## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- # A test data set with three items and ten respondents testdata <- data.frame( var_a = c(1,4,3,5,3,2,3,1,3,NA), var_b = c(2,5,2,3,4,1,NA,2,NA,NA), var_c = c(1,2,3,NA,3,4,4,5,NA,NA)) testdata ## ----------------------------------------------------------------------------- library(resquin) # Calculating response style indicators for all respondents with no missing values results_response_styles <- resp_styles( x = testdata, scale_min = 1, scale_max = 5, min_valid_responses = 1, # Excludes respondents with less than 100% valid responses normalize = T) # Presents results in percent of all responses round(results_response_styles,2) ## ----------------------------------------------------------------------------- results_response_styles |> summary() ## ----------------------------------------------------------------------------- results_response_styles |> print() ## ----------------------------------------------------------------------------- # Calulating response distribution indicators for all respondents with no missing values results_resp_distributions <- resp_distributions( x = testdata, min_valid_responses = 1) # Excludes respondents with less than 100% valid responses round(results_resp_distributions,2) ## ----------------------------------------------------------------------------- results_resp_nondifferentiation <- resp_nondifferentiation( x = testdata, min_valid_responses = 1) # Excludes respondents with less than 100% valid responses round(results_resp_nondifferentiation,2) ## ----------------------------------------------------------------------------- results_resp_patterns <- resp_patterns(testdata) round(results_resp_patterns,2) ## ----------------------------------------------------------------------------- # Single defined pattern defined_patterns_single <- resp_patterns( x = testdata, defined_patterns = c(1,2,3) ) defined_patterns_single # Multiple defined patterns defined_patterns_multiple <- resp_patterns( x = testdata, defined_patterns = list( # wrap multiple pattern vectors into a list c(1,2,3), c(2,3,4), c(4,3,2), c(3,2,1) ) ) defined_patterns_multiple # defined patterns are returned as a single list column. # One way to make the data accessible is by using tidyr::unnest_wider() # This way, each column represents the count of one defined pattern defined_patterns_multiple |> tidyr::unnest_wider(defined_patterns) ## ----------------------------------------------------------------------------- arbitrary_patterns_length_2 <- resp_patterns( x = testdata, arbitrary_patterns = 2 ) arbitrary_patterns_length_2 # You can also request the detection of patterns of multiple # lengths, in this case 2 and 3 arbitrary_patterns_length_2_3 <- resp_patterns( x = testdata, arbitrary_patterns = c(2,3) ) arbitrary_patterns_length_2_3 ## ----------------------------------------------------------------------------- # Default. Integer ids. resp_distributions(testdata) # No id column resp_distributions(testdata,id = F) # Custom id vectors custom_ids <- letters[1:nrow(testdata)] resp_distributions(testdata,id = custom_ids)