x) − 1−L−U
F (u)−F (l)F (l) + L, l ≤ x < u,

1, x ≥ u,

F u,U
l,L,µ,σ(x) = F

(u−µ)/σ,U
(l−µ)/σ,L



x−µ
σ



.
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Otherwise required functions are given by G(x) = xF (x) + log F (−x) and

z =















l, y < l,

y, l ≤ y < u,

u, y ≥ u,

H(x) = F (x) − xF (x)2 + (1 − 2F (x)) log F (−x).

The function crps_clogis() computes the CRPS for the special case when the tail proba-
bilities collapse into the respective boundary,

CRPS (F u
l , y) = ♣y − z♣ + z + log



F (−l)F (u)

F (z)2



− F (u) + F (l),

where the CDF is given by

F u
l (x) =















0, x < l,

F (x), l ≤ x < u,

1, x ≥ u.

The function crps_tlogis() computes the CRPS for the special case when L = U = 0,
where the CDF is given by

F u
l (x) =















0, x < l,
F (x)−F (l)
F (u)−F (l) , l ≤ x < u,

1, x ≥ u.

Taillardat et al. (2016) give a formula for left-censoring at zero. Möller and Scheuerer (2015)
give a formula for left-truncating at zero.

Generalized truncated/censored normal distribution

The function crps_gtcnorm() computes the CRPS for the generalized truncated/censored
normal distribution with location parameter µ ∈ R, scale parameter σ > 0, lower and
upper boundary parameters l, u ∈ R, l < u, and by allowing point masses in the boundaries,
i.e., lmass and umass parameters L, U ≥ 0, L + U < 1,

CRPS


F u,U
l,L , y



= ♣y − z♣ + uU2 − lL2

+



1 − L − U

Φ(u) − Φ(l)



z



2Φ(z) − (1 − 2L)Φ(u) + (1 − 2U)Φ(l)

1 − L − U



+



1 − L − U

Φ(u) − Φ(l)



(2φ(z) − 2φ(u)U − 2φ(l)L)

−


1 − L − U

Φ(u) − Φ(l)

2  1√
π





Φ


u
√

2


− Φ


l
√

2


,

CRPS(F u,U
l,L,µ,σ, y) = σ CRPS



F
(u−µ)/σ,U
(l−µ)/σ,L , y−µ

σ



.



Alexander Jordan, Fabian Krüger, Sebastian Lerch 33

The CDFs and otherwise required functions are given by

F u,U
l,L (x) =















0, x < l,
1−L−U

Φ(u)−Φ(l)Φ(x) − 1−L−U
Φ(u)−Φ(l)Φ(l) + L, l ≤ x < u,

1, x ≥ u,

F u,U
l,L,µ,σ(x) = F

(u−µ)/σ,U
(l−µ)/σ,L



x−µ
σ



,

z =















l, y < l,

y, l ≤ y < u,

u, y ≥ u.

The function crps_cnorm() computes the CRPS for the special case when the tail probabil-
ities collapse into the respective boundary, where the CDF is given by

F u
l (x) =















0, x < l,

Φ(x), l ≤ x < u,

1, x ≥ u.

The function crps_tnorm() computes the CRPS for the special case when L = U = 0, where
the CDF is given by

F u
l (x) =















0, x < l,
F (x)−F (l)
F (u)−F (l) , l ≤ x < u,

1, x ≥ u.

Thorarinsdottir and Gneiting (2010) give a formula for left-censoring at zero. Gneiting et al.

(2006) give a formula for left-truncating at zero.

Generalized truncated/censored Student’s t distribution

The function crps_gtct() computes the CRPS for the generalized truncated/censored Stu-
dent’s t distribution with df parameter ν > 1, location parameter µ ∈ R, scale parameter
σ > 0, lower and upper boundary parameters l, u ∈ R, l < u, and by allowing point masses
in the boundaries, i.e., lmass and umass parameters L, U ≥ 0, L + U < 1,

CRPS


F u,U
l,L,ν , y



= ♣y − z♣ + uU2 − lL2

+



1 − L − U

Fν(u) − Fν(l)



z



2Fν(z) − (1 − 2L)Fν(u) + (1 − 2U)Fν(l)

1 − L − U



−


1 − L − U

Fν(u) − Fν(l)



(2Gν(z) − 2Gν(u)U − 2Gν(l)L)

−


1 − L − U

Fν(u) − Fν(l)

2

B̄ν (Hν(u) − Hν(l)) ,

CRPS(F u,U
l,L,ν,µ,σ, y) = σ CRPS



F
(u−µ)/σ,U
(l−µ)/σ,L,ν , y−µ

σ



.
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The CDFs are given by

Fν(x) =
1

2
+

x 2F1



1
2 , ν+1

2 ; 3
2 ; −x2

ν



√
νB



1
2 , ν

2

 ,

F u,U
l,L,ν(x) =















0, x < l,
1−L−U

F (u)−F (l)F (z) − 1−L−U
F (u)−F (l)F (l) + L, l ≤ x < u,

1, x ≥ u,

F u,U
l,L,ν,µ,σ(x) = F

u−µ
σ ,U

l−µ
σ ,L,ν



x−µ
σ



.

Otherwise required functions are given by

z =















l, y < l,

y, l ≤ y < u,

u, y ≥ u,

fν(x) =
1

√
νB



1
2 , ν

2





1 +
x2

ν

−(ν+1)/2

,

Gν(x) = −


ν + x2

ν − 1



fν(x),

Hν(x) =
1

2
+

1

2
sgn(x) I



1
2 , ν − 1

2 , x2

ν+x2



,

B̄ν =



2
√

ν

ν − 1



B


1
2 , ν − 1

2



B


1
2 , ν

2

2 .

The function crps_ct() computes the CRPS for the special case when the tail probabilities
collapse into the respective boundary, where the CDF is given by

F u
l,ν(x) =















0, x < l,

Fν(x), l ≤ x < u,

1, x ≥ u.

The function crps_tt() computes the CRPS for the special case when L = U = 0, where
the CDF is given by

F u
l,ν(x) =















0, x < l,
Fν(x)−Fν(l)
Fν(u)−Fν(l) , l ≤ x < u,

1, x ≥ u,

A.5. Distribution for discrete variables

Binomial distribution

The function crps_binom() computes the CRPS for the binomial distribution with size



Alexander Jordan, Fabian Krüger, Sebastian Lerch 35

parameter n = 0, 1, 2, . . . ,, and prob parameter p ∈ [0, 1],

CRPS(Fn,p, y) = 2
n
∑

x=0

fn,p(x) (1¶y < x♢ − Fn,p(x) + fn,p(x)/2) (x − y).

The CDF and probability mass function are given by

Fn,p(x) =

{

I (n − ⌊x⌋, ⌊x⌋ + 1, 1 − p) , x ≥ 0,

0, x < 0,

fn,p(x) =

{

(n
x

)

px(1 − p)n−x, x = 0, 1, . . . , n,

0, otherwise.

Hypergeometric distribution

The function crps_hyper() computes the CRPS for the hypergeometric distribution with
two population parameters, the number m = 0, 1, . . . , of entities with the relevant feature
and the number n = 0, 1, . . . , of entities without that feature, and a parameter for the size
k = 0, . . . , m + n of the sample to be drawn,

CRPS(Fm,n,k, y) = 2
n
∑

x=0

fm,n,k(x) (1¶y < x♢ − Fm,n,k(x) + fm,n,k(x)/2) (x − y).

The CDF and probability mass function are given by

Fm,n,k(x) =

{

∑⌊x⌋
i=0 fm,n,k(i), x ≥ 0,

0, x < 0,

fm,n,k(x) =











(m

x )( n

k−x)
(m+n

k )
, x = max¶0, k − n♢, . . . , min¶k, m♢,

0, otherwise.

Negative binomial distribution

The function crps_nbinom() computes the CRPS for the negative binomial distribution with
size parameter n > 0, and prob parameter p ∈ (0, 1] or alternatively a non-negative mean
parameter given to mu,

CRPS(Fn,p, y) = y (2Fn,p(y) − 1)

− n(1 − p)

p2



p (2Fn+1,p(y − 1) − 1) + 2F1



n + 1, 1
2 ; 2; −4(1−p)

p2



.

The CDF and probability mass function are given by

Fn,p(x) =

{

I (n, ⌊x + 1⌋, p) , x ≥ 0,

0, x < 0,

fn,p(x) =







Γ(x+n)
Γ(n)x! pn(1 − p)x, x = 0, 1, 2, . . . ,

0, otherwise.
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Derived by Wei and Held (2014).

Poisson distribution

The function crps_pois() computes the CRPS for the Poisson distribution with mean pa-
rameter λ > 0 given to lambda,

CRPS(Fλ, y) = (y − λ) (2Fλ(y) − 1) + 2λfλ (⌊y⌋) − λ exp(−2λ) (I0(2λ) + I1(2λ)) .

The CDF and probability mass function are given by

Fλ(x) =







Γu(⌊x+1⌋,λ)
Γ(⌊x+1⌋) , x ≥ 0,

0, x < 0,

fλ(x) =

{

λx

x! e−λ, x = 0, 1, 2, . . . ,

0, otherwise,

Derived by Wei and Held (2014).

B. Computation of multivariate scores for multiple forecast cases

As noted in Section 5 the computation functions for multivariate scoring rules are defined for
single forecast cases only. Here, we demonstrate how apply functions can be used to compute
ES and VSp for multiple forecast cases. The simulation example is based on the function
documentation of es_sample() and vs_sample().

The observation is generated as a sample from a multivariate normal distribution in R
10 with

mean vector µ = (0, . . . , 0) and covariance matrix Σ with Σi,j = 1 if i = j and Σi,j = c = 0.2
if i ̸= j for all i, j = 1, . . . , 10.

R> d <- 10

R> mu <- rep(0, d)

R> Sigma <- diag(d)

R> Sigma[!diag(d)] <- 0.2

The multivariate forecasts are given by 50 random samples from a corresponding multivariate
normal distribution with mean vector µ

f = (1, . . . , 1) and covariance matrix Σf which is
defined as Σ, but with c = 0.1.

R> m <- 50

R> mu_f <- rep(1, d)

R> Sigma_f <- diag(d)

R> Sigma_f[!diag(d)] <- 0.1

The simulation process is independently repeated 1 000 times. To illustrate two potential
data structures, observations and forecasts are saved as list elements in an outer list where
the index corresponds to the forecast case, and as 2- and 3-dimensional arrays where the last
dimension indicates the forecast case.
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R> n <- 1000

R> fc_obs_list <- vector("list", n)

R> obs_array <- matrix(NA, nrow = d, ncol = n)

R> fc_array <- array(NA, dim = c(d, m, n))

R> for (fc_case in 1:n) {

+ obs_tmp <- drop(mu + rnorm(d) %*% chol(Sigma))

+ fc_tmp <- replicate(m, drop(mu_f + rnorm(d) %*% chol(Sigma_f)))

+ fc_obs_list[[fc_case]] <- list(obs = obs_tmp, fc_sample = fc_tmp)

+ obs_array[, fc_case] <- obs_tmp

+ fc_array[, , fc_case] <- fc_tmp

+ }

Given the data structures of forecasts and observations, all 1 000 forecast cases can be eval-
uated sequentially using the sapply() function (or, alternatively, a for loop) along the list
elements or along the last array dimension.

R> es_vec_list <- sapply(fc_obs_list, function(x) es_sample(y = x$obs,

+ dat = x$fc_sample))

R> es_vec_array <- sapply(1:n, function(i) es_sample(y = obs_array[, i],

+ dat = fc_array[, , i]))

R> head(cbind(es_vec_list, es_vec_array))

es_vec_list es_vec_array

[1,] 1.60 1.60

[2,] 1.68 1.68

[3,] 2.47 2.47

[4,] 2.37 2.37

[5,] 3.87 3.87

[6,] 3.96 3.96
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