Package ‘pastecs’

July 17, 2025
Type Package
Version 1.4.2
Title Package for Analysis of Space-Time Ecological Series

Description Regularisation, decomposition and analysis of space-time series.
The pastecs R package is a PNEC-Art4 and IFREMER (Benoit Beliaeff
<Benoit.Beliaeff @ifremer.fr>) initiative to bring PASSTEC 2000 functionalities to R.

Maintainer Philippe Grosjean <phgrosjean@sciviews.org>
Depends R (>=4.0.0)

Imports boot, stats, graphics, utils, grDevices

Suggests svUnit, covr, knitr, rmarkdown

ByteCompile yes

License GPL-2

URL https://github.com/SciViews/pastecs

BugReports https://github.com/SciViews/pastecs/issues
LazyData yes

NeedsCompilation no

RoxygenNote 7.2.3

VignetteBuilder knitr

Encoding UTF-8

Language en-US

Author Philippe Grosjean [aut, cre] (ORCID:
<https://orcid.org/0000-0002-2694-9471>),
Frederic Ibanez [aut],
Michele Etienne [ctb]

Repository CRAN
Date/Publication 2024-02-01 14:50:02 UTC

https://github.com/SciViews/pastecs
https://github.com/SciViews/pastecs/issues
https://orcid.org/0000-0002-2694-9471

2

Contents

Index

Contents

gleissberg.table L. e 3
abund ... oL 3
AutoD2 . .o e 5
DOr . . . e 8
buysbal e e 8
daystoyears e e e e e e e e e 9
decaverage e e e 11
deccensus e e 12
decdiff L e 14
decevl oL e 15
decloess e 17
decmedian e 18
decreg L e 19
disjoino e e e 21
diSto e e e e 22
esCoUf L e e e 23
EXITACT e e e e e e e 26
first . . . e e 27
GetUnitText e e e e e e e e 27
ISSETIES . & v vt o e e e e e e e e e e e e e e e e e e e 28
T 29
local.trend e e e 30
marbio L e e e e e e 31
marphy e e 33
match.tol L e e e e 34
PENNINGION e e e e e e e e e e 35
pgleissberg 37
TEZATEA .« . v o v v e 38
TEECONSE © . . v v v v i i e e e e e e e e e e e e 40
reglin 41
regspline 42
regul . .o 43
reguladj L L 48
regul.SCIEENo e e e e 50
TElEeVE . . . 52
SPECS « v v e 53
Stat.desc e e 54
SEALPEN e e e e e e e e e e e e e e 55
stat.slide L 56
trend.test. L e e 59
tSA . . e 60
TSEIES o e e e 64
TUIMOZIAM .« vt vt e et e e e e e e e e e e e e e e e e e e 65
UMNPOINES o o ot e e e e e e e e e e e e e e e e e 69
VATIO . . . e e 72
74

.gleissberg.table 3

.gleissberg.table Table of probabilities according to the Gleissberg distribution

Description
The table of probabilities to have 0 to n-2 extrema in a series, for n=3 to 50 (for n > 50, the
Gleissberg distribution is approximated with a normal distribution

Note
This dataset is used internally by pgleissberg(). You do not have to access it directly. See
pgleissberg() for more information

See Also

pgleissberg

abund Sort variables by abundance

Description

Sort variables (usually species in a species x stations matrix) in function of their abundance, either in
number of non-null values, or in number of individuals (in log). The f coefficient allows adjusting
weight given to each of these two criteria.

Usage
abund(x, f = 0.2)

S3 method for class 'abund'

extract(e, n, left = TRUE, ...)
S3 method for class 'abund'
identify(x, label.pts = FALSE, lvert = TRUE, lvars = TRUE, col = 2, 1ty =2, ...)

S3 method for class 'abund'
lines(x, n = x$%$n, lvert = TRUE, lvars = TRUE, col
S3 method for class 'abund'
plot(x, n = x$n, lvert = TRUE, lvars = TRUE, lcol = 2, 1lty = 2, all = TRUE,
dlab = c("cumsum”, "% log(ind.)", "% non-zero"), dcol = c(1,2,4),
dlty = c(par("1ty"), par("1lty"”), par("1lty")), dpos = c(1.5, 20), type = "1",

2, 1ty =2, ...)

xlab = "variables"”, ylab = "abundance”,

main = paste(”Abundance sorting for:",x$data, "with f =", round(x$f, 4)), ...)
S3 method for class 'abund'
print(x, ...)

S3 method for class 'summary.abund'

print(x,

abund

S3 method for class 'abund'

summary (object,

Arguments

X

object
e

n

type
lvert

lvars

lcol

11ty

xlab
ylab
main

all

dlab
dcol
dlty
dpos

col

1ty

label.pts

left

)

A data frame containing the variables to sort according to their abundance in
columns for abund, or an abund’ object for the methods

Weight given to the number of individuals criterium (strictly included between
0 and 1; weight for the non-null values is 1-f. The default value, f=0. 2, gives
enough weight to the number of non-null values to get abundant species accord-
ing to this criterium first, but allowing to get at the other extreme rare, but locally
abundant species

An ’abund’ object returned by abund

An ’abund’ object returned by abund

The number of variables selected at left

the type of graph to plot. By default, lines with 1’

If TRUE then a vertical line separate the n variables at left from the others

If TRUE then the x-axis labels of the n left variables are printed in a different
color to emphasize them

The color to use to draw the vertical line (1vert=TRUE) and the variables labels
(1vars=TRUE) at left af the nth variable. By default, color 2 is used

The style used to draw the vertical line (1vert=TRUE). By default, a dashed line
is used

the label of the x-axis
the label of the y-axis
the main title of the graph

If TRUE then all lines are drawn (cumsum, %log(ind.) and %non-null). If FALSE,
only the cumsum line is drawn

The legend labels
Colors to use for drawing the various curves on the graph
The line style to use for drawing the various curves on the graph

The position of the legend box on the graph (coordinates of its top-left corner).
A legend box is drawn only if al1=TRUE

The color to use to draw lines
The style used to draw lines
additional parameters

Do we have to label points on the graph or to chose an extraction level with the
identify() method?

If TRUE, the n variables at left are extracted. Otherwise, the total-n variables at
right are extracted

AutoD2 5

Details

Successive sorts can be applied. For instance, a first sort with f = @. 2, followed by an extraction of
rare species and another sort with f = 1 allows to collect only rare but locally abundant species.

Value

An object of type ’abund’ is returned. It has methods print(), summary(), plot(), lines(),
identify(), extract().

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>), Frédéric Ibanez (<ibanez@obs-v1fr.fr>)

References

Ibanez, F., J.-C. Dauvin & M. Etienne, 1993. Comparaison des évolutions a long terme (1977-1990)
de deux peuplements macrobenthiques de la baie de Morlaix (Manche occidentale): relations avec
les facteurs hydroclimatiques. J. Exp. Mar. Biol. Ecol., 169:181-214.

See Also

escouf

Examples

data(bnr)

bnr.abd <- abund(bnr)

summary (bnr. abd)

plot(bnr.abd, dpos=c(105, 100))

bnr.abd$n <- 26

To identify a point on the graph, use: bnr.abd$n <- identify(bnr.abd)
lines(bnr.abd)

bnr2 <- extract(bnr.abd)

names (bnr2)

AutoD2 AutoD?2, CrossD2 or CenterD2 analysis of a multiple time-series

Description

Compute and plot multiple autocorrelation using Mahalanobis generalized distance D2. AutoD2
uses the same multiple time-series. CrossD2 compares two sets of multiple time-series having
same size (same number of descriptors). CenterD2 compares subsamples issued from a single
multivariate time-series, aiming to detect discontinuities.

6 AutoD?2
Usage
AutoD2(series, lags=c(1, nrow(series)/3), step=1, plotit=TRUE,
add=FALSE, ...)
CrossD2(series, series2, lags=c(1, nrow(series)/3), step=1,
plotit=TRUE, add=FALSE, ...)
CenterD2(series, window=nrow(series)/5, plotit=TRUE, add=FALSE,
type="1", level=0.05, lhorz=TRUE, lcol=2, 1lty=2, ...)
Arguments
series regularized multiple time-series
series?2 a second set of regularized multiple time-series
lags minimal and maximal lag to use. By default, 1 and a third of the number of
observations in the series respectively
step step between successive lags. By default, 1
window the window to use for CenterD2. By default, a fifth of the total number of
observations in the series
plotit if TRUE then also plot the graph
add if TRUE then the graph is added to the current figure
type The type of line to draw in the CenterD2 graph. By default, a line without points
level The significance level to consider in the CenterD2 analysis. By default 5%
lhorz Do we have to plot also the horizontal line representing the significance level on
the graph?
lcol The color of the significance level line. By default, color 2 is used
11ty The style for the significance level line. By default: 11ty=2, a dashed line is
drawn
additional graph parameters
Value

An object of class D2’ which contains:

lag

D2
call
data
type
window
level

chisqg

units.text

The vector of lags

The D2 value for this lag

The command invoked when this function was called

The series used

The type of D2’ analysis: *AutoD2’, ’CrossD2’ or ’CenterD2’
The size of the window used in the CenterD2 analysis

The significance level for CenterD2

The chi-square value corresponding to the significance level in the CenterD2
analysis

Time units of the series, nicely formatted for graphs

AutoD2 7

WARNING

If data are too heterogeneous, results could be biased (a singularity matrix appears in the calcula-
tions).

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

References

Cooley, W.W. & P.R. Lohnes, 1962. Multivariate procedures for the behavioural sciences. Whiley
& sons.

Dagnélie, P., 1975. Analyse statistique a plusieurs variables. Presses Agronomiques de Gembloux.

Ibanez, F., 1975. Contribution a I’analyse mathématique des événements en écologie planctonique:
optimisations méthodologiques; étude expérimentale en continu a petite échelle du plancton cotier.
These d’état, Paris VI.

Ibanez, F., 1976. Contribution a I’analyse mathématique des événements en écologie planctonique.
Optimisations méthodologiques. Bull. Inst. Océanogr. Monaco, 72:1-96.

Ibanez, F., 1981. Immediate detection of heterogeneities in continuous multivariate oceanographic
recordings. Application to time series analysis of changes in the bay of Villefranche sur mer. Lim-
nol. Oceanogr., 26:336-349.

Ibanez, F., 1991. Treatment of the data deriving from the COST 647 project on coastal benthic
ecology: The within-site analysis. In: B. Keegan (ed), Space and time series data analysis in
coastal benthic ecology, p 5-43.

See Also

acf

Examples

data(marphy)

marphy.ts <- as.ts(as.matrix(marphy[, 1:31))

AutoD2(marphy.ts)

marphy.ts2 <- as.ts(as.matrix(marphy[, c(1, 4, 3)1))

CrossD2(marphy.ts, marphy.ts2)

This is not identical to:

CrossD2(marphy.ts2, marphy.ts)

marphy.d2 <- CenterD2(marphy.ts, window=16)

lines(c(17, 17), c(-1, 15), col=4, 1lty=2)

lines(c(25, 25), c(-1, 15), col=4, 1lty=2)

lines(c(30, 30), c(-1, 15), col=4, 1ty=2)

lines(c(41, 41), c(-1, 15), col=4, 1lty=2)

lines(c(46, 46), c(-1, 15), col=4, 1lty=2)

text(c(8.5, 21, 27.5, 35, 43.5, 57), 11, labels=c("Peripheral Zone", "D1",
"C", "Front”, "D2", "Central Zone")) # Labels

time(marphy.ts)[marphy.d2$D2 > marphy.d2$chisq]

8 buysbal

bnr A data frame of 163 benthic species measured across a transect

Description

The bnr data frame has 103 rows and 163 columns. Each column is a separate species observed at
least once in one of all stations. Several species are very abundant, other are very rare.

Usage
data(bnr)

Source

Unpublished dataset.

buysbal Buys-Ballot table

Description

Calculate a Buys-Ballot table from a time-series

Usage

buysbal(x, y=NULL, frequency=12, units="years", datemin=NULL,
dateformat="m/d/Y", count=FALSE)

Arguments

X Either a vector with time values (in this case, y must be defined), or a regular
time-series

y If x is a vector with time values, y must contain corresponding observations

frequency The frequency of observations per year to use in the Buys-Ballot table. By
default frequency=12 which corresponds to monthly samples, and the resulting
table has 12 column, one per month

units either "years" (by default), and time is not rescaled, or "days", and the time is
rescaled to "years" with the function daystoyears()

datemin A character string representing the first date, using a format corresponding to

dateformat. Forinstance, with datemin="04/23/1998" and dateformat="m/d/Y",
the first observation is assumed to be made the 23th April 1998. In R, it can also

be a POSIXt date (see ?DataTimeClasses). In this case, dateformat is not
required and is ignored. By default, datemin=NULL

daystoyears

dateformat

count

Details

The format used for the date in datemin. For instance, "d/m/Y" or "m/d/Y" (by
default). The distinction between "Y" and "y" is not important in Splus, but it
is vital in R to use "y" for two-digit years (ex: 89) and "Y" for four-digits years
(ex: 1989), or the date will not be correctly converted! In R, you can also use a
POSIXt format specification like "%d-%m%Y" for instance (see ?strptime for
a complete description of POSIXt format specification. In both Splus and R, you
can also use "mon" for abbreviated months like "mon d Y" for "Apr 20 1965",

and "month" for fully-spelled months like "d month Y" for "24 September 2003"

If FALSE (by default), the Buys-Ballot table is calculated. If TRUE, the function
returns only the number of observations that are used in each cell of the Buys-
Ballot table

A Buys-Ballot table summarizes data to highlight seasonal variations. Each line is one year and
each column is a period of the year (12 months, 4 quarters, 52 weeks,...). A cell ij of this table
contain the mean value for all observations made during the year i at the period j.

Value

A matrix containing either the Buys-Ballot table (count=FALSE), or the number of observations
used to build the table (count=TRUE)

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

See Also

daystoyears, tsd

Examples

data(releve)

buysbal (releve$Day, releve$Melosul, frequency=4, units="days",
datemin="21/03/1989", dateformat="d/m/Y")

buysbal (releve$Day, releve$Melosul, frequency=4, units="days",
datemin="21/03/1989", dateformat="d/m/Y", count=TRUE)

daystoyears

Convert time units from "days" to "years" or back

Description

Convert time scales. The time scale "days" corresponds to 1 unit per day. The time scale "years"
uses 1 unit for 1 year. It is used in any analysis that requires seasonal decomposition and/or elimi-

nation.

10 daystoyears

Usage

daystoyears(x, datemin=NULL, dateformat="m/d/Y")
yearstodays(x, xmin=NULL)

Arguments

X A vector of time values

datemin A character string representing the first date, using a format corresponding to
dateformat. For instance, with datemin="04/23/1998" and dateformat="m/d/Y",
the first observation is assumed to be made the 23th April 1998. In R, it can also
be a POSIXt date (see ?DataTimeClasses). In this case, dateformat is not
required and is ignored. By default, datemin=NULL

dateformat The format used for the date in datemin. For instance, "d/m/Y" or "m/d/y".
The distinction between "Y" and "y" is not important in Splus, but it is vital
in R to use "y" for two-digit years (ex: 89) and "Y" for four-digits years (ex:
1989), or the date will not be correctly converted! In R, you can also use a
POSIXt format specification like "%d-%m%Y" for instance (see ?strptime for
a complete description of POSIXt format specification. In both Splus and R, you
can also use "mon" for abbreviated months like "mon d Y" for "Apr 20 1965",
and "month" for fully-spelled months like "d month Y" for "24 September 2003"

xmin The minimum value for the "days" time-scale

Details

The "years" time-scale uses one unit for each year. We deliberately "linearized" time in this time-
scale and each year is considered to have exactly 365.25 days. There is thus no adjustment for lep
years. Indeed, a small shift (Iess than one day) is introduced. This could result, for some dates,
especially the 31st December, or 1st January of a year to be considered as belonging to the next,
or previous year, respectively! Similarly, one month is considered to be 1/12 year, no mather if it
has 28, 29, 30 or 31 days. Thus, the same warning applies: there are shifts in months introduced by
this linearization of time! This representation simplifies further calculations, especially regarding
seasonal effects (a quarter is exactly 0.25 units for instance), but shifts introduced in time may
or may not be a problem for your particular application (if exact dates matters, do not use this;
if shifts of up to one day is not significant, there is no problem, like when working on long-term
biological series with years as units). Notice that converting it back to "days", using yearstodays ()
restablishes exact dates without errors. So, no data is lost, it just a conversion to a simplified
(linearized) calendar!

Value

A numerical vector of the same length as x with the converted time-scale

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>), Frédéric Ibanez (<ibanez@obs-v1fr.fr>)

See Also

buysbal

decaverage 11

Examples

A vector with a "days” time-scale (25 values every 30 days)

A <- (1:25)*30

Convert it to a "years"” time-scale, using 23/05/2001 (d/m/Y) as first value
B <- daystoyears(A, datemin="23/05/2001", dateformat="d/m/Y")

B

Convert it back to "days" time-scale

yearstodays(B, xmin=30)

Here is an example showing the shift introduced, and its consequence:

C <- daystoyears(unclass(as.Date(c("1970-1-1","1971-1-1","1972-1-1","1973-1-1"),
format = "%Y-%m-%d")))

C

decaverage Time series decomposition using a moving average

Description
Decompose a single regular time series with a moving average filtering. Return a ’tsd’ object. To
decompose several time series at once, use tsd() with the argument method="average"

Usage

decaverage(x, type="additive", order=1, times=1, sides=2, ends="fill",
weights=NULL)

Arguments

X a regular time series ('rts’ under S+ and ’ts’ under R)

type the type of model, either type="additive" (by default), or type="multiplicative”

order the order of the moving average (the window of the average being 2*order+1),
centered around the current observation or at left of this observation depending
upon the value of the sides argument. Weights are the same for all observations
within the window. However, if the argument weights is provided, it supersedes
order. One can also use order="periodic”. In this case, a deseasoning filter
is calculated according to the value of frequency

times The number of times to apply the method (by default, once)

sides If 2 (by default), the window is centered around the current observation. If 1,
the window 1is at left of the current observation (including it)

ends either "NAs" (fill first and last values that are not calculable with NAs), or "fill"
(fill them with the average of observations before applying the filter, by default),
or "circular" (use last values for estimating first ones and vice versa), or "peri-
odic" (use entire periods of contiguous cycles, deseasoning)

weights a vector indicating weight to give to all observations in the window. This argu-

ment has the priority over order

12 deccensus

Details

This function is a wrapper around the filter() function and returns a ’tsd’ object. However, it
offers more methods to handle ends.

Value

A ’tsd’ object

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

References

Kendall, M., 1976. Time-series. Charles Griffin & Co Ltd. 197 pp.
Laloire, J.C., 1972. Méthodes du traitement des chroniques. Dunod, Paris, 194 pp.
Malinvaud, E., 1978. Méthodes statistiques de I’économétrie. Dunod, Paris. 846 pp.

Philips, L. & R. Blomme, 1973. Analyse chronologique. Université Catholique de Louvain. Vander
ed. 339 pp.

See Also

tsd, tseries, deccensus, decdiff, decmedian, decevf, decreg, decloess

Examples

data(marbio)

ClausoB.ts <- ts(log(marbio$ClausocalanusB + 1))

ClausoB.dec <- decaverage(ClausoB.ts, order=2, times=10, sides=2, ends="fill")

plot(ClausoB.dec, col=c(1, 3, 2), xlab="stations")

A stacked graph is more representative in this case

plot(ClausoB.dec, col=c(1, 3), xlab="stations”, stack=FALSE, resid=FALSE,
1lpos=c(53, 4.3))

deccensus Time decomposition using the CENSUS Il method

Description

The CENSUS II method allows to decompose a regular time series into a trend, a seasonal compo-
nent and residuals, according to a multiplicative model

Usage

deccensus(x, type="multiplicative”, trend=FALSE)

deccensus

Arguments

X

type

trend

Details

13

A single regular time serie (a ’rts’ object under S+ and a ’ts’ object under R)
with a "years" time scale (one unit = one year) and a complete number of cycles
(at least 3 complete years)

The type of model. This is for compatibility with other decxxx() functions, but
only a multiplicative model is allowed here

If trend=TRUE a trend component is also calculated, otherwise, the decomposi-
tion gives only a seasonal component and residuals

The trend component contains both a general trend and long-term oscillations. The seasonal trend
may vary from year to year. For a seasonal decomposition using an additive model, use decloess()

instead

Value

a ’tsd’ object

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

References

Béthoux, N., M. Etienne, F. Ibanez & J.L. Rapaire, 1980. Spécificités hydrologiques des zones
littorales. Analyse chronologique par la méthode CENSUS II et estimation des échanges océan-
atmosphere appliqués a la baie de Villefranche sur mer. Ann. Inst. Océanogr. Paris, 56:81-95.

Fromentin, J.M. & F. Ibanez, 1994. Year to year changes in meteorological features on the French
coast area during the last half-century. Examples of two biological responses. Oceanologica Acta,

17:285-296.

Institut National de Statistique de Belgique, 1965. Décomposition des séries chronologiques en
leurs composantes suivant différentes méthodes. Etudes statistiques et économétriques. Bull. Stat.
INS, 10:1449-1524.

Philips, J. & R. Blomme, 1973. Analyse chronologique. Université Catholique de Louvain, Vander

ed. 339 pp.

Rosenblatt, H.M., 1968. Spectral evaluation of BLS and CENSUS revised seasonal adjustment
procedures. J. Amer. Stat. Assoc., 68:472-501.

Shiskin, J. & H. Eisenpress, 1957. Seasonal adjustment by electronic computer methods. J. Amer.
Stat. Assoc., 52:415-449.

See Also

tsd, tseries, decaverage, decdiff, decmedian, decevf, decreg, decloess

14 decdiff

Examples

data(releve)

Get regulated time series with a 'years' time-scale

rel.regy <- regul(releve$Day, releve[3:8], xmin=6, n=87, units="daystoyears"”,
frequency=24, tol=2.2, methods="linear"”, datemin="21/03/1989", dateformat="d/m/Y")

rel.ts <- tseries(rel.regy)

We must have complete cycles to allow using deccensus()

start(rel.ts)

end(rel.ts)

rel.ts2 <- window(rel.ts, end=c(1992,5))

rel.dec2 <- deccensus(rel.ts2[, "Melosul”"], trend=TRUE)

plot(rel.dec2, col=c(1,4,3,2))

decdiff Time series decomposition using differences (trend elimination)

Description
A filtering using X(t+lag) - X(t) has the property to eliminate the general trend from the series,
whatever its shape

Usage

decdiff(x, type="additive"”, lag=1, order=1, ends="fill")

Arguments
X a regular time series ('rts’ under S+ and ’ts’ under R)
type the type of model, either type="additive” (by default), or type="multiplicative”
lag The lag between the two observations used to calculate differences. By default,
lag=1
order The order of the difference corresponds to the number of times it is applied, by
default order=1
ends either "NAs" (fill first values that are not calculable with NAs), or "fill" (fill them
with the average of following observations before applying the filter, by default),
or "drop" (do not fill them). If ends="drop", the filtered series will be shorter
than the initial one by lag*order. In all other cases, the filtered series is as large
as the initial one
Details

This function is a wrapper around the diff() function to create a ’tsd’ object. It also manages
initial values through the ends argument.

Value

a ’tsd’ object

decevf 15

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

References

Kendall, M., 1976. Time-series. Charles Griffin & Co Ltd. 197 pp.
Laloire, J.C., 1972. Méthodes du traitement des chroniques. Dunod, Paris, 194 pp.

Philips, L. & R. Blomme, 1973. Analyse chronologique. Université Catholique de Louvain. Vander
ed. 339 pp.

See Also

tsd, tseries, decaverage, deccensus, decmedian, decevf, decreg, decloess

Examples

data(marbio)

ClausoB.ts <- ts(log(marbio$ClausocalanusB + 1))

ClausoB.dec <- decdiff(ClausoB.ts, lag=1, order=2, ends="fill")
plot(ClausoB.dec, col=c(1, 4, 2), xlab="stations")

decevf Time series decomposition using eigenvector filtering (EVF)

Description

The eigenvector filtering decomposes the signal by applying a principal component analysis (PCA)
on the original signal and a certain number of copies of it incrementally lagged, collected in a mul-
tivariate matrix. Reconstructing the signal using only the most representative eigenvectors allows
filtering it.

Usage

decevf(x, type="additive"”, lag=5, axes=1:2)

Arguments

X a regular time series ('rts’ under S+ and ’ts’ under R)

type the type of model, either type="additive" (by default), or type="multiplicative”

lag The maximum lag used. A PCA is run on the matrix constituted by vectors
lagged from O to lag. The defaulf value is 5, but a value corresponding to
no significant autocorrelation, on basis of examination of the autocorrelation
plot obtained by acf in the library ’ts’ should be used (Lag at first time the
autocorrelation curve crosses significance lines multiplied by the frequency of
the series).

axes The principal axes to use to reconstruct the filtered signal. For instance, to use

axes 2 and 4, use axes=c(2,4). By default, the first two axes are considered
(axes=1:2)

16 decevf

Value

a ’tsd’ object

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

References

Colebrook, J.M., 1978. Continuous plankton records: zooplankton and environment, North-East
Atlantic and North Sea 1948-1975. Oceanologica Acta, 1:9-23.

Ibanez, F. & J.C. Dauvin, 1988. Long-term changes (1977-1987) on a muddy fine sand Abra alba
- Melinna palmate population community from the Western English Channel. J. Mar. Prog. Ser.,
49:65-81.

Ibanez, F., 1991. Treatment of data deriving from the COST 647 project on coastal benthic ecology:
The within-site analysis. In: B. Keegan (ed.) Space and time series data analysis in coastal benthic
ecology. Pp. 5-43.

Ibanez, F. & M. Etienne, 1992. Le filtrage des séries chronologiques par I’analyse en composantes
principales de processus (ACPP). J. Rech. Océanogr., 16:27-33.

Ibanez, F., J.C. Dauvin & M. Etienne, 1993. Comparaison des évolutions a long-terme (1977-1990)
de deux peuplements macrobenthiques de la Baie de Morlaix (Manche Occidentale): relations avec
les facteurs hydroclimatiques. J. Exp. Mar. Biol. Ecol., 169:181-214.

See Also

tsd, tseries, decaverage, deccensus, decmedian, decdiff, decreg, decloess

Examples

data(releve)

melo.regy <- regul(releve$Day, releve$Melosul, xmin=9, n=87,
units="daystoyears"”, frequency=24, tol=2.2, methods="linear”,
datemin="21/03/1989", dateformat="d/m/Y")

melo.ts <- tseries(melo.regy)

acf(melo.ts)

Autocorrelation is not significant after 0.16

That corresponds to a lag of 0.16*24=4 (frequency=24)

melo.evf <- decevf(melo.ts, lag=4, axes=1)

plot(melo.evf, col=c(1, 4, 2))

A superposed graph is better in the present case

plot(melo.evf, col=c(1, 4), xlab="stations”, stack=FALSE, resid=FALSE,
1lpos=c(0, 60000))

decloess

17

decloess

Time series decomposition by the LOESS method

Description

Compute a seasonal decomposition of a regular time series using a LOESS method (local polyno-

mial regression)

Usage

decloess(x, type="additive"”, s.window=NULL, s.degree=0, t.window=NULL,
t.degree=2, robust=FALSE, trend=FALSE)

Arguments

X

type

s.window

s.degree

t.window

t.degree

robust

trend

Details

a regular time series ('rts’ under S+ and ’ts’ under R)

the type of model. This is for compatibility purpose. The only model type that
is accepted for this method is type="additive"”. For a multiplicative model,
use deccensus() instead

the width of the window used to extract the seasonal component. Use an odd
value equal or just larger than the number of annual values (frequency of the time
series). Use another value to extract other cycles (circadian, lunar,...). Using
s.window="periodic” ensures a correct value for extracting a seasonal com-
ponent when the time scale is in years units

the order of the polynome to use to extract the seasonal component (0 or 1). By
default s.degree=0

the width of the window to use to extract the general trend when trend=TRUE
(indicate an odd value). If this parameter is not provided, a reasonable value is
first calculated, and then used by the algorithm.

the order of the polynome to use to extract the general trend (0, 1 or 2). By
default t.degree=2

if TRUE a robust regression method is used. Otherwise (FALSE), by default, a
classical least-square regression is used

If TRUE a trend is calculated (under R only). Otherwise, the series is decomposed
into a seasonal component and residuals only

This function uses the st1() function for the decomposition. It is a wrapper that create a "tsd’

object

Value

a ’tsd’ object

18 decmedian

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>), Frédéric Ibanez (<ibanez@obs-v1fr.fr>)

References

Cleveland, W.S., E. Grosse & W.M. Shyu, 1992. Local regression models. Chapter 8 of Statistical
Models in S. J.M. Chambers & T.J. Hastie (eds). Wadsworth & Brook/Cole.

Cleveland, R.B., W.S. Cleveland, J.E. McRae, & I. Terpenning, 1990. STL: A seasonal-trend de-
composition procedure based on loess. J. Official Stat., 6:3-73.

See Also

tsd, tseries, decaverage, deccensus, decmedian, decdiff, decevf, decreg

Examples

data(releve)

melo.regy <- regul(releve$Day, releve$Melosul, xmin=9, n=87,
units="daystoyears"”, frequency=24, tol=2.2, methods="linear”,
datemin="21/03/1989", dateformat="d/m/Y")

melo.ts <- tseries(melo.regy)

melo.dec <- decloess(melo.ts, s.window="periodic")

plot(melo.dec, col=1:3)

decmedian Time series decomposition using a running median

Description

This is a nonlinear filtering method used to smooth, but also to segment a time series. The isolated
peaks and pits are leveraged by this method.

Usage

decmedian(x, type="additive", order=1, times=1, ends="fill")

Arguments
X a regular time series (’rts’ under S+ and ’ts’ under R)
type the type of model, either type="additive" (by default), or type="multiplicative”
order the window used for the running median corresponds to 2*order + 1
times the number of times the running median is applied. By default, 1
ends the method used to calculate ends. Either "NAs" (fill extremes, non-calculable

values with NAs), or "fill" (fill these extremes with the closest calculable me-
dian)

decreg 19

Value

a ’tsd’ object

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

References

Gebski, V.J., 1985. Some properties of splicing when applied to non-linear smoothers. Comp. Stat.
Data Anal., 3:151-157.

Philips, L. & R. Blomme, 1973. Analyse chronologique. Université Catholique de Louvain. Vander
ed. 339 pp.

Tukey, J.W., 1977. Exploratory Data Analysis. Reading Massachusetts: Addison-Wesley.

See Also

tsd, tseries, decaverage, deccensus, decdiff, decevf, decreg, decloess

Examples

data(marbio)

ClausoB.ts <- ts(log(marbio$ClausocalanusB + 1))

ClausoB.dec <- decmedian(ClausoB.ts, order=2, times=10, ends="fill")

plot(ClausoB.dec, col=c(1, 4, 2), xlab="stations")

This is a transect across a frontal zone:

plot(ClausoB.dec, col=c(@, 2), xlab="stations"”, stack=FALSE, resid=FALSE)

lines(c(17, 17), c(@, 10), col=4, lty=2)

lines(c(25, 25), c(@, 10), col=4, 1ty=2)

lines(c(30, 30), c(@, 10), col=4, 1lty=2)

lines(c(41, 41), c(@, 10), col=4, 1lty=2)

lines(c(46, 46), c(@, 10), col=4, 1ty=2)

text(c(8.5, 21, 27.5, 35, 43.5, 57), 8.7, labels=c("Peripheral Zone"”, "D1",
"C", "Front"”, "D2", "Central Zone"))

decreg Time series decomposition using a regression model

Description
Providing values coming from a regression on the original series, a tsd object is created using the
original series, the regression model and the residuals

Usage

decreg(x, xreg, type="additive")

20

Arguments

X

xreg

type

Value

a ’tsd’ object

Author(s)

decreg

a regular time series ('rts’ under S+ and ’ts’ under R)

a second regular time series or a vector of the same length as x with correspond-
ing values from the regression model

the type of model, either type="additive” (by default), or type="multiplicative”

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

References

Frontier, S., 1981. Méthodes statistiques. Masson, Paris. 246 pp.
Kendall, M., 1976. Time-series. Charles Griffin & Co Ltd. 197 pp.

Legendre, L. & P. Legendre, 1984. Ecologie numérique. Tome 2: La structure des données
écologiques. Masson, Paris. 335 pp.

Malinvaud, E., 1978. Méthodes statistiques de I’économétrie. Dunod, Paris. 846 pp.
Sokal, R.R. & EJ. Rohlf, 1981. Biometry. Freeman & Co, San Francisco. 860 pp.

See Also

tsd, tseries, decaverage, deccensus, decdiff, decevf, decmedian, decloess

Examples

data(marphy)

density <- ts(marphy[, "Density"])

plot(density)

Time <- time(density)

Linear model to represent trend

density.lin <- Im(density ~ Time)

summary (density.lin)

xreg <- predict(density.lin)

lines(xreg, col=3)

density.dec <- decreg(density, xreg)
plot(density.dec, col=c(1, 3, 2), xlab="stations")

Order 2 polynomial to represent trend
density.poly <- 1lm(density ~ Time + I(Time*2))
summary (density.poly)

xreg?2 <- predict(density.poly)

plot(density)

lines(xreg2, col=3)
density.dec2 <- decreg(density, xreg2)

disjoin 21

plot(density.dec2, col=c(1, 3, 2), xlab="stations")

Fit a sinusoidal model on seasonal (artificial) data

tser <- ts(sin((1:100)/12xpi)+rnorm(100, sd=0.3), start=c(1998, 4),
frequency=24)

Time <- time(tser)

tser.sin <- Im(tser ~ I(cos(2*pi*Time)) + I(sin(2*pixTime)))

summary (tser.sin)

tser.reg <- predict(tser.sin)

tser.dec <- decreg(tser, tser.reg)

plot(tser.dec, col=c(1, 4), xlab="stations”, stack=FALSE, resid=FALSE,
1lpos=c(0@, 4))

plot(tser.dec, col=c(1, 4, 2), xlab="stations")

One can also use nonlinear models (see 'nls')
or autoregressive models (see 'ar' and others in 'ts' library)

disjoin Complete disjoined coded data (binary coding)

Description

Transform a factor in separate variables (one per level) with a binary code (0 for absent, 1 for
present) in each variable

Usage

disjoin(x)

Arguments

X a vector containing a factor data

Details

Use cut () to transform a numerical variable into a factor variable

Value

a matrix containing the data with binary coding

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

22 disto

References

Fromentin J.-M., F. Ibanez & P. Legendre, 1993. A phytosociological method for interpreting plank-
ton data. Mar. Ecol. Prog. Ser., 93:285-306.

Gebski, V.J., 1985. Some properties of splicing when applied to non-linear smoothers. Comput.
Stat. Data Anal., 3:151-157.

Grandjouan, G., 1982. Une méthode de comparaison statistique entre les répartitions des plantes
et des climats. These d’Etat, Université Louis Pasteur, Strasbourg.

Ibanez, F., 1976. Contribution a I’analyse mathématique des événements en Ecologie planctonique.
Optimisations méthodologiques. Bull. Inst. Océanogr. Monaco, 72:1-96.

See Also

buysbal, cut

Examples

Artificial data with 1/5 of zeros

Z <- c(abs(rnorm(8000)), rep(0, 2000))

Let the program chose cuts

table(cut(Z, breaks=5))

Create one class for zeros, and 4 classes for the other observations
72 <- Z[7 '= 0]

cuts <- c(-1e-10, 1e-10, quantile(Z2, 1:5/5, na.rm=TRUE))
cuts

table(cut(Z, breaks=cuts))

Binary coding of these data

disjoin(cut(Z, breaks=cuts))[1:10,]

disto Compute and plot a distogram

Description

A distogram is an extension of the variogram to a multivariate time-series. It computes, for each
observation (with a constant interval h between each observation), the euclidean distance normated
to one (chord distance)

Usage

disto(x, max.dist=nrow(x)/4, plotit=TRUE, disto.data=NULL)

Arguments
X a matrix, a data frame or a multiple time-series
max.dist the maximum distance to calculate. By default, it is the third of the number of

observations (that is, the number of rows in the matrix)

escouf 23

plotit If plotit=TRUE then the graph of the distogram is plotted

disto.data data coming from a previous call to disto(). Call the function again with these
data to plot the corresponding graph

Value

A data frame containing distance and distogram values

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

References

Dauvin, J.C. & F. Ibanez, 1986. Variations a long-terme (1977-1985) du peuplement des sables
fins de la Pierre Noire (baie de Morlaix, Manche Occidentale): analyse statistique de 1’évolution
structurale. Hydrobiologia, 142:171-186.

Ibanez, F. & J.C. Dauvin, 1988. Long-term changes (1977-1987) in a muddy fine sand Abra alba -
Melinna palmate community from the Western English Channel: multivariate time-series analysis.
Mar. Ecol. Prog. Ser., 49:65-81.

Mackas, D.L., 1984. Spatial autocorrelation of plankton community composition in a continental
shelf ecosystem. Limnol. Ecol., 20:451-471.

See Also

vario

Examples

data(bnr)
disto(bnr)

escouf Choose variables using the Escoufier’s equivalent vectors method

Description

Calculate equivalent vectors sensu Escoufier, that is, most significant variables from a multivariate
data frame according to a principal component analysis (variables that are most correlated with
the principal axes). This method is useful mainly for physical or chemical data where simply
summarizing them with a PCA does not always gives easily interpretable principal axes.

24 escouf

Usage

escouf(x, level=1, verbose=TRUE)
S3 method for class 'escouf'

print(x, ...)

S3 method for class 'escouf'
summary(object, ...)

S3 method for class 'summary.escouf'
print(x, ...)

S3 method for class 'escouf'

plot(x, level=x$level, lhorz=TRUE, lvert=TRUE, lvars=TRUE,
lcol=2, 1lty=2, diff=TRUE, dlab="RV' (units not shown)", dcol=4,
dlty=par(”lty"”), dpos=0.8, type="s", xlab="variables", ylab="RV",
main=paste("Escoufier's equivalent vectors for:",6 x$data), ...)

S3 method for class 'escouf'

lines(x, level=x$level, lhorz=TRUE, lvert=TRUE, lvars=TRUE,
col=2, lty=2, ...)

S3 method for class 'escouf'

identify(x, lhorz=TRUE, lvert=TRUE, lvars=TRUE, col=2,

lty=2, ...)
S3 method for class 'escouf'
extract(e, n, level=e$level, ...)
Arguments

X For escouf(), a data frame containing the variables to sort according to the
Escoufier’s method. For the other functions, an ’escouf’ object

level The level of correlation at which to stop calculation. By default level=1, the
highest value, and all variables are sorted. Specify a value lower than one to
speed up calculation. If you specify a too low values you will not be able to
extract all significant variables (extraction level must be lower than calculation
level). We advise you keep 0.95 < level < 1

verbose Print calculation steps. This allows to control the percentage of calculation al-
ready achieved when computation takes a long time (that is, with many variables
to sort)

object An ’escouf’ object returned by escouf

e An ’escouf’ object returned by escouf

lhorz If TRUE then an horizontal line indicating the extraction level is drawn

lvert If TRUE then a vertical line separate the n extracted variables at left from the rest

lvars If TRUE then the x-axis labels of the n extracted variables at left are printed in a
different color to emphasize them

lcol The color to use to draw the lines (Lhorz=TRUE and 1vert=TRUE) and the vari-
ables labels (1vars=TRUE) of the n extracted variables. By default, color 2 is
used

11ty The style used to draw the lines (Lhorz=TRUE and lvert=TRUE). By default,

lines are dashed

escouf 25

diff If TRUE then the RV’ curve is also plotted (by default)

dlab The label to use for the RV’ curve. By default: "RV' (units not shown)"”

dcol The color to use for the RV’ curve (by default, color 4 is used)

type The type of graph to plot

xlab the label of the x-axis

ylab the label of the y-axis

main the main title of the graph

dlty The style for the RV’ curve

col The color to use to draw the lines (Lhorz=TRUE and 1vert=TRUE) and the vari-
ables labels (1vars=TRUE) of the n extracted variables. By default, color 2 is
used

1ty The style used to draw the lines (Lhorz=TRUE and lvert=TRUE). By default,

lines are dashed

dpos The relative horizontal position of the label for the RV’ curve. The default value
of 0.8 means that the label is placed at 80% of the horizontal axis. Vertical posi-
tion of the label is automatically determined

n The number of variables to extract. If a value is given, it has the priority on
level

additional parameters

Value

An object of type ’escouf’ is returned. It has methods print(), summary(), plot(), lines(),
identify(), extract().

WARNING

Since a large number of iterations is done, this function is slow with a large number of variables
(more than 25-30)!

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr. fr>), Philippe Grosjean (<phgrosjean@sciviews.org>), Ben-
jamin Planque (<Benjamin.Planque@ifremer. fr>), Jean-Marc Fromentin (<Jean.Marc.Fromentin@ifremer.fr>)

References

Cambon, J., 1974. Vecteur équivalent a un autre au sens des composantes principales. Application
hydrologique. DEA de Mathématiques Appliquées, Université de Montpellier.

Escoufier, Y., 1970. Echantillonnage dans une population de variables aléatoires réelles. Pub. Inst.
Stat. Univ. Paris, 19:1-47.

Jabaud, A., 1996. Cadre climatique et hydrobiologique du lac Léman. DEA d’Océanologie Bi-
ologique Paris.

26 extract

See Also
abund

Examples

data(marbio)

marbio.esc <- escouf(marbio)

summary (marbio.esc)

plot(marbio.esc)

The x-axis has short labels. For more info., enter:
marbio.esc$vr

Define a level at which to extract most significant variables
marbio.esc$level <- 0.90

Show it on the graph

lines(marbio.esc)

This can also be done interactively on the plot using:
marbio.esc$level <- identify(marbio.esc)

Finally, extract most significant variables

marbio2 <- extract(marbio.esc)

names(marbio2)

extract Extract a subset of the original dataset

Description

‘extract’ is a generic function for extracting a part of the original dataset according to an analysis...)

Usage
extract(e, n, ...)
Arguments
e An object from where extraction is performed
n The number of elements to extract
Additional arguments affecting the extraction
Value

A subset of the original dataset contained in the extracted object

See Also

abund, regul, tsd, turnogram, turnpoints

first 27

first Get the first element of a vector

Description

Extract the first element of a vector. Useful for the turnogram() function

Usage

first(x, na.rm=FALSE)

Arguments
X a numerical vector
na.rm if na. rm=TRUE, then the first non-missing value (if any) is returned. By default,
it is FALSE and the first element (whatever its value) is returned
Value

a numerical value

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>), Frédéric Ibanez (<ibanez@obs-v1fr.fr>)

See Also

last, turnogram

Examples

a <- c(NA, 1, 2, NA, 3, 4, NA)
first(a)
first(a, na.rm=TRUE)

GetUnitText Format a nice time units for labels in graphs

Description

This is an internal function called by some plot() methods. Considering the time series ’units’
attribute and the frequency of the observations in the series, the function returns a string with a
pertinent time unit. For instance, if the unit is "years’ and the frequency is 12, then data are monthly
sampled and GetUnitText () returns the string "months"

28 is.tseries

Usage

GetUnitText(series)
Arguments

series a regular time series (a 'rts’ object in Splus, or a ’ts’ object in R)
Value

a string with the best time unit for graphs

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>), Fr?d?ric Ibanez (<ibanez@obs-v1fr.fr>)

See Also

daystoyears, yearstodays

Examples
timeser <- ts(1:24, frequency=12) # 12 observations per year
attr(timeser, "units") <- "years” # time in years for 'ts' object
GetUnitText(timeser) # formats unit (1/12 year=months)
is.tseries Is this object a time series?
Description

This is equivalent to is.rts() in Splus and to is.ts() in R. is.tseries() recognizes both ’rts’
and ’ts’ objects whatever the environment (Splus or R)

Usage

is.tseries(x)

Arguments

X an object

Value

a boolean value

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>), Frédéric Ibanez (<ibanez@obs-v1fr.fr>)

last 29

See Also

tseries

Examples

tser <- ts(sin((1:100)/6xpi)+rnorm(100, sd=0.5), start=c(1998, 4), frequency=12)
is.tseries(tser) # TRUE

not.a.ts <- ¢(1,2,3)

is.tseries(not.a.ts) # FALSE

last Get the last element of a vector

Description

Extract the last element of a vector. Useful for the turnogram() function

Usage

last(x, na.rm=FALSE)

Arguments
X a numerical vector
na.rm if na. rm=TRUE, then the last non-missing value (if any) is returned. By default,
it is FALSE and the last element (whatever its value) is returned
Value

a numerical value

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>), Frédéric Ibanez (<ibanez@obs-v1fr.fr>)

See Also

first, turnogram

Examples

a <= c(NA, 1, 2, NA, 3, 4, NA)
last(a)
last(a, na.rm=TRUE)

30 local.trend

local.trend Calculate local trends using cumsum

Description

A simple method using cumulated sums that allows to detect changes in the tendency in a time

series
Usage
local.trend(x, k=mean(x), plotit=TRUE, type="1", cols=1:2, 1ltys=2:1,
xlab="Time", ylab="cusum”, ...)
S3 method for class 'local.trend’
identify(x, ...)
Arguments
X a regular time series (a ’ts’ object) for local.trend() or a ’local.trend’ object

for identify()

k the reference value to substract from cumulated sums. By default, it is the mean
of all observations in the series

plotit if plotit=TRUE (by default), a graph with the cumsum curve superposed to the
original series is plotted

type the type of plot (as usual notation for this argument)

cols colors to use for original data and for the trend line

ltys line types to use for original data and the trend line

xlab label of the x-axis

ylab label of the y-axis

additional arguments for the graph

Details

With local. trend(), you can:
- detect changes in the mean value of a time series
- determine the date of occurence of such changes

- estimate the mean values on homogeneous intervals

Value

a ’local.trend’ object is returned. It has the method identify()

marbio 31

Note

Once transitions are identified with this method, you can use stat.slide() to get more detailed
information on each phase. A smoothing of the series using running medians (see decmedian())
allows also to detect various levels in a time series, but according to the median statistic. Under

R, see also the ’strucchange’ package for a more complete, but more complex, implementation of
cumsum applied to time series.

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

References

Ibanez, F., J.JM. Fromentin & J. Castel, 1993. Application de la méthode des sommes cumulées

a l'analyse des séries chronologiques océanographiques. C. R. Acad. Sci. Paris, Life Sciences,
316:745-748.

See Also

trend. test, stat.slide, decmedian

Examples

data(bnr)

Calculate and plot cumsum for the 8th series

bnr8.1t <- local.trend(bnr[,8])

To identify local trends, use:

identify(bnr8.1t)

and click points between which you want to compute local linear trends...

marbio Several zooplankton taxa measured across a transect

Description
The marbio data frame has 68 rows (stations) and 24 columns (taxonomic zooplankton groups).
Abundances are expressed in no per cubic meter of seawater.

Usage

data(marbio)

32 marbio

Format
This data frame contains the following columns giving abundance of:

Acartia Acartia clausi - herbivorous

AdultsOfCalanus Calanus helgolandicus (adults) - herbivorous
Copepodits]l Idem (copepodits 1) - omnivorous

Copepodits2 Idem (copepodits 2) - omnivorous

Copepodits3 Idem (copepodits 3) - omnivorous

Copepodits4 Idem (copepodits 4) - omnivorous

Copepodits5 Idem (copepodits 5) - omnivorous
ClausocalanusA Clausocalanus size class A - herbivorous
ClausocalanusB Clausocalanus size class B - herbivorous
ClausocalanusC Clausocalanus size class C - herbivorous
AdultsOfCentropages Centropages tipicus (adults) - omnivorous
JuvenilesOfCentropages Centropages typicus (juv.) - omnivorous
Nauplii Nauplii of copepods - filter feeders

Oithona Oithona sp. - carnivorous

Acanthaires Various species of acanthaires - misc
Cladocerans Various species of cladocerans - carnivorous
EchinodermsLarvae Larvae of echinoderms - filter feeders
DecapodsLarvae Larvae of decapods - omnivorous
GasteropodsLarvae Larvae of gastropods - filter feeders
EggsOfCrustaceans Eggs of crustaceans - misc

Ostracods Various species of ostracods - omnivorous
Pteropods Various species of pteropods - herbivorous
Siphonophores Various species of siphonophores - carnivorous

BellsOfCalycophores Bells of calycophores - misc

Details

This dataset corresponds to a single transect sampled with a plankton net across the Ligurian Sea
front in the Mediterranean Sea, between Nice (France) and Calvi (Corsica). The transect extends
from the Cap Ferrat (close to Nice) to about 65 km offshore in the direction of Calvi (along a bearing
of 123°). 68 regularly spaced samples where collected on this transect. For more information about
the water masses and their physico-chemical characteristics, see the marphy dataset.

Source

Boucher, J., F. Ibanez & L. Prieur (1987) Daily and seasonal variations in the spatial distribution
of zooplankton populations in relation to the physical structure in the Ligurian Sea Front. Journal
of Marine Research, 45:133-173.

marphy 33

References

Fromentin, J.-M., F. Ibanez & P. Legendre (1993) A phytosociological method for interpreting
plankton data. Marine Ecology Progress Series, 93:285-306.

See Also

marphy

marphy Physico-chemical records at the same stations as for marbio

Description

The marphy data frame has 68 rows (stations) and 4 columns. They are seawater measurements at
a deep of 3 to 7 m at the same 68 stations as marbio.

Usage
data(marphy)

Format
This data frame contains the following columns:

Temperature Seawater temperature in °C
Salinity Salinity in g/kg
Fluorescence Fluorescence of chlorophyll a

Density Excess of volumic mass of the seawater in g/l

Details

This dataset corresponds to a single transect sampled across the Ligurian Sea front in the Mediter-
ranean Sea, between Nice (France) and Calvi (Corsica). The transect extends from the Cap Ferrat
(close to Nice) to about 65 km offshore in the direction of Calvi (along a bearing of 123°). 68 reg-
ularly spaced measurements where recorded. They correspond to the stations where zooplankton
was collected in the marbio dataset. Water masses in the transect across the front where identified
as:

Stations 1 to 17 Peripheral zone

Stations 17 to 25 D1 (divergence) zone

Stations 25 to 30 C (convergence) zone

Stations 30 to 41 Frontal zone

Stations 41 to 46 D2 (divergence) zone

Stations 46 to 68 Central zone

34 match.tol

Source
Boucher, J., F. Ibanez & L. Prieur (1987) Daily and seasonal variations in the spatial distribution
of zooplankton populations in relation to the physical structure in the Ligurian Sea Front. Journal
of Marine Research, 45:133-173.

References
Fromentin, J.-M., F. Ibanez & P. Legendre (1993) A phytosociological method for interpreting
plankton data. Marine Ecology Progress Series, 93:285-306.

See Also

marbio

match. tol Determine matching observation with a tolerance in time-scale

Description

Determine which observations in a regular time series match observation in an original irregular
one, accepting a given tolerance window in the time-scale. This function is internally used for
regulation (functions regul (), regul.screen() and regul.adj()

Usage
match.tol(x, table, nomatch=NA, tol.type="both", tol=0)

Arguments

X a numerical vector containing seeked values (time-scale of the regular series)

table a numerical vector containing initial times to look for match in x

nomatch the symbol tu use to flag an entry where no match is found. By default, nomatch=NA

tol. type the type of adjustment to use for the time-tolerance: "left"”, "right”, "both"
(by default) or "none"”. If tol. type="1eft", corresponding x values are seeked
in a window]table-tol, table]. If tol.type="right", they are seeked in the
window [table, table+tol[. If tol.type="both", then they are seeked in the
window [table-tol, table+tol]. If several observations are in this window, the
closest one is used. Finally, if tol.type="none", then the function returns the
nomatch symbol for all entries

tol the tolerance in the time-scale to determine if a value in x matches a value in

table. If tol=0, observations in each respective series must match exactly,
otherwise observations in the regulated series are interpolated. tol must be a
round fraction of the interval between observations in x (x[i+1] - x[i], (x[i+1] -
x[iD/2, (x[i+1] - x[i])/3, etc...), and cannot be larger than it, otherwise, tol is
automatically adjusted to the closest allowed value. By default, to1=NULL. This
is equivalent to tol=0. Warning!

pennington

Value

35

a vector of the same length of x, indicating the position of the matching observations in table

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>), Frédéric Ibanez (<ibanez@obs-v1fr.fr>)

See Also

regul, regul.screen, regul.adj

Examples

X <-1:5

Table <- c(1, 3.1,

3.8, 4.4, 5.1, 6)

match.tol(X, Table)
match.tol(X, Table, tol=0.2)
match.tol(X, Table, tol=0.55)

pennington

Calculate Pennington statistics

Description

Calculate the mean, the variance and the variance of the mean for a single series, according to
Pennington (correction for zero/missing values for abundance of species collected with a net)

Usage

pennington(x, calc="all", na.rm=FALSE)

Arguments

X

calc

na.rm

a numerical vector

non n on

indicate which estimator(s) should be calculated. Use: "mean”, "var”, "mean.var'
or "all” (by default) for the mean, the variance, the variance of the mean or all
these three statitics, respectively

I

if na. rm=TRUE, missing data are eliminated first. If it is FALSE (by default), any
missing value in the series leads to NA as the result for the statistic

36 pennington

Details

A complex problem in marine ecology is the notion of zero. In fact, the random sampling of a fish
population often leads to a table with many null values. Do these null values indicate that the fish
was absent or do we have to consider these null values as missing data, that is, that the fish was rare
but present and was not caught by the net? For instance, for 100 net trails giving 80 null values,
how to estimate the mean? Do we have to divide the sum of fishes caught by 100 or by 207

Pennington (1983) applied in this case the probabilistic theory of Aitchison (1955). The later es-
tablished a method to estimate mean and variance of a random variable with a non-null probability
to present zero values and whose the conditional distribution corresponding to its non-null values
follows a Gaussian curve. In practice, a lognormal distribution is found most of the time for non-
null values in fishes population. It is also often the case for the plankton, after our own experience.
pennington() calculates thus statistics for such conditional lognormal distributions.

Value

non

a single value, or a vector with "mean", "var" and "mean.var" if the argument calc="all"

Note

For multiple series, or for getting more statistics on the series, use stat.pen(). Use stat.slide()
for obtaining statistics calculated separately for various intervals along the time for a time series

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

References

Aitchison, J., 1955. On the distribution of a positive random variable having a discrete probability
mass at the origin. J. Amer. Stat. Ass., 50:901-908.

Pennington, M., 1983. Efficient estimations of abundance for fish and plankton surveys. Biometrics,
39:281-286.

See Also

stat.pen, stat.slide

Examples

data(marbio)
pennington(marbio[, "Copepodits2"])
pennington(marbio[, "Copepodits2"], calc="mean"”, na.rm=TRUE)

pgleissberg 37

pgleissberg Gleissberg distribution probability

Description

The Gleissberg distribution gives the probability to have k extrema in a series of n observations.
This distribution is used in the turnogram to determine if monotony indices are significant (see
turnogram())

Usage
pgleissberg(n, k, lower.tail=TRUE, two.tailed=FALSE)

Arguments
n the number of observations in the series
k the number of extrema in the series, as calculated by turnpoints()
lower.tail if lower.tail=TRUE (by default) and two.tailed=FALSE, the left-side proba-
bility is returned. If it is FALSE, the right-side probability is returned
two. tailed if two.tailed=TRUE, the two-sided probability is returned. By default, it is
FALSE and a one-sided probability is returned (left or right, depending on the
value of lower.tail
Value

a value giving the probability to have k extrema in a series of n observations

Note

The Gleissberg distribution is asymptotically normal. For n > 50, the distribution is approximated
by a Gaussian curve. For lower n values, the exact probability is returned (using data in the variable
.gleissherg.table

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

References

Dallot, S. & M. Etienne, 1990. Une méthode non paramétrique d’analyse des séries en océanogra-
phie biologique: les tournogrammes. Biométrie et océanographie - Société de biométrie, 6, Lille,
26-28 mai 1986. IFREMER, Actes de colloques, 10:13-31.

Johnson, N.L. & Kotz, S., 1969. Discrete distributions. J. Wiley & sons, New York, 328 pp.

See Also

.gleissberg.table, turnpoints, turnogram

38 regarea

Examples

Until n=50, the exact probability is returned

pgleissberg(20, 10, lower.tail=TRUE, two.tailed=FALSE)

For higher n values, it is approximated by a normal distribution
pgleissberg(60, 33, lower.tail=TRUE, two.tailed=FALSE)

regarea Regulate a series using the area method

Description

Transform an irregular time series in a regular time series, or fill gaps in regular time series using
the area method

Usage

regarea(x, y=NULL, xmin=min(x), n=length(x),
deltat=(max(x) - min(x))/(n - 1), rule=1,
window=deltat, interp=FALSE, split=100)

Arguments

X a vector with time in the irregular series. Missing values are allowed

y a vector of same length as x and holding observations at corresponding times

xmin allows to respecify the origin of time in the calculated regular time series. By
default, the origin is not redefined and it is equivalent to the smallest value in x

n the number of observations in the regular time series. By default, it is the same
number than in the original irregular time series (i.e., length(x)

deltat the time interval between two observations in the regulated time series

rule the rule to use for extrapolated values (outside of the range in the initial irregular
time series) in the regular time series. With rule=1 (by default), these entries
are not calculated and get NA; with rule=2, these entries are extrapolated

window size of the window to use for interpolation. By default, adjacent windows are
used (window=deltat)

interp indicates if matching observations in both series must be calculated (interp=TRUE),
or if initial observations are used "as is" in the final regular series (interp=FALSE,
by default)

split a parameter to optimise calculation time and to avoid saturation of the memory.

Very long time series are splitted into smaller subunits. This is transparent for
the user. The default value of split=100 should be rarely changed. Give a lower
value if the program fails and reports a memory problem during calculation

regarea 39

Details

This is a linear interpolation method described by Fox (1972). It takes into account all observations
located in a given time window around the missing observation. On the contrary to many other
interpolations (constant, linear, spline), the interpolated curve does not pass by the initial obser-
vations. Indeed, a smoothing is also operated simultaneously by this method. The importance of
the smoothing is dependent on the size of the window (the largest it is, the smoothest will be the
calculated regular time series)

Value

An object of type 'regul’ is returned. It has methods print(), summary(), plot(), lines(),
identify(), hist(), extract() and specs().

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>), Frédéric Ibanez (<ibanez@obs-v1fr.fr>)

References

Fox, W.T. & J.A. Brown, 1965. The use of time-trend analysis for environmental interpretation of
limestones. J. Geol., 73:510-518.

Ibanez, F., 1991. Treatment of the data deriving from the COST 647 project on coastal benthic
ecology: The within-site analysis. In: B. Keegan (ed). Space and Time Series Data Analysis in
Coastal Benthic Ecology. Pp 5-43.

Ibanez, F. & J.C. Dauvin, 1988. Long-term changes (1977-1987) on a muddy fine sand Abra alba
- Melinna palmata population community from the Western English Channel. J. Mar. Ecol. Prog.
Ser., 49:65-81.

See Also

regul, regconst, reglin, regspline, regul.screen, regul.adj, tseries, is. tseries

Examples

data(releve)

The 'Melosul' series is regulated with a 25-days window

reg <- regarea(releve$Day, releve$Melosul, window=25)

Then with a 50-days window

reg?2 <- regarea(releve$Day, releve$Melosul, window=50)

The initial and both regulated series are shown on the graph for comparison
plot(releve$Day, releve$Melosul, type="1")

lines(regx, regy, col=2)

lines(reg2$x, reg2$y, col=4)

40 regconst

regconst Regulate a series using the constant value method

Description
Transform an irregular time series in a regular time series, or fill gaps in regular time series using
the constant value method

Usage

regconst(x, y=NULL, xmin=min(x), n=length(x),
deltat=(max(x) - min(x))/(n - 1), rule=1, f=0)

Arguments
X a vector with time in the irregular series. Missing values are allowed
y a vector of same length as x and holding observations at corresponding times
xmin allows to respecify the origin of time in the calculated regular time series. By
default, the origin is not redefined and it is equivalent to the smallest value in x
n the number of observations in the regular time series. By default, it is the same
number than in the original irregular time series (i.e., length(x)
deltat the time interval between two observations in the regulated time series
rule the rule to use for extrapolated values (outside of the range in the initial irregular
time series) in the regular time series. With rule=1 (by default), these entries
are not calculated and get NA; with rule=2, these entries are extrapolated
f coefficient giving more weight to the left value (f=0, by default), to the right
value (f=) or to a combination of these two observations (0 < f <1)
Details

This is the simplest, but the less powerful regulation method. Interpolated values are calculated
according to existing observations at left and at right as: x[reg] = x[right]*f + x[left]*(f-1), with 0
<f<l.

Value
An object of type 'regul’ is returned. It has methods print(), summary(), plot(), lines(),
identify(), hist(), extract() and specs().

Note

This function uses approx() for internal calculations

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

reglin 41

See Also

regul, regarea, reglin, regspline, regul.screen, regul.adj, tseries, is.tseries

Examples

data(releve)

reg <- regconst(releve$Day, releve$Melosul)
plot(releve$Day, releve$Melosul, type="1")
lines(regx, regy, col=2)

reglin Regulation of a series using a linear interpolation

Description

Transform an irregular time series in a regular time series, or fill gaps in regular time series using a
linear interpolation

Usage

reglin(x, y=NULL, xmin=min(x), n=length(x),
deltat=(max(x) - min(x))/(n - 1), rule=1)

Arguments
X a vector with time in the irregular series. Missing values are allowed
y a vector of same length as x and holding observations at corresponding times
xmin allows to respecify the origin of time in the calculated regular time series. By
default, the origin is not redefined and it is equivalent to the smallest value in x
n the number of observations in the regular time series. By default, it is the same
number than in the original irregular time series (i.e., length(x)
deltat the time interval between two observations in the regulated time series
rule the rule to use for extrapolated values (outside of the range in the initial irregular
time series) in the regular time series. With rule=1 (by default), these entries
are not calculated and get NA; with rule=2, these entries are extrapolated
Details

Observed values are connected by lines and interpolated values are obtained from this "polyline".

Value

An object of type 'regul’ is returned. It has methods print(), summary(), plot(), lines(),
identify(), hist(), extract() and specs().

42 regspline

Note

This function uses approx() for internal calculations

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

See Also

regul, regarea, regconst, regspline, regul.screen, regul.adj, tseries, is.tseries

Examples

data(releve)

reg <- reglin(releve$Day, releve$Melosul)
plot(releve$Day, releve$Melosul, type="1")
lines(regx, regy, col=2)

regspline Regulation of a time series using splines

Description
Transform an irregular time series in a regular time series, or fill gaps in regular time series using
splines

Usage

regspline(x, y=NULL, xmin=min(x), n=length(x),
deltat=(max(x) - min(x))/(n - 1), rule=1, periodic=FALSE)

Arguments

X a vector with time in the irregular series. Missing values are allowed

y a vector of same length as x and holding observations at corresponding times

xmin allows to respecify the origin of time in the calculated regular time series. By
default, the origin is not redefined and it is equivalent to the smallest value in x

n the number of observations in the regular time series. By default, it is the same
number than in the original irregular time series (i.e., length(x)

deltat the time interval between two observations in the regulated time series

rule the rule to use for extrapolated values (outside of the range in the initial irregular
time series) in the regular time series. With rule=1 (by default), these entries
are not calculated and get NA; with rule=2, these entries are extrapolated

periodic indicates if the time series should be considered as periodic (periodic=TRUE,

first value must be equal to the last one). If this is the case, first and second
derivates used to calculate spline segments around first and last observations use
data in the other extreme of the series. In the other case (periodic=FALSE (by
default), derivates for extremes observations are considered to be equal to zero

regul 43

Details

Missing values are interpolated using cubic splines between observed values.

Value

An object of type 'regul’ is returned. It has methods print(), summary(), plot(), lines(),
identify(), hist(), extract() and specs().

Note
This function uses spline() for internal calculations. However, interpolated values are not allowed
to be higher than the largest initial observation or lower than the smallest one.

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

References

Lancaster, P. & K. Salkauskas, 1986. Curve and surface fitting. Academic Press, England, 280 pp.

See Also

regul, regarea, regconst, reglin, regul.screen, regul.adj, tseries, is.tseries, splinefun

Examples

data(releve)

reg <- regspline(releve$Day, releve$Melosul)
plot(releve$Day, releve$Melosul, type="1")
lines(regx, regy, col=2)

regul Regulation of one or several time series using various methods

Description

Regulate irregular time series or regular time series with gaps. Create a regul object from whose
one or several regular time series can be extracted using extract() or tseries(). This is the
function to apply most of the time to create regular time series ('rts’ objects in Splus or ’ts’ objects
in R) that will be further analyzed by other functions that apply to regular time series.

44 regul

Usage

regul(x, y=NULL, xmin=min(x), n=length(x), units="days", frequency=NULL,
deltat=1/frequency, datemin=NULL, dateformat="m/d/Y", tol=NULL,
tol.type="both"”, methods="linear"”, rule=1, f=0, periodic=FALSE,
window=(max(x) - min(x))/(n - 1), split=100@, specs=NULL)

S3 method for class 'regul'’

print(x, ...)

S3 method for class 'regul'’

summary (object, ...)

S3 method for class 'summary.regul'
print(x, ...)

S3 method for class 'regul'
plot(x, series=1, col=c(1, 2), lty=c(par("lty"), par("lty")), plot.pts=TRUE,
leg=FALSE, 1llab=c("initial"”, x$specs$methods[series]), lpos=c(1.5, 10),

xlab=paste("Time (", x$units, ")", sep = ""), ylab="Series”,
main=paste("Regulation of”, names(x$y)[series]), ...)

S3 method for class 'regul'’

lines(x, series=1, col=3, 1lty=1, plot.pts=TRUE, ...)

S3 method for class 'regul'’

identify(x, series=1, col=3, label="#", ...)

S3 method for class 'regul'’
hist(x, nclass=30, col=c(4, 5, 2),

xlab=paste("Time distance in"”, x$units, "with start =", min(x$x),
", n =" length(x$x), ", deltat =", x$tspars$deltat),
ylab=paste("Frequency, tol =", x$specs$tol),
main="Number of matching observations”, plotit=TRUE, ...)
S3 method for class 'regul'’
extract(e, n, series=NULL, ...)
S3 method for class 'regul'
specs(x, ...)
S3 method for class 'specs.regul'
print(x, ...)
Arguments
X for regul: a vector containing times at which observations are sampled in the
initial irregular time series. It can be expressed in any unit ("years", "days",
"weeks", "hours", "min", "sec",...) as defined by the argument units. It is often
expressed in "days" and the decimal part represents the part of the day, that is
the time in hour:min:sec (dates coming from Excel, or even standard dates in S+
or R are expressed like that). For the methods, a "tsd’” object
y a vector (single series) or a matrix/data frame whose columns correspond to
the various irregular time series to regulate. Rows are observations made at
corresponding times in x. The number of rows must thus match the length of
vector X
xmin allows to respecify the origin of time in x. By default, the origin is not redefined

and thus, the smallest value in x is used

regul 45

n the number of observations in the regular time series. By default, it is the same
number than in the original irregular time series (i.e., length(x)

units the time unit for the x vector. By default units="days". A special value,
units="daystoyears" indicates that x is expressed in "days" (1 unit = 1 day)
but that we want to obtain the final regular time series expressed in "years" (1
unit = 1 year). Give a correct value for datemin to make sure the right fraction
of the year is computed for each observation (see example hereunder)

frequency the frequency of the regulated time series in the corresponding time unit. For
instance, frequency=12 with units="years" means montly sampled observa-
tions. Warning! When using units="daystoyears", specify frequency (or
deltat) in years!

deltat the interval between two observations in the regulated time series. It is the in-
verse of frequency. If both frequency and deltat are provided, then frequency
supersedes deltat

datemin this is mostly useful for converting "days" in "years" time-scales (units="daystoyears").
If the x vector contains: 1, 3, 6,... (day 1, day 3, day 6... of the experiment),
one can give here the exact date of the first observation, allowing to define a
correct origin in the "years" time scale. Provide a string in a format compat-
ible with dateformat. For instance, if day 1 is the 21th March 1998, give
datemin="03/21/1998" with dateformat="m/d/Y"

dateformat indicate how datemin is formated. For instance: "d/m/Y", or "m/d/Y" (by
default), see daystoyears() for more info on date formatting

tol the tolerance in the time-scale to determine if a measured value is used to ap-
proximate a regulated value. If tol=@, observations in each respective series
must match exactly, otherwise observations in the regulated series are interpo-
lated. tol must be a round fraction of deltat (deltat, deltat/2, deltat/3, etc...),
and cannot be larger than it, otherwise, tol is automatically adjusted to the clos-
est allowed value. By default, to1=NULL. This is equivalent to to1=0. Warning!
In the particular case of units="daystoyears"”, tol must be expressed in the
original time-scale, that is "days", while deltat must be expressed in the fimal
time-scale, that is "years"!

tol. type the type of adjustment to use for the time-tolerance: "left"”, "right”, "both"
(by default) or "none”. If tol. type="1eft", corresponding x values are seeked
in a window]xregul-tol, xregul]. If tol.type="right", they are seeked in
the window [xregul, xregul+tol[. If tol.type="both", then they are seeked in
the window]xregul-tol, xregul+tol]. If several observations are in this window,
the closest one is used. Finally, if tol.type="none", then all observations in
the regulated time series are interpolated (even if exactly matching observations
exist!)

methods the method(s) to use to regulate the time series. Currently, it can be: "constant”,
"linear”, "spline” or "area” (or a unique abbreviation of them). If several
time series are provided (y is a matrix or a data frame), it is possible to define
methods individually for each series. For instance, methods=c("1", "a", "s")
defines the "linear" method for the first series, the "area" method for the second
one, the "spline" method for the third one,... and again the "linear" for the fourth,
the "area" for the fifth one, etc. (recycling rule). By default, the "linear" method
is selected for all series

46

rule

periodic

window

split

specs

object
e

series

col

1ty

plot.pts

leg
11ab

regul

the rule to use for extrapolated values (observations in the final regular time
series that are outside the range of observed values in the initial time series).
With rule=1 (by default), these entries are not calculated and get NA; with
rule=2, these entries are extrapolated (avoid using this option, or use with ex-
treme care!!!)

parameter for the "constant” regulation method. Coefficient giving more weight
to the observation at left (f=0, by default), to the observation at right (f=1), or
give an intermediate weight to both of these observations (0 < f < 1) during the
interpolation (see reglin()

parameter for the "spline” regulation method. Indicate if the time series should
be considered as periodic (periodic=TRUE, first value must be equal to the last
one). If this is the case, first and second derivates used to calculate spline seg-
ments around first and last observations use data in the other extreme of the
series. In the other case (periodic=FALSE, by default), derivates for extremes
observations are considered to be equal to zero

parameter for the "area” regulation method. Size of the window to consider
(see regarea()). By default, the mean interval between observations in the
initial irregular time series is used. Give the same value as for deltat for working
with adjacent windows

other parameter for the "area” method. To optimise calculation time and to
avoid to saturate memory, very long time series are splitted into smaller sub-
units (see regarea()). This is transparent for the user. The default value of
split=100 should be rarely changed. Give a lower value if the program fails
and reports a memory problem during calculation

a specs.regul object returned by the function specs() applied to a regul
object. Allows to collect parameterization of the regul () function and to apply
them to another regulation

A regul object as obtained after using the regul () function
A regul object as obtained after using the regul () function

the series to plot. By default, series=1, corresponding to the first (or possibly
the unique) series in the regul object

(1) for plot(): the two colors to use to draw respectively the initial irregular
series and the final regulated series. col=c(1,2) by default. (2) for hist(): the
three colors to use to represent respectively the fist bar (exact coincidence), the
middle bars (coincidence in a certain tolerance window) and the last bar (values
always interpolated). By default, col=c(4,5,2)

the style to use to draw lines for the initial series and the regulated series, respec-
tively. The default style is used for both lines if this argument is not provided

if plot.pts=TRUE (by default) then points are also drawn for the regulated series
(+). Those points that match observations in the initial irregular series, and are
not interpolated, are further marked with a circle

do we add a legend to the graph? By default, leg=FALSE, no legend is added

the labels to use for the initial irregular and the final regulated series, respec-
tively. By default, itis "initial" for the first one and the name of the regulation
method used for the second one (see methods argument)

regul 47

1pos the position of the top-left corner of the legend box (X,y), in the graph coordi-
nates

xlab the label of the x-axis

ylab the label of the y-axis

main the main title of the graph

label the character to use to mark points interactively selected on the graph. By de-

fault, label="#"

nclass the number of classes to calculate in the histogram. This is indicative and this
value is automatically adjusted to obtain a nicely-formatted histogram. By de-
fault, nclass=30

plotit If plotit=TRUE then the histogram is plotted. Otherwise, it is only calculated

additional parameters

Details

Several irregular time series (for instance, contained in a data frame) can be treated at once. Spec-
ify a vector with "constant”, "linear”, "spline” or "area” for the argument methods to use a
different regulation method for each series. See corresponding fonctions (regconst(), reglin(),
regspline() and regarea()), respectively, for more details on these methods. Arguments can be
saved in a specs object and reused for other similar regulation processes. Functions regul.screen()
and regul.adj() are useful to chose best time interval in the computed regular time series. If you
want to work on seasonal effects in the time series, you will better use a "years" time-scale (1 unit
= 1 year), or convert into such a scale. If initial time unit is "days" (1 unit = 1 day), a conversion
can be operated at the same time as the regulation by specifying units="daystoyears".

Value

An object of type 'regul’ is returned. It has methods print(), summary(), plot(), lines(),
identify(), hist(), extract() and specs().

Author(s)

Fr?d?ric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

References

Lancaster, P. & K. Salkauskas, 1986. Curve and surface fitting. Academic Press, England, 280 pp.

Fox, W.T. & J.A. Brown, 1965. The use of time-trend analysis for environmental interpretation of
limestones. J. Geol., 73:510-518.

Ibanez, F., 1991. Treatment of the data deriving from the COST 647 project on coastal benthic
ecology: The within-site analysis. In: B. Keegan (ed). Space and Time Series Data Analysis in
Coastal Benthic Ecology. Pp 5-43.

Ibanez, F. & J.C. Dauvin, 1988. Long-term changes (1977-1987) on a muddy fine sand Abra alba
- Melinna palmata population community from the Western English Channel. J. Mar. Ecol. Prog.
Ser., 49:65-81.

48 regul.adj

See Also

regul.screen, regul.adj, tseries, is.tseries, regconst, reglin, regspline, regarea, daystoyears

Examples

data(releve)

The series in this data frame are very irregularly sampled in time:

releve$Day

length(releve$Day)

intervals <- releve$Day[2:61]-releve$Day[1:60]

intervals

range(intervals)

mean(intervals)

The series must be regulated to be converted in a 'rts' or 'ts object

rel.reg <- regul(releve$Day, releve[3:8], xmin=9, n=63, deltat=21,
tol=1.05, methods=c("s","c","”1","a","s","a"), window=21)

rel.reg

plot(rel.reg, 5)

specs(rel.reg)

Now we can extract one or several regular time series

melo.ts <- extract(rel.reg, series="Melosul"”)

is.tseries(melo.ts)

One can convert time-scale from "days” to "years"” during regulation

This is most useful for analyzing seasonal cycles in a second step

melo.regy <- regul(releve$Day, releve$Melosul, xmin=6, n=87,
units="daystoyears"”, frequency=24, tol=2.2, methods="linear”,
datemin="21/03/1989", dateformat="d/m/Y")

melo.regy

plot(melo.regy, main="Regulation of Melosul")

In this case, we have only one series in 'melo.regy’

We can use also 'tseries()' instead of 'extract()'

melo.tsy <- tseries(melo.regy)

is.tseries(melo.tsy)

regul.adj Adjust regulation parameters

Description

Calculate and plot an histogram of the distances between interpolated observations in a regulated
time series and closest observations in the initial irregular time series. This allows to optimise the
tol parameter

Usage

regul.adj(x, xmin=min(x), frequency=NULL,
deltat=(max(x, na.rm = TRUE) - min(x, na.rm = TRUE))/(length(x) - 1),
tol=deltat, tol.type="both", nclass=50, col=c(4, 5, 2),

regul.adj

49

xlab=paste(”"Time distance"), ylab=paste("”Frequency”),
main="Number of matching observations”, plotit=TRUE, ...)

Arguments

X

xmin
frequency

deltat

tol

tol. type

nclass

col

x1lab
ylab
main

plotit

Details

a vector with times corresponding to the observations in the irregular initial time
series

the time corresponding to the first observation in the regular time series
the frequency of observations in the regular time series

the interval between two successive observations in the regular time series. This
is the inverse of frequency. Only one of both parameters need to be given. If
both are provided, frequency supersedes deltat

the tolerance in the difference between two matching observations (in the orig-
inal irregular series and in the regulated series). If tol=0 both values must be
strictly identical; a higher value for tol allows some fuzzy matching. tol must
be a round fraction of deltat and cannot be higher than it, otherwise, it is ad-
justed to the closest acceptable value. By default, tol=deltat

the type of window to use for the time-tolerance: "left"”, "right”, "both"” (by
default) or "none”. If tol.type="left", corresponding x values are seeked
in a window]xregul-tol, xregul]. If tol.type="right", they are seeked in
the window [xregul, xregul+tol[. If tol.type="both", then they are seeked in
the window]xregul-tol, xregul+tol]. If several observations are in this window,
the closest one is used. Finally, if tol.type="none", then all observations in
the regulated time series are interpolated (even if exactly matching observations
exist!)

the number of classes to compute in the histogram. This is indicative, and will be
adjusted by the algorithm to produce a nicely-formatted histogram. The default
value is nclass=50. It is acceptable in many cases, but if the histogram is not
correct, try a larger value

the three colors to use to represent respectively the fist bar (exact coincidence),
the middle bars (coincidence in a certain tolerance window) and the last bar
(values always interpolated). By default, col=c(4,5,2)

the label of the x-axis

the label of the y-axis

the main title of the graph

if plotit=TRUE then the histogram is plotted. Otherwise, it is only calculated

additional graph parameters for the histogram

This function is complementary to regul . screen(). While the later look for the best combination
of the number of observations, the interval between observations and the position of the first ob-
servation on the time-scale for the regular time series, regul.adj() look for the optimal value for
tol, the tolerance window.

50 regul.screen

Value

A list with components:

params the parameters used for the regular time-scale
match the number of matching observations in the tolerance window
exact.match the number of exact matching observations

match.counts avector with the number of matching observations for increasing values of tol

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>), Frédéric Ibanez (<ibanez@obs-v1fr.fr>)

See Also

regul.screen, regul

Examples

This example follows the example for regul.screen()

where we determined that xmin=9, deltat=21, n=63, with tol=1.05
is a good choice to regulate the irregular time series in 'releve'
data(releve)

regul.adj(releve$Day, xmin=9, deltat=21)

The histogram indicates that it is not useful to increase tol
more than 1.05, because few observations will be added

except if we increase it to 5-7, but this value could be
considered to be too large in comparison with deltat=22

On the other hand, with tol <= 1, the number of matching
observations will be almost divided by two!

% o H W

regul.screen Test various regulation parameters

Description

Seek for the best combination of the number of observation, the interval between two successive
observation and the position of the first observation in the regulated time series to match as much
observations of the initial series as possible

Usage

regul.screen(x, weight=NULL, xmin=min(x), frequency=NULL,
deltat=(max(x, na.rm = TRUE) - min(x, na.rm = TRUE))/(length(x) - 1),
tol=deltat/5, tol.type="both")

regul.screen

Arguments

X

weight

xmin

frequency

deltat

tol

tol. type

Details

51

a vector with times corresponding to the observations in the irregular initial time
series

a vector of the same length as x, with the weight to give to each observation. A
value of 0 indicates to ignore an observation. A value of 1 gives a normal weight
to an observation. A higher value gives more importance to the corresponding
observation. You can increase weight of observations around major peaks and
pits, to make sure they are not lost in the regulated time series. If weight=NULL
(by default), then a weight of 1 is used for all observations

a vector with all time values for the first observation in the regulated time series
to be tested

a vector with all the frequencies to be screened

a vector with all time intervals to screen. deltat is the inverse of frequency.
Only one of these two arguments is required. If both are provided, frequency
supersedes deltat

it is possible to tolerate some differences in the time between two matching ob-
servations (in the original irregular series and in the regulated series). If tol=0
both values must be strictly identical; a higher value allows some fuzzy match-
ing. tol must be a round fraction of deltat and cannot be higher than it, other-
wise, it is adjusted to the closest acceptable value. By default, tol=deltat/5

the type of window to use for the time-tolerance: "left”, "right”, "both" (by
default) or "none”. If tol.type="left", corresponding x values are seeked
in a window |xregul-tol, xregul]. If tol.type="right", they are seeked in
the window [xregul, xregul+tol[. If tol.type="both", then they are seeked in
the window]xregul-tol, xregul+tol]. If several observations are in this window,
the closest one is used. Finally, if tol.type="none", then all observations in
the regulated time series are interpolated (even if exactly matching observations
exist!)

Whatever the efficiency of the interpolation procedure used to regulate an irregular time series, a
matching, non-interpolated observation is always better than an interpolated one! With very ir-
regular time series, it is often difficult to decide which is the better regular time-scale in order to
interpolate as less observations as possible. regul.screen() tests various combinations of number
of observation, interval between two observations and position of the first observation and allows
to choose the combination that best matches the original irregular time series. To choose also an
optimal value for tol, use regul.adj() concurrently.

Value

A list containing:

tol

n

a vector with the adjusted values of tol for the various values of deltat

a table indicating the maximum value of n for all combinations of deltat and
xmin to avoid any extrapolation

52 releve

nbr.match a table indicating the number of matching observations (in the tolerance win-
dow) for all combinations of deltat and xmin

nbr.exact.match
a table indicating the number of exactly matching observations (with a tolerance
window equal to zero) for all combinations of deltat and xmin

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>), Frédéric Ibanez (<ibanez@obs-v1fr.fr>)

See Also

regul.adj, regul

Examples

data(releve)

This series is very irregular, and it is difficult

to choose the best regular time-scale

releve$Day

length(releve$Day)

intervals <- releve$Day[2:61]-releve$Day[1:60]

intervals

range(intervals)

mean(intervals)

A combination of xmin=1, deltat=22 and n=61 seems correct
But is it the best one?

regul.screen(releve$Day, xmin=0:11, deltat=16:27, tol=1.05)
Now we can tell that xmin=9, deltat=21, n=63, with tol=1.05
is a much better choice!

releve A data frame of six phytoplankton taxa followed in time at one station

Description
The releve data frame has 61 rows and 8 columns. Several phytoplankton taxa were numbered in
a single station from 1989 to 1992, but at irregular times.

Usage

data(releve)

Format

This data frame contains the following columns:

Day days number, first observation being day 1

Date strings indicating the date of the observations in "dd/mm/yyyy" format

specs 53

Astegla the abundance of Asterionella glacialis

Chae the abundance of Chaetoceros sp

Dity the abundance of Ditylum sp

Gymn the abundance of Gymnodinium sp

Melosul the abundance of Melosira sulcata + Paralia sulcata

Navi the abundance of Navicula sp

Source

Belin, C. & B. Raffin, 1998. Les espéces phytoplanctoniques toxiques et nuisibles sur le littoral
Jfrangais de 1984 a 1995, résultats du REPHY (réseau de surveillance du phytoplancton et des
phycotoxines). Rapport IFREMER, RST.DEL/MP-A0-98-16. IFREMER, France.

specs Collect parameters ("specifications") from one object to use them in
another analysis

Description

‘specs’ is a generic function for reusing specifications included in an object and applying them in
another similar analysis

Usage
specs(x, ...)
Arguments
X An object that has "specs" data
Additional arguments (redefinition of one or several parameters)
Value

A ‘specs’ object that has the print method and that can be entered as an argument to functions
using similar "specifications”

See Also

regul, tsd

54

stat.desc

stat.desc

Descriptive statistics on a data frame or time series

Description

Compute a table giving various descriptive statistics about the series in a data frame or in a sin-
gle/multiple time series

Usage

stat.desc(x, basic=TRUE, desc=TRUE, norm=FALSE, p=0.95)

Arguments

X

basic

desc

norm

Value

a data frame or a time series

do we have to return basic statistics (by default, it is TRUE)? These are: the
number of values (nbr.val), the number of null values (nbr.null), the number of
missing values (nbr.na), the minimal value (min), the maximal value (max), the
range (range, that is, max-min) and the sum of all non-missing values (sum)

do we have to return various descriptive statistics (by default, it is TRUE)?
These are: the median (median), the mean (mean), the standard error on the
mean (SE.mean), the confidence interval of the mean (Cl.mean) at the p level,
the variance (var), the standard deviation (std.dev) and the variation coefficient
(coef.var) defined as the standard deviation divided by the mean

do we have to return normal distribution statistics (by default, it is FALSE)?
the skewness coefficient gl (skewness), its significant criterium (skew.2SE, that
is, gl/2.SEgl; if skew.2SE > 1, then skewness is significantly different than
zero), kurtosis coefficient g2 (kurtosis), its significant criterium (kurt.2SE, same
remark than for skew.2SE), the statistic of a Shapiro-Wilk test of normality
(normtest.W) and its associated probability (normtest.p)

the probability level to use to calculate the confidence interval on the mean
(CL.mean). By default, p=0.95

a data frame with the various statistics in rows and with each column correponding to a variable in
the data frame, or to a separate time series

Note

The Shapiro-Wilk test of normality is not available yet in Splus and it returns 'NA’ in this envi-
ronment. If you prefer to get separate statistics for various time intervals in your time series, use
stat.slide(). If your data are fish or plankton sampled with a net, consider using the Pennington
statistics (see stat.pen())

stat.pen 55

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

See Also

stat.slide, stat.pen

Examples

data(marbio)
stat.desc(marbio[,13:16], basic=TRUE, desc=TRUE, norm=TRUE, p=0.95)

stat.pen Pennington statistics on a data frame or time series

Description

Compute a table giving various descriptive statistics, including Pennington’s estimators of the mean,
the variance and the variance of the mean, about the series in a data frame or in a single/multiple
time series

Usage
stat.pen(x, basic=FALSE, desc=FALSE)

Arguments
X a data frame or a time series
basic do we have to return also basic statistics (by default, it is FALSE)? These are:
the number of values (nbr.val), the number of null values (nbr.null), the number
of missing values (nbr.na), the minimal value (min), the maximal value (max),
the range (range, that is, max-min) and the sum of all non-missing values (sum)
desc do we have to return also various descriptive statistics (by default, it is FALSE)?
These are: the median (median), the mean (mean), the standard error on the
mean (SE.mean), the confidence interval of the mean (Cl.mean) at the p level,
the variance (var), the standard deviation (std.dev) and the variation coefficient
(coef.var) defined as the standard deviation divided by the mean
Value

a data frame with the various statistics in rows and with each column correponding to a variable in
the data frame, or to a separate time series

Note

If you prefer to get separate statistics for various time intervals in your time series, use stat.slide().
Various other descriptive statistics, including test of the normal distribution are also available in
stat.desc()

56 stat.slide

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

References

Aitchison, J., 1955. On the distribution of a positive random variable having a discrete probability
mass at the origin. J. Amer. Stat. Ass., 50:901-908.

Pennington, M., 1983. Efficient estimations of abundance for fish and plankton surveys. Biometrics,
39:281-286.
See Also

stat.slide, stat.desc

Examples

data(marbio)
stat.pen(marbio[,c(4, 14:16)]1, basic=TRUE, desc=TRUE)

stat.slide Sliding statistics

Description

Statistical parameters are not constant along a time series: mean or variance can vary each year, or
during particular intervals (radical or smooth changes due to a pollution, a very cold winter, a shift
in the system behaviour, etc. Sliding statistics offer the potential to describe series on successive
blocs defined along the space-time axis

Usage

stat.slide(x, y, xcut=NULL, xmin=min(x), n=NULL, frequency=NULL,
deltat=1/frequency, basic=FALSE, desc=FALSE, norm=FALSE,
pen=FALSE, p=0.95)

S3 method for class 'stat.slide'

print(x, ...)

S3 method for class 'stat.slide'

plot(x, stat="mean", col=c(1, 2), lty=c(par("1lty"), par("lty")),

leg=FALSE, llab=c("series"”, stat), lpos=c(1.5, 10), xlab="time", ylab="y",

main=paste(”Sliding statistics”), ...)

S3 method for class 'stat.slide'

lines(x, stat="mean"”, col=3, lty=1, ...)

stat.slide 57

Arguments

X a vector with time data for stat.slide(), or a ’stat.slide’ object for the methods
y a vector with observation at corresponding times

xcut a vector with the position in time of the breaks between successive blocs. xcut=NULL
by default. In the later case, a vector with equally spaced blocs is constructed
using xmin, n and frequency or deltat. If a value is provided for xcut, then it
supersedes all these other parameters

xmin the minimal value in the time-scale to use for constructing a vector of equally
spaced breaks

n the number of breaks to use
frequency the frequency of the breaks in the time-scale

deltat the bloc interval touse for constructing an equally-spaced break vector. deltat
is 1/frequency

basic do we have to return basic statistics (by default, it is FALSE)? These are: the
number of values (nbr.val), the number of null values (nbr.null), the number of
missing values (nbr.na), the minimal value (min), the maximal value (max), the
range (range, that is, max-min) and the sum of all non-missing values (sum)

desc do we have to return descriptive statistics (by default, it is FALSE)? These
are: the median (median), the mean (mean), the standard error on the mean
(SE.mean), the confidence interval of the mean (CI.mean) at the p level, the vari-
ance (var), the standard deviation (std.dev) and the variation coefficient (coef.var)
defined as the standard deviation divided by the mean

norm do we have to return normal distribution statistics (by default, it is FALSE)?
the skewness coefficient gl (skewness), its significant criterium (skew.2SE, that
is, gl/2.SEgl; if skew.2SE > 1, then skewness is significantly different than
zero), kurtosis coefficient g2 (kurtosis), its significant criterium (kurt.2SE, same
remark than for skew.2SE), the statistic of a Shapiro-Wilk test of normality
(normtest.W) and its associated probability (normtest.p)

pen do we have to return Pennington and other associated statistics (by default, it is
FALSE)? pos.median, pos.mean, pos.var, pos.std.dev, respectively the median,
the mean, the standard deviation and the variance, considering only non-null
values; geo.mean, the geometric mean that is, the exponential of the mean of
the logarithm of the observations, excluding null values. pen.mean, pen.var,
pen.std.dev, pen.mean.var, respectively the mean, the variance, the standard de-
viation and the variance of the mean after Pennington’s estimators (see pennington())

p the probability level to use to calculate the confidence interval on the mean
(Cl.mean). By default, p=0.95

non non "non

stat the statistic to plot on the graph. You can use "min", "max", "median", "mean"
(by default), "pos.median", "pos.mean", "geo.mean" and "pen.mean". The other
statistics cannot be superposed on the graph of the series in the current version

of the function

col the colors to use to plot the initial series and the statistics, respectively. By
default, col=c(1,2)

58 stat.slide

1ty the style to use to draw the original series and the statistics. The default style is
used if this argument is not provided

leg if 1eg=TRUE, a legend box is drawn on the graph

11ab the labels to use for the legend. By default, it is "series" and the corresponding
statistics provided in stat, respectively

1pos the position of the top-left corner (x,y) of the legend box in the graph coordi-
nates. By default 1pos=c(1.5,10)

xlab the label of the x-axis

ylab the label of the y-axis

main the main title of the graph

additional parameters

Details

Auvailable statistics are the same as for stat.desc() and stat.pen(). The Shapiro-Wilk test of
normality is not available yet in Splus and it returns 'NA’ in this environment. If not a priori known,
successive blocs can be identified using either local.trend() or decmedian() (see respective
functions for further details)

Value

An object of type ’stat.slide’ is returned. It has methods print(), plot() and lines().

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

See Also

stat.desc, stat.pen, pennington, local. trend, decmedian

Examples

data(marbio)

Sliding statistics with fixed-length blocs

statsl <- stat.slide(1:68, marbio[, "ClausocalanusA"], xmin=0, n=7, deltat=10)

statsl

plot(statsl, stat="mean"”, leg=TRUE, lpos=c(55, 2500), xlab="Station",
ylab="ClausocalanusA™)

More information on the series, with predefined blocs

statsl2 <- stat.slide(1:68, marbio[, "ClausocalanusA"],
xcut=c(@, 17, 25, 30, 41, 46, 70), basic=TRUE, desc=TRUE, norm=TRUE,
pen=TRUE, p=0.95)

statsl2

plot(statsl2, stat="median”, xlab="Stations”, ylab="Counts”,
main="Clausocalanus A") # Median

lines(statsl2, stat="min") # Minimum

lines(statsl2, stat="max") # Maximum

trend.test 59

lines(c(17, 17), c(-50, 2600), col=4, 1lty=2) # Cuts

lines(c(25, 25), c(-50, 2600), col=4, lty=2)

lines(c(30, 30), c(-50, 2600), col=4, 1ty=2)

lines(c(41, 41), c(-50, 2600), col=4, 1lty=2)

lines(c(46, 46), c(-50, 2600), col=4, lty=2)

text(c(8.5, 21, 27.5, 35, 43.5, 57), 2300, labels=c("Peripheral Zone", "D1",
"C", "Front"”, "D2", "Central Zone")) # Labels

legend(@, 1900, c("series”, "median”, "range"), col=1:3, 1lty=1)

Get cuts back from the object

statsl2$xcut

trend. test Test if an increasing or decreasing trend exists in a time series

Description

Test if the series has an increasing or decreasing trend, using a non-parametric Spearman test be-
tween the observations and time

Usage

trend. test(tseries, R=1)

Arguments

tseries a univariate or multivariate time series (a ’rts’ object in Splus or a ’ts’ object in
R)

R The number of time the series is/are resampled for a bootstrap test. If R1 (by
default), an usual Spearman test is performed. If R > 1 then a bootstrap test is
run

Value

A ’htest’ object if R=1, a ’boot’ object with an added boot$p.value item otherwise

Note

In both cases (normal test with R=1 and bootstrap test), the p-value can be obtained from obj$p.value
(see examples)

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

References

Siegel, S. & N.J. Castellan, 1988. Non-parametric statistics. McGraw-Hill, New York. 399 pp.

60 tsd

See Also

local.trend

Examples

data(marbio)

trend.test(marbio[, 8])

Run a bootstrap test on the same series
marbio8.trend.test <- trend.test(marbio[, 8], R=99)
R=999 is a better value... but it is very slow!
marbio8.trend.test

plot(marbio8.trend.test)

marbio8.trend.test$p.value

tsd Decomposition of one or several regular time series using various
methods

Description

Use a decomposition method to split the series into two or more components. Decomposition
methods are either series filtering/smoothing (difference, average, median, evf), deseasoning (loess)
or model-based decomposition (reg, i.e., regression).

Usage

tsd(x, specs=NULL, method="loess",
type=if (method == "census") "multiplicative” else "additive",
lag=1, axes=1:5, order=1, times=1, sides=2, ends="fill"”, weights=NULL,
s.window=NULL, s.degree=0, t.window=NULL, t.degree=2, robust=FALSE,
trend=FALSE, xreg=NULL)

S3 method for class 'tsd'

print(x, ...)

S3 method for class 'tsd'

summary (object, ...)

S3 method for class 'summary.tsd'
print(x, ...)

S3 method for class 'tsd'

plot(x, series=1, stack=TRUE, resid=TRUE, col=par("col”),
lty=par("1ty"), labels=dimnames(X)[[2]], leg=TRUE, lpos=c(@, @), xlab="time",
ylab="series"”, main=paste(”Series decomposition by", x$specs$method, "-",
x$specs$type), ...)

S3 method for class 'tsd'

extract(e, n, series=NULL, components=NULL, ...)

S3 method for class 'tsd'

specs(x, ...)

S3 method for class 'specs.tsd'

print(x, ...)

tsd

Arguments

X

specs

method

type

lag

axes

order

times

sides

ends

weights

s.window

s.degree

t.window

61

an univariate or multivariate regular time series (’ts’ object) to be decomposed
for tsd(), or a ’tsd’ object for the methods

specifications are collected from a ’tsd’ object, using the specs method. This
allows for reusing parameters issued from a previous similar analysis

the method to use to decompose the time series. Currently, possible values
are: "diff", "average”, "median”, "evf"”, "reg”, "loess” (by default) or
"census”. The corresponding function decXXXX() is applied to each of the
series in X

the type of model to use: either "additive” (by default) or "multiplicative”.
In the additive model, all components must be added to reconstruct the initial
series. In the multiplicative model, they must be multiplied (one components
has the same unit as the original series, and the other ones are dimensionless
multiplicative factors)

The lag between the two observations used to calculate differences. By default,
lag=1

the number of axes to show in the plot

(1) for the method ’difference’: the order of the difference corresponds to the
number of times it is applied, by default order=1, (2) for the method *average’:
the order of the moving average (the window of the average being 2*order+1),
centered around the current observation or at left of this observation depending
upon the value of the sides argument. Weights are the same for all observations
within the window. However, if the argument weights is provided, it supersedes
order. One can also use order="periodic”. In this case, a deseasoning filter
is calculated according to the value of frequency

The number of times to apply the method (by default, once)

If 2 (by default), the window is centered around the current observation. If 1,
the window is at left of the current observation (including it)

either "NAs" (fill first and last values that are not calculable with NAs), or "fill"
(fill them with the average of observations before applying the filter, by default),
or "circular" (use last values for estimating first ones and vice versa), or "peri-
odic" (use entire periods of contiguous cycles, deseasoning)

a vector indicating weight to give to all observations in the window. This argu-
ment has the priority over order

the width of the window used to extract the seasonal component. Use an odd
value equal or just larger than the number of annual values (frequency of the time
series). Use another value to extract other cycles (circadian, lunar,...). Using
s.window="periodic"” ensures a correct value for extracting a seasonal com-
ponent when the time scale is in years units

the order of the polynome to use to extract the seasonal component (0 or 1). By
default s.degree=0

the width of the window to use to extract the general trend when trend=TRUE
(indicate an odd value). If this parameter is not provided, a reasonable value is
first calculated, and then used by the algorithm.

62

t.degree

robust

trend

xreg

object

series

stack

resid

col
1ty
labels

leg
lpos

x1lab
ylab

main

components

tsd

the order of the polynome to use to extract the general trend (0, 1 or 2). By
default t.degree=2

if TRUE a robust regression method is used. Otherwise (FALSE), by default, a
classical least-square regression is used

If TRUE a trend is calculated (under R only). Otherwise, the series is decomposed
into a seasonal component and residuals only

a second regular time series or a vector of the same length as x with correspond-
ing values from the regression model

a ’tsd’ object as returned by the function tsd(), or any of the decXXXX() func-
tions

a ’tsd’ object as returned by the function tsd(), or any of the decXXXX() func-
tions

(1) for plot(): the series to plot. By default, series=1, the first (or possibly
unique) series in the ’tsd’ object is plotted. (2) for extract: the name or the
index of the series to extract. If series is provided, then n is ignored. By
default, series=NULL. It is also possible to use negative indices. In this case, all
series are extracted, except those ones

graphs of each component are either stacked (stack=TRUE, by default), or su-
perposed on the same graph stack=FALSE

do we have to plot also the "residuals" components (resid=TRUE, by default) or
not? Usually, in a stacked graph, you would like to plot the residuals, while in a
superposed graph, you would not

color of the plot

line type for the plot

the labels to use for all y-axes in a stacked graph, or in the legend for a su-

perposed graph. By default, the names of the components ("trend", "seasonal",
"deseasoned", "filtered", "residuals", ...) are used

only used when stack=FALSE. Do we plot a legend (Leg=TRUE or not?

position of the upper-left corner of the legend box in the graph coordinates (x,y).
By default, leg=c(0,0)

the label of the x-axis

the label of the y-axis

the main title of the graph

the number of series to extract (from series 1 to series n). By default, n equals the
number of series in the "tsd’ object. If both series and components arguments
are NULL, all series and components are extracted and this method has exactly
the same effect as tseries

the names or indices of the components to extract. If components=NULL (by de-
fault), then all components of the selected series are extracted. It is also possible
to specify negative indices. In this case, all components are extracted, except
those ones

(1) for tsd(): further arguments to pass to the corresponding decXXXX() func-
tion. (2) for plot(): further graphical arguments, (3) unused for the other func-
tions or methods

tsd 63

Details

To eliminate trend from a series, use "diff" or use "loess" with trend=TRUE. If you know the shape
of the trend (linear, exponential, periodic, etc.), you can also use it with the "reg" (regression)
method. To eliminate or extract seasonal components, you can use "loess" if the seasonal com-
ponent is additive, or "census" if it is multiplicative. You can also use "average" with argument
order="periodic"” and with either an additive or a multiplicative model, although the later method
is often less powerful than "loess" or "census". If you want to extract a seasonal cycle with a given
shape (for instance, a sinusoid), use the "reg" method with a fitted sinusoidal equation. If you want
to identify levels in the series, use the "median" method. To smooth the series, you can use prefer-
ably the "evf" (eigenvector filtering), or the "average" methods, but you can also use "median". To
extract most important components from the series (no matter if they are cycles -seasonal or not-,
or long-term trends), you should use the "evf" method. For more information on each of these
methods, see online help of the corresponding decXXXX () functions.

Value

An object of type ’tsd’ is returned. It has methods print(), summary(), plot(), extract() and
specs().

Note

If you have to decompose a single time series, you could also use the corresponding decXXXX()
function directly. In the case of a multivariate regular time series, tsd () is more convenient because
it decompose all times series of a set at once!

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

References

Kendall, M., 1976. Time-series. Charles Griffin & Co Ltd. 197 pp.
Laloire, J.C., 1972. Méthodes du traitement des chroniques. Dunod, Paris, 194 pp.

Legendre, L. & P. Legendre, 1984. Ecologie numérique. Tome 2: La structure des données
écologiques. Masson, Paris. 335 pp.

Malinvaud, E., 1978. Méthodes statistiques de I’économétrie. Dunod, Paris. 846 pp.

Philips, L. & R. Blomme, 1973. Analyse chronologique. Université Catholique de Louvain. Vander
ed. 339 pp.

See Also

tseries, decdiff, decaverage, decmedian, decevf, decreg, decloess, deccensus

Examples

data(releve)
Regulate the series and extract them as a time series object
rel.regy <- regul(releve$Day, releve[3:8], xmin=6, n=87, units="daystoyears”,

64

tseries

frequency=24, tol=2.2, methods="linear"”, datemin="21/03/1989",
dateformat="d/m/Y")
rel.ts <- tseries(rel.regy)

Decompose all series in the set with the "loess"” method
rel.dec <- tsd(rel.ts, method="loess", s.window=13, trend=FALSE)
rel.dec

plot(rel.dec, series=5, col=1:3) # An plot series 5

Extract "deseasoned” components
rel.des <- extract(rel.dec, series=3:6, components="deseasoned")
rel.des[1:10,]

Further decompose these components with a moving average

rel.des.dec <- tsd(rel.des, method="average"”, order=2, times=10)

plot(rel.des.dec, series=3, col=c(2, 4, 6))

In this case, a superposed graph is more appropriate:

plot(rel.des.dec, series=3, col=c(2,4), stack=FALSE, resid=FALSE,
labels=c("without season cycle”, "trend"), lpos=c(@, 55000))

Extract residuals from the latter decomposition

rel.res2 <- extract(rel.des.dec, components="residuals")

tseries Convert a 'regul’ or a 'tsd’ object into a time series

Description

Regulated series contained in a "regul’ object or components issued from a time series decompo-
sition with ’tsd’ are extracted from their respective object and converted into uni- or multivariate
regular time series (’rts’ objects in Splus and ’ts’ objects in R)

Usage

tseries(x)

Arguments

X A ’regul’ or ’tsd’ object

Value

an uni- or multivariate regular time series

Note

To extract some of the time series contained in the 'regul’ or ’tsd’ objects, use the extract()
method

turnogram 65

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>), Frédéric Ibanez (<ibanez@obs-v1fr.fr>)

See Also

is.tseries, regul, tsd

Examples

data(releve)

rel.regy <- regul(releve$Day, releve[3:8], xmin=6, n=87, units="daystoyears",
frequency=24, tol=2.2, methods="linear"”, datemin="21/03/1989",
dateformat="d/m/Y")

This object is not a time series

is.tseries(rel.regy) # FALSE

Extract all time series contained in the 'regul' object

rel.ts <- tseries(rel.regy)

Now this is a time series

is.tseries(rel.ts) # TRUE
turnogram Calculate and plot a turnogram for a regular time series
Description

The turnogram is the variation of a monotony index with the observation scale (the number of
data per time unit). A monotony index indicates if the series has more or less erratic variations
than a pure random succession of independent observations. Since a time series almost always has
autocorrelation, it is expected to be more monotonous than a purely random series. The monotony
index is a way to quantify the density of information beared by a time series. The turnogram
determines at which observation scale this density of information is maximum. It is also the scale
that optimize the sampling effort (best compromise between less samples versus more information).

Usage

turnogram(series, intervals=c(1, length(series)/5), step=1, complete=FALSE,
two.tailed=TRUE, FUN=mean, plotit=TRUE, level=0.05, lhorz=TRUE,
lvert=FALSE, xlog=TRUE)

S3 method for class 'turnogram'

print(x, ...)

S3 method for class 'turnogram'

summary (object, ...)

S3 method for class 'summary.turnogram'
print(x, ...)

S3 method for class 'turnogram'

plot(x, level=0.05, lhorz=TRUE, lvert=TRUE, lcol=2,
11ty=2, xlog=TRUE, xlab=paste("”interval (", x$units.text, ")", sep=""),
ylab="1 (bits)", main=paste(x$type, "turnogram for:", x$data),

66 turnogram
sub=paste(x$fun, "/", x$proba), ...)

S3 method for class 'turnogram'

identify(x, lvert=TRUE, col=2, lty=2, ...)

S3 method for class 'turnogram'

extract(e, n, level=e$level, FUN=e$fun, drop=0, ...)

Arguments

series a single regular time series (’rts’ object in Splus or ’ts’ object in R)

intervals the range (mini, maxi) of the intervals to calculate, i.e., to take one obervation
every ’interval’ one. By default, intervals ranges from 1 to the fifth of the
total number of observations

X a ’turnogram’ object

object a ’turnogram’ object

e a ’turnogram’ object

step the increment used for the intervals. By defaults step=1. To limit calculation or
for a first screenning with a large range in the intervals, use a higher value for
step

complete if complete=TRUE, a complete turnogram is calculated, showing mean, minimal
and maximal curves. If it is FALSE (by default), only a simple turnogram always
starting from the first observation is calculated

two. tailed if two. tailed=TRUE (by default), the monotony index is tested with a bilateral
test, otherwise, a left-sided test is used

FUN a function to apply to aggregate data in the intervals. It is a function of the
type FUN(x, na.rm, ...). The most used function is mean() (by default), but
it is also possible to keep only the first value with first(), the last value with
last(), the median or the sum of values in the interval. The later function is
useful for cumulative observations, like pluviometry. It should be noted that the
turnograms with FUN=mean and with FUN=sum are the same, but that extraction
of final series are different for levels > 1

plotit if plotit=TRUE (by default), the graph of the turnogram is also plotted

level the significant level to draw on the graph. By default level=0. 05, correspond-
ing to a test with P =5%

lhorz if 1horz=TRUE (by default) then one (left-sided test), or two (two-sided test)
horizontal lines are drawn on the graph, indicating the significant level of the
test given by the argument level. Any point above the single line, or outside
the interval defined by the two lines is significant

lvert if 1vert=TRUE (by default, except for turnogram() function), a vertical line is
drawn, indicating the time interval that corresponds to the maximum information
and it is also the automatic level of extraction unless this value is changed

lcol the color to use to draw supplemental lines: the horizontal line indicating where
the test is significant (if 1horz=TRUE) and the vertical line indicating the extrac-
tion level (if 1vert=TRUE). By default, color 2 is used

11ty the style for the supplemental lines. By default, style 2 is used (dashed lines)

turnogram 67

xlog if x1og=TRUE (by default), then the x-axis is expressed in logarithms. Otherwise,
a linear scale is used

xlab the label of the x-axis

ylab the label of the y-axis

main the main title of the graph

sub the subtitle of the graph

col color to use for identified items

1ty line type to use for identified items

additional optional graphic arguments

n the number of observations to take into account in the initial series. Use n=NULL
(by default) to use all observations of the series

drop the number of observations to drop at the beginning of the series before proceed-
ing with the aggregation of the data for the extracted series. By default, drop=0:
no observations are dropped

Details

The turnogram is a generalisation of the information theory (see turnpoints()). If a series has
a lot of erratic peaks and pits that alternate with a high frequency, it is more difficult to interpret
than a more monotonous series. These erratic fluctuations can be eliminated by changing the scale
of observation (keeping one observation every two, three, four,... from the original series). The
turnogram resample the original series this way, and calculate a monotony index for each resampled
subseries. This monotony index quantifies the number of peaks and pits presents in the series,
compared to the total number of observations. The Gleissberg distribution (see pgleissberg())
indicates the probability to have such a number of extrema in a series given it is purely random.
It is possible to test monotony indices: is it a random series or not (two-sided test), or is more
monotonous than a random series (left-sided test) thanks to a Chi-2 test proposed by Wallis &
Moore (1941).

There are various turnograms depending on the way the observations are aggregated inside each
time interval. For instance, if one consider one observation every three from the original series,
each group of three observations can be aggregated in several different ways. One can take the
mean of the three observation, or the median value, or the sum,... One can also decide not to
aggregate observations, but to drop some of them. Hence, one can take only the first or the last
observation of the group. All these options can be choosen by defining the argument FUN=. ... A
simple turnogram correspond to the change of the monotony index with the scale of observation,
stating always from the first observation. One could also decide to start from the second, or the third
observation for an aggregation of the observations three by three... and result could be somewhat
different. A complete turnogram investigates all possibles combinations (observation scale versus
starting point for the aggregation) and trace the maximal, minimal and mean curves for the change
of the monotony index. It is thus more informative than the simple turnogram. However, it takes
much more time to compute.

The most obvious use of the turnogram is for the pretreatment of continuously sampled data. It helps
in deciding which is the optimal sampling interval for the series to bear as most information as pos-
sible while keeping the dataset as small as possible. It is also interesting to compare the turnogram
with other functions like the variogram (see vario()) or the spectrogram (see spectrum()).

68 turnogram

Value

An object of type "turnogram’ is returned. It has methods print (), summary(), plot(), identify()
and extract().

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

References

Dallot, S. & M. Etienne, 1990. Une méthode non paramétrique d’analyse des series en océanogra-
phie biologique: les tournogrammes. Biométrie et océanographie - Société de biométrie, 6, Lille,
26-28 mai 1986. IFREMER, Actes de colloques, 10:13-31.

Johnson, N.L. & Kotz, S., 1969. Discrete distributions. J. Wiley & sons, New York, 328 pp.
Kendall, M.G., 1976. Time-series, 2nd ed. Charles Griffin & co, London.

Wallis, W.A. & G.H. Moore, 1941. A significance test for time series. National Bureau of Economic
Research, tech. paper n°1.

See Also

pgleissberg, turnpoints, first, last, vario, spectrum

Examples

data(bnr)

Let's transform series 4 into a time series (supposing it is regular)

bnr4 <- as.ts(bnr[, 41)

plot(bnr4, type="1", main="bnr4: raw data”, xlab="Time")

A simple turnogram is calculated

bnr4.turno <- turnogram(bnr4)

summary (bnr4.turno)

A complete turnogram confirms that "level=3" is a good value:
turnogram(bnr4, complete=TRUE)

Data with maximum info. are extracted (thus taking 1 every 3 observations)
bnr4.interv3 <- extract(bnr4.turno)

plot(bnr4, type="1", lty=2, xlab="Time")

lines(bnr4.interv3, col=2)

title("Original bnr4 (dotted) versus max. info. curve (plain)")

Choose another level (for instance, 6) and extract the corresponding series
bnr4.turno$level <- 6

bnr4.intervé <- extract(bnr4.turno)

plot both extracted series on top of the original one

plot(bnr4, type="1", lty=2, xlab="Time")

lines(bnr4.interv3, col=2)

lines(bnr4.interv6, col=3)

legend(70, 580, c("original”, "interval=3", "interval=6"), col=1:3, lty=c(2, 1, 1))
It is hard to tell on the graph which series contains more information

The turnogram shows us that it is the "interval=3" one!

turnpoints 69

turnpoints Analyze turning points (peaks or pits)

Description

Determine the number and the position of extrema (turning points, either peaks or pits) in a regular
time series. Calculate the quantity of information associated to the observations in this series,
according to Kendall’s information theory

Usage

turnpoints(x, calc.proba = TRUE)
S3 method for class 'turnpoints'

print(x, ...)

S3 method for class 'turnpoints'
summary(object, ...)

S3 method for class 'summary.turnpoints'
print(x, ...)

S3 method for class 'turnpoints'

plot(x, level = 0.05, lhorz = TRUE, lcol = 2, 1lty = 2,
type = "1", xlab = "data number"”, ylab = paste("I (bits), level =",
level x 100, "%", sep = ""), main = paste("Information (turning points) for:",
x$data), ...)

S3 method for class 'turnpoints'

lines(x, max = TRUE, min = TRUE, median = TRUE,

col = c(4, 4, 2), 1ty = c(2, 2, 1), ...)
S3 method for class 'turnpoints'
extract(e, n, no.tp = @, peak = 1, pit = -1, ...)
Arguments
X a vector or a time series for turnpoints(), a "turnpoints’ object for the methods
calc.proba are the probabilities associated with each turning point also calculated? The

default, TRUE, should be correct unless you really do not need these. In this
case, the plot () method is not usable

object a ’turnpoints’ object, as returned by the function turnpoints()

e a 'turnpoints’ object, as returned by the function turnpoints()

level the significant level to draw on the graph if 1lhorz=TRUE. By default, 1level=0.05,
which corresponds to a 5% p-value for the test

lhorz if 1horz=TRUE (by default), an horizontal line indicating significant level is
drawn on the graph

lcol the color to use to draw the significant level line, by default, color 2 is used

11ty the style to use for the significant level line. By default, style 2 is used (dashed
line)

type the type of plot, as usual meaning for this graph parameter

70

xlab
ylab
main
max
min
median

col

1ty

no.tp

peak
pit

Details

turnpoints

the label of the x-axis

the label of the y-axis

the main title of the graph

do we plot the maximum envelope line (by default, yes)

do we plot the minimum envelope line (by default, yes)

do we plot the median line inside the envelope (by default, yes)

a vector of three values for the color of the max, min, median lines, respectively.
By default col=c(4,4,2)

a vector of three values for the style of the max, min, median lines, respectively.
By default 1ty=c(2,2, 1), that is: dashed, dashed and plain lines

the number of points to extract. By default n=1ength(turnp), all points are
extracted

extract gives a vector representing the position of extrema in the original series.
no. tp represents the code to use for points that are not an extremum, by default
,09

the code to use to flag a peak, by default ’ 1’

the code to use to flag a pit, by default ’-1’

Additional parameters

This function tests if the time series is purely random or not. Kendall (1976) proposed a series
of tests for this. Moreover, graphical methods using the position of the turning points to draw
automatically envelopes around the data are implemented, and also the drawing of median points
between these envelopes.

With a purely random time series, one expect to find, on average, a turning point (peak or pit that is,
an observation that is preceeded and followed by, respectively, lower or higher observations) every
1.5 observation. Given it is impossible to determine if first and last observation are turning point, it

gives:

E(p) =2/3% (n—2)

with p, the number of observed turning points and n the number of observations. The variance of p

182

var(p) = (16 *xn —29)/90

Ibanez (1982) demonstrated that P(t), the probability to observe a turning point at time t is:

P(t) = 2% (1/n(t — 1)l x (n — 1)1)

where P is the probability to observe a turning point at time t under the null hypothesis that the time
series is purely random, and thus, the distribution of turning points follows a normal distribution.

The quantity of information I associated with this probability is:

turnpoints 71

I =—log2P(t)

It can be interpreted as follows. If I is larger, there are less turning points than expected in a purely
random series. There are, thus, longer sequence of increasing or decreasing values along the time
scale. This is considered to be more informative.

As you can easily imagine, from this point on, it is straightforward to construct a test to determine if
the series is random (regarding the distribution of the turning points), more or less monotonic (more
or less turning points than expected).

Value

An object of type "turnpoints’ is returned. It has methods print(), summary(), plot(), lines()
and extract(). Regarding your specific question, ’info’ is the quantity of information I associated
with the turning points:

data The dataset to which the calculation is done

n The number of observations

points The value of the points in the series, after elimination of ex-aequos

pos The position of the points on the time scale in the series (including ex-aequos)

exaequos Location of exaequos (1), or not (0)

nturns Total number of tunring points in the whole time series

firstispeak Is the first turning point a peak (TRUE), or not (FALSE)

peaks Logical vector. Location of the peaks in the time series without ex-aequos

pits Logical vector. Location of the pits in the time series without ex-aequos

tppos Position of the turning points in the initial series (with ex-aequos)

proba Probability to find a turning point at this location (see details)

info Quantity of information associated with this point (see details)
WARNING

the 1ines() method should be used to draw lines on the graph of the original dataset (plot(data,
type="1") for instance), not on the graph of turning points (plot (turnp))!

Author(s)

Frederic Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

References

Ibanez, F., 1982. Sur une nouvelle application de la theorie de 'information a la description des
series chronologiques planctoniques. J. Exp. Mar. Biol. Ecol., 4:619-632

Kendall, M.G., 1976. Time-series, 2nd ed. Charles Griffin & Co, London.

See Also

turnogram, stat.slide

72 vario

Examples

data(marbio)

plot(marbio[, "Nauplii”], type = "1")

Calculate turning points for this series

Nauplii.tp <- turnpoints(marbio[, "Nauplii"])

summary (Nauplii.tp)

plot(Nauplii.tp)

Add envelope and median line to original data
plot(marbio[, "Nauplii"”], type = "1")

lines(Nauplii.tp)

Note that lines() applies to the graph of original dataset
title("Raw data, envelope maxi., mini. and median lines")

vario Compute and plot a semi-variogram

Description

Compute a classical semi-variogram for a single regular time series

Usage
vario(x, max.dist=length(x)/3, plotit=TRUE, vario.data=NULL)

Arguments
X a vector or an univariate time series
max.dist the maximum distance to calculate. By default, it is the third of the number of
observations
plotit If plotit=TRUE then the graph of the semi-variogram is plotted
vario.data data coming from a previous call to vario(). Call the function again with these
data to plot the corresponding graph
Value

A data frame containing distance and semi-variogram values

Author(s)

Frédéric Ibanez (<ibanez@obs-v1fr.fr>), Philippe Grosjean (<phgrosjean@sciviews.org>)

References
David, M., 1977. Developments in geomathematics. Tome 2: Geostatistical or reserve estimation.
Elsevier Scientific, Amsterdam. 364 pp.

Delhomme, J.P., 1978. Applications de la théorie des variables régionalisées dans les sciences de
I’eau. Bull. BRGM, section 3 n°4:341-375.

Matheron, G., 1971. La théorie des variables régionalisées et ses applications. Cahiers du Centre
de Morphologie Mathématique de Fontainebleau. Fasc. 5 ENSMP, Paris. 212 pp.

vario

See Also

disto

Examples

data(bnr)
vario(bnr[, 41)

73

Index

* chron
regarea, 38
regconst, 40
reglin, 41
regspline, 42
regul, 43
regul . adj, 48
regul.screen, 50

+ datasets
.gleissberg.table, 3
bnr, 8
marbio, 31
marphy, 33
releve, 52

x distribution
.gleissberg.table, 3
pgleissberg, 37

* htest
AutoD2, 5
trend. test, 59
turnogram, 65

* loess
tsd, 60

* manip
disjoin, 21
first, 27
last, 29
match.tol, 34
regarea, 38
regconst, 40
reglin, 41
regspline, 42
regul, 43
tseries, 64

+ methods
extract, 26
specs, 53

+« multivariate
abund, 3

74

AutoD2, 5
disto, 22
escouf, 23

* nonparametric
tsd, 60

* smooth
decaverage, 11
deccensus, 12
decdiff, 14
decevf, 15
decloess, 17
decmedian, 18
decreg, 19
regarea, 38
regconst, 40
reglin, 41
regspline, 42
regul, 43
tsd, 60

AutoD2, 5
buysbal, 8
daystoyears, 9
decaverage, 11
deccensus, 12
decdiff, 14
decevf, 15
decloess, 17
decmedian, 18
decreg, 19
disto, 22
GetUnitText, 27
is.tseries, 28
local.trend, 30
match. tol, 34
regarea, 38
regconst, 40
reglin, 41
regspline, 42

INDEX 75

regul, 43 GetUnitText, 27
regul.adj, 48

regul.screen, 50 hist.regul (regul), 43
stat.desc, 54

identify.abund (abund), 3

stat slide. 56 identify.escouf (escouf), 23

trend. test: 59 identify.local.trend (local.trend), 30
tsd. 60 identify.regul (regul), 43

’ identify.turnogram (turnogram), 65

stat.pen, 55

t ies, 64
series is.tseries, 28, 39, 41-43, 48, 65
turnogram, 65
turnpoints, 69 last, 27,29, 68
vario, 72 lines.abund (abund), 3
* univar

lines.escouf (escouf), 23
lines.regul (regul), 43
lines.stat.slide (stat.slide), 56
lines. turnpoints (turnpoints), 69

pennington, 35
.gleissberg. table, 3, 37

abund, 3, 26 local. trend, 30, 58, 60
acf, 7
AutoD2, 5 marbio, 31, 34
marphy, 33, 33
bnr, 8 match.tol, 34

buysbal, 8, 10, 22
pennington, 35, 58

CenterD2 (AutoD2), 5 pgleissberg, 3, 37, 68

CrossD2 (AutoD2), 5 plot.abund (abund), 3

cut, 22 plot.escouf (escouf), 23
plot.regul (regul), 43

daystoyears, 9,9, 28, 48 plot.stat.slide (stat.slide), 56

decaverage, 11, 13, 15, 16, 18-20, 63 plot.tsd (tsd), 60

deccensus, 12,12, 15, 16, 18-20, 63 plot.turnogram (turnogram), 65

decdiff, 12, 13, 14, 16, 18-20, 63 plot.turnpoints (turnpoints), 69

decevf, 12, 13, 15, 15, 18-20, 63 print.abund (abund), 3

decloess, 12, 13, 15, 16, 17, 19, 20, 63 print.escouf (escouf), 23

decmedian, 12, 13, 15, 16, 18, 18, 20, 31, 58, print.regul (regul), 43

63 print.specs.regul (regul), 43

decreg, 12, 13, 15, 16, 18, 19, 19, 63 print.specs.tsd (tsd), 60

disjoin, 21 print.stat.slide (stat.slide), 56

disto, 22,73 print.summary.abund (abund), 3
print.summary.escouf (escouf), 23

escouf, 5,23 print.summary.regul (regul), 43

extract, 26 print.summary.tsd (tsd), 60

extract.abund (abund), 3 print.summary.turnogram (turnogram), 65

extract.escouf (escouf), 23 print.summary.turnpoints (turnpoints),

extract.regul (regul), 43 69

extract.tsd (tsd), 60 print.tsd(tsd), 60

extract. turnogram (turnogram), 65 print.turnogram (turnogram), 65

extract. turnpoints (turnpoints), 69 print.turnpoints (turnpoints), 69

first, 27, 29, 68 regarea, 38, 4143, 48

76

regconst, 39, 40, 42, 43, 48
reglin, 39, 41,41, 43,48
regspline, 39, 41, 42,42, 48

regul, 26, 35, 39, 41-43, 43, 50, 52, 53, 65
regul.adj, 35, 39, 41-43, 48, 48, 52
regul.screen, 35, 39, 41-43, 48, 50, 50
releve, 52

specs, 53

specs.regul (regul), 43
specs. tsd (tsd), 60

spectrum, 68

splinefun, 43
stat.desc, 54, 56, 58
stat.pen, 36, 55, 55, 58
stat.slide, 31, 36, 55, 56, 56, 71
summary . abund (abund), 3
summary.escouf (escouf), 23
summary.regul (regul), 43
summary. tsd (tsd), 60

summary . turnogram (turnogram), 65
summary.turnpoints (turnpoints), 69

trend. test, 31, 59

tsd, 9, 12, 13, 15, 16, 18-20, 26, 53, 60, 65

tseries, 12, 13,15, 16, 18-20, 29, 39, 41-43,
48, 63, 64

turnogram, 26, 27, 29, 37,65, 71

turnpoints, 26, 37, 68, 69

vario, 23, 68,72

yearstodays, 28
yearstodays (daystoyears), 9

INDEX

	.gleissberg.table
	abund
	AutoD2
	bnr
	buysbal
	daystoyears
	decaverage
	deccensus
	decdiff
	decevf
	decloess
	decmedian
	decreg
	disjoin
	disto
	escouf
	extract
	first
	GetUnitText
	is.tseries
	last
	local.trend
	marbio
	marphy
	match.tol
	pennington
	pgleissberg
	regarea
	regconst
	reglin
	regspline
	regul
	regul.adj
	regul.screen
	releve
	specs
	stat.desc
	stat.pen
	stat.slide
	trend.test
	tsd
	tseries
	turnogram
	turnpoints
	vario
	Index

