Package ‘purgeR’

November 28, 2023
Type Package
Title Inbreeding-Purging Estimation in Pedigreed Populations
Version 1.8.2
Date 2023-11-28

Description Inbreeding-purging analysis of pedigreed populations, including the computa-
tion of the inbreeding coefficient, partial, ancestral and purged inbreeding coefficients, and mea-
sures of the opportunity of purging related to the individual reduction of inbreeding load.
In addition, functions to calculate the effective population size and other parameters rele-
vant to population genetics are included.
See Lopez-Cortegano E. (2021) <doi:10.1093/bioinformatics/btab599>.

URL https://gitlab.com/elcortegano/purgeR/

BugReports https://gitlab.com/elcortegano/purgeR/-/issues/
Encoding UTF-8

License GPL-2

Depends R (>=3.5.0)

Imports doSNOW (>= 1.0.19), foreach (>= 1.5.1), parallel, progress (>=
1.2.2), Repp (>= 1.0.5), ReppProgress (>= 0.4.2)

LinkingTo Rcpp, ReppProgress

Suggests caret (>= 6.0-86), coda (>= 0.19-4), dplyr (>= 1.0.0), e1071
(>=1.7-4), ggplot2 (>=3.3.1), ggraph (>= 2.1.0), glmnet (>=
4.0-2), gtable (>= 0.3.0), igraph (>= 1.5.0.1), knitr (>=
1.28), magrittr (>= 1.5), pander (>= 0.6.3), plyr (>= 1.8.6),
purrr (>= 0.3.4), rmarkdown (>= 2.2), scales (>=1.1.1),
stringr (>= 1.4.0), testthat (>= 2.3.2), tibble (>=3.0.1),
tidyr (>= 1.1.0), tidyselect (>= 1.1.0)

RoxygenNote 7.2.3

VignetteBuilder knitr, rmarkdown

LazyData true

NeedsCompilation yes

Author Eugenio Lépez-Cortegano [aut, cre]
(<https://orcid.org/0000-0001-6914-6305>)

1

https://doi.org/10.1093/bioinformatics/btab599
https://gitlab.com/elcortegano/purgeR/
https://gitlab.com/elcortegano/purgeR/-/issues/
https://orcid.org/0000-0001-6914-6305

2 R topics documented:

Maintainer Eugenio Lépez-Cortegano <elcortegano@gmail.com>
Repository CRAN
Date/Publication 2023-11-28 22:20:02 UTC

R topics documented:

ANCESIOTS . . . o v v o e e e e e e e e e e e e e e e e e e e 3
1 4
atlas e e e 5
check_ancestors L e e e 6
check_basic e e e e 6
check_bool e 7
check col e 8
check_d e e e e 8
check df L e 9
check_Fcol e 9
check_indeXx e e e e e e 10
check _Int e 10
check_length 11
check_na e e e e e 11
check_names L e 12
check Ne 12
check_not_col e 13
check nrows e e 13
check order e 14
check reference e 14
check_repeat_id 15
check _tcol e 15
check_types e 16
check_zero_id L e e 16
dama e e 17
darwin L L e e e 18
delta_Fi e e e e 18
dorcas e e e 19
exXp_F . e 20
exp_Fa. . . . e 21
BXP_E + v e e e e e e e e e 22
F oo e 23
Fa . . e 23
Fij_core 24
Fij_core_i_cpp o o o o e 25
e e e e 25
hwd . . . e e e e e 26
IAX_anCeStOrS o o e e e 27
P F e 27
ip_Fa . . e 28

ancestors 3

TP o o e e e e 31
IP_OD o v e e e e e 32
MaP_ANCESIOTS . . .« v v v v v v e 34
Ne delta e 34
OD o o v e e e e e 35
ped_clean e e e e e 36
ped_graph e e 37
ped_maternal e 37
ped_rename e e e e 38
PEA_SOIt L e e e 39
Ped_SOrt_i e 40
pop_hwd . . . e e 41
POp_Nancestors e e e e 42
POP_NeE . . e e 44
POP_L o o o e e e e 45
purgeR . . . L 46
reproductive_value e e 47
sample_allele e 48
search_ancestors e e e e e e e 49
w_grandoffspring 49
w_offspring 50
w_reproductive_value e e e 50
Index 53
ancestors Individuals to be evaluated in purging analyses
Description

Returns a boolean vector indicating what individuals are suitable for purging analyses, given a
measure of fitness. Individuals with NA values of fitness, and that do not have descendants with
non-NA fitness values, are excluded.

Usage

ancestors(ped, reference, rp_idx, nboot = 10000L, seed = NULL, skip_Ng = FALSE)

Arguments

ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.

reference A string naming a column indicating whether individuals belong to the reference
population or not. Column must be boolean or coercible to boolean type.

rp_idx Vector containing the indexes of individuals of the RP

nboot Number of bootstrap iterations (for computing Ng).

seed Sets a seed for the random number generator.

skip_Ng Skip Ng computation or not (FALSE by default).

4 arrui

Value

Boolean vector indicating what individuals will be evaluated.

arrui Arrui pedigree

Description

This data set contains the pedigree of the arrui (Ammotragus lervia), also known as barbary sheep.
A total of 380 individuals is included, as well as measurements of biological fitness and other factors
(see reference below for details).

Usage

arrui

Format

A data frame with with records from 380 individuals (in rows), and 10 variables:

* id - Individual identity.

* dam - Maternal identity.

* sire - Paternal identity.

e survivall5 - 15-days survival.

* prod - Female productivity.

* sex - Individual sex.

* yob - Year of birth.

* pom - Period of management.

* target - Individual in the target population.

* eeza_id - Individual identity (as recorded in the original studbook)

Source
The original studbook containing the complete and updated pedigree can be found at: http://www.
eeza.csic.es/en/programadecria.aspx.

References

» Lépez-Cortegano E et al. 2021. Genetic purging in captive endangered ungulates with ex-
tremely low effective population sizes.*Heredity*, https://www.nature.com/articles/s41437-
021-00473-2.

http://www.eeza.csic.es/en/programadecria.aspx
http://www.eeza.csic.es/en/programadecria.aspx

atlas 5

atlas Cuvier’s gazelle pedigree

Description

This data set contains the pedigree of Cuvier’s gazelle (Gazella atlas). A total of 948 individuals is
included, as well as measurements of biological fitness and other factors (see reference below for
details).

Usage

atlas

Format

A data frame with with records from 948 individuals (in rows), and 10 variables:

* id - Individual identity.

* dam - Maternal identity.

* sire - Paternal identity.

* survivall5 - 15-days survival.

* prod - Female productivity.

* sex - Individual sex.

* yob - Year of birth.

* pom - Period of management.

* target - Individual in the target population.

* eeza_id - Individual identity (as recorded in the original studbook)

Source

The original studbook containing the complete and updated pedigree can be found at: http://www.
eeza.csic.es/en/programadecria.aspx.

References

* Lopez-Cortegano E et al. 2021. Genetic purging in captive endangered ungulates with ex-
tremely low effective population sizes. *Heredity*, https://www.nature.com/articles/s41437-
021-00473-2.

http://www.eeza.csic.es/en/programadecria.aspx
http://www.eeza.csic.es/en/programadecria.aspx

6 check basic

check_ancestors Check ancestor individuals

Description

Takes a column name, and checks its use as target. It should name a boolean vector (or coercible to
it), with at least one TRUE value.

Usage

check_ancestors(id, ancestors)

Arguments
id Vector of individual ids.
ancestors Vector of ancestor ids.
Value

No return value. Will print an error message if checking fail.

check_basic Check basic

Description

This function will group some other checking functions, that should be run everytime when using
functions in this package, to avoid unexpected errors.

Usage
check_basic(
ped,
id_name = "id",
dam_name = "dam",
sire_name = "sire",

when_rename = FALSE,
when_sort = FALSE

check bool 7

Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
id_name Column name for individual id.
dam_name Column name for dam.
sire_name Column name for sire.
when_rename True when called from ped_rename function. It softs checks on individual ID
column name and types
when_sort True when called from ped_sort function. It softs checks on pedigree sorting
Value

No return value. Will print an error message if checking fail.

check_bool Check if a variable is boolean or not

Description

Can be used to test arguments that need to be of logical (boolean) type

Usage

check_bool(variable)

Arguments

variable Variable to test

Value

No return value. Will print an error message if checking fail.

8 check d
check_col Check that optional column is included
Description
Some functions require additional columns. Check that they are named in the pedigree.
Usage
check_col (names, name)
Arguments
names Column names (all)
name Column name to check.
Value
No return value. Will print an error message if checking fail.
check_d Check purging coefficient
Description
The purging coefficient must be a number between 0 and 0.5
Usage
check_d(d)
Arguments
d Purging coefficient (taking values between 0.0 and 0.5).
Value

No return value. Will print an error message if checking fail.

check_df 9

check_df Check pedigree class

Description

The pedigree must be of object class ’data.frame’.

Usage
check_df (obj)

Arguments

obj Object to test

Value

No return value. Will print an error message if checking fail.

check_Fcol Check columns with inbreeding values

Description

Takes a column name, and checks its use as inbreeding coefficient. It should name a numeric vector,
with values in the range [0,1]

Usage

check_Fcol(ped, Fcol, compute = TRUE)

Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
Fcol Name of column with inbreeding coefficient values. If none is used, inbreeding
will be computed.
compute Compute inbreeding if Fcol is NULL
Value

Vector of inbreeding values (if checks are successful)

10

check_int

check_index Check individual index

Description

Renamed individuals must be named by their index (from 1 to N)

Usage

check_index(id)

Arguments

id Column of individual ids.

Value

No return value. Will print an error message if checking fail.

check_int Check if a variable is a positive integer or not

Description

Can be used to test arguments that need to be integers

Usage

check_int(variable)

Arguments

variable Variable to test

Value

No return value. Will print an error message if checking fail.

check_length 11

check_length Check if a variable has length >1

Description

Used to test arguments that need to be of length 1

Usage

check_length(variable, message = "Expected value of length 1")

Arguments

variable Variable to test

message Error message to display
Value

No return value. Will print an error message if checking fail.

check_na Check if a vector contains NA values

Description

Return warning when NA values are present

Usage

check_na(variable)

Arguments

variable Variable to test

Value

No return value. Will print an error message if checking fail.

12 check Ne

check_names Check that mandatory column names are included

Description

Columns for id, dam and sire are mandatory. This function checks that they are named in the
pedigree. The function works with arbitrary column names (not ’id’, ’"dam’ and ’sire’) to work with
ped_rename()

Usage

check_names(ped, id_name = "id", dam_name = "dam"”, sire_name = "sire")
Arguments

ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-

ternal (sire) identities are mandatory columns.

id_name Column name for individual id.

dam_name Column name for dam.

sire_name Column name for sire.
Value

No return value. Will print an error message if checking fail.

check_Ne Check Ne

Description

The effective population size (Ne) must be a number higher than 0

Usage
check_Ne(Ne)

Arguments

Ne Effective population size

Value

No return value. Will print an error message if checking fail.

check not _col 13

check_not_col Check if optional column is included

Description

Some functions require additional columns. Check if they are already named in the pedigree.

Usage

check_not_col (names, name)

Arguments
names Column names (all)
name Column name to check.
Value

No return value. Will print an error message if checking fail.

check_nrows Check observed and expected number of rows

Description

Expected and observed number of rows must be equal.

Usage

check_nrows(df, exp, message = "Expected value of length 1")
Arguments

df Dataframe to test

exp Expected number of rows

message Error message to display
Value

No return value. Will print an error message if checking fail.

14 check_reference

check_order Check individual order

Description

Individuals must be sorted from older to younger

Usage

check_order(id, dam, sire, soft_sorting = FALSE)

Arguments
id Vector of individual ids.
dam Vector of dam ids.
sire Vector of sire ids.

soft_sorting If TRUE checking is relaxed, allowing descendants to be declared before ances-
tors

Value

No return value. Will print an error message if checking fail.

check_reference Check columns with reference individuals

Description

Takes a column name, and checks its use as reference. It should name a boolean vector (or coercible
to it), with at least one TRUE value.

Takes a column name, and checks its use as target. It should name a boolean vector (or coercible to
it), with at least one TRUE value.

Usage

check_reference(ped, reference)

check_target(ped, reference, target, variable)

Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
reference A string naming a column indicating whether individuals belong to the reference
population or not. Column must be boolean or coercible to boolean type.
target Target column

variable To be used in printed messages

check_repeat_id 15

Value

Vector of reference numbers (if checks are successful)

Vector of target numbers (if checks are successful)

check_repeat_id Check repeated ids

Description

Individual id are unique and cannot be repeated

Usage
check_repeat_id(id)

Arguments

id Vector of individual ids.

Value

No return value. Will print an error message if checking fail.

check_tcol Check columns with generation numbers

Description
Takes a column name, and checks its use as generation numbers. It should name a numeric vector,
with values >= 0.

Usage

check_tcol(ped, tcol, compute = TRUE, force_int = FALSE)

Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
tcol Name of column with individual generation times. If none is used, the number
of equivalent complete generations is computed.
compute Compute generation numbers if tcol is NULL
force_int Generation numbers must be integers (disabled by default)
Value

Vector of generation numbers (if checks are successful)

16 check_zero_id
check_types Check that mandatory column names are of type int

Description

Columns for id, dam and sire are mandatory, and required to be of type integer
Usage

check_types(id, dam, sire)
Arguments

id Vector of individual ids.

dam Vector of dam ids.

sire Vector of sire ids.
Value

No return value. Will print an error message if checking fail.

check_zero_id Check individuals named zero

Description

Individual id cannot equal zero (0). This is reserved to dams and sires.
Usage

check_zero_id(id)
Arguments

id Vector of individual ids.
Value

No return value. Will print an error message if checking fail.

dama 17

dama Dama gazelle pedigree

Description

This data set contains the pedigree of the dama gazelle (Nanger dama). A total of 1316 individuals
is included, as well as measurements of biological fitness and other factors (see reference below for
details).

Usage

dama

Format

A data frame with with records from 1316 individuals (in rows), and 10 variables:

* id - Individual identity.

* dam - Maternal identity.

* sire - Paternal identity.

* survivall5 - 15-days survival.

* prod - Female productivity.

* sex - Individual sex.

* yob - Year of birth.

* pom - Period of management.

* target - Individual in the target population.

* eeza_id - Individual identity (as recorded in the original studbook)

Source

The original studbook containing the complete and updated pedigree can be found at: http://www.
eeza.csic.es/en/programadecria.aspx.

References

* Lopez-Cortegano E et al. 2021. Genetic purging in captive endangered ungulates with ex-
tremely low effective population sizes. *Heredity*, https://www.nature.com/articles/s41437-
021-00473-2.

http://www.eeza.csic.es/en/programadecria.aspx
http://www.eeza.csic.es/en/programadecria.aspx

18 delta_Fi

darwin Darwin/Wedgwood pedigree

Description
This data set contains the pedigree of the Darwin/Wedgwood dynasty. It is composed by a total of
63 individuals, including Charles R. Darwin and Francis Galton.

Usage

darwin

Format
A data frame with with records from 63 individuals (in rows), and 3 variables:

* Individual - Individual identity.
* Mother - Mother’s identity.
* Father - Father’s identity.

Source

The pedigree is adapted from Berra et al. (2010)

References

* Berra TM et al. 2010. Was the Darwin/Wedgwood dynasty adversely affected by consanguin-
ity?. BioScience 60(5): 376-383.

delta_Fi Individual inbreeding variation

Description

Computes the increase in inbreeding coefficient for a given individual

Usage

delta_Fi(Fi, t)

Arguments
Fi Individual inbreeding coefficient.
t Individual generation number.
Value

Individual variation in inbreeding.

dorcas 19

dorcas Dorcas gazelle pedigree

Description

This data set contains the pedigree of dorcas gazelle (Gazella dorcas). A total of 1279 individuals
is included, as well as measurements of biological fitness and other factors (see reference below for
details).

Usage

dorcas

Format

A data frame with with records from 1279 individuals (in rows), and 10 variables:

* id - Individual identity.

* dam - Maternal identity.

* sire - Paternal identity.

* survivall5 - 15-days survival.

* prod - Female productivity.

* sex - Individual sex.

* yob - Year of birth.

* pom - Period of management.

* target - Individual in the target population.

* eeza_id - Individual identity (as recorded in the original studbook)

Source

The original studbook containing the complete and updated pedigree can be found at: http://www.
eeza.csic.es/en/programadecria.aspx.

References

* Lopez-Cortegano E et al. 2021. Genetic purging in captive endangered ungulates with ex-
tremely low effective population sizes. *Heredity*, https://www.nature.com/articles/s41437-
021-00473-2.

http://www.eeza.csic.es/en/programadecria.aspx
http://www.eeza.csic.es/en/programadecria.aspx

20 exp_F

exp_F Expected inbreeding coefficient

Description

Estimates the expected inbreeding coefficient (F) as a function of the effective population size and
generation number

Usage

exp_F(Ne, t)

Arguments

Ne Effective population size

t Generation number

Details

Computation of the inbreeding coefficient uses the classical formula:

F)=1-(1-1/2N) "t

Value

The inbreeding coefficient

References

* Falconer DS, Mackay TFC. 1996. Introduction to Quantitative Genetics. 4th edition. Long-
man, Essex, U.K.

See Also
ip_F

Examples
exp_F(Ne = 50, t = @)
exp_F(Ne = 50, t = 50)
exp_F(Ne = 10, t = 50)

exp_Fa 21

exp_Fa Expected ancestral inbreeding coefficient

Description

Estimates the expected ancestral inbreeding coefficient (Fa) as a function of the effective population
size and generation number

Usage

exp_Fa(Ne, t)

Arguments
Ne Effective population size
t Generation number
Details

Computation of the ancestral inbreeding coefficient uses the adaptation from Ballou’s (1997) for-
mula, as in Lépez-Cortegano et al. (2018):

Fa(t) =1 - (1 - 1/2N) A (172 (t-1)t)

Value

The ancestral inbreeding coefficient

References

* Ballou JD. 1997. Ancestral inbreeding only minimally affects inbreeding depression in mam-
malian populations. J Hered. 88:169-178.

» Lopez-Cortegano E et al. 2018. Detection of genetic purging and predictive value of purging
parameters estimated in pedigreed populations. Heredity 121(1): 38-51.

See Also
ip_Fa

Examples
exp_Fa(Ne = 50, t = 0)
exp_Fa(Ne = 50, t = 50)
exp_Fa(Ne = 10, t = 50)

22 exp_g

exp_g Expected purged inbreeding coefficient

Description
Estimates the expected purged inbreeding coefficient (g) as a function of the effective population
size, generation number, and purging coefficient

Usage
exp_g(Ne, t, d)

Arguments

Ne Effective population size

t Generation number

d Purging coefficient (taking values between 0.0 and 0.5).
Details

Computation of the purged inbreeding coefficient is calculated as in Garcia-Dorado (2012):
gt)=[(1-1/2N) g(t-1) + 1/72N] * [1 - 2d F(t-1)]

When convergence is reached, the asymptotic value g(a) is returned:
g(@)=(1-2d)/(1+2d(2N-1))

Value

The purged inbreeding coefficient

References

* Garcia-Dorado. 2012. Understanding and predicting the fitness decline of shrunk populations:
Inbreeding, purging, mutation, and standard selection. Genetics 190: 1-16.

See Also
ip_g

Examples
exp_g(Ne = 50, t =0, d =0.15)
exp_g(Ne = 50, t = 50, d = 0.15)
exp_g(Ne = 10, t = 50, d = 0.15)

F Inbreeding coefficient

Description

Computes the standard inbreeding coefficient (F). This is the probability that two alleles on a locus
are identical by descent (Falconer and Mackay 1996, Wright 1922), calculated from the genealogi-
cal coancestry matrix (Malécot 1948).

Usage

F(ped, name_to)

Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
name_to A string naming the new output column.
Value

The input dataframe, plus an additional column named "F" with individual inbreeding coefficient
values.

References

* Falconer DS, Mackay TFC. 1996. Introduction to Quantitative Genetics. 4th edition. Long-
man, Essex, U.K.
e Malécot G, 1948. Les Mathématiques de I’hérédité. Masson & Cie., Paris.

* Wright S. 1922. Coefficients of inbreeding and relationship. The American Naturalist 56:
330-338.

Fa Ancestral inbreeding coefficient

Description

Computes the ancestral inbreeding coefficient (Fa). This is the probability that an allele has been in
homozygosity in at least one ancestor (Ballou 1997). A genedrop approach is included to compute
unbiased estimates of Fa (Baumung et al. 2015).

Usage

Fa(ped, Fi, name_to, genedrop = OL, seed = NULL)

24

Arguments

ped

Fi
name_to
genedrop

seed

Value

Fij_core

A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.

Vector of inbreeding coefficient values
A string naming the new output column.

Number of genedrop iterations to run. If set to zero (as default), Ballou’s Fa is
computed.

Sets a seed for the random number generator.

The input dataframe, plus an additional column named "Fa" with individual ancestral inbreeding

coefficient values.

References

 Ballou JD. 1997. Ancestral inbreeding only minimally affects inbreeding depression in mam-
malian populations. J Hered. 88:169-178.

e Baumung et al. 2015. GRAIN: A computer program to calculate ancestral and partial inbreed-
ing coefficients using a gene dropping approach. Journal of Animal Breeding and Genetics
132: 100-108.

Fij_core

Partial inbreeding coefficient (core function)

Description

Computes partial inbreeding coefficients, Fi(j). A coefficient Fi(j) can be read as the probability of
individual i being homozygous for alleles derived from ancestor j

Usage

Fij_core(ped, ancestors, ancestors_idx, Fi, mapa, ncores = 1, genedrop, seed)

Arguments

ped

ancestors
ancestors_idx
Fi

mapa

ncores
genedrop

seed

A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.

Vector of the identities to be assumed as founder ancestors.
Index of ancestors.

Vector of inbreeding coefficients.

Map of ancestors

Number of cores to use for parallel computing (default = 1)
Enable genedrop simulation

Sets a seed for the random number generator.

Fij_core_i_cpp 25

Value

A matrix of partial inbreeding coefficients. Fi(j) values can thus be read from row i and column j.

Fij_core_i_cpp Partial inbreeding coefficient (core function)

Description

Computes partial inbreeding coefficients, Fi(j). A coefficient Fi(j) can be read as the probability of
individual i being homozygous for alleles derived from ancestor j

Usage

Fij_core_i_cpp(dam, sire, anc_idx, mapa, Fi, genedrop = OL, seed = NULL)

Arguments

dam Vector of dam ids.

sire Vector of sire ids.

anc_idx Index of ancestors.

mapa Map of ancestors

Fi Vector of inbreeding coefficients.

genedrop Enable genedrop simulation

seed Sets a seed for the random number generator.
Value

A matrix of partial inbreeding coefficients. Fi(j) values can thus be read from row i and column j.

g Purged inbreeding coefficient

Description

Computes the purged inbreeding coefficient (g). This is the probability that two alleles on a locus
are identical by descent, but relative to deleterious recessive alleles (Garcia-Dorado 2012). The
reduction in g relative to standard inbreeding (F) is given by an effective purging coefficient (d),
that measures the strength of the deleterious recessive component in the genome. The coefficient
g is computed following the methods for pedigrees in Garcia-Dorado (2012) and Garcia-Dorado et
al. (2016).

Usage

g(ped, d, Fi, name_to)

26 hwd

Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
d Purging coefficient (taking values between 0.0 and 0.5).
Fi Vector of inbreeding coefficient values
name_to A string naming the new output column.
Value

The input dataframe, plus an additional column named "g" followed by the purging coefficient,
containing purged inbreeding coefficient values.

References

* Garcia-Dorado. 2012. Understanding and predicting the fitness decline of shrunk populations:
Inbreeding, purging, mutation, and standard selection. Genetics 190: 1-16.

* Garcia-Dorado et al. 2016. Predictive model and software for inbreeding-purging analysis of
pedigreed populations. G3 6: 3593-3601.

hwd Deviation from Hardy-Weinberg equilibrium

Description

Computes the deviation from Hardy-Weinberg equilibrium following Caballero and Toro (2000).

Usage
hwd(ped, reference = NULL)

Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
reference A string naming a column indicating whether individuals belong to the reference
population or not. Column must be boolean or coercible to boolean type.
Value

A numeric value indicating the deviation from Hardy-Weinberg equilibrium.

References

e Caballero A, Toro M. 2000. Interrelations between effective population size and other pedi-
gree tools for the management of conserved populations. Genet. Res. 75: 331-343.

1dx_ancestors 27

See Also

pop_Ne

idx_ancestors Index ancestors

Description

Creates a vector of length N (the number of individuals) Only coordinates for valid ancestors will
be given

Usage

idx_ancestors(ids, N)

Arguments

ids Ancestor identities

N Total number of individuals
Value

A logical matrix.

ip_F Inbreeding coefficient

Description

Computes the standard inbreeding coefficient (F). This is the probability that two alleles on a locus

are identical by descent (Falconer and Mackay 1996, Wright 1922), calculated from the genealogi-
cal coancestry matrix (Malécot 1948).

Usage

ip_F(ped, name_to = "Fi")

Arguments

ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.

name_to A string naming the new output column.

28 ip_Fa

Value

The input dataframe, plus an additional column with individual inbreeding coefficient values (named
"Fi" by default).

References

* Falconer DS, Mackay TFC. 1996. Introduction to Quantitative Genetics. 4th edition. Long-
man, Essex, U.K.

* Malécot G, 1948. Les Mathématiques de I’hérédité. Masson & Cie., Paris.
* Wright S. 1922. Coefficients of inbreeding and relationship. The American Naturalist 56:

330-338.

See Also

exp_F
Examples

data(dama)

dama <- ip_F(dama)

tail(dama)

ip_Fa Ancestral inbreeding coefficient

Description

Computes the ancestral inbreeding coefficient (Fa). This is the probability that an allele has been in
homozygosity in at least one ancestor (Ballou 1997). A genedrop approach is included to compute
unbiased estimates of Fa (Baumung et al. 2015).

Usage
ip_Fa(ped, name_to = "Fa", genedrop = @, seed = NULL, Fcol = NULL)

Arguments

ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.

name_to A string naming the new output column.

genedrop Number of genedrop iterations to run. If set to zero (as default), Ballou’s Fa is
computed.

seed Sets a seed for the random number generator.

Fcol Name of column with inbreeding coefficient values. If none is used, inbreeding

will be computed.

ip_Fij 29

Value

The input dataframe, plus an additional column with individual ancestral inbreeding coefficient
values (named "Fa" by default).

References

 Ballou JD. 1997. Ancestral inbreeding only minimally affects inbreeding depression in mam-
malian populations. J Hered. 88:169-178.

* Baumung et al. 2015. GRAIN: A computer program to calculate ancestral and partial inbreed-
ing coefficients using a gene dropping approach. Journal of Animal Breeding and Genetics
132: 100-108.

See Also

ip_F, exp_Fa

Examples

data(dama)
dama <- ip_Fa(dama) # Compute F on the go (won't be kept in the pedigree).
dama <- ip_F(dama)

dama <- ip_Fa(dama, Fcol = 'Fi') # If F is computed in advance.
tail(dama)
ip_Fij Partial inbreeding coefficient
Description

Computes partial inbreeding coefficients, Fi(j). A coefficient Fi(j) can be read as the probability
of individual i being homozygous for alleles derived from ancestor j. It is calculated following the
tabular method described by Gulisija & Crow (2007). Optionally, it can be estimated via genedrop

simulation.
Usage

ip_Fij(
ped,
mode = "founders”,
ancestors = NULL,
Fcol = NULL,
genedrop = 0,
seed = NULL,

ncores = 1L

30 ip_Fij

Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
mode Defines the set of ancestors considered when computing partial inbreeding. It
can be set as: "founder" for inbreeding conditional to founders only (default),
"all" for all individuals in the pedigree (it may take long to compute in large
pedigrees), and "custom" for individuals identities given in a integer vector (see
“ancestors’ argument).
ancestors Under the "custom" run mode, it defines a vector of ancestors that will be con-
sidered when computing partial inbreeding values.
Fcol Name of column with inbreeding coefficient values. If none is used, inbreeding
will be computed.
genedrop Number of genedrop iterations to run. If set to zero (as default), exact coeffi-
cients are computed.
seed Sets a seed for the random number generator (only if genedrop is enabled).
ncores Number of cores to use for parallel computing (default = 1)
Value

A matrix of partial inbreeding coefficients. Fi(j) values can thus be read from row i and column j.
In the resultant matrix, there are as many rows as individuals in the pedigree, and as many columns
as ancestors used. Columns will be named and sorted by ancestor identity.

References

* Gulisija D, Crow JF. 2007. Inferring purging from pedigree data. Evolution 61(5): 1043-1051.

See Also

ip_F

Examples

Original pedigree file in Gulisija & Crow (2007)
pedigree <- tibble::tibble(
id = c("M", "K", "J", "a", "c", "b", "e", "d", "I"),
dam = c("@", "0", "o", "K", "M", "a", "c", "c", "e"),
Sire = C("@”, ”0"’ II@I" I’J’I!, "a"y "J”, Ilbll’ Ilbll’ I’dl')
)

pedigree <- purgeR::ped_rename(pedigree, keep_names = TRUE)

Partial inbreeding relative to founder ancestors

m <- ip_Fij(pedigree)

Note that in the example above, the sum of the values in
rows will equal the vector of inbreeding coefficients

i.e. base::rowSums(m) equals purgeR::ip_F(pedigree)$Fi

Compute partial inbreeding relative to an arbitrary ancestor

ip.g 31

with id = 3 (i.e. individual named "J")
anc <- as.integer(c(3))

m <- ip_Fij(pedigree, mode = "custom”, ancestors = anc)
ip_g Purged inbreeding coefficient
Description

Computes the purged inbreeding coefficient (g). This is the probability that two alleles on a locus
are identical by descent, but relative to deleterious recessive alleles (Garcia-Dorado 2012). The
reduction in g relative to standard inbreeding (F) is given by an effective purging coefficient (d),
that measures the strength of the deleterious recessive component in the genome. The coefficient
g is computed following the methods for pedigrees in Garcia-Dorado (2012) and Garcia-Dorado et
al. (2016).

Usage

ip_g(ped, d, name_to = "g<d>", Fcol = NULL)

Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
d Purging coefficient (taking values between 0.0 and 0.5).
name_to A string naming the new output column.
Fcol Name of column with inbreeding coefficient values. If none is used, inbreeding
will be computed.
Value

The input dataframe, plus an additional column containing purged inbreeding coefficient values
(named "g" and followed by the purging coefficient value by default).
References

* Garcia-Dorado. 2012. Understanding and predicting the fitness decline of shrunk populations:
Inbreeding, purging, mutation, and standard selection. Genetics 190: 1-16.

* Garcia-Dorado et al. 2016. Predictive model and software for inbreeding-purging analysis of
pedigreed populations. G3 6: 3593-3601.

See Also

ip_F exp_g

32 ip_op

Examples

data(dama)
dama <- ip_g(dama, d = 0.23)
tail(dama)

ip_op Opportunity of purging

Description

The potential reduction in individual inbreeding load can be estimated by means of the opportunity
of purging (O) and expressed opportunity of purging (Oe) parameters described by Gulisija and
Crow (2007). Whereas O relates to the total potential reduction of the inbreeding load in an individ-
ual, as a consequence of it having inbred ancestors, Oe relates to the expressed potential reduction
of the inbreeding load. Only Oe is computed by default. Estimates of O and Oe need to be corrected
in complex pedigrees (see Details below). Both corrected (named "O" and "Oe" by default), and
non-corrected (suffixed with "_raw") are returned.

Usage
ip_op(
ped,
name_Oe = "Oe",
compute_0 = FALSE,
name_0 = "0",
Fcol = NULL,
ncores = 1L,
genedrop = 0,
seed = NULL,
complex = NULL
)
Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
name_Oe A string naming the new output column for the expressed opportunity of purging
(defaults to "Oe")
compute_0 Enable computation of total opportunity of purging (disabled by default)
name_0 A string naming the new output column for total opportunity of purging (defaults
to ||Oll)
Fcol Name of column with inbreeding coefficient values. If none is used, inbreeding

will be computed.

ncores Number of cores to use for parallel computing (default = 1)

ip_op 33

genedrop Number of genedrop iterations run to compute partial inbreedng. If set to zero
(as default), exact coefficients are computed.

seed Sets a seed for the random number generator (only if genedrop is enabled).

complex Enable correction for complex pedigrees (deprecated in v1.3, both raw and cor-

rected measures of "Oe" are returned now).

Details

Model used here assume fully recessive, high effect size alleles (Gulisija and Crow, 2007).

In simple pedigrees, the opportunity of purging (O) and the expressed opportunity of purging (Oe)
are estimated as in Gulisija and Crow (2007). For complex pedigrees involving more than one
autozygous individual per path from an individual to an ancestor, O and Oe in the closer ancestors
need to be discounted for what was already accounted for in their predecessors. To solve this
problem, Gulisija and Crow (2007) provide expression to correct O and Oe (see equations 21 and
22 in the manuscript).

Here, an heuristic approach is used to prevent the inflation of O and Oe, and avoid the use of
additional looped expressions that may result in an excessive computational cost. To do so, only the
contribution of the most recent ancestors in a path will be considered. Specifically, the method skips
contributions from "far" ancestors k, such that Fj(k) > 0, where j is an intermediate ancestor, both
referred to an individual 7 of interest. Fj(k) refers to the partial inbreeding of j for alleles derived
from k (see ip_Fij). This may not provide exact values of O and Oe, but we expect little bias, since
more distant ancestors also contribute lesser to O and Oe.

Both types of estimates (corrected and non-corrected) are returned (non-corrected estimates, pre-
fixed with "_raw").

Value

The input dataframe, plus an additional column containing Oe and Oe_raw estimates (additional
columns for O can appended by enabling compute_0 = TRUE).

References

* Gulisija D, Crow JF. 2007. Inferring purging from pedigree data. Evolution 61(5): 1043-1051.

See Also

ip_Fij

Examples

Original pedigree file in Gulisija & Crow (2007)
pedigree <- tibble::tibble(
id = c("M", "K", "J", "a", "c", "b", "e", "d", "I"),
dam = c("0", "0@", "@", "K", "M", "a", "c", "c", "e"),
Sire = C("@”, 110"’ II@I" I’J'II, "a"y "J”, Hb"’ Ilbll’ I’dl')
)
pedigree <- purgeR::ped_rename(pedigree, keep_names = TRUE)
ip_op(pedigree, compute_0 = TRUE)

34 Ne_delta

map_ancestors Map ancestors

Description

Creates a logical matrix that indicates whether an individual i (in columns) is ancestor of other j
(in rows) For example, matrix[, 1] will indicate descendants of id = 1 And matrix[1,] indicates
ancestors of id = 1

Usage

map_ancestors(ped, idx)

Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
idx Index of ancestors to map
Value

A logical matrix.

Ne_delta Realized effective population size (mean)

Description

Computes the mean realized effective population size. Note this function expected a mean delta_F
value for all individuals in the reference population

Computes the standard error of the realized effective population size. Note this function expects the
mean and standard deviation of delta F, as well as the total number of individuals in the reference
population

Usage
Ne_delta(delta)

se_Ne_delta(delta)

Arguments

delta Vector of individual variations in inbreeding.

op 35

Value

Mean effective population size.

Standard error of the effective population size.

op Opportunity of purging

Description

The potential reduction in individual inbreeding load can be estimated by means of the opportunity
of purging (O) and expressed opportunity of purging (Oe) parameters described by Gulisija and
Crow (2007). Whereas O relates to the total potential reduction of the inbreeding load in an individ-
ual, as a consequence of it having inbred ancestors, Oe relates to the expressed potential reduction
of the inbreeding load. In both cases, these measures are referred to fully recessive, high effect size
alleles (e.g. lethals). For complex pedigrees, involving more than one autozygous individual per
path from a reference individual to an ancestor, these estimates are estimated following an heuristic
approach (see details below).

Usage

op(ped, pi, Fi, name_0O, name_Oe, sufix, compute_O = FALSE)

Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
pi Partial inbreeding matrix
Fi Vector of inbreeding coefficient values
name_0 A string naming the new output column for total opportunity of purging (defaults
tO HOII)
name_Oe A string naming the new output column for the expressed opportunity of purging
(defaults to "Oe")
sufix A string naming the sufix for non-corrected O and Oe measures
compute_0 Enable computation of total opportunity of purging (false by default)
Details

In simple pedigrees, the opportunity of purging (O) and the expressed opportunity of purging (Oe)
are estimated as in Gulisija and Crow (2007). For complex pedigrees involving more than one
autozygous individual per path from an individual to an ancestor, O and Oe in the closer ancestors
need to be discounted for what was already accounted for in their predecessors. To solve this
problem, Gulisija and Crow (2007) provide expression to correct O and Oe (see equations 21 and
22 in the manuscript).

Here, an heuristic approach is used to prevent the inflation of O and Oe, and avoid the use of
additional looped expressions that may result in an excessive computational cost. To do so, when

36 ped_clean

using ip_op(complex = TRUE) only the contribution of the most recent ancestors in a path will be
considered. This may not provide exact values of O and Oe, but we expect little bias, since more
distant ancestors also contribute lesser to O and Oe.

Value

The input dataframe, plus two additional column named "O" and "Oe", containing total and ex-
pressed opportunity of purging measures.

References

* Gulisija D, Crow JF. 2007. Inferring purging from pedigree data. Evolution 61(5): 1043-1051.

ped_clean Remove individuals not used for purging analyses

Description

Remove individuals that are not necessary for purging analyses involving fitness. This will reduce
the size of the pedigree, and speed up the computation of inbreeding parameters. Individuals re-
moved include those with unknown (NA) values of a given parameter, as long as they do not have
any descendant in the pedigree with known values of that parameter. Cleaned pedigrees will auto-
matically have individual identities renamed (see ped_rename).

Usage

ped_clean(ped, value_from)

Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
value_from Name of the column of interest.
Value

A dataframe with the pedigree cleaned for the specificed parameter (column) provided.

See Also

ped_rename

Examples

data(arrui)
nrow(arrui)
arrui <- ped_clean(arrui, "survivali15")
nrow(arrui)

ped_graph 37

ped_graph Input for igraph

Description
Processes a pedigree into a list with two objects, one dataframe of edges, and a dataframe of vertices,
which can be used as input for functions of the igraph package.

Usage

ped_graph(ped)

Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
Value

A list with one dataframe ’edges’ and another ’vertices’, each following igraph format.

The ’edges’ dataframe will contain two columns in addition to the defaults "from" and "to": 1)
’from_parent’ indicates whether the vertex from which the edge originates represents a mother
("dam") or a father ("sire"). 2) to_parent’ indicates whether the vertex to which the edge is directed
represents a mother ("dam"), father ("sire") or none ("NA").

See Also

ped_rename, graph_from_data_frame

Examples

data(atlas)

atlas_graph <- ped_graph(atlas)

G <- igraph::graph_from_data_frame(d = atlas_graph$edges,
vertices = atlas_graph$vertices,
directed = TRUE)

ped_maternal Maternal effects

Description

For every individual in the pedigree, it will assign them their maternal (or paternal) value for an
observed variable of interest.

38 ped_rename

Usage

ped_maternal(ped, value_from, name_to, use_dam = TRUE, set_na = NULL)

Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
value_from Name of the column of interest.
name_to A string naming the new output column.
use_dam Extract maternal values. If false, parental values are returned.
set_na When maternal values are unknown, NA values are generated by default. This
option allows to set a different value.
Value

The input dataframe, plus an additional column with maternal (or paternal) values of a variable of
interest.

Examples

To assign maternal inbreeding as a new variable, we can do as follows:
data(dama)

dama <- ip_F(dama)

dama <- ped_maternal(dama, value_from = "Fi", name_to = "Fdam")
tail(dama)

ped_rename Rename individuals in a pedigree from I to N

Description

Functions in purgeR require individuals to be named with integers from 1 to N. This takes a
dataframe containing a pedigree, and rename individuals having names in any format to that re-
quired by other functions in purgeR. The process will also check that the pedigree format is suitable
for other functions in the package.

Usage

ped_rename(ped, id = "id", dam = "dam", sire = "sire", keep_names = FALSE)

ped_sort 39

Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
id A string naming the column with individual identities. It will be renamed to its
default value ’id’.
dam A string naming the column with maternal identities. It will be renamed to its
default value dam’.
sire A string naming the column with paternal identities. It will be renamed to its
default value ’sire’.
keep_names A boolean value indicating whether the original identity values should be kept
on a separate column (named 'names’), or not.
Value

A dataframe with the pedigree’s identities renamed.

See Also

ped_clean

Examples

data(darwin)
darwin <- ped_rename(darwin, id = "Individual”, dam = "Mother"”, sire = "Father"”, keep_names = TRUE)
head(darwin)

ped_sort Sort individuals (with ancestors on top of descendants)

Description

Individuals can be sorted according to the pedigree structure, without need of birth dates. In the
sorted pedigree, descendants will always be placed in rows with higher index number than that of
their ancestors. This way, individuals born first will tend to be in the top of the pedigree. Younger
individuals, and individuals with no descendants will tend to be placed at the bottom. This function
uses the sorting algorithm developed by Zhang et al (2009). After sorting, individuals will be
renamed from 1 to N using ped_rename.

Usage

ped_sort(ped, id = "id", dam = "dam”, sire = "sire", keep_names = FALSE)

40 ped_sort_i
Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
id A string naming the column with individual identities. It will be renamed to its
default value ’id’.
dam A string naming the column with maternal identities. It will be renamed to its
default value ’dam’.
sire A string naming the column with paternal identities. It will be renamed to its
default value ’sire’.
keep_names A boolean value indicating whether the original identity values should be kept
on a separate column (named 'names’), or not.
Value
A sorted pedigree dataframe (with ancestors on top of descendants).
References
e Zhang Z, Li C, Todhunter RJ, Lust G, Goonewardene L, Wang Z. 2009. An algorithm to sort
complex pedigrees chronologically without birthdates. J Anim Vet Adv. 8 (1): 177-182.
See Also
ped_rename
Examples
data(darwin)
Here we reshuffle rows in the pedigree. It won't be usable for other functions in the package
darwin <- darwin[sample(1:nrow(darwin)), 1]
Below, we sort the pedigree again. The order might not be the same as before.
But ancestors will always be placed on top of descendants,
making the pedigree usable for other functions in the package.
darwin <- ped_sort(darwin, id = "Individual”, dam = "Mother"”, sire = "Father"”, keep_names = TRUE)
ped_sort_i Sorting steps
Description
Recursive function that computes steps for sorting algorithm described by Zhang et al (2009).
Usage

sort_step(p, id, dam, sire, t, S, G, t_G)

pop_hwd 41

Arguments
p Pedigree to sort (used as template)
id A string naming the column with individual identities. It will be renamed to its
default value ’id’.
dam A string naming the column with maternal identities. It will be renamed to its
default value *dam’.
sire A string naming the column with paternal identities. It will be renamed to its
default value ’sire’.
t Template for the new sorted pedigree
S Vector of assumed parent individuals
G Vector of generation numbers (0 identifies the youngest)
t_G Vector G for the new sorted pedigree
Value

No return value. Will print an error message if checking fail.

Filled template for the sorted pedigree. Once recursion ends, it returns the sorted pedigree

References

e Zhang Z, Li C, Todhunter RJ, Lust G, Goonewardene L, Wang Z. 2009. An algorithm to sort
complex pedigrees chronologically without birthdates. J Anim Vet Adv. 8 (1): 177-182.

See Also

ped_sort

pop_hwd Deviation from Hardy-Weinberg equilibrium

Description

Computes the deviation from Hardy-Weinberg equilibrium following Caballero and Toro (2000).

Usage

pop_hwd(ped, reference = NULL)

Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
reference A string naming a column indicating whether individuals belong to the reference

population or not. Column must be boolean or coercible to boolean type.

42 pop_Nancestors

Value

A numeric value indicating the deviation from Hardy-Weinberg equilibrium.

References

 Caballero A, Toro M. 2000. Interrelations between effective population size and other pedi-
gree tools for the management of conserved populations. Genet. Res. 75: 331-343.
See Also

pop_Ne

Examples

data(atlas)
pop_hwd (dama)

pop_Nancestors Population founders and ancestors

Description

Estimate the total and effective number of founders and ancestors in a pedigree, as well as the num-
ber of founder genome equivalents (see details on these parameters below). Note that a reference
population (RP) must be defined, so that founders and ancestors are referred to the set of individuals
belonging to that RP. This is set by means of a boolean vector passed as argument.

Usage

pop_Nancestors(ped, reference, nboot = 10000L, seed = NULL, skip_Ng = FALSE)

Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
reference A string naming a column indicating whether individuals belong to the reference
population or not. Column must be boolean or coercible to boolean type.
nboot Number of bootstrap iterations (for computing Ng).
seed Sets a seed for the random number generator.

skip_Ng Skip Ng computation or not (FALSE by default).

pop_Nancestors 43

Details

The total number of founders (Nf) and ancestors (Na) are calculated simply as the count of founders
and ancestors of individuals belonging to the reference population (RP). Founders here are defined
as individuals with both parentals unknown.

The effective number of founders (Nfe) is the number of equally contributing founders, that would
account for observed genetic diversity in the RP, while the effective number of ancestors (Nae) is
defined as the minimum number of ancestors, founders or not, required to account for the genetic
diversity observed in the RP. These parameters are computed from the probability of gene origin,
following methods in Tahmoorespur and Sheikhloo (2011).

While the previous parameters account for diversity loss due to bottlenecks at the level of founders
or ancestors, other sources of random loss of alleles (such as drift) can be accounted by means of the
number of founder genome equivalents (Ng, Caballero and Toro 2000). This parameter is estimated
via Monte Carlo simulation of allele segregation, following Boichard et al. (1997).

Value

A dataframe containing population size estimates for founders and ancestors:

* Nr - Total number of individuals in the RP
* Nf - Total number of founders
¢ Nfe - Effective number of founders
* Na - Total number of ancestors
* Nae - Effective number of ancestors
* Ng - Number of founder genome equivalents
* se_Ng - Standard error of Ng
If some of the auxiliary functions is used (e.g. pop_Nr), only the corresponding numerical estimate

will be returned. In the case of pop_Ng, alist object is returned, with the number of founder genome
equivalents (Ng) and its standard error (se_Ng).

References

* Boichard D, Maignel L, Verrier E. 1997. The value of using probabilities of gene origin to
measure genetic variability in a population. Genet. Sel. Evol. 29: 5-23.

* Caballero A, Toro M. 2000. Interrelations between effective population size and other pedi-
gree tools for the management of conserved populations. Genet. Res. 75: 331-343.

» Tahmoorespur M, Sheikhloo M. 2011. Pedigree analysis of the closed nucleus of Iranian
Baluchi sheep. Small Rumin. Res. 99: 1-6.

Examples

data(arrui)
pop_Nancestors(arrui, reference = "target”, skip_Ng = TRUE)

44 pop_Ne

pop_Ne Effective population size

Description

Estimate the effective population size (Ne). This is computed from the increase in individual in-
breeding, following the method described by Gutiérrez et al (2008, 2009).

Usage

pop_Ne(ped, Fcol, tcol)

Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
Fcol Name of column with inbreeding coefficient values.
tcol Name of column with generation numbers.
Value

A list with the effective population size (Ne) and its standard error (se_Ne).

References

* Gutiérrez JP, Cervantes I, Molina A, Valera M, Goyache F. 2008. Individual increase in in-
breeding allows estimating effective sizes from pedigrees. Genet. Sel. Evol. 40: 359-378.

* Gutiérrez JP, Cervantes I, Goyache F. 2009. Improving the estimation of realized effective
population sizes in farm animals. J. Anim. Breed. Genet. 126: 327-332.

See Also

ip_F, pop_t

Examples

data(atlas)

atlas <- ip_F(atlas) # compute inbreeding, appending column "F"
atlas <- pop_t(atlas) # compute generations, appending column "t"
pop_Ne(atlas, Fcol = "Fi", tcol = "t")

pop_t 45

pop_t Number of equivalent complete generations

Description

Computes the number of equivalent complete generations (¢), as defined by Boichard et al (1997).

Usage

pop_t(ped, name_to = "t")

Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
name_to A string naming the new output column.
Value

The input dataframe, plus an additional column corresponding to the number of equivalent complete
generations of every individual (named "t" by default).

References

* Boichard D, Maignel L, Verrier E. 1997. The value of using probabilities of gene origin to
measure genetic variability in a population. Genet. Sel. Evol., 29: 5-23.

See Also

pop_Ne

Examples

data(dama)
dama <- pop_t(dama)
tail(dama)

46

purgeR

purgeR

purgeR: Estimation of inbreeding-purging genetic parameters in pedi-
greed populations

Description

The purgeR package includes functions for the computation of parameters related to inbreeding
and genetic purging in pedigreed populations, including standard, ancestral and purged inbreeding
coefficients, among other measures of inbreeding and purging. In addition, functions to compute
the effective population size and other parameters relevant to population genetics and structure are
included.

Details

A complete user’s guide with examples is provided as vignettes, introducing functions in this pack-
age and providing examples of use. Navigate these vignettes from R with:

browseVignettes("purgeR")

There are currently two vignettes available:

* purgeR-tutorial: A complete overview of all functions in the package, including easy to

follow examples.

* ip: A more advanced guide showing examples of inbreeding purging analyses.

Functions

Preprocessing

ped_rename: Rename individuals in a pedigree from 1 to N
ped_sort: Sort individuals (with ancestors on top of descendants)
ped_clean: Remove individuals not used for purging analyses
ped_maternal: Maternal effects

ped_graph: Input for igraph

Inbreeding and purging

ip_F: Inbreeding coefficient

ip_Fa: Ancestral inbreeding coefficient

ip_F1ij: Partial inbreeding coefficient

ip_g: Purged inbreeding coefficient

ip_op: Opportunity of purging

exp_F: Expected inbreeding coefficient

exp_Fa: Expected ancestral inbreeding coefficient

exp_g: Expected purged inbreeding coefficient

reproductive_value 47

Population parameters

* pop_hwd: Deviation from Hardy-Weinberg equilibrium
* pop_t: Number of equivalent complete generations

* pop_Ne: Effective population size

* pop_Nancestors: Population founders and ancestors

¢ pop_Na: Total number of ancestors

¢ pop_Nae: Effective number of ancestors

e pop_Nf: Total number of founders

¢ pop_Nfe: Effective number of founders

* pop_Ng: Number of founder genome equivalents
Fitness

* w_grandoffspring: Grandoffspring
* w_offspring: Offspring

* w_reproductive_value: Reproductive value

Author(s)

Eugenio Lépez-Cortegano <elcortegano@ gmail.com> (ORCID)

References

* Lopez-Cortegano E. 2022. purgeR: Inbreeding and purging in pedigreed populations. Bioin-
formatics, https://doi.org/10.1093/bioinformatics/btab599.

See Also

Source code is available via the GitLab repository athttps://gitlab.com/elcortegano/purgeR/.
Users are encouraged to report bugs, request features, and contribute code to this project.

Some users might find useful the C++ software PURGd, which computes inbreeding-purging pa-
rameters and follow-up statistical analyses: https://gitlab.com/elcortegano/PURGd/.

reproductive_value Reproductive value

Description

Computes the reproductive value

https://orcid.org/0000-0001-6914-6305
https://gitlab.com/elcortegano/purgeR/
https://gitlab.com/elcortegano/PURGd/

48 sample_allele

Usage

reproductive_value(
ped,
reference,
name_to,
target = NULL,
enable_correction = TRUE

)
Arguments

ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.

reference A string naming a column indicating whether individuals belong to the reference
population or not. Column must be boolean or coercible to boolean type.

name_to A string naming the new output column.

target A string naming a column indicating whether individuals belong to the target

population or not. Column must be boolean or coercible to boolean type. By

default, all descendants of the reference population are used.
enable_correction

Correct reproductive values.

Value
The input dataframe, plus an additional column with reproductive values for the reference and target
populations assumed.

References

Hunter DC et al. 2019. Pedigree-based estimation of reproductive value. Journal of Heredity 110
(4): 433-444

sample_allele Sample dam or sire inherited allele

Description

Given two alleles (one from dam, the other from sire), it samples one at random.

Arguments
dam_al Dam allele.
sire_al Sire allele.
Value

The sampled allele.

search_ancestors 49

search_ancestors Search and individuals’ ancestors

Description

Recursive function that gathers all founders and ancestors for a given individual

Arguments

dam Vector of dams.

sire Vector of sires.

i Reference individual (its index, not id).

fnd Vector of founders (to be returned as reference).

anc Vector of ancestors (to be returned as reference).
Value

The sampled allele.

w_grandoffspring Grandoffspring

Description

Counts the number of grandoffspring for individuals in the pedigree.

Usage

w_grandoffspring(ped, name_to)

Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
name_to A string naming the new output column.
Value

The input dataframe, plus an additional column indicating the total number of grandoffspring.

Examples
data(arrui)
dama <- w_grandoffspring(arrui, name_to = "G")

head(arrui)

50 w_reproductive_value

w_offspring Offspring

Description

Counts the number of offspring for individuals in the pedigree.

Usage

w_offspring(ped, name_to, dam_offspring = TRUE, sire_offspring = TRUE)

Arguments
ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.
name_to A string naming the new output column.

dam_offspring Compute dam offspring (TRUE by default).
sire_offspring Compute sire offspring (TRUE by default).

Value

The input dataframe, plus an additional column indicating the total number of offspring.

Examples

data(arrui)
dama <- w_offspring(arrui, name_to = "P")
head(arrui)

w_reproductive_value Reproductive value

Description

Computes the reproductive value following the method by Hunter et al. (2019). This is a measure
of how well a gene originated in a set of 'reference’ individuals is represented in a different set
of ’target’ individuals. By default, fitness is computed for individuals in the reference population,
using all of their descendants as target. A generation-wise mode can also be enabled, to compute
fitness contributions consecutively from one generation to the next.

w_reproductive_value 51

Usage

w_reproductive_value(
ped,
reference,
name_to,
target = NULL,
enable_correction = TRUE,
generation_wise = FALSE

)
Arguments

ped A dataframe containing the pedigree. Individual (id), maternal (dam), and pa-
ternal (sire) identities are mandatory columns.

reference A string naming a column indicating whether individuals belong to the reference
population or not. Column must be boolean or coercible to boolean type.

name_to A string naming the new output column.

target A string naming a column indicating whether individuals belong to the target

population or not. Column must be boolean or coercible to boolean type. By
default, all descendants of the reference population are used.

enable_correction
Correct reproductive values (enabled by default).

generation_wise
Assume that the reference population is a vector of integers indicating genera-
tion numbers. Reproductive values will be computed generation by generation
independently (except for the last one).

Details

A reference population must be defined, which represents a set of individuals whose reproductive
value is to be calculated. By default, genetic contributions to the rest of individuals in the pedigree
is assumed, but a target population can also be defined, restricting the set of individuals accounted
when computing the reproductive value. This could represent for example a cohort of alive individ-
uals.

Value

The input dataframe, plus an additional column with reproductive values for the reference and target
populations assumed.

References

* Hunter DC et al. 2019. Pedigree-based estimation of reproductive value. Journal of Heredity
10(4): 433-444.

52

Examples

w_reproductive_value

library(dplyr)

library(magrittr)

Pedigree used in Hunter et al. (2019)

id <= c("A1", "A2", "A3", "A4" 6 "A5", "A6",

dam <-

"B1", "B2", "B3", "B4",
"c1r, "c2", "C3", "C4")
c("o", "o", "o0", "0", "o", "0",
"A2", "A2", "A2", "A4",
"B2", "B2", "A4", "A6")

sire <- C(”@", non’ n@n’ n®ny u@n’ n®n,

t <-c¢c

ped <-
ped <-
dplyr
purgeR

"A1", "AT", "AT", "AS",
"B1", "B3", "B3", "A5")
(0, 9, 0, 0, 0, 0,
1, 1,1, 1,
2, 2,2, 2
tibble::tibble(id, dam, sire, t)
purgeR: :ped_rename(ped, keep_names = TRUE) %>%
::mutate(reference = ifelse(t == 1, TRUE, FALSE))
::w_reproductive_value(ped, reference = "reference”, name_to = "R")

Index

+ datasets
arrui, 4
atlas, 5
dama, 17
darwin, 18
dorcas, 19

ancestors, 3
arrui, 4
atlas, 5

check_ancestors, 6
check_basic, 6
check_bool, 7
check_col, 8
check_d, 8
check_df, 9
check_Fcol, 9
check_index, 10
check_int, 10
check_length, 11
check_na, 11
check_names, 12
check_Ne, 12
check_not_col, 13
check_nrows, 13
check_order, 14
check_reference, 14
check_repeat_id, 15
check_target (check_reference), 14
check_tcol, 15
check_types, 16
check_zero_id, 16

dama, 17
darwin, 18
delta_Fi, 18
dorcas, 19

exp_F, 20, 28, 46

53

exp_Fa, 21, 29, 46
exp_g, 22, 31,46

F,23

Fa, 23

Fij_core, 24
Fij_core_i_cpp, 25

g, 25
graph_from_data_frame, 37

hwd, 26

idx_ancestors, 27

ip_F, 20, 27, 29-31, 44, 46
ip_Fa, 21, 28, 46
ip_Fij, 29, 33,46

ip_g, 22,31, 46
ip_op, 32, 46

map_ancestors, 34
Ne_delta, 34
op, 35

ped_clean, 36, 39, 46
ped_graph, 37, 46
ped_maternal, 37, 46
ped_rename, 36, 37, 38, 39, 40, 46
ped_sort, 39, 41, 46
ped_sort_i, 40
pop_hwd, 41, 47

pop_Na, 47

pop_Na (pop_Nancestors), 42
pop_Nae, 47

pop_Nae (pop_Nancestors), 42
pop_Nancestors, 42, 47
pop_Ne, 27,42, 44, 45,47
pop_Nf, 47

pop_Nf (pop_Nancestors), 42

54

pop_Nfe, 47

pop_Nfe (pop_Nancestors), 42
pop_Ng, 47

pop_Ng (pop_Nancestors), 42
pop_t, 44, 45,47

purgeR, 46

purgeR-package (purgeR), 46

reproductive_value, 47

sample_allele, 48
se_Ne_delta (Ne_delta), 34
search_ancestors, 49
sort_step (ped_sort_i), 40

w_grandoffspring, 47, 49
w_offspring, 47, 50
w_reproductive_value, 47, 50

INDEX

	ancestors
	arrui
	atlas
	check_ancestors
	check_basic
	check_bool
	check_col
	check_d
	check_df
	check_Fcol
	check_index
	check_int
	check_length
	check_na
	check_names
	check_Ne
	check_not_col
	check_nrows
	check_order
	check_reference
	check_repeat_id
	check_tcol
	check_types
	check_zero_id
	dama
	darwin
	delta_Fi
	dorcas
	exp_F
	exp_Fa
	exp_g
	F
	Fa
	Fij_core
	Fij_core_i_cpp
	g
	hwd
	idx_ancestors
	ip_F
	ip_Fa
	ip_Fij
	ip_g
	ip_op
	map_ancestors
	Ne_delta
	op
	ped_clean
	ped_graph
	ped_maternal
	ped_rename
	ped_sort
	ped_sort_i
	pop_hwd
	pop_Nancestors
	pop_Ne
	pop_t
	purgeR
	reproductive_value
	sample_allele
	search_ancestors
	w_grandoffspring
	w_offspring
	w_reproductive_value
	Index

