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Abstract

We describe new functionality in the R (R Development Core Team (2010)) package
np (Hayfield and Racine (2008)) by providing a brief overview of each approach and its
implementation followed by brief illustrative examples. A simple demonstration outlining
how practitioners can implement their own entropy functions is also provided.
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1. Overview

In versions 0.30-4 through 0.30-7 of the np package (Hayfield and Racine (2008)) we introduced
a range of new functions that may be of interest to those conducting applied research. The
five new functions are summarized in Table 1 below.

Function Description Reference

npdeneqtest Nonparametric Test for Equality of Densities Li, Maasoumi, and Racine (2009)
npdeptest Nonparametric Entropy Test for Pairwise De-

pendence
Maasoumi and Racine (2002)

npsdeptest Nonparametric Entropy Test for Serial Non-
linear Dependence

Granger, Maasoumi, and Racine
(2004)

npsymtest Nonparametric Entropy Test for Asymmetry Racine and Maasoumi (2007),
Maasoumi and Racine (2009)

npunitest Nonparametric Entropy Test for Univariate
Density Equality

Maasoumi and Racine (2002)

Table 1: New np functions introduced in versions 0.30-4 through 0.30-7.

In what follows we briefly describe each new function listed in Table 1 and provide illustrative
examples of their use. Be aware that many of these functions rely on numerical integration
and can be computationally demanding. Though we provide moment-based versions of the
most computationally demanding functions, we advocate the use of the integral-based versions
which are the default. In the last section of this overview we describe in detail how the user
can implement their own custom entropy functions with minimal effort using the np package.

2. Testing Equality of Multivariate Densities

Li et al. (2009) proposed a nonparametric test for equality of multivariate densities comprised
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of continuous and categorical data. This test can be accessed via the npdeneqtest function.

Let X and Y be multivariate vectors of dimension q + r where q denotes the number of
continuous variables and r the number of discrete/categorical variables. A test statistic can
be constructed based on the integrated squared density difference given by I =

∫

[f(x) −
g(x)]2dx =

∫

[f(x)dF (x) + g(x)dG(x) − f(x)dG(x) − g(x)dF (x)], where F (·) and G(·) are the
cumulative distribution functions for X and Y , respectively, and where

∫

dx =
∑

xd∈Sd

∫

dxc.
Replacing the first occurrences of f(·) and g(·) by their leave-one-out kernel estimates, and
replacing F (·) and G(·) by their empirical distribution functions, we obtain the following test
statistic,
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Li et al. (2009) demonstrate that, under the null of equality,

Tn = (n1n2h1 . . . hq)1/2In/σn → N(0, 1) in distribution,

where
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which is a consistent estimator of σ2
0

= 2[δ−1 + δ + 2][E[f(Xi)]][
∫

W 2(v)dv], the asymptotic
variance of (n1n2h1 . . . hq)1/2In, where δ = limmin{n1,n2}→∞(n1/n2). Under the alternative the
statistic diverges to +∞, so the test is one-sided rejecting when the test statistic is sufficiently
large.

The test that uses critical values taken from the asymptotic distribution displays finite-sample
size distortions, so the npdeneqtest function employs bootstrap resampling to obtain the
finite-sample distribution of the statistic (this provides a test having correct size). The boot-
strap resamples are obtained by resampling from the empirical distribution of the pooled
data (i.e. are drawn from a common multivariate distribution under the null). Bandwidths
are obtained via likelihood cross-validation by default.

The following code snippet provides two simple examples using a mix of continuous and
discrete data. Note that the two samples must be data frames with identically named variables
(e.g., the variables ‘wages’ and ‘experience’ must be common to both data frames while sample
A could be that for females, sample B for males).

R> set.seed(1234)

R> n <- 250

R> ## Distributions are equal

R>

R> sample.A <- data.frame(a=rnorm(n),b=factor(rbinom(n,2,.5)))

R> sample.B <- data.frame(a=rnorm(n),b=factor(rbinom(n,2,.5)))

R> npdeneqtest(sample.A,sample.B,boot.num=99)
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Consistent Density Equality Test

99 Bootstrap Replications

Test Statistic ‘Tn’: 0.0809 P Value: 0.2

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Fail to reject the null of equality at the 10% level

R> ## Distributions are unequal

R>

R> sample.A <- data.frame(a=rnorm(n),b=factor(rbinom(n,2,.5)))

R> sample.B <- data.frame(a=rnorm(n,sd=10),b=factor(rbinom(n,2,.25)))

R> npdeneqtest(sample.A,sample.B,boot.num=99)

Consistent Density Equality Test

99 Bootstrap Replications

Test Statistic ‘Tn’: 50.4 P Value: <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null of equality is rejected at the 0.1% level

3. Testing Equality of Univariate Densities

Maasoumi and Racine (2002) consider a metric entropy useful for testing for equality of
densities for two univariate random variables X and Y . The function npunitest computes
the nonparametric metric entropy (normalized Hellinger of Granger et al. (2004)) for testing
the null of equality of two univariate density (or probability) functions. For continuous
variables we construct
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where f1 = f(x) and f2 = f(y) are the marginal densities of the random variables X and Y .
The second expression is in a moment form which is often replaced with a sample average,
especially for theoretical developments. When X and Y are discrete/categorical, we replace
integration with the sum over all possible outcomes. The unknown density/probability func-
tions are replaced with nonparametric kernel estimates.

The bootstrap is conducted by resampling with replacement from the pooled empirical distri-
bution of X and Y (X only for the moment version). Default bandwidths are of the plug-in
variety (‘bw.SJ’ for continuous variables and direct plug-in for discrete variables).

The following code snippet provides three simple examples for both continuous and discrete
data.
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R> set.seed(1234)

R> n <- 1000

R> ## Compute the statistic only, different distributions

R>

R> x <- rchisq(n,df=10)

R> y <- rnorm(n,sd=10000,mean=-10000)

R> npunitest(x,y,bootstrap=FALSE)

Consistent Univariate Density Difference Metric Entropy

Metric Entropy ‘Srho’: 0.977

R> ## Data drawn from same continuous distribution

R>

R> x <- rnorm(n)

R> y <- rnorm(n)

R> npunitest(x,y,boot.num=99)

Consistent Univariate Entropy Density Equality Test

99 Bootstrap Replications

Test Statistic ‘Srho’: 0.0016 P Value: 0.5

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Fail to reject the null of equality at the 10% level

R> ## Data drawn from different continuous distributions having the

R> ## same mean and variance

R>

R> x <- rchisq(n,df=5)

R> y <- rnorm(n,mean=5,sd=sqrt(10))

R> npunitest(x,y,boot.num=99)

Consistent Univariate Entropy Density Equality Test

99 Bootstrap Replications

Test Statistic ‘Srho’: 0.0373 P Value: <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null of equality is rejected at the 0.1% level

R> ## Data drawn from different discrete distributions

R>

R> x <- factor(rbinom(n,2,.5))

R> y <- factor(rbinom(n,2,.1))

R> npunitest(x,y,boot.num=99)
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Consistent Univariate Entropy Density Equality Test

99 Bootstrap Replications

Test Statistic ‘Srho’: 0.222 P Value: <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null of equality is rejected at the 0.1% level

4. Testing Univariate Asymmetry

Consider a (strictly) stationary series {Yt}
T
t=1

. Let µy denote a measure of central tendency,
say µy = E[Yt], let f(y) denote the density function of the random variable Yt, let Ỹt =
−Yt + 2µy denote a rotation of Yt about its mean, and let f(ỹ) denote the density function
of the random variable Ỹt. Note that if µy = 0 then Ỹt = −Yt, though in general this will not
be so.

We say a series is symmetric about the mean (median, mode) if f(y) ≡ f(ỹ) almost surely.
Tests for asymmetry about the mean therefore naturally involve testing the following null:

H0 : f(y) = f(ỹ) almost everywhere (a.e.)

against the alternative:

H1 : f(y) ̸= f(ỹ) on a set with positive measure.

The function npsymtest computes the nonparametric metric entropy (normalized Hellinger
of Granger et al. (2004)) outlined in Maasoumi and Racine (2009) for testing the null of
symmetry using the densities/probabilities of the data and the rotated data, f(y) and f(ỹ),
respectively, and in Racine and Maasoumi (2007). Y must be univariate and can be a time
series, continuous, or even categorical valued so long as the outcomes are not character strings.

For bootstrapping the null distribution of the statistic, ‘iid’ conducts simple random resam-
pling, while ‘geom’ conducts stationary bootstrapping using automatic block length selection
via the ‘b.star’ function in the ‘np’ package (Politis and Romano (1994), Politis and White
(2004), Patton, Politis, and White (2009)). Bootstrapping is conducted by resampling from
the empirical distribution of the pooled data and rotated data. Default bandwidths are of
the plug-in variety (‘bw.SJ’ for continuous variables and direct plug-in for discrete variables).

For continuous variables we use
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where f1 and f2 are the marginal densities of the data and rotated data, respectively. The
second expression is in a moment form which is often replaced with a sample average, espe-
cially for theoretical developments. When Y is discrete/categorical, we replace integration
with the sum over all possible outcomes.
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The following code snippet provides two simple examples for both continuous and discrete
data.

R> set.seed(1234)

R> n <- 100

R> ## Asymmetric discrete probability distribution

R>

R> x <- factor(rbinom(n,2,.8))

R> npsymtest(x,boot.num=99)

Consistent Entropy Asymmetry Test

99 Bootstrap Replications

Test Statistic ‘Srho’: 0.522 P Value: <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null of symmetry is rejected at the 0.1% level

R> ## Symmetric continuous distribution

R>

R> y <- rnorm(n)

R> npsymtest(y,boot.num=99)

Consistent Entropy Asymmetry Test

99 Bootstrap Replications

Test Statistic ‘Srho’: 0.00726 P Value: 0.2

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Fail to reject the null of symmetry at the 10% level

5. Testing Nonlinear Pairwise Independence

Maasoumi and Racine (2002) consider a metric entropy useful for testing for pairwise inde-
pendence of two random variables X and Y . The function npdeptest computes the nonpara-
metric metric entropy (normalized Hellinger of Granger et al. (2004)) for testing the null of
pairwise independence of two univariate density (or probability) functions. For continuous
variables we construct
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where f1 = f(xi, yi) is the joint density and f2 = g(xi) × h(yi) is the product of the marginal
densities of the random variables Xi and Yi. The unknown density/probability functions are
replaced with nonparametric kernel estimates.
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The bootstrap distribution is obtained by resampling with replacement from the empirical
distribution of X delivering {Xi, Yi} pairs under the null generated as {X∗

i , Yi} where X∗ is
the bootstrap resample (i.e. we ‘shuffle’ X leaving Y unchanged thereby breaking any pairwise
dependence to generate resamples under the null). Bandwidths are obtained via likelihood
cross-validation by default for the marginal and joint densities.

Examples include, (a) a measure/test of “fit”, for in-sample values of a variable y and its
fitted values, ŷ, and (b) a measure of “predictability” for a variable y and its predicted values
ŷ (from a user implemented model).

The following code snippet provides a simple example using the actual and fitted values from
a regression model. Note that we strongly advocate the use of the integration (default) version
of the statistic in applied settings but use the summation (i.e. moment) version below purely
by way of demonstration as it is computationally faster.

R> set.seed(123)

R> ## Test/measure lack of fit between y and its fitted value from a

R> ## regression model when x is relevant.

R> n <- 100

R> x <- rnorm(n)

R> y <- 1 + x + rnorm(n)

R> model <- lm(y~x)

R> y.fit <- fitted(model)

R> npdeptest(y,y.fit,boot.num=99,method="summation")

Consistent Metric Entropy Test for Dependence

99 Bootstrap Replications

Test Statistic ‘Srho’: 0.028 P Value: <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null of independence is rejected at the 0.1% level

6. Testing Nonlinear Serial Independence

Granger et al. (2004) consider a metric entropy useful for testing for nonlinear serial in-
dependence in a univariate random variable Y . The function npsdeptest computes the
nonparametric metric entropy (normalized Hellinger) for testing the null of nonlinear serial
independence of such a series. We construct
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where f1 = f(yt, yt−k) is the joint density and f2 = g(yt) × h(yt−k) is the product of the
marginal densities of the random variables Yt and Yt−k. The second expression is in a moment
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form which is often replaced with a sample average, especially for theoretical developments.
The unknown density/probability functions are replaced with nonparametric kernel estimates.

The bootstrap distribution is obtained by resampling with replacement from the empirical
distribution of Yt delivering Y ∗

t under the null of nonlinear serial independence. Bandwidths
are obtained via likelihood cross-validation by default for the marginal and joint densities.

The following code snippet provides a simple example for a continuous time series. Note that
we strongly advocate the use of the integration (default) version of the statistic in applied
settings but use the summation (i.e. moment) version below purely by way of demonstration
as it is computationally faster.

R> set.seed(123)

R> ## A function to create a time series

R> ar.series <- function(phi,epsilon) {

+ n <- length(epsilon)

+ series <- numeric(n)

+ series[1] <- epsilon[1]/(1-phi)

+ for(i in 2:n) {

+ series[i] <- phi*series[i-1] + epsilon[i]

+ }

+ return(series)

+ }

R> n <- 100

R> ## Stationary persistent time-series

R> yt <- ar.series(0.95,rnorm(n))

R> npsdeptest(yt,lag.num=2,boot.num=99,method="summation")

Consistent Metric Entropy Test for Nonlinear Dependence

99 Bootstrap Replications, 2 Lags

Test Statistic ‘Srho[1]’: 0.102 P Value: <2e-16 ***

Test Statistic ‘Srho[2]’: 0.0775 P Value: <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null of independence is rejected at lag 1 at the 0.1% level

Null of independence is rejected at lag 2 at the 0.1% level

7. Rolling Your Own Entropy Function

The functions outlined above allow for a range of entropy-based tests where the underlying
distributions are modelled nonparametrically. However, practitioners may wish to construct
their own entropy measures that rely on nonparametric estimates of the underlying distribu-
tions. By way of example we consider a metric entropy that measures distance (Hellinger) of
an unknown univariate density from a specific parametric density. The parametric density for
this example will be Gaussian and the unknown density will be estimated via kernel methods.
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In the following code snippet we construct a simple function in R that accomplishes this. You
could of course use nonparametric methods for both distributions or parametric methods for
both. The function npudens computes unconditional kernel density estimates, and fitted

computes the fitted density for the sample realizations. The function dnorm provides the
normal density function. The integrate function performs univariate numerical integration.

R> Srho <- function(x,y,...) {

+ ## First write a function to compute the integrand (this is fed to

+ ## the `integrate' function). This function's first argument is the

+ ## point at which the two densities are computed (the remaining

+ ## arguments are the data vectors).

+ integrand <- function(t,x,y) {

+ ## First, nonparametrically estimate the density of the x data

+ ## using a plug-in bandwidth and evaluate the density at the point

+ ## `t'.

+ f.x <- fitted(npudens(tdat=x,edat=t,bws=bw.SJ(x),...))

+ ## Next, estimate the parametric density of the data y using the

+ ## Gaussian distribution and evaluate the density at the point

+ ## `t'.

+ f.y <- dnorm(t,mean=mean(y),sd=sd(y))

+ ## Compute and return the integrand evaluated at the point `t'.

+ return(0.5*(sqrt(f.x)-sqrt(f.y))**2)

+ }

+ ## Feed the integrand function to integrate() and return the value

+ ## of the integral.

+ return(integrate(integrand,-Inf,Inf,x=x,y=y)$value)

+ }

R> set.seed(123)

R> n <- 1000

R> ## Data drawn from the same distribution

R> x <- rnorm(n)

R> y <- rnorm(n)

R> Srho(x,y)

[1] 0.000871

R> ## Data drawn from different distributions

R> y <- rnorm(n,sd=100)

R> Srho(x,y)

[1] 0.858

Should the reader be interested in multivariate measures, multivariate numerical integration
is available in the R packages cubature and R2Cuba (Johnson and Narasimhan (2009), Hahn,
Bouvier, and Kiêu (2010)).
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8. Summary

The np package (Hayfield and Racine (2008)) contains new functionality introduced in ver-
sions 0.30-4 through 0.30-7 that implements a range of entropy-based inferential proce-
dures. We hope you find these to be easy to use. Please report any issues encountered to
racinej@mcmaster.ca. Any suggestions for improvements to this document would be greatly
appreciated. As always, if you use these functions for your work we would sincerely appreci-
ate your citing both the relevant published research papers and the np package (Hayfield and
Racine (2008)).
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