Package ‘myClim’

February 21, 2025
Type Package

Title Microclimatic Data Processing

Version 1.4.0

URL http://labgis.ibot.cas.cz/myclim/index.html,
https://github.com/ibot-geoecology/myClim

Description Handling the microclimatic data in R. The 'myClim' workflow begins
at the reading data primary from microclimatic dataloggers,
but can be also reading of meteorological station data from files.
Cleaning time step, time zone settings and metadata collecting is the next step of the work flow.
With 'myClim' tools one can crop, join, downscale, and convert microclimatic data for-
mats, sort them into localities,
request descriptive characteristics and compute microclimatic variables.
Handy plotting functions are provided with smart defaults.

License GPL (>=2)
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
Depends R (>=3.5)

Imports stringr, lubridate, tibble, dplyr, purrr, tidyr, ggplot2,
ggforce, viridis, data.table, plotly, zoo, methods, vroom,
progress

Additional_repositories https://ibot-geoecology.github.io/drat
Suggests rmarkdown, knitr, kableExtra, rTubeDB, testthat (>= 3.0.0)
VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Matéj Man [aut],
Vojtéch Kalcik [aut, cre],
Martin Macek [aut],
Josef Briina [aut],

http://labgis.ibot.cas.cz/myclim/index.html
https://github.com/ibot-geoecology/myClim
https://ibot-geoecology.github.io/drat

Lucia Hederova [aut],

Jan Wild [aut],

Martin Kopecky [aut],

Institute of Botany of the Czech Academy of Sciences [cph]

Maintainer Vojtéch Kalcik <Vojtech.Kalcik@ibot.cas.cz>
Repository CRAN
Date/Publication 2025-02-21 08:50:02 UTC

Contents

lengthmyClimList
MC_AZE + « o o v e e e e e e e e e
mc_calc_cumsum L L e
mc calc fdd
mc_calc_gdd
mc_calc_ Snow L e
mc_calc_snow_agg e e
mc_calc_tomst_ dendro
mc_calc_vpd
mc_calc_ VWC . . . e
mc_calib_ moisture
mc_const CALIB_ MOIST ACOR.T
mc_const CALIB MOIST REF T
mc_const CALIB_ MOIST WCOR.T
mc_const SENSOR count
mc_const_SENSOR _coverage
mc_const SENSOR dendro 1 um
mc_const. SENSOR_Dendro_ raw
mc_const. SENSOR _Dendro T
mc_const SENSOR FDD
mc_const SENSOR GDD
mc_const SENSOR_HOBO _EXTT
mc_const SENSOR HOBORH
mc_const SENSOR HOBO T
mc_const_SENSOR _integer
mc_const_SENSOR _logical
mc_const_SENSOR_precipitation
mc_const SENSOR real
mc_const SENSOR RH
mc_const. SENSOR _snow _bool
mc_const._ SENSOR _snow fresh
mc_const. SENSOR _snow _total
mc_const. SENSOR _sun_shine
mc_const SENSOR_Thermo T
mc_const. SENSOR_TMS moist.
mc_const SENSOR_TMS T1
mc_const SENSOR_TMS T2

Contents

Contents

3
mc_const_ SENSOR_TMS_T3 e e s 28
mc_const SENSOR_T_C. e 28
mc_const_ SENSOR_VPD 29
mc_const_ SENSOR_VWC e 29
mc_const_SENSOR_wind_speed 29
mc_DataFormat-class e 30
mc_data_example_agg e 31
mc_data_example_clean e 32
mc_data_example_raw L L e 32
mc_data_formats e 33
mc_data_heights 34
mc_data_physical L e 35
mc_data_SEeNnSOrS e e e e e e 36
mc_data_vwe_parameterso e e e e e e e e e 37
MC_ENV_IMOISE v v o ot e e e e e e e e e e e 38
MC_ENV_EEMP . . .« v v v v it e 39
me_env_vpd e e 41
mc_filter L e e 42
mc_HOBODataFormat-class e 43
mec_info L 44
mc_info_clean. e e 45
mc_info_count L e e e e e e 46
mc_info_logger e 46
mc_info_meta e 47
mc_info_Tange e e e e e e e 48
mc_info_states L. e e e e e e e e e e 49
MC_JOIN o vt v e e e e e e 50
mc_loado e 51
mc_LocalityMetadata-class 52
mc_LoggerCleanInfo-class Lo oL 53
mc_LoggerMetadata-class 53
mc_MainMetadata-class e e 54
mc_MainMetadataAgg-class oL 54
mc_Physical-class 55
me_plot_image e e 55
mc_plot_line e e 57
mc_plot_loggers 59
me_plot_raster e e e 60
mc_prep_calib. L. e 61
mc_prep_calib_load L 62
me_prep_clean 63
MC_PIEP_CIOP « « v v v v e 65
mc_prep_fillNA 67
MC_PIEP_IMEIZE « . .« o o v v e 67
mc_prep_meta_localityo 68
MC_Prep_Meta_SENSOT . . .+ . v v v v v e v e e e e e e e e e e e e e e 69
mc_prep_solar_tzo L. e e 70

mc_prep_TMSoffsoil 71

4 length.myClimList
mc_read_data L e e 72
mc_read_files L. e e e e e 75
mc_read_long e 77
mc_read_problems 78
mc_read_tubedb L e 78
mc_read_wide e e e 79
mc_reshape_long e 81
mc_reshape_wide oL L L e 82
INC SAVE . . v v v v v e e e e e e e e s 83
mc_save_localities e e 84
MC_Sensor-Class e 84
mc_SensorMetadata-class e e 85
mc_states_delete L e e e e 85
mc_states_from_Sensor e e e e e e e e e 86
mMC_States_INSEIt e e e e e 87
MC_States_jOIN o oot e e e e 88
mc_states_outlier e e 89
mc_states_replace L L. e e e e e 90
mcC_states_to_SENSOI v e e e e e e e e e e e e e e e 91
mc_states_update e e 92
mc_TOMSTDataFormat-class e 94
mc_TOMSTJoinDataFormat-class v i ii 94
myClmList e e 94
printmyClimList 95
[myClimList e 95

Index 97

length.myClimList Length function for myClim object

Description

Function return number of localities.

Usage

S3 method for class 'myClimList'
length(x, ...)

Arguments
X myClim object see myClim-package
other parameters from function length
Examples

length(mc_data_example_agg)

mc_agg 5

mc_agg Aggregate data by function

Description

mc_agg has two basic uses:

* aggregate (upscale) time step of microclimatic records with specified function (e. g. 15 min
records to daily mean);

» convert myClim object from Raw-format to Agg-format see myClim-package without time-
series modification, this behavior appears when fun=NULL, period=NULL.

Usage

mc_agg(
data,
fun = NULL,
period = NULL,
use_utc = TRUE,
percentiles = NULL,
min_coverage = 1,
custom_start = NULL,
custom_end = NULL,
custom_functions = NULL

)
Arguments

data cleaned myClim object in Raw-format: output of mc_prep_clean() or Agg-
format as it is allowed to aggregate data multiple times.

fun aggregation function; one of ("min”, "max”, "mean”, "percentile”, "sum”,
"range”, "count”, "coverage") and functions defined in custom_functions.
See details of custom_functions argument. Can be single function name, charac-
ter vector of function names or named list of vector function names. Named list
of functions allows apply different function(s) to different sensors e.g. 1ist (TMS_T1=c("max",
"min"), TMS_T2="mean"”, TMS_T3_GDD="sum") if NULL records are not ag-
gregated, but myClim object is only converted to Agg-format without modifing
time-series. See details.

period Time period for aggregation - same as breaks in cut.POSIXt, e.g. ("hour”,

non

"day"”, "month"); if NULL then no aggregation

There are special periods "all” and "custom”. Period "all” returning sin-
gle value for each sensor based on function applied across all records within
the sensor. Period "custom” aggregates data in yearly cycle. You can aggre-
gate e.g. water year, vegetation season etc. by providing start, end datetime.
See custom_start and custom_end parameters. The output of special periods

6 mc_agg

"all” and "custom”are not allowed to be aggregated again in mc_agg() func-
tion, regardless multiple aggregations are allowed in general.

Start day of week is Monday.

use_utc default TRUE using UTC time, if set FALSE, the time is shifted by offset if
available in locality metadata. Shift can be e.g. to solar time mc_prep_solar_tz()
or political time with custom offset mc_prep_meta_locality()). Non-UTC
time can by used only for aggregation of the data with period shorter than day
(seconds, minutes, hours) into period day and longer.

percentiles vector of percentile numbers; numbers are from range 0-100; each specified
percentile number generate new virtual sensor, see details

min_coverage value from range 0-1 (default 1); the threshold specifying how many missing
values can you accept within aggregation period. e.g. when aggregating from
15 min to monthly mean and set min_coverage=1 then a single NA value within
the specific month cause monthly mean = NA. When min_coverage=0.9 then
you will get your monthly mean in case there are no more than 10 % missing
values, if there were more than 10% you will get NA. Ignored for functions
count and coverage

custom_start date of start, only use for custom period (default NULL); Character in format
"mm-dd” or "mm-dd H:MM" recycled in yearly cycle for time-series longer than 1
year.

custom_end date of end only use for custom period (default NULL); If NULL then calculates
in year cycle ending on custom_start next year. (useful e.g. for hydrological
year) When custom_end is provided, then data out of range custom_start-
custom_end are ignored. Character in format "mm-dd"” or "mm-dd H:MM". custom_end
row (the last record) is not included. I.e.complete daily data from year 2020 ends
in 2021-01-01 custom_end="01-01".

custom_functions
user define one or more functions in format 1ist(function_name=function(values){...});
then you will feed function_name(s) you defined to the fun parameter. e.g.
custom_functions = list(positive_count=function(x){length(x[x>01)}),
fun="positive_count”,

Details

Any output of mc_agg is in Agg-format. That means the hierarchical level of logger is removed
(Locality<-Logger<-Sensor<-Record), and all microclimatic records within the sensors are on the
level of locality (Locality<-Sensor<-Record). See myClim-package.

In case mc_agg () is used only for conversion from Raw-format to Agg-format (fun=NULL, period=NULL)
then microclimatic records are not modified. Equal step in all sensors is required for conversion
from Raw-format to Agg-format, otherwise period must be specified.

When fun and period are specified, microclimatic records are aggregated based on a selected func-
tion into a specified period. The name of the aggregated variable will contain also the name of
the function used for the aggregation (e.g. TMS_T1_mean). Aggregated time step is named after
the first time step of selected period i.e. day = c¢(2022-12-29 00:00, 2022-12-30 00:00...); week =
¢(2022-12-19 00:00, 2022-12-28 00:00...); month = ¢(2022-11-01 00:00, 2022-12-01 00:00...); year
=¢(2021-01-01 00:00, 2022-01-01 00:00...). When first or last period is incomplete in original data,

mc_calc_cumsum 7

the incomplete part is extended with NA values to match specified period. For example, when you
want to aggregate time-series to monthly mean, but your time-series starts on January 15 ending
December 20, myClim will extend the time-series to start on January 1 and end on December 31.
If you want to still use the data from the aggregation periods with not complete data coverage, you
can adjust the parameter min_coverage.

Empty sensors with no records are excluded. mc_agg() return NA for empty vector except from
fun=count which returns 0. When aggregation functions are provided as vector or list e.g. c(mean,
min, max), than they are all applied to all the sensors and multiple results are returned from each
sensors. When named list (names are the sensor ids) of functions is provided then mc_agg() apply
specific functions to the specific sensors based on the named list 1ist (TMS_T1=c("max", "min"),
TMS_T2="mean"). mc_agg returns new sensors on the localities putting aggregation function in its
name (TMS_T1 -> TMS_T1_max), despite sensor names contains aggregation function, sensor_id
stays the same as before aggregation in sensor metadata (e.g. TMS_T1 -> TMS_T1). Sensors
created with functions min, max, mean, percentile, sum, range keeps identical sensor_id and
value_type as original input sensors. When function sum is applied on logical sensor (e.g. snow
as TRUE, FALSE) the output is integer i.e. number of TRUE values.

Sensors created with functions count has sensor_id count and value_type integer, function coverage
has sensor_id coverage and value_type real

If the myClim object contains any states (tags) table, such as error tags or quality tags, the datetime
defining the start and end of the tag will be rounded according to the aggregation period parameter.

Value

Returns new myClim object in Agg-format see myClim-package When fun=NULL, period=NULL
records are not modified but only converted to Agg-format. When fun and period are provided then
time step is aggregated based on function.

Examples

n n

hour_data <- mc_agg(mc_data_example_clean, c("min", "max", "percentile"),
"hour"”, percentiles = 50, min_coverage=0.5)
day_data <- mc_agg(mc_data_example_clean, list(TMS_T1=c("max", "min"), TMS_T2="mean"),
"day", min_coverage=1)
month_data <- mc_agg(mc_data_example_clean, fun=1ist(TMS_T3="below5"),period = "month",
custom_functions = list(below5=function(x){length(x[x<(-5)1)}))

mc_calc_cumsum Cumulative sum

Description

This function creates a new virtual sensor on locality within the myClim data object. The virtual
sensor represents the cumulative sum of the values on the input sensor. Names of new sensors are
original sensor name + outpus_suffix.

Usage

mc_calc_cumsum(data, sensors, output_suffix = "_cumsum”, localities = NULL)

8 mc_calc_fdd

Arguments
data cleaned myClim object see myClim-package
sensors names of sensors on which to calculate cumulative sum

output_suffix name suffix for virtual sensor names (default "_cumsum") e.g. TMS_T3_cumsum

localities list of locality_ids for calculation; if NULL then all (default NULL)

Details

If value type of sensor is logical, then output type is integer. (TRUE, TRUE, FALSE -> 2)

Value

The same myClim object as input but with added cumsum sensors.

Examples
cumsum_data <- mc_calc_cumsum(mc_data_example_agg, c("TMS_T1", "TMS_T2"))
mc_calc_fdd Freezing Degree Days
Description

This function creates a new virtual sensor on locality within the myClim data object. The new
virtual sensor provides FDD Freezing Degree Days.

Usage

mc_calc_fdd(data, sensor, output_prefix = "FDD", t_base = @, localities = NULL)

Arguments
data cleaned myClim object see myClim-package
sensor name of temperature sensor used for FDD calculation e.g. TMS_T3 see names(mc_data_sensors)

output_prefix name prefix of new FDD sensor (default "FDD")
name of output sensor consists of output_prefix and value t_base (FDDO_TMS_T?3)

t_base threshold temperature for FDD calculation (default 0)
localities list of locality_ids for calculation; if NULL then all (default NULL)

mc_calc_gdd 9

Details

The allowed step length for FDD calculation is day and shorter. Function creates a new virtual
sensor with the same time step as input data. For shorter time steps than the day (which is however
not intuitive for FDD) the FDD value is the contribution of the time step to the freezing degree day.
Be careful while aggregating freezing degree days to longer periods only meaningful aggregation
function is sum, but myClim allows you to apply anything see mc_agg().

Note that FDD is always positive number, despite summing freezing events. When you set t_base=-1
you get the sum of degree days below -1 °C but expressed in positive number if you set t_base=1
you get also positive number. Therefore pay attention to name of output variable which contains
t_base value. FDD1_TMS_T3, t_base=1 vs FDDminus1_TMS_T3, t_base=-1

Value

The same myClim object as input but with added virtual FDD sensor

Examples

fdd_data <- mc_calc_fdd(mc_data_example_agg, "TMS_T3", localities = c("A2E32", "A6W79"))
fdd_agg <- mc_agg(fdd_data, list(TMS_T3=c(”"min”, "max"), FDD5="sum"), period="day")

mc_calc_gdd Growing Degree Days

Description

This function creates a new virtual sensor for each locality within myClim data object. The new
virtual sensor provides values of GDD (Growing Degree Days) in degees Celsius for each time step
in the original timeseries.

Usage

mc_calc_gdd(data, sensor, output_prefix = "GDD", t_base = 5, localities = NULL)

Arguments
data cleaned myClim object see myClim-package
sensor name of temperature sensor used for GDD calculation e.g. TMS_T3 see names(mc_data_sensors)

output_prefix name prefix of new GDD sensor (default "GDD" -> "GDD5_TMS_T3") name
of output sensor consists of output_prefix and value t_base e.g. GDD5

t_base base temperature for calculation of GDD (default 5°C)
localities list of locality_ids for calculation; if NULL then all (default NULL)

10 mc_calc_snow

Details

Function calculates growing degree days as follows: GDD = max(0;(T - Tbase)) . period(days)
The maximum allowed time step length for GDD calculation is one day. Function creates a new
virtual sensor with the same time step as input data. For shorter time steps than one day, the GDD
value is the contribution of the interval to the growing degree day, assuming constant temperature
over this period. Be careful while aggregating growing degree days to longer periods, because only
meaningful aggregation function here is sum, but myClim let you apply any aggregation function
see mc_agg().

Value

The same myClim object as input but with added virtual GDD sensor

Examples

gdd_data <- mc_calc_gdd(mc_data_example_agg, "TMS_T3", localities = c("A2E32", "A6W79"))
gdd_agg <- mc_agg(gdd_data, list(TMS_T3=c("min"”, "max"), GDD5="sum"), period="day")

mc_calc_snow Snow detection from temperature

Description

This function creates a new virtual sensor on locality within the myClim data object. Virtual sensor
hosts values of snow cover presence/absence detected from temperature time-series.

Usage
mc_calc_snow(
data,
sensor,
output_sensor = "snow",
localities = NULL,
range = 1,
tmax = 1.25,
days = 3
)
Arguments
data cleaned myClim object see myClim-package
sensor name of temperature sensor used for snow estimation. (e.g. TMS_T2)

output_sensor name of output snow sensor (default "snow"

localities list of locality_ids where snow will be calculated; if NULL then all (default
NULL)

range maximum temperature range threshold for snow-covered sensor (default 1°C)

mc_calc_snow_agg 11

tmax maximum temperature threshold for snow-covered sensor (default 1.25°C)

days number of days to be used for moving-window for snow detection algorithm
(default 3 days)

Details

Function detects snow cover from temperature time-series. Temperature sensor is considered as
covered by snow when the maximal temperature in the preceding or subsequent time-window (spec-
ified by days param) does not exceed specific tmax threshold value (default 1.25°C) and the temper-
ature range remain below specified range threshold (default 1°C). This function rely on insulating
effect of a of snow layer, significantly reducing diurnal temperature variation and restricting the
maximal temperature near the ground close to freezing point. Temperature sensor near the ground
(TMS_T2) is default choice for snow-cover detection from Tomst TMS loggers. Snow detection
with default values accurately detects snow of depth > 15cm (unpublished data). For detection
of thin snow, range parameter should be set to 3-4 °C. The function returns vector of snow cover
(TRUE/FLASE) with same time-step as input data. To get number of days with snow cover and
more snow summary characteristics use mc_calc_snow_agg after snow detection.

Value

myClim object with added virtual sensor ’snow’ (logical) indicating snow presence/absence (TRUE/FALSE).

Examples

data <- mc_calc_snow(mc_data_example_agg, "TMS_T2", output_sensor="TMS_T2_snow",
localities = c("A2E32", "A6W79"))

mc_calc_snow_agg Summary of TRUE/FALSE snow sensor

Description

This function works with the virtual snow sensor of TRUE/FALSE which is the output of mc_calc_snow().
So, before calling mc_calc_snow_agg you need to calculate or import mc_read_ TRUE/FALSE

snow sensor. mc_calc_snow_agg returns the summary table of snow sensor (e.g number of days

with snow cover, first and last date of continual snow cover longer than input period). The snow
summary is returned for whole date range provided. And is returned as new data.frame in contrast

with other mc_calc functions returning virtual sensors.

Usage
mc_calc_snow_agg(
data,
snow_sensor = "snow",
localities = NULL,
period = 3,

use_utc = FALSE

12

Arguments

data

snow_sensor

localities

period

use_utc

Details

mc_calc_tomst_dendro

cleaned myClim object see myClim-package with TRUE/FALSE snow sensor
see mc_calc_snow()

name of snow sensor containing TRUE/FALS snow detection, suitable for vir-
tual sensors created by function mc_calc_snow; (default "snow")

optional subset of localities where to run the function (list of locality_ids); if
NULL then return all localities (default NULL)

number of days defining the continual snow cover period of interest (default 3
days)

if set FALSE then time is shifted based on offset provided in locality metadata
tz_offset, see e.g. mc_prep_solar_tz(), mc_prep_meta_locality(); (de-
fault FALSE)

Primary designed for virtual snow sensor calculated by mc_calc_snow(), but accepts any sensor
with TRUE/FLAST snow event detection. If snow_sensor on the locality is missing, then locality

is skipped.

Value

Returns data.frame with columns:

* locality - locality id

* snow_days - number of days with snow cover

* first_day - first day with snow

e last_day - last day with snow

* first_day_period - first day of period with continual snow cover based on period parameter

* last_day_period - last day of period with continual snow cover based on period parameter

Examples

data <- mc_calc_snow(mc_data_example_agg, "TMS_T2", output_sensor="TMS_T2_snow",

localities = c("A2E32", "A6W79"))

mc_calc_snow_agg(data, "TMS_T2_snow")

mc_calc_tomst_dendro Converting Tomst dendrometer values to micrometers

Description

This function creates a new virtual sensor on locality within the myClim data object. The virtual
sensor provides the values of the change in stem size converted from raw Tomst units to microm-
eters. Note that newer versions of Tomst Lolly software can directly convert raw Tomst units to

micrometers.

mc_calc_vpd 13

Usage

mc_calc_tomst_dendro(
data,
dendro_sensor = mc_const_SENSOR_Dendro_raw,
output_sensor = mc_const_SENSOR_dendro_1_um,
localities = NULL

Arguments

data cleaned myClim object see myClim-package

dendro_sensor name of change in stem size sensor to be converted from raw to micrometers
(default "Dendro_raw") see names(mc_data_sensors)

output_sensor name of new change in stem size sensor (default "dendro_l_um")

localities list of locality_ids for calculation; if NULL then all (default NULL)

Value

myClim object same as input but with added dendro_l_um sensor

Examples

agg_data <- mc_calc_tomst_dendro(mc_data_example_agg, localities="A1E@5")

mc_calc_vpd Calculate vapor pressure deficit (in kPa)

Description

This function creates a new virtual sensor on locality within the myClim data object. The virtual
sensor represents the vapor pressure deficit (in kPa) calculated from temperature and relative air
humidity.

Usage

mc_calc_vpd(
data,
temp_sensor = "HOBO_T",
rh_sensor = "HOBO_RH",
output_sensor = "VPD",
elevation = 0,
metadata_elevation = TRUE,
localities = NULL

14 mc_calc_vwc

Arguments
data cleaned myClim object see myClim-package
temp_sensor name of temperature sensor. Temperature sensor must be in T_C physical.
rh_sensor name of relative air humidity sensor. Humidity sensor must be in RH physical.

output_sensor name of new virtual VPD sensor (default "VPD")

elevation value in meters (default 0)

metadata_elevation
if TRUE then elevation from metadata of locality is used (default TRUE)

localities list of locality_ids for calculation; if NULL then all (default NULL)

Details

Equation are from the CR-5 Users Manual 2009-12 from Buck Research. These equations have
been modified from Buck (1981) and adapted by Jones, 2013 (eq. 5.15) Elevation to pressure
conversion function uses eq. 3.7 from Campbell G.S. & Norman J.M. (1998).

Value

myClim object same as input but with added VPD sensor

References

Jones H.G. (2014) Plants and Microclimate, Third Edit. Cambridge University Press, Cambridge
Buck A.L. (1981) New equations for computing vapor pressure and enhancment factor. Journal of
Applied Meteorology 20: 1527-1532. Campbell G.S. & Norman J.M. (1998). An Introduction to
Environmental Biophysics, Springer New York, New York, NY

Examples

agg_data <- mc_calc_vpd(mc_data_example_agg, "HOBO_T", "HOBO_RH", localities="A2E32")

mc_calc_vwc Conversion of raw TMS soil moisture values to volumetric water con-
tent (VWC)

Description

This function creates a new virtual sensor on the locality within the myClim data object. Function
converts the raw TMS soil moisture (scaled TDT signal) to volumetric water content (VWC).

mc_calc_vwc

Usage

mc_calc_vwc(
data,
moist_sensor = mc_const_SENSOR_TMS_moist,
temp_sensor = mc_const_SENSOR_TMS_T1,
output_sensor = "VWC_moisture”,
soiltype = "universal”,
localities = NULL,
ref_t = mc_const_CALIB_MOIST_REF_T,
acor_t = mc_const_CALIB_MOIST_ACOR_T,
wcor_t = mc_const_CALIB_MOIST_WCOR_T,

15

frozen2NA = TRUE

Arguments

data

moist_sensor

temp_sensor

output_sensor

cleaned myClim object see myClim-package

name of soil moisture sensor to be converted from TMS moisture values to vol-
umetric water content (default "TMS_moist") see names(mc_data_sensors).
Soil moisture sensor must be in moisture_raw physical units see names(mc_data_physical).

name of soil temperature sensor (default "TMS_T1") see names(mc_data_sensors).
Temperature sensor must be in T_C physical units.

name of new virtual sensor with VWC values (default "VWC_moisture")

soiltype Either character corresponding to one of soiltype from mc_data_vwc_parameters
(default "universal”), or a list with parameters a, b and c provided by the user
asalist(a=Value_1, b=Value_2, c=Value_3).

localities list of locality_ids used for calculation; if NULL then all localities are used
(default NULL)

ref_t (default 24)

acor_t (default 1.91132689118083) correction parameter for temperature drift in the
air, see mc_calib_moisture()

wecor_t (default 0.64108) correction parameter for temperature drift in the water, see
mc_calib_moisture()

frozen2NA if TRUE then VWC values are set to NA when the soil temperature is below 0
°C (default TRUE)

Details

This function is suitable for TOMST TMS loggers measuring soil moisture in raw TMS units. The
raw TMS units represents inverted and numerically rescaled (1-4095) electromagnetic signal from
the moisture sensor working on Time Domain Transmission principle (Wild et al. 2019). For TMS4
logger, the typical raw TMS moisture values range from cca 115 units in dry air to cca 3635 units
in distilled water - see mc_calib_moisture.

16 mc_calc_vwc

Raw TMS moisture values can be converted to the soil volumetric water content with calibration
curves. The function provides several experimentally derived calibration curves which were devel-
opped at reference temperature. To account for the difference between reference and actual tem-
perature, the function uses actual soil temperature values measured by TMS_T1 soil temperature
Sensor.

The default calibration curve is "universal", which was designed for mineral soils (see Kopecky et al.
2021). Specific calibration curves were developed for several soil types (see Wild et al. 2019) and
the user can choose one of these or can define its own calibration - see mc_data_vwc_parameters

Currently available calibration curves are: sand, loamy sand A, loamy sand B, sandy loam A, sandy
loam B, loam, silt loam, peat, water, universal, sand TMS1, loamy sand TMS|, silt loam TMS1.
For details see mc_data_vwc_parameters.

It is also possible to define a new calibarion function with custom parameters a, b and c. These can
be derived e.g. from TOMST TMS Calibr utility after entering custom ratio of clay, silt, sand.

Warning: TOMST TMS Calibr utility was developed for TMS3 series of TMS loggers, which have
different range of raw soil moisture values than TMS4 series.

The function by default replace the moisture records in frozen soils with NA (param frozen2NA),
because the TMS soil moisture sensor was not designed to measure in frozen soils and the returned
values are thus not comparable with values from non-frozen soil.

Value

myClim object same as input but with added virtual VWC moisture sensor

References

Wild, J., Kopecky, M., Macek, M., §anda, M., Jankovec, J., Haase, T. (2019) Climate at ecologically
relevant scales: A new temperature and soil moisture logger for long-term microclimate measure-
ment. Agriculture and Forest Meteorology 268, 40-47. https://doi.org/10.1016/j.agrformet.2018.12.018

Kopecky, M., Macek, M., Wild, J. (2021) Topographic Wetness Index calculation guidelines based
on measured soil moisture and plant species composition. Science of the Total Environment 757,
143785. https://doi.org/10.1016/j.scitotenv.2020.143785

See Also

mc_data_vwc_parameters

Examples

datal <- mc_calc_vwc(mc_data_example_agg, soiltype="sand"”, localities="A2E32")
data2 <- mc_calc_vwc(mc_data_example_agg, localities="A2E32",
soiltype=list(a=-3.00e-09, b=0.000161192, c=-0.109956505))

mc_calib_moisture 17

mc_calib_moisture Calculates coefficients for TMS moisture conversion to VWC

Description

Specialized function for calibration of TOMST TMS moisture sensor. Function calculate correc-
tion parameters for individual logger (slope and intercept) from TMS moisture measurements in
demineralized water and dry air.

Usage

mc_calib_moisture(
raw_air,
raw_water,
t_air = 24,
t_water = 24,
ref_air = 114.534,
ref_water = 3634.723,
ref_t = mc_const_CALIB_MOIST_REF_T,
acor_t = mc_const_CALIB_MOIST_ACOR_T,
wcor_t = mc_const_CALIB_MOIST_WCOR_T

)
Arguments
raw_air Raw TMS moisture signal in air
raw_water Raw TMS moisture signal in water
t_air temperature of air (default 24)
t_water temperature of water (default 24)
ref_air raw air signal of reference logger used to derive soil calibration parameters (de-
fault 114.534)
ref_water raw air signal of reference logger used to derive soil calibration parameters (de-
fault 3634.723)
ref_t reference logger temperature (default 24)
acor_t temperature drift correction parameter in the air (default 1.911)
weor_t temperature drift correction parameter in the water (default 0.641)
Details

This function calculate calibration parameters cor_factor and cor_intercept accounting for in-
dividual differencies in TMS moisture sensor signal in air and in water against reference loggers
which were used for estimation of parameters of soil VWC conversion curves. These parame-
ters must be loaded into myClim object mc_prep_calib_load() prior to calling mc_calc_vwc().
Parameters for soils available in my_Clim were derived for TMS3 logger version, with slightly
different typical air and water signal. Correction parameters for TMS4 loggers therefore can be
expected in the range of values: cor_factor = (-150; -450) and cor_slope = (100, 450)

18 mc_const_ CALIB_MOIST ACOR_T

Value

list with correction factor and correction slope

Examples

load example data
files <- c(system.file("extdata”, "data_94184102_0.csv", package = "myClim"))
tomst_data <- mc_read_files(files, "TOMST")

vwc without calibration
tomst_data <- mc_calc_vwc(tomst_data, soiltype = "universal”, output_sensor = "VWC_universal")

load calibration
my_cor <- mc_calib_moisture(raw_air = 394, raw_water = 3728, t_air = 21, t_water = 20)
my_calib_tb <- data.frame(serial_number = c("94184102"), sensor_id = "TMS_moist",
datetime = as.POSIXct("2020-01-01 00:00"),
cor_factor = my_cor$cor_factor, cor_slope = my_cor$cor_slope)
tomst_data_cal <- mc_prep_calib_load(tomst_data, my_calib_tb)
vwc using calibration
tomst_data_cal <- mc_calc_vwc(tomst_data_cal, soiltype = "universal”,
output_sensor = "VWC_universal_calib")
plot results
Not run:
sensors <- mc_info(tomst_data_cal)$sensor_name
mc_plot_line(tomst_data_cal, sensors = c(sensors[startsWith(sensors,"VWC")1)
+ ggplot2::scale_color_viridis_d(begin = 0.2, end = 0.8))
End(Not run)

mc_const_CALIB_MOIST_ACOR_T
Default temperature drift for TMS moisture in the air.

Description

1.91132689118083 = default temperature drift correction parameter in the air - TMS moisture sen-
sor. This constant is used in the function mc_calc_vwec.

Usage

mc_const_CALIB_MOIST_ACOR_T

Format

An object of class numeric of length 1.

mc_const CALIB_MOIST REF T 19

mc_const_CALIB_MOIST_REF_T
Default ref. temperate for TMS moisture calibration

Description

24°C = default reference calibration temperate for TMS moisture sensor

Usage
mc_const_CALIB_MOIST_REF_T

Format

An object of class numeric of length 1.

mc_const_CALIB_MOIST_WCOR_T
Default temperature drift for TMS moisture in the water

Description
0.64108 = default temperature drift correction parameter in the water - TMS moisture sensor. This
constant is used in the function mc_calc_vwc.

Usage
mc_const_CALIB_MOIST_WCOR_T

Format

An object of class numeric of length 1.

mc_const_SENSOR_count Count sensor id see mc_agg()

Description

Count sensor id see mc_agg ()

Usage

mc_const_SENSOR_count

Format

An object of class character of length 1.

20

mc_const SENSOR_dendro 1 um

mc_const_SENSOR_coverage
Coverage sensor id see mc_agg()

Description

Coverage sensor id see mc_agg()

Usage

mc_const_SENSOR_coverage

Format

An object of class character of length 1.

mc_const_SENSOR_dendro_1_um
Radius difference sensor id

Description

Radius difference sensor id

Usage

mc_const_SENSOR_dendro_1_um

Format

An object of class character of length 1.

mc_const SENSOR_Dendro_raw 21

mc_const_SENSOR_Dendro_raw
Default sensor for TOMST Dendrometer radius difference

Description

This constant is used in the function mc_calc_tomst_dendro as default sensor for converting the
change in stem size from raw TOMST units to micrometers. mc_const_SENSOR_Dendro_raw =
"Dendro_raw"

Usage

mc_const_SENSOR_Dendro_raw

Format

An object of class character of length 1.

mc_const_SENSOR_Dendro_T
Default sensor for TOMST Dendrometer temperature

Description

Default sensor for TOMST Dendrometer temperature

Usage

mc_const_SENSOR_Dendro_T

Format

An object of class character of length 1.

22 mc_const SENSOR_HOBO_EXTT

mc_const_SENSOR_FDD Freezing Degree Days sensor id see mc_calc_fdd()

Description

Freezing Degree Days sensor id see mc_calc_fdd()

Usage

mc_const_SENSOR_FDD

Format

An object of class character of length 1.

mc_const_SENSOR_GDD Growing Degree Days sensor id see mc_calc_gdd()

Description

Growing Degree Days sensor id see mc_calc_gdd()

Usage

mc_const_SENSOR_GDD

Format

An object of class character of length 1.

mc_const_SENSOR_HOBO_EXTT
Onset HOBO external temperature sensor id

Description

Onset HOBO external temperature sensor id

Usage

mc_const_SENSOR_HOBO_EXTT

Format

An object of class character of length 1.

mc_const SENSOR_HOBO RH

23

mc_const_SENSOR_HOBO_RH
Onset HOBO humidity sensor id

Description

Onset HOBO humidity sensor id

Usage
mc_const_SENSOR_HOBO_RH

Format

An object of class character of length 1.

mc_const_SENSOR_HOBO_T
Onset HOBO temperature sensor id

Description

Onset HOBO temperature sensor id

Usage
mc_const_SENSOR_HOBO_T

Format

An object of class character of length 1.

mc_const_SENSOR_integer
General integer sensor id

Description

General integer sensor id

Usage

mc_const_SENSOR_integer

Format

An object of class character of length 1.

24

mc_const_ SENSOR_real

mc_const_SENSOR_logical
General logical sensor id

Description

General logical sensor id

Usage
mc_const_SENSOR_logical

Format

An object of class character of length 1.

mc_const_SENSOR_precipitation
Precipitation sensor id

Description

Precipitation sensor id

Usage

mc_const_SENSOR_precipitation

Format

An object of class character of length 1.

mc_const_SENSOR_real General real sensor id

Description

General real sensor id

Usage

mc_const_SENSOR_real

Format

An object of class character of length 1.

mc_const SENSOR_RH

25

mc_const_SENSOR_RH Relative humidity sensor id

Description

Relative humidity sensor id

Usage
mc_const_SENSOR_RH

Format

An object of class character of length 1.

mc_const_SENSOR_snow_bool
Snow existence sensor id see mc_calc_snow()

Description

Snow existence sensor id see mc_calc_snow()

Usage

mc_const_SENSOR_snow_bool

Format

An object of class character of length 1.

mc_const_SENSOR_snow_fresh
Height of newly fallen snow sensor id

Description

Height of newly fallen snow sensor id

Usage

mc_const_SENSOR_snow_fresh

Format

An object of class character of length 1.

26

mc_const SENSOR_Thermo T

mc_const_SENSOR_snow_total
Height snow sensor id

Description

Height snow sensor id

Usage

mc_const_SENSOR_snow_total

Format

An object of class character of length 1.

mc_const_SENSOR_sun_shine
Time of sun shine sensor id

Description

Time of sun shine sensor id

Usage

mc_const_SENSOR_sun_shine

Format

An object of class character of length 1.

mc_const_SENSOR_Thermo_T

Default sensor for TOMST Thermologger temperature

Description

Default sensor for TOMST Thermologger temperature

Usage
mc_const_SENSOR_Thermo_T

Format

An object of class character of length 1.

mc_const SENSOR_TMS moist 27

mc_const_SENSOR_TMS_moist
Default sensor for TOMST TMS raw soil moisture

Description

This constant is used in the function mc_calc_vwc as default for sensor for converting the raw TMS
soil moisture (scaled TDT signal) to volumetric water content (VWC). mc_const_ SENSOR_TMS_moist
="TMS_moist"

Usage

mc_const_SENSOR_TMS_moist

Format

An object of class character of length 1.

mc_const_SENSOR_TMS_T1
Default sensor for TOMST TMS soil temperature

Description

This constant is used in the function mc_calc_vwc to account for soil temperature effect while
converting the raw TMS soil moisture (scaled TDT signal) to volumetric water content (VWC).
mc_const_ SENSOR_TMS_T1 ="TMS_T1"

Usage

mc_const_SENSOR_TMS_T1

Format

An object of class character of length 1.

28 mc_const SENSOR_T C

mc_const_SENSOR_TMS_T2
Default sensor for TOMST TMS temperature of soil surface

Description

Default sensor for TOMST TMS temperature of soil surface

Usage
mc_const_SENSOR_TMS_T?2

Format

An object of class character of length 1.

mc_const_SENSOR_TMS_T3
Default sensor for TOMST TMS air temperature

Description

Default sensor for TOMST TMS air temperature

Usage

mc_const_SENSOR_TMS_T3

Format

An object of class character of length 1.

mc_const_SENSOR_T_C Temperature sensor id

Description

Temperature sensor id

Usage
mc_const_SENSOR_T_C

Format

An object of class character of length 1.

mc_const SENSOR_VPD

29

mc_const_SENSOR_VPD Vapor Pressure Deficit sensor id see mc_calc_vpd()

Description

Vapor Pressure Deficit sensor id see mc_calc_vpd()

Usage

mc_const_SENSOR_VPD

Format

An object of class character of length 1.

mc_const_SENSOR_VWC Volumetric soil moisture sensor id see mc_calc_vwc()

Description

Volumetric soil moisture sensor id see mc_calc_vwc()

Usage
mc_const_SENSOR_VWC

Format

An object of class character of length 1.

mc_const_SENSOR_wind_speed
Speed of wind sensor id

Description

Speed of wind sensor id

Usage

mc_const_SENSOR_wind_speed

Format

An object of class character of length 1.

30 mc_DataFormat-class

mc_DataFormat-class Class for Logger File Data Format

Description

This class is used for parsing source TXT/CSV files downloaded from microclimatic loggers.

Details

myClim offers several pre-defined logger file data formats, such as TOMST TMS or HOBO. Users
can also define custom readings for their own loggers. Pre-defined and custom loggers in myClim
each have their own specific object of class mc_{logger}DataFormat, which defines the parameters
for handling logger files. The pre-defined logger definitions are stored in the R environment object
./data/mc_data_formats.rda.

Slots

skip The number of rows to skip before the first row containing microclimatic records. For exam-
ple, to skip the header (default 0).

separator The column separator (default is a comma ",").
date_column The index of the date column - required (default NA).

date_format The format of the date (default NA).
For a description of the date_format parameter, see strptime(). If the format is in ISO8601
and the function vroom: : vroom() automatically detects datetime values, the date_format pa-
rameter can be NA.

na_strings Strings for representing NA values, e.g., "-100", "9999" (default "").

error_value The value that represents an error of the sensor, e.g., 404, 9999 (default NA).

The error_value is replaced by NA, and intervals of errors are flagged in sensor$states (see
myClim-package).
columns A list with names and indexes of value columns - required (default list()).
Names come from names(mc_data_sensors). Names are defined as constants mc_const_SENSOR_x.
For example, if the third column is temperature, you can define it as columns[[mc_const_SENSOR_T_C]]
<- 3. There are universal sensors for arbitrary value types: mc_const_SENSOR_real, mc_const_SENSOR_integer
and mc_const_SENSOR_logical. Multiple columns with same sensor type can be defined
as columns[[mc_const_SENSOR_real]] <- c(2, 3, 4). The names in this example will be
reall, real2 and real3.

col_types Parameter for vroom: : vroom() (default NA).
To ensure the correct reading of values, you have the possibility to strictly define the types of
columns.

filename_serial_number_pattern A character pattern for detecting the serial number from the
file name (default NA).

The regular expression with brackets around the serial number. For example, the pattern for
old TOMST files is "data_(\\d+) _\\d+\\.csv$". If the value is NA, the name of the file is
used as the serial number.

mc_data_example_agg 31

data_row_pattern A character pattern for detecting the correct file format (default NA).

The regular expression. If data_row_pattern is NA, then the file format is not checked.
logger_type The type of logger: TMS, TMS_L45, Thermo, Dendro, HOBO, ... (default NA).

tz_offset The timezone offset in minutes from UTC - required (default NA).

If the value of the tz_offset parameter is O, then datetime values are in UTC. If the time
zone offset is defined in the value, e.g., "2020-10-06 09:00:00+0100", and date_format is
"%Y-%m-%d %H:%M:%S%z", the value is automatically converted to UTC.

See Also

mc_data_formats, mc_TOMSTDataFormat, mc_TOMST]JoinDataFormat, mc_ HOBODataFormat

mc_data_example_agg Example data in Agg-format.

Description

Cleaned data in Agg-format. Three example localities situated in Saxon Switzerland National Park.
myClim object has metadata and covers time period from 2020-10 to 2021-02.

Data includes time-series from 4 loggers:

Tomst TMS4 with 4 sensors ("TMS_T1", "TMS_T2", "TMS_T3", "TMS_moist")
* Tomst Thermologger with 1 sensor ("Thermo_T)

¢ Tomst Point Dendrometer with 2 sensors ("Dendro_T", "Dendro_raw")

HOBO U23 with 2 sensors ("HOBO_T", "HOBO_RH")

Usage

mc_data_example_agg

Format

An object of class myClimList (inherits from list) of length 2.

32 mc_data_example_raw

mc_data_example_clean Example cleaned data in Raw-format.

Description

Cleaned data. Three example localities situated in Saxon Switzerland National Park. myClim object
has metadata and covers time period from 2020-10 to 2021-02.

Data includes time-series from 4 loggers:

* Tomst TMS4 with 4 sensors ("TMS_T1", "TMS_T2", "TMS_T3", "TMS_moist")
* Tomst Thermologger with 1 sensor ("Thermo_T)

¢ Tomst Point Dendrometer with 2 sensors ("Dendro_T", "Dendro_raw")

* HOBO U23 with 2 sensors ("HOBO_T", "HOBO_RH")

Usage

mc_data_example_clean

Format

An object of class myClimList (inherits from list) of length 2.

mc_data_example_raw Example data in Raw-format

Description

Raw data, not cleaned. Three example localities situated in Saxon Switzerland National Park. my-
Clim object has metadata and covers time period from 2020-10 to 2021-02.

Data includes time-series from 4 loggers:

» Tomst TMS4 with 4 sensors ("TMS_T1", "TMS_T2", "TMS_T3", "TMS_moist")
* Tomst Thermologger with 1 sensor ("Thermo_T)

¢ Tomst Point Dendrometer with 2 sensors ("Dendro_T", "Dendro_raw")

* HOBO U23 with 2 sensors ("HOBO_T", "HOBO_RH")

Usage

mc_data_example_raw

Format

An object of class myClimList (inherits from list) of length 2.

mc_data_formats 33

mc_data_formats Formats of source data files

Description

R object of class environment with the definitions how to parse specific microclimatic logger files.
In case you would like to add new, unsupported logger, this is the place where the reading key is
stored.

Usage

mc_data_formats

Format

An object of class environment of length 3.

Details

Package myClim support formats TOMST, TOMST_join and HOBO. The environment object is
stored in . /data/mc_data_formats.rda.

TOMST

TOMST data format has defined structure. Expected name of data file is in format data_\<serial_number\>_\<x\>.csv.
Value serial_number can be automatically detected from file name. Datetime is in UTC and is stored

in col 2. Temperature values are stored in col 3-5. Moisture () Supported logger types are TMS (for
TMS-3/TMS-4), ThermoDataLogger (for Thermologger), Dendrometer and TMS_L45 (for TMS-4

Long 45cm).

TOMST_join

TOMST_join data format is used by output files from JoinTMS.exe software and from tupoman-
ager.exe (TMS-1). Datetime in col 4, temperatures in col 5-7, moisture in col 8.

HOBO

HOBO data format is export format from software HOBOware of Onset company for HOBO U23
Pro v2 loggers (Temperature/RH). Format is very variable and can be adjusted by user in preferences
of HOBOware. Strucuture of HOBO files format can be partly detected automatically from header
of data. Format of date-time (date_format) must be set manually in myClim reading functions
(mc_read_files(), mc_read_data()). Date and time separated in more columns is not supported
in myClim reading. If time zone is not defined in header of HOBO txt or csv file and is not UTC,
then tz_offset must be filled in while reading. UTF-8 encoding of HOBO file is required for
reding to myClim.

See Also
mc_DataFormat, mc_TOMSTDataFormat, mc_TOMSTJoinDataFormat, mc_HOBODataFormat

34 mc_data_heights

mc_data_heights Default heights of sensors

Description
This table is used to set the default heights in metadata of sensors based on logger type. The defaults
were set based on the most common uses, defaults can be overwrite be user. see mc_prep_meta_sensor
Usage

mc_data_heights

Format

An object of class data. frame with 15 rows and 4 columns.

Details
data.frame with columns:
* logger_type
* Sensor_name

* height - character representation of height

¢ suffix - suffix for sensor_name. If suffix is NA, then sensor_name is not modified.

Default heights are:
TOMST - Thermo

e Thermo T = air 200 cm
TOMST - TMS

e TMS_T1 =soil 8 cm

e TMS_T2 =air 2 cm

e TMS T3 =air 15¢cm

e TMS_moist = soil 0-15 cm
TOMST - Dendro

e Dendro_T =130 cm

¢ Dendro_raw = 130 cm
TOMST - TMS_L 45

e TMS_TI1 =soil 40 cm
e TMS_T2 = soil 30 cm
e TMS T3 =air 15¢cm

mc_data_physical 35

e TMS_moist = soil 30-44 cm
HOBO - HOBO_U23-001A

e HOBO_T =air 150 cm
« HOBO RH =air 150 cm

HOBO - HOBO_U23-004

e HOBO T =air2cm
¢ HOBO_extT =soil 8 cm

See Also

mc_read_files(), mc_read_data()

mc_data_physical Physical quantities definition

Description

R object of class environment with the definitions of physical elements for recording the microcli-
mate e.g. temperature, speed, depth, volumetric water content... see mc_Physical. Similarly as in
case of logger format definitions mc_DataFormat it is easy to add new, physical here.

Usage

mc_data_physical

Format

An object of class environment of length 11.

See Also

mc_Physical

Currently supported physical elements:

* |_cm - length in cm

* |_mm - length in mm

* |_um - length in um

¢ VWC - volumetric moisture in m3/m3

* RH - relative humidity in %

* T_C - temperature in °C

e t_h - time in hours

e moisture_raw - raw TMS moisture sensor values
* radius_raw - radius difference in raw units

* v - speed in m/s

36 mc_data_sensors

mc_data_sensors Sensors definition.

Description

R object of class environment with the definitions of (micro)climatic sensors. see mc_Sensor. Sim-
ilarly as in case of logger format definitions mc_DataFormat it is easy to add new, sensor here.
There is also universal sensor real where you can store any real values.

Usage

mc_data_sensors

Format

An object of class environment of length 28.

Details
Names of items are sensor_ids. Currently supported sensors:

¢ count - result of count function mc_agg()

* coverage - result of coverage function mc_agg()

* Dendro_T - temperature in Tomst dendrometer (°C)

* Dendro_raw - change in stem size in Tomst dendrometer (raw units) mc_calc_tomst_dendro()
* dendro_l_um - change in stem size (um) mc_calc_tomst_dendro()
¢ FDD - result of function mc_calc_fdd()

¢ GDD - result of function mc_calc_gdd()

* HOBO_RH - relative humidity in HOBO U23-001A logger (%)

* HOBO_T - temperature in HOBO U23 logger (°C)

* HOBO_extT - external temperature in HOBO U23-004 logger (°C)
* integer - universal sensor with integer values

* logical - universal sensor with logical values

¢ VWC - volumetric water content in soil (m3/m3)

* precipitation - (mm)

* real - universal sensor with real values

* RH - relative humidity sensor (%)

¢ snow_bool - result of function mc_calc_snow()

* snow_fresh - fresh snow height (cm)

* snow_total - total snow height (cm)

e sun_shine - time of sun shine (hours)

mc_data_vwc_parameters 37

e T_C - universal temperature sensor (°C)

* Thermo_T - temperature sensor in Tomst Thermologger (°C)

e TMS_T1 - soil temperature sensor in Tomst TMS (°C)

e TMS_T?2 - surface temperature sensor in Tomst TMS (°C)

e TMS_TS3 - air temperature sensor in Tomst TMS (°C)

¢ TMS_moist - soil moisture sensor in Tomst TMS (raw TMS units)

* wind - wind speed (m/s)

mc_data_vwc_parameters
Volumetric water content parameters

Description

Data frame hosting the coefficients for the conversion of TMS raw moisture units to volumetric
warer content. The coefficients come from laboratory calibration for several soil types. For the
best performance you should specify the soil type in case you know it and in case it could be
approximated to the available calibration e.g sand, loam, loamy sand.... See mc_calc_vwc()

Usage

mc_data_vwc_parameters

Format

An object of class data. frame with 13 rows and 9 columns.

Details

data.frame with columns:

* soiltype
b

°cC

* rho

* clay

* silt

* sand

e ref

38

References

mc_env_moist

Wild, J., Kopecky, M., Macek, M., Sanda, M., Jankovec, J., Haase, T., 2019. Climate at eco-
logically relevant scales: A new temperature and soil moisture logger for long-term microclimate
measurement. Agric. For. Meteorol. 268, 40-47. https://doi.org/10.1016/j.agrformet.2018.12.018

Kopecky, M., Macek, M., Wild, J., 2021. Topographic Wetness Index calculation guidelines based
on measured soil moisture and plant species composition. Sci. Total Environ. 757, 143785.
https://doi.org/10.1016/j.scitotenv.2020.143785

mc_env_moist

Standardised myClim soil moisture variables

Description

The wrapper function returning 4 standardised and ecologically relevant myClim variables derived
from soil moisture measurements. The mc_env_moist function needs time-series of volumetric
water content (VWC) measurements as input. Therefore, non-VWC soil moisture measurements
must be first converted to VWC. For TMS loggers see mc_calc_vwc()

Usage

mc_env_moist(
data,
period,

use_utc = TRUE,

custom_start
custom_end =
min_coverage

Arguments

data
period

use_utc

custom_start
custom_end

min_coverage

= NULL,
NULL,
=1

cleaned myClim object see myClim-package
output period see mc_agg()

if FALSE, then local time is used for day aggregation see mc_agg() (default
TRUE)

start date for custom period see mc_agg() (default NULL)
end date for custom period see mc_agg() (default NULL)

the threshold specifying how many missing values can you accept within aggre-
gation period. see mc_agg() value from range 0-1 (default 1)

mc_env_temp 39

Details

This function was designed for time-series of step shorter than one day and will not work with
coarser data. In contrast with other myClim functions returning myClim objects, this wrapper
function returns long table. Variables are named based on sensor name, height, and function e.g.,
(VWC.soil_0_15_cm.5p, VWC.so0il_0_15_cm.mean)

Standardised myClim soil moisture variables:

* VWC.5p: Minimum soil moisture = 5th percentile of VWC values

* VWC.mean: Mean soil moisture = mean of VWC values

* VWC.95p: Maximum soil moisture = 95th percentile of VWC values
* VWC.sd: Standard deviation of VWC measurements

Value

table in long format with standardised myClim variables

Examples

data <- mc_prep_crop(mc_data_example_agg, lubridate::ymd_h("2020-11-01 00"),
lubridate::ymd_h("2021-02-01 00"), end_included = FALSE)

data <- mc_calc_vwc(data, localities=c("A2E32", "A6W79"))

mc_env_moist(data, "month")

mc_env_temp Standardised myClim temperature variables

Description

The wrapper function returning 7 standardised and ecologically relevant myClim variables derived
from temperature measurements.

Usage

mc_env_temp(
data,
period,
use_utc = TRUE,
custom_start = NULL,
custom_end = NULL,
min_coverage = 1,
gdd_t_base = 5,
fdd_t_base = @

40

mc_env_temp

Arguments
data cleaned myClim object see myClim-package
period output period see mc_agg()
use_utc if FALSE, then local time is used for day aggregation see mc_agg() (default

TRUE)

custom_start start date for custom period see mc_agg() (default NULL)

custom_end end date for custom period see mc_agg () (default NULL)

min_coverage the threshold specifying how many missing values can you accept within aggre-

gation period. see mc_agg() value from range 0-1 (default 1)

gdd_t_base base temperature for Growing Degree Days mc_calc_gdd() (default 5)
fdd_t_base base temperature for Freezing Degree Days mc_calc_fdd() (default 0)
Details

This function was designed for time-series of step shorter than one day and will not work with
coarser data. It automatically use all available sensors in myClim object and returns all possi-
ble variables based on sensor type and measurement height/depth. In contrast with other myClim
functions returning myClim objects, this wrapper function returns long table. The mc_env_temp
function first aggregates time-series to daily time-step and then aggregates to the final time-step set
in period parameter. Because freezing and growing degree days are always aggregated with sum
function, these two variables are not first aggregated to the daily time-steps. Variables are named
based on sensor name, height, and function e.g., (T.air_15_cm.max95p, T.air_15_cm.drange)

Standardised myClim temperature variables:

Value

minSp: Minimum temperature = 5th percentile of daily minimum temperatures
mean: Mean temperature = mean of daily mean temperatures
max95p: Maximum temperature = 95th percentile of daily maximum temperatures

drange: Temperature range = mean of daily temperature range (i.e., difference between daily
minima and maxima)

GDDS5: Growing degree days = sum of growing degree days above defined base temperature
(default 5°C) gdd_t_base

FDDO: Freezing degree days = sum of freezing degree days bellow defined base temperature
(default 0°C) fdd_t_base

frostdays: Frost days = number of days with frost (daily minimum < 0°C) fdd_t_base

table in long format with standardised myClim variables

Examples

data <- mc_prep_crop(mc_data_example_clean, lubridate::ymd_h("2020-11-01 00"),

lubridate::ymd_h("2021-02-01 00"), end_included = FALSE)

mc_env_temp(data, "month”)

mc_env_vpd

41

mc_env_vpd

Standardised myClim vapor pressure deficit variables

Description

The wrapper function returning 2 standardised and ecologically relevant myClim variables derived
from vapor pressure deficit. The mc_env_vpd function needs time-series of vapor pressure deficit
measurements as input. Therefore, VPD must be first calculated from temperature and air humidity
measurements - see mc_calc_vpd()

Usage

mc_env_vpd(
data,
period,

use_utc = TRUE,

custom_start
custom_end =
min_coverage

Arguments

data
period
use_utc

custom_start
custom_end
min_coverage

Details

= NULL,
NULL,
=1

cleaned myClim object see myClim-package
output period see mc_agg()

if FALSE, then local time is used for day aggregation see mc_agg() (default
TRUE)

start date for custom period see mc_agg() (default NULL)
end date for custom period see mc_agg () (default NULL)

the threshold specifying how many missing values can you accept within aggre-
gation period. see mc_agg() value from range 0-1 (default 1)

This function was designed for time-series of step shorter than one day and will not work with
coarser data. The mc_env_vpd function first aggregates time-series to daily time-step and then
aggregates to the final time-step set in period parameter. In contrast with other myClim functions
returning myClim objects, this wrapper function returns long table. Variables are named based on
sensor name, height, and function e.g., (VPD.air_150_cm.mean, VPD.air_150_cm.max95p)

Standardised myClim vapor pressure deficit variables:

* VPD.mean: Mean vapor pressure deficit = mean of daily mean VPD

* VPD.max95p: Maximum vapor pressure deficit = 95th percentile of daily maximum VPD

Value

table in long format with standardised myClim variables

mc_filter

mc_filter Filter data from myClim object

Description

This function filter data by localities, logger types and sensors.

Usage

mc_filter(
data,
localities = NULL,
sensors = NULL,
reverse = FALSE,
stop_if_empty = TRUE,
logger_types = NULL

)
Arguments
data myClim object see myClim-package
localities locality_ids for filtering data; if NULL then do nothing (default NULL)
sensors sensor_names for filtering data; if NULL then do nothing see names (mc_data_sensors)
(default NULL)
reverse if TRUE then input localities and/or sensors are excluded (default FALSE)

stop_if_empty if TRUE then error for empty output (default TRUE)

logger_types types of logger for filtering data; if NULL then do nothing (default NULL).
The logger_types parameter can by used only for raw data format see myClim-
package.

Details

In default settings it returns the object containing input localities / logger types / sensors. When you
provide vector of localities e.g. localities=c("A6W79", "A2E32") selected localities are filtered
with all loggers / sensors on those localities. The same as When you provide vector of logger_types
logger_types=c("TMS", "TMS_L45") selected loggers by type are filtered through all localities
(logger_types criterion is applicable only for raw data format see myClim-package) and the sensors
parameter sensors=c("TMS_T1", "TMS_T2"), selected sensors are filtered through all localities.
When you combine localities, logger_types and sensors, then filtering return selected sensors in
selected loggers on selected localities.

Parameter reverse = TRUE returns myClim object without listed localities, or logger types or sen-
sors. Using reverse = TRUE is not allowed for combination of localities and logger types and
sensors. It is allowed to use reverse only with single filter criterion either locality, logger type or
Sensor.

mc_HOBODataFormat-class 43

* reverse = TRUE and logger_types are selected then the listed logger types are removed from
all localities.

* reverse = TRUE and localities are selected then the listed localities are removed from my-
Clim object.

* reverse = TRUE and sensors are selected then listed sensors are removed from all loggers /
localities.

Value

filtered myClim object

Examples

keep only "A6W79", "A2E32" localities with all their sensors
filtered_data <- mc_filter(mc_data_example_raw, localities=c("A6W79", "A2E32"))

remove "A6W79", "A2E32" localities and keep all others
filtered_data <- mc_filter(mc_data_example_raw, localities=c("A6W79", "A2E32"), reverse=TRUE)

keep only "TMS_T1", and "TMS_T2" sensors on all localities
filtered_data <- mc_filter(mc_data_example_raw, sensors=c("TMS_T1", "TMS_T2"))

remove "TMS_T1"”, and "TMS_T2" sensors from all localities
filtered_data <- mc_filter(mc_data_example_raw, sensors=c("TMS_T1", "TMS_T2"),reverse=TRUE)

keep only "TMS_T1", and "TMS_T2" sensors on "A6W79", "A2E32" localities

filtered_data <- mc_filter(mc_data_example_raw, localities=c("A6W79", "A2E32"),
sensors=c("TMS_T1", "TMS_T2"))

Remove "Dendro” loggers on all localities

filtered_data <- mc_filter(mc_data_example_raw, logger_types="Dendro”, reverse=TRUE)

mc_HOBODataFormat-class
Class for reading HOBO logger files

Description

Provides the key for reading the HOBO source files. In which column is the date, in what format is
the date, in which columns are records of which sensors. The code defining the class is in section
methods ./R/model.R

Slots

convert_fahrenheit if TRUE temperature values are converted from °F to °C (default FALSE)

See Also

mc_DataFormat, mc_data_formats

44 mc_info

mc_info Get sensors info table

Description

This function return data.frame with info about sensors

Usage

mc_info(data)

Arguments

data myClim object see myClim-package

Value

data.frame with columns:
* locality_id - when provided by user then locality ID, when not provided identical with serial
number

* serial_number - serial number of logger when provided or automatically detected from file
name or header

* sensor_id - original sensor id (e.g.,"GDD", "HOBO_T" ,"TMS_T1", "TMS_T2")

* sensor_name - original sensor id if not modified, if renamed then new name (e.g.,"GDDS5",
"HOBO_T_mean" ,"TMS_T1_max", "my_sensorO1")

e start_date - the oldest record on the sensor

¢ end_date - the newest record on the sensor

* step_seconds - time step of records series (seconds)
e period - time step of records series (text)

¢ min_value - minimal recorded values

¢ max_value - maximal recorded value

¢ count_values - number of non NA records

e count_na - number of NA records

Examples

mc_info(mc_data_example_agg)

mc_info_clean 45

mc_info_clean Call cleaning log

Description

This function return data.frame with information from cleaning the loggers time series see mc_prep_clean()

Usage

mc_info_clean(data)

Arguments

data myClim object in Raw-format. see myClim-package

Value

data.frame with columns:
¢ locality_id - when provided by user then locality ID, when not provided identical with serial
number
* logger_name - Logger name at the locality.

* serial_number - serial number of logger when provided or automatically detected from file
name or header

* start_date - date of the first record on the logger

* end_date - date of the last record on the logger

* step_seconds - detected time step in seconds of the logger measurements.

* count_duplicities - number of duplicated records (identical time)

* count_missing - number of missing records (logger outage in time when it should record)

* count_disordered - number of records incorrectly ordered in time (newer followed by older)

 rounded - T/F indication whether myClim automatically rounded time series minutes to the
closes half (HH:00, HH:30) e.g. 13:07 -> 13:00

See Also

mc_prep_clean()

46 mc_info_logger

mc_info_count Count data

Description
This function return data.frame with the number of localities, loggers and sensors of input myClim
object.

Usage

mc_info_count(data)

Arguments

data myClim object see myClim-package

Value

data.frame with count of localities, loggers and sensors

Examples

count_table <- mc_info_count(mc_data_example_raw)

mc_info_logger Get loggers info table

Description

This function returns a data.frame with information about loggers.

Usage

mc_info_logger(data)

Arguments

data myClim object in Raw-format. see myClim-package

Details

This function is designed to work only with myClim objects in Raw-format, where the loggers are
organized at localities. In Agg-format, myClim objects do not support loggers; sensors are directly
connected to the locality. See myClim-package. mc_info_logger does not work in Agg-format.

mc_info_meta 47

Value
A data.frame with the following columns:
* locality_id - If provided by the user, it represents the locality ID; if not provided, it is identical
to the logger’s serial number.
* logger_name - Logger name.

* serial_number - Serial number of the logger, either provided by the user or automatically
detected from the file name or header.

* logger_type - Logger type.
* start_date - The oldest record on the logger.
 end_date - The newest record on the logger.

* step_seconds - Time step of the record series (in seconds).

Examples

mc_info_logger(mc_data_example_raw)

mc_info_meta Get localities metadata table

Description

This function return data.frame with localities metadata

Usage

mc_info_meta(data)

Arguments

data myClim object see myClim-package

Value
data.frame with columns:
* locality_id
e lon_wgs84
e lat_wgs84
¢ elevation

e tz_offset

Examples

mc_info_meta(mc_data_example_agg)

48 mc_info_range

mc_info_range Get table of sensors range

Description

This function return data.frame with sensors range (min value, max value) and possible jumps.

Usage

mc_info_range(data)

Arguments

data myClim object see myClim-package

Details

This function is mainly useful to prepare input parameter for mc_states_outlier() function. The
range values are taken from mc_data_sensors. Those are manually defined ranges based on log-
ger/sensor technical limits and biologically meaningful values.

Value

data.frame with columns:

* sensor_name - name of sensor (e.g., TMS_T1, TMS_moist, HOBO_T) see mc_data_sensors
¢ min_value - minimal value
e max_value - maximal value

* positive_jump - Maximal difference between two consecutive values. Next value is higher
than previous. (Positive number)

* negative_jump - Maximal difference between two consecutive values. Next value is lower
than previous. (Positive number)

Examples

mc_info_range(mc_data_example_raw)

mc_info_states 49

mc_info_states Get states (tags) info table

Description

This function return data.frame with information about sensor states (tags) see myClim-package

Usage

mc_info_states(data)

Arguments

data myClim object see myClim-package

Details

This function is useful not only for inspecting actual states (tags) but also as a template for manually
manipulating states (tags) in a table editor such as Excel. The output of mc_info_states() can be
saved as a table, adjusted outside R (adding/removing/modifying rows), and then read back into R
to be used as input for mc_states_insert or mc_states_update.

Value

data.frame with columns:
* locality_id - when provided by user then locality ID, when not provided identical with serial
number
* logger_name - name of logger in myClim object at the locality (e.g., "Thermo_1", "TMS_2")

* sensor_name - sensor name either original (e.g., TMS_T1, T_C), or calculated/renamed (e.g.,
"TMS_T1_max", "my_sensor01")

* tag - category of state (e.g., "error", "source", "quality")

e start - start datetime

* end - end datetime

* value - value of tag (e.g., "out of soil", "c:/users/John/tmsData/data_911235678.csv")

Examples

mc_info_states(mc_data_example_raw)

50

mc_join

mc_join Joining time-series from repeated downloads

Description

The function is designed to merge time-series data obtained through repeated downloads in the
same location. Within a specific locality, the function performs the merging based on 1) logger
type, physical element, and sensor height, or 2) based on the list of logger serial numbers to be
joined, provided by user in locality metadata.

Usage

mc_join(data, comp_sensors = NULL, by_type = TRUE, tolerance = NULL)

Arguments

data myClim object in Raw-format. see myClim-package

comp_sensors senors for compare and select source logger; If NULL then first is used. (default
NULL)

by_type if TRUE loggers are joined by logger type, height and physical element if FALSE
loggers are joined by logger serial_number see mc_LoggerMetadata (default
TRUE)

tolerance list of tolerance values for each physical unit see mc_data_physical. e.g. list(T_C

=0.5). Values from older time-series are used for overlaps below tolerance.

Details

Joining is restricted to the myClim Raw-format (refer to myClim-package). Loggers need to be
organized within localities. The simplest method is to use mc_read_data, providing files_table
with locality IDs. When using mc_read_files without metadata, a bit more coding is needed. In this
case, you can create multiple myClim objects and specify correct locality names afterwards, then
merge these objects using mc_prep_merge, which groups loggers based on identical locality names.

The joining function operates seamlessly without user intervention in two scenarios:

1. when the start of a newer time series aligns with the end of an older one, and

2. when the two time-series share identical values during the overlap.

However, if values differ during the overlap, the user is prompted to interactively choose which
time-series to retain and which to discard. myClim provides information about differing time-series
in the console, including locality ID, problematic interval (start-end), older logger ID and its time
series start-end, and newer logger ID and its time series start-end. Additionally, an interactive
graphical window (plotly) displays conflicting time series, allowing the user to zoom in and explore
values. In case of multiple conflicts, myClim sequentially asks the user for decisions.

Users have seven options for handling overlap conflicts, six of which are pre-defined. The seventh
option allows the user to specify the exact time to trim the older time-series and use the newer one.
The options include:

mc_load 51

: using the older logger (to resolve this conflict),

: using the newer logger (to resolve this conflict),

: skip this join (same type loggers in locality aren’t joined),

: always using the older logger (to resolve this and all other conflicts),

: always using the newer logger (to resolve this and all other conflicts)

.
AN BN =

: exit joining process.

Users must press the number key, hit Return/Enter, or write in console the exact date in the format
YYYY-MM-DD hh:mm to trim the older series and continue with the newer series.

by_type = TRUE (default) Loggers are joined based on logger type, physical element, and sensor
height. This is a good option for the localities, were are NOT more loggers of identical type and
height recording simultaneously.

by_type = FALSE Loggers are joined based on the list of logger_serial belonging to each locality.
User must specify in locality metadata, which logger serials are joined together. This is a good
option for the localities, with more loggers of identical type and height measuring simultaneously.

Loggers with multiple sensors are joined based on one or more selected sensors (see parameter
comp_sensors). The name of the resulting joined sensor is taken from the logger with the oldest
data. If serial_number is not equal during logger joining, the resulting serial_number is NA. Clean
info is changed to NA except for the step. When joining a non-calibrated sensor with a calibrated
one, the calibration information must be empty in the non-calibrated sensor.

The tolerance parameter can be used for cases, when joining multiple time-series which is "al-
most" identical, and the difference is caused e.g. by logger precision or resolution.

For example of joining see myClim vignette.

Value

myClim object with joined loggers.

mc_load Load myClim object

Description

This function loads the myClim .rds data object saved with mc_save. The mc_save and mc_load
functions secure that the myClim object is correctly loaded across myClim versions.

Usage
mc_load(file)

Arguments

file path to input .rds file. If value is vector of files, myClim objects are merged with
function mc_prep_merge. If path is directory, then all .rds files are used.

http://labgis.ibot.cas.cz/myclim/articles/myclim-demo.html

52 mc_LocalityMetadata-class

Value

loaded myClim object

Examples

tmp_dir <- tempdir()

tmp_file <- tempfile(tmpdir = tmp_dir)
mc_save(mc_data_example_agg, tmp_file)
data <- mc_load(tmp_file)
file.remove(tmp_file)

mc_LocalityMetadata-class
Class for locality metadata

Description

Class for locality metadata

Details

When reading without metadata, then locality is named after file where the data come from, or after
the sensor id where the data come form.

Slots

locality_id name of locality

elevation of locality

lat_wgs84 latitude of locality in WGS-84

lon_wgs84 longitude of locality in WGS-84

tz_offset offset from UTC in minutes

tz_type type of time zone

join_serial list of serial numbers of loggers for join operation

user_data list for user data

See Also

myClim-package, mc_LoggerMetadata, mc_SensorMetadata

mc_LoggerCleanInfo-class 53

mc_LoggerCleanInfo-class
Class for logger clean info

Description

Class for logger clean info

Slots

step Time step of microclimatic data series in seconds
count_duplicities count of duplicated records - values with same date

count_missing count of missing records; Period between the records should be the same length.
If not, than missing.

count_disordered count of records incorrectly ordered in time. In table, newer record is followed
by the older.

rounded T/F indication whether myClim automatically rounded time series to the closes half
(HH:00, HH:30) e.g. 13:07 -> 13:00

mc_LoggerMetadata-class
Class for logger metadata

Description

Class for logger metadata

Slots
type type of logger (TMS, Thermo, Dendro, HOBO)
name name of the logger - default in format (type)_(index)
serial_number serial number of the logger

step time step of microclimatic time-seris in seconds. When provided by user, is used in mc_prep_clean()
function instead of automatic step detection

54 mc_MainMetadataAgg-class

mc_MainMetadata-class Class for myClim object metadata

Description

Class for myClim object metadata

Slots

version the version of the myClim package in which the object was created

format_type type of format (Raw-format, Agg-format)

See Also

myClim-package

mc_MainMetadataAgg-class
Class for myClim object metadata in Agg-format

Description

Class for myClim object metadata in Agg-format

Slots

version the version of the myClim package in which the object was created

format_type type of format (Raw-format, Agg-format)

step time step of data in seconds

period value from mc_agg() (e.g. month, day, all...)

intervals_start start datetime of data intervals for spacial periods all and custom (see mc_agg())

intervals_end end datetime of data intervals for spacial periods all and custom (see mc_agg())

See Also

mc_MainMetadata myClim-package

mc_Physical-class 55

mc_Physical-class Class for physical

Description

Class defining the element of the records (temperature, volumetric water content, height...)

Details

See e.g. definition of temperature. Similarly as the definition of new loggers, new physicals can be
added like modules.

Slot "name": "T_C"

Slot "description”: "Temperature °C"
Slot "units"”: "°C”
Slot "viridis_color_map": "C"

Slot "scale_coeff”: 0.03333333

Slots

name of physical

description character info

units measurument (°C, %, m3/m3, raw, mm, ...)
viridis_color_map viridis color map option

scale_coeff coefficient for plot; value * scale_coef is in range 0-1

See Also

mc_data_physical

mc_plot_image Plot data - image

Description

Function plots single sensor form myClim data into PNG file with image() R base function. This
was designed for fast, and easy data visualization especially focusing on missing values visualiza-
tion and general data picture.

56 mc_plot_image

Usage

mc_plot_image(
data,
filename,
title = "",
localities = NULL,
sensors = NULL,
height = 1900,
left_margin = 12,
use_utc = TRUE

)
Arguments
data myClim object see myClim-package
filename output file name (file path)
title of plot; default is empty
localities names of localities; if NULL then all (default NULL)
sensors names of sensors; if NULL then all (default NULL) see names (mc_data_sensors)
height of image; default = 1900
left_margin width of space for sensor_labels; default = 12
use_utc if FALSE, then the time shift from tz_offset metadata is used to correct (shift)
the output time-series (default TRUE)
In the Agg-format myClim object use_utc = FALSE is allowed only for steps
shorter than one day. In myClim the day nd longer time steps are defined by
the midnight, but this represent whole day, week, month, year... shifting daily,
weekly, monthly... data (shift midnight) does not make sense in our opinion. But
when user need more flexibility, then myClim Raw-format can be used, In Raw-
format use_utc is not limited, user can shift an data without the restrictions.
See myClim-package
Details

Be careful with bigger data. Can take some time.

Value

PNG file created as specified in output file name

Examples

tmp_dir <- tempdir()

tmp_file <- tempfile(tmpdir = tmp_dir)

mc_plot_image(mc_data_example_clean, tmp_file, "T1 sensor”, sensors="TMS_T1")
file.remove(tmp_file)

mc_plot_line

57

mc_plot_line

Plot data - ggplot2 geom_line

Description

Function plots data with ggplot2 geom_line. Plot is returned as ggplot faced grid and is optimized
for saving as facet, paginated PDF file.

Usage

mc_plot_line(
data,

filename = NULL,
sensors = NULL,
scale_coeff = NULL,
png_width = 1900,
png_height = 1900,
start_crop = NULL,
end_crop = NULL,
use_utc = TRUE,

localities

NULL,

facet = "locality",
color_by_logger = FALSE,

tag = NULL

Arguments

data

filename

sensors
scale_coeff
png_width
png_height
start_crop
end_crop

use_utc

myClim object see myClim-package

output file name/path with the extension - supported formats are .pdf and .png
(default NULL)

If NULL then the plot is displayed and can be returned into r environment but is
not saved to file.

names of sensors; if NULL then all (default NULL) see names (mc_data_sensors)
scale coefficient for secondary axis (default NULL)

width for png output (default 1900)

height for png output (default 1900)

POSIXct datetime in UTC for crop data (default NULL)

POSIXct datetime in UTC for crop data (default NULL)

if FALSE, then the time shift from tz_offset metadata is used to correct (shift)
the output time-series (default TRUE)

In the Agg-format myClim object use_utc = FALSE is allowed only for steps
shorter than one day. In myClim the day nd longer time steps are defined by
the midnight, but this represent whole day, week, month, year... shifting daily,

58

mc_plot_line

weekly, monthly... data (shift midnight) does not make sense in our opinion. But
when user need more flexibility, then myClim Raw-format can be used, In Raw-
format use_utc is not limited, user can shift an data without the restrictions.
See myClim-package

localities names of localities; if NULL then all (default NULL)

non

facet possible values (NULL, "locality”, "physical")
» facet = "locality" each locality is plotted (default) in separate plot in R
and separate row in PDF if filename.pdf is provided.
* facet = "physical” sensors with identical physical (see mc_data_physical)
are grouped together across localities.
* facet = NULL, all localities and sensors (max 2 physicals, see details) are
plotted in single plot
color_by_logger
If TRUE, the color is assigned by logger to differentiate individual loggers (ran-
dom colors) if false, the color is assigned by physical. (default FALSE)

tag hilight states with selected tag. (default NULL)

Details

Saving as the PDF file is recommended, because the plot is optimized to be paginate PDF (facet line
plot is distributed to pages), each locality can be represented by separate plot (facet = "locality")
default, which is especially useful for bigger data. When facet = NULL then single plot is returned
showing all localities together. When facet = physical sensors with identical physical units are
grouped together across localities. Maximal number of physical units (elements) of sensors to be
plotted in one plot is two. First element is related to primary and second to secondary y axis. In
case, there are multiple sensors with identical physical on one locality, they are plotted together
for facet = "locality” e.g., when you have TMS_T1, TMS_T2, TMS_T3, Thermo_T, and VWC
you get plot with 5 lines of different colors and two y axes. Secondary y axes are scaled with
calculation values * scale_coeff. If scaling coefficient is NULL than function try to detects
scale coefficient from physical unit of sensors see mc_Physical. Scaling is useful when plotting
together e.g. temperature and moisture. For native myClim loggers (TOMST, HOBO U-23) scaling
coefficients are pre-defined. For other cases when plotting two physicals together, it is better to set
scaling coefficients by hand.

Value

ggplot2 object

Examples

tms.plot <- mc_filter(mc_data_example_agg, localities = "A6W79")

p <- mc_plot_line(tms.plot,sensors = c("TMS_T3","TMS_T1","TMS_moist"))

p <- ptggplot2::scale_x_datetime(date_breaks = "1 week”, date_labels = "%W")

p <- ptggplot2::xlab("week")

p <- pt+ggplot2::scale_color_manual(values=c("hotpink”,"pink"”, "darkblue"),name=NULL)

mc_plot_loggers 59

mc_plot_loggers Plot data from loggers

Description

Function save separate files (*.png) per the loggers to the directory. Only Raw-format supported,
Agg-format not supported. For Agg-format use mc_plot_line(). Function was primary designed
for Tomst TMS loggers for fast, and easy data visualization.

Usage

mc_plot_loggers(
data,
directory,
localities = NULL,
sensors = NULL,
crop = c(NA, NA)

)
Arguments
data myClim object in Raw-format. see myClim-package
directory path to output directory
localities names of localities; if NULL then all (default NULL)
sensors names of sensors; if NULL then all (default NULL) see names (mc_data_sensors)
crop datetime range for plot, not cropping if NA (default c(NA, NA))
Value

PNG files created in the output directory

Examples

tmp_dir <- file.path(tempdir(), "plot")
mc_plot_loggers(mc_data_example_clean, tmp_dir)
unlink(tmp_dir, recursive=TRUE)

60

mc_plot_raster

mc_plot_raster

Plot data - ggplot2 geom_raster

Description

Function plots data with ggplot2 geom_raster. Plot is returned as ggplot faced raster and is primary
designed to be saved as .pdf file (recommended) or .png file. Plotting into R environment without
saving any file is also possible. See details.

Usage

mc_plot_raster(
data,
filename = NULL
sensors = NULL,
by_hour = TRUE,

’

png_width = 1900,
png_height = 1900,

viridis_color_map = NULL,
start_crop = NULL,
end_crop = NULL,
use_utc = TRUE
)
Arguments
data myClim object see myClim-package
filename output with the extension - supported formats are .pdf and .png (default NULL)
If NULL then the plot is shown/returned into R environment as ggplot object,
but not saved to file.
sensors names of sensor; should have same physical unit see names (mc_data_sensors)
by_hour if TRUE, then y axis is plotted as an hour, else original time step (default TRUE)
png_width width for png output (default 1900)
png_height height for png output (default 1900)

viridis_color_map

viridis color map option; if NULL, then used value from mc_data_physical

"A" - magma

"B" - inferno
"C" - plasma
"D" - viridis
"E" - cividis
"F" - rocket
"G" - mako

"H" - turbo

mc_prep_calib 61

start_crop POSIXct datetime in UTC for crop data (default NULL)
end_crop POSIXct datetime in UTC for crop data (default NULL)
use_utc if FALSE, then the time shift from tz_offset metadata is used to correct (shift)

the output time-series (default TRUE)

In the Agg-format myClim object use_utc = FALSE is allowed only for steps
shorter than one day. In myClim the day nd longer time steps are defined by
the midnight, but this represent whole day, week, month, year... shifting daily,
weekly, monthly... data (shift midnight) does not make sense in our opinion. But
when user need more flexibility, then myClim Raw-format can be used, In Raw-
format use_utc is not limited, user can shift an data without the restrictions.
See myClim-package

Details

Saving as the .pdf file is recommended, because the plot is optimized to be paginate PDF (facet
raster plot is distributed to pages), which is especially useful for bigger data. In case of plotting
multiple sensors to PDF, the facet grids are grouped by sensor. IL.e., all localities of sensor_1 fol-
lowed by all localities of sensor_2 etc. When plotting only few localities, but multiple sensors, each
sensor has own page. l.e., when plotting data from one locality, and 3 sensors resulting PDF has
3 pages. In case of plotting PNG, sensors are plotted in separated images (PNG files) by physical.
Le, when plotting 3 sensors in PNG it will save 3 PNG files named after sensors. Be careful with
bigger data in PNG. Play with png_height and png_width. When too small height/width, image
does not fit and is plotted incorrectly. Plotting into R environment instead of saving PDF or PNG
is possible, but is recommended only for low number of localities (e.g. up to 10), because high
number of localities plotted in R environment results in very small picture which is hard/impossible
to read.

Value

list of ggplot2 objects

Examples

tmp_dir <- tempdir()

tmp_file <- tempfile(tmpdir = tmp_dir, fileext=".pdf")
mc_plot_raster(mc_data_example_agg, filename=tmp_file, sensors=c("TMS_T3","TM_T"))
file.remove(tmp_file)

mc_prep_calib Sensors calibration

Description

This function calibrate values of sensor (microclimatic records) using the myClim object sensor$calibration
parameters provided by mc_prep_calib_load(). Microclimatic records are changed and myClim

object parameter sensor$metadata@calibrated is set to TRUE. Itisn’t allowed to calibrate sensor

multiple times.

62 mc_prep_calib_load

Usage

mc_prep_calib(data, localities = NULL, sensors = NULL)

Arguments
data myClim object in Raw-format or Agg-format having calibration data in meta-
data slot sensor$calibration
localities vector of locality_ids where to perform calibration, if NULL, then calibrate sen-
sors on all localities (default NULL)
sensors vector of sensor names where to perform calibration see names (mc_data_sensors);
if NULL, then calibrate all sensors having calibration parameters loaded (default
NULL)
Details

This function performs calibration itself. It uses the calibration values (cor_factor, cor_slope) stored
in myClim object sensor metadata sensor calibration loaded with mc_prep_calib_load(). As it
is possible to have multiple calibration values for one sensor in time (re-calibration after some
time) different calibration values can be applied based on the calibration time. Older microcli-
matic records then first calibration datetime available are calibrated anyway (in case sensor was
calibrated ex-post) with the first calibration parameters available.

This function is not designed for moisture_raw calibration (conversion to volumetric water content)
for this use mc_calc_vwc()

Only sensors with real value type can be calibrated. see mc_data_sensors()

Value

same myClim object as input but with calibrated sensor values.

mc_prep_calib_load Load sensor calibration parameters to correct microclimatic records

Description
This function loads calibration parameters from data.frame logger_calib_table and stores them
in the myClim object metadata. This function does not calibrate data. For calibration itself run
mc_prep_calib()

Usage

mc_prep_calib_load(data, calib_table)

Arguments
data myClim object in Raw-format. see myClim-package
calib_table data.frame with columns (serial_number, sensor_id, datetime, cor_factor,

cor_slope)

mc_prep_clean 63

Details

This function allows user to provide correction coefficients cor_factor and cor_slope for linear
sensor calibration. Calibrated data have by default the form of linear function terms:
calibrated value = original value * (cor_slope + 1) + cor_factor

In case of one-point calibration, cor_factor can be estimated as: cor_factor = reference value - sensor value
and cor_slope should be set to 0. This function loads sensor-specific calibration coefficients
from calib_table and stores them into myClim Raw-format object metadata. The calib_table is
data.frame with 5 columns:
* serial_number = serial number of the logger
* sensor_id = name of sensor, e.g. "TMS_T1"
* datetime = the date of the calibration in POSIXct type
e cor_factor = the correction factor
* cor_slope = the slope of calibration curve (in case of one-point calibration, use cor_slope = 0)
It is not possible to change calibration parameters for already calibrated sensor. This prevents

repeated calibrations. Once mc_prep_calib() is called then it is not allowed to provide new cali-
bration data, neither run calibration again.

Value

myClim object with loaded calibration information in metadata. Microclimatic records are not
calibrated, only ready for calibration. To calibrate records run mc_prep_calib()

mc_prep_clean Cleaning datetime series

Description

By default, mc_prep_clean runs automatically when mc_read_files() or mc_read_data() are

called. mc_prep_clean checks the time-series in the myClim object in Raw-format for miss-

ing, duplicated, and disordered records. The function can either directly regularize microclimatic
time-series to a constant time-step, remove duplicated records, and fill missing values with NA
(resolve_conflicts=TRUE); or it can insert new states (tags) see mc_states_insert to highlight

records with conflicts i.e. duplicated datetime but different measurement values (resolve_conflicts=FALSE)
but not perform the cleaning itself. When there were no conflicts, cleaning is performed in both

cases (resolve_conflicts=TRUE or FALSE) See details.

Usage

mc_prep_clean(data, silent = FALSE, resolve_conflicts = TRUE, tolerance = NULL)

64 mc_prep_clean

Arguments
data myClim object in Raw-format. see myClim-package
silent if true, then cleaning log table and progress bar is not printed in console (default

FALSE), see mc_info_clean()

resolve_conflicts
by default the object is automatically cleaned and conflict measurements with
closest original datetime to rounded datetime are selected, see details. (default
TRUE) If FALSE and conflict records exist the function returns the original, un-
cleaned object with tags (states) "clean_conflict" highlighting records with du-
plicated datetime but different measurement values.When conflict records does
not exist, object is cleaned in both TRUE and FALSE cases.

tolerance list of tolerance values for each physical unit see mc_data_physical. Format
is list(unit_name=tolerance_value). If maximal difference of conflict values is
lower then tolerance, conflict is resolved without warning. If NULL, then toler-
ance is not applied (default NULL) see details.

Details

The function mc_prep_clean can be used in two different ways depending on the parameter resolve_conflicts.
When resolve_conflicts=TRUE, the function performs automatic cleaning and returns a cleaned

myClim object. When resolve_conflicts=FALSE, and myClim object contains conflicts (rows

with identical time, but different measured value), the function returns the original, uncleaned

object with tags (states) see mc_states_insert highlighting records with duplicated datetime but

different measured values. When there were no conflicts, cleaning is performed in both cases
(resolve_conflicts=TRUE OR FALSE)

Processing the data with mc_prep_clean and resolving the conflicts is a mandatory step required
for further data handling in the myClim library.

This function guarantee that all time series are in chronological order, have regular time-step and no
duplicated records. Function mc_prep_clean use either time-step provided by user during data im-
port with mc_read (used time-step is permanently stored in logger metadata mc_LoggerMetadata;
or if time-step is not provided by the user (NA),than myClim automatically detects the time-step
from input time series based on the last 100 records. In case of irregular time series, function returns
warning and skip (does not read) the file.

In cases when the user provides a time-step during data import in mc_read functions instead of
relying on automatic step detection, and the provided step does not correspond with the actual
records (i.e., the logger records data every 900 seconds but the user provides a step of 3600 seconds),
the myClim rounding routine consolidates multiple records into an identical datetime. The resulting
value corresponds to the one closest to the provided step (i.e., in an original series like ...9:50, 10:05,
10:20, 10:35, 10:50, 11:05..., the new record would be 10:00, and the value will be taken from the
original record at 10:05). This process generates numerous warnings in resolve_conflicts=TRUE
and a multitude of tags in resolve_conflicts=FALSE.

The tolerance parameter is designed for situations where the logger does not perform optimally,
but the user still needs to extract and analyze the data. In some cases, loggers may record multiple
rows with identical timestamps but with slightly different microclimate values, due to the limitations
of sensor resolution and precision. By using the tolerance parameter, myClim will automatically

mc_prep_crop 65

select one of these values and resolve the conflict without generating additional warnings. It is
strongly recommended to set the tolerance value based on the sensor’s resolution and precision.

In case the time-step is regular, but is not nicely rounded, function rounds the time series to the
closest nice time and shifts original data. E.g., original records in 10 min regular step c(11:58, 12:08,
12:18, 12:28) are shifted to newly generated nice sequence c(12:00, 12:10, 12:20, 12:30). Note that
microclimatic records are not modified but only shifted. Maximum allowed shift of time series is 30
minutes. For example, when the time-step is 2h (e.g. 13:33, 15:33, 17:33), the measurement times
are shifted to (13:30, 15:30, 17:30). When you have 2h time step and wish to go to the whole hour
(13:33 -> 14:00, 15:33 -> 16:00) the only way is aggregation - use mc_agg(period="2 hours")
command after data cleaning.

Value

¢ cleaned myClim object in Raw-format (default) resolve_conflicts=TRUE or resolve_conflicts=FALSE
but no conflicts exist

* cleaning log is by default printed in console, but can be called also later by mc_info_clean()

* non cleaned myClim object in Raw-format with "clean_conflict" tags resolve_conflicts=FALSE
and conflicts exist

Examples

cleaned_data <- mc_prep_clean(mc_data_example_raw)

mc_prep_crop Crop datetime

Description

This function crops data by datetime

Usage

mc_prep_crop(
data,
start = NULL,
end = NULL,
localities = NULL,
end_included = TRUE,
crop_table = NULL

)
Arguments
data myClim object see myClim-package
start optional; POSIXct datetime in UTC value; start datetime is included (default

NULL)

66

mc_prep_crop

end optional; POSIXct datetime in UTC value (default NULL)
localities vector of locality_ids to be cropped; if NULL then all localities are cropped
(default NULL)

end_included if TRUE then end datetime is included (default TRUE), see details

crop_table data.frame (table) for advanced cropping; see details

Details

Function is able to crop data from start to end but works also with start only or end only. When
only start is provided, then function crops only the beginning of the time-series and vice versa
using end.

For advanced cropping per individual locality and logger use crop_table parameter. Crop_table is
r data.frame containing columns:

e locality_id-e.g. Loc_Al

* logger_name - e.g. TMS_1 see mc_info_logger

e start - POSIXct datetime in UTC

end - POSIXct datetime in UTC

If logger_name is NA, then all loggers at certain locality are cropped. The column logger_name
is ignored in agg-format. The start or end can be NA, then the data are not cropped. If the
crop_table is provided, then start, end and localities parameters must be NULL.

The end_included parameter is used for specification, whether to return data which contains end
time or not. For example when cropping the data to rounded days, typically users use midnight.
2023-06-15 00:00:00 UTC. But midnight is the last date of ending day and the same time first date
of the next day. This will create the last day of time-series containing single record (midnight). This
can be confusing when user performs aggregation with such data (e.g. daily mean of single record
per day, typically NA) so sometimes it is better to use end_included = FALSE excluding end record
and crop at 2023-06-14 23:45:00 UTC (15 minutes records).

Value

cropped data in the same myClim format as input.

Examples

cropped_data <- mc_prep_crop(mc_data_example_clean, end=as.POSIXct("2020-02-01", tz="UTC"))

mc_prep_filINA 67

mc_prep_fillNA Fill NA

Description

This function approximate NA (missing) values. It was designed to fill only small gaps in microcli-
matic time-series therefore, the default maximum length of the gap is 5 missing records and longer
gaps are not filled Only linear method is implemented from zoo::na.approx function.

Usage

mc_prep_fillNA(
data,
localities = NULL,
sensors = NULL,

maxgap = 5,
method = "linear”
)
Arguments
data cleaned myClim object see myClim-package
localities names of localities; if NULL then all (default NULL)
sensors names of sensors; if NULL then all (default NULL) see names (mc_data_sensors)
maxgap maximum number of consecutively NA values to fill (default 5)
method used for approximation. It is implemented now only "linear". (default "linear")
Value

myClim object with filled NA values

mc_prep_merge Merge myClim objects

Description

This function is designed to merge more existing myClim objects into one.

Usage

mc_prep_merge(data_items)

Arguments

data_items list of myClim objects see myClim-package; Format (Raw/Agg) of merged ob-
jects must be same.

68 mc_prep_meta_locality

Details

This function works only when the input myClim objects have the same format (Raw-format, Agg-
format) It is not possible to merge Raw wit Agg format. Identical time-step is required for Agg-
format data.

When the merged myClim objects in Raw-format contains locality with same names (locality_id),
than list of loggers are merged on the locality. Sensors with the same name does not matter here.
Loggers with the same name within the locality are allowed in the Raw-format.

When the merged myClim objects in Agg-format contains locality with same names (locality_id).
than the sensors are merged on the locality. Sensors with same names are renamed.

Value

merged myClim object in the same format as input objects

Examples

merged_data <- mc_prep_merge(list(mc_data_example_raw, mc_data_example_raw))

mc_prep_meta_locality Set metadata of localities

Description
This function allows you to add or modify locality metadata including locality names. See mc_LocalityMetadata.
You can import metadata from named list or from data frame. See details.

Usage

mc_prep_meta_locality(data, values, param_name = NULL)

Arguments
data myClim object see myClim-package
values for localities can be named list or table
e named list: metadata <- list(locality_id=value); param_name must
be set
* table with column locality_id and another columns named by meta-
data parameter name; to rename locality use new_locality_id. Parameter
param_name must be NULL.
param_name name of locality metadata parameter; Default names are locality_id, elevation,

lat_wgs84, lon_wgs84, tz_offset. Another names are inserted to user_data
list. see mc_LocalityMetadata

mc_prep_meta_sensor 69

Details

Locality metadata is critical e.g. for correctly handling time zones. By providing geographic coor-
dinates in locality metadata, the user can later harmonize all data to the local solar time (midday)
with mc_prep_solar_tz() or calculate temporal offset to the UTC base on local time-zone. Al-
ternatively, the user can directly provide the offset (in minutes) for individual localities. This can
be useful especially for heterogeneous data sets containing various localities with loggers recording
in local time. By providing temporal offset for # each locality separately, you can unify the whole
dataset to UTC. Note that when tz_offset is set manually, than tz_type is set to user defined.

For minor metadata modification it is practical to use named list in combination with param_name
specification. E.g. when you wish to modify only time zone offset, then set param_name="tz_offset”
and provide named list with locality name and offset value 1ist (A1E@5=60). Similarly, you can
modify other metadata slots mc_LocalityMetadata.

For batch or generally more complex metadata modification you can provide data.frame with columns
specifying locality_idand one of new_locality_id, elevation, lat_wgs84, lon_wgs84, tz_offset.
Provide locality_id (name) and the value in column of metadata you wish to update. In case of using
data.frame use param_name = NULL

Value

myClim object in the same format as input, with updated metadata

Examples

data <- mc_prep_meta_locality(mc_data_example_raw, list(ATE@5=60), param_name="tz_offset")

mc_prep_meta_sensor Set metadata of sensors

Description

This function allows you to modify sensor metadata including sensor name. See mc_SensorMetadata

Usage

mc_prep_meta_sensor(
data,
values,
param_name,
localities = NULL,
logger_types = NULL

70 mc_prep_solar_tz

Arguments
data myClim object see myClim-package
values named list with metadata values; names of items are sensor_names e.g. for
changing sensor height use 1ist(TMS_T1="so0il 8 cm")
param_name name of the sensor metadata parameter you want to change; You can change
name and height of sensor.
localities optional filter; vector of locality_id where to change sensor metadata; if

NULL than all localities (default NULL)

logger_types optional filter; vector of logger_type where to change metadata; if NULL than
all logger types (default NULL); logger_typeis useful only for Raw-format of
myClim having the level of logger see myClim-package

Value

myClim object in the same format as input, with updated sensor metadata

Examples

data <- mc_prep_meta_sensor(mc_data_example_raw, list(TMS_T1="my_TMS_T1"), param_name="name")

mc_prep_solar_tz Set solar time offset against UTC time

Description

This function calculates the temporal offset between local solar time and UTC time zone. Calcu-
lation is based on geographic coordinates of each locality. Therefore, the function does not work
when longitude coordinate is not provided.

Usage

mc_prep_solar_tz(data)

Arguments

data myClim object see myClim-package

Details

myClim assumes that the data are in UTC. To calculate temporal offset based on local solar time,
this function requires geographic coordinates (at least longitude) to be provided in locality metadata
slot 1lon_wgs84 (in decimal degrees). Geographic coordinates for each locality can be provided
already during data reading, see mc_read_data(), or added later with mc_prep_meta_locality()
function.

TZ offset (in minutes) is calculated as longitude / 180 x 12 * 60.

mc_prep_TMSoffsoil 71

Value

myClim object in the same format as input, with tz_offset filled in locality metadata

Examples

data_solar <- mc_prep_solar_tz(mc_data_example_clean)

mc_prep_TMSoffsoil Detection of out-of-soil measurements from TMS logger

Description

This function creates new virtual sensor labelling anomalies in TMS logger caused by displacement
out of from soil.

Usage

mc_prep_TMSoffsoil(
data,
localities = NULL,
soil_sensor = mc_const_SENSOR_TMS_T1,
air_sensor = mc_const_SENSOR_TMS_T2,
moist_sensor = mc_const_SENSOR_TMS_moist,
output_sensor = "off_soil”,
smooth = FALSE,
smooth_window = 10,
smooth_threshold = 0.5,
sd_threshold = 0.76085,
minmoist_threshold = 721.5

)
Arguments
data cleaned myClim object see myClim-package
localities names of localities; if NULL then all (default NULL)
soil_sensor character, soil temperature sensor (default mc_const_SENSOR_TMS_T1)
air_sensor character, air temperature sensor (default mc_const_SENSOR_TMS_T2)

moist_sensor character, soil moisture sensor (default mc_const_SENSOR_TMS_moist)
output_sensor character, name of virtual sensor to store ouptup values (default "off_soil")

smooth logical, smooth out isolated faulty/correct records using floating window (de-
fault FALSE)
smooth_window integer, smooth floating window width (in days) (default 10)
smooth_threshold
numeric, floating window threshold for detection of faulty records. (default 0.5)

72 mc_read_data

sd_threshold numeric, threshold value for the criteria on the ratio of standard deviation of the
soil sensor to the above-ground sensor temperatures (default 0.76085)
minmoist_threshold

numeric, threshold value for criteria on the minimum soil moisture (default
721.5)

Details

TMS loggers, when correctly installed in the soil, exhibit certain temperature and soil moisture sig-
nal characteristics. Temperature varies the most at the soil interface, and temperature fluctuations in
the soil are minimized. The moisture signal from a sensor that has lost direct contact with the soil
is reduced. The following criteria are used for detecting faulty measurements: the ratio of the stan-
dard deviations of the soil sensor to the above-ground sensor within 24h moving window is greater
than the defined threshold (default 0.76085), and simultaneously, the soil moisture minimum within
24h mowing window is less than 721.5. Optionally, the prediction results can be smoothed using
a floating window to average-out unlikely short periods detected by the algorithm. Selection and
parametrization of criteria was done using a recursive partitioning (rpart::rpart) on the training set
of 7.8M readings in 154 TMS timeseries from different environmental settings (temperate forests,
tropical rainforest, cold desert, alpine and subnival zone, and invalid measurements from loggers
stored in the office or displaced from the soil). Sensitivity of the method (true positive rate) on was
95.1% and specificity (true negative rate) was 99.4% using function default parameters. Smoothing
with 10 day floating window increased sensitivity to 96.8% while retaining specifity at the same
level of 99.4%. Decreasing ’smooth_threshold’ below 0.5 will extend periods flagged as faulty
measurement.

Value

numeric vector (0 = correct measurement, 1 = faulty measurement) stored as virtual sensor in my-
Clim object

Examples

data <- mc_read_files(system.file("extdata”, "data_93142760_201904.csv", package = "myClim"),
"TOMST")

data <- mc_prep_TMSoffsoil(data)

mc_plot_line(data, sensors = c("off_soil”,”"TMS_T1", "TMS_T2","TMS_T3"))

mc_read_data Reading files with locality metadata

Description

This function has two tables as the parameters.

(1) files_table is required parameter, it ust contain paths pointing to raw csv logger files, specifi-
cation of data format (logger type) and locality name.

(ii) localities_table is optional, containing locality id and metadata e.g. longitude, latitude,
elevation...

mc_read_data 73

Usage

mc_read_data(
files_table,
localities_table = NULL,
clean = TRUE,
silent = FALSE,
user_data_formats = NULL

Arguments

files_table path to csv file or data.frame object see example with 3 required columns and
few optional:

required columns:

* path - path to files

* locality_id - unique locality id

¢ data_format see mc_data_formats, names(mc_data_formats)
optional columns:

* serial_number - logger serial number. If is NA, than myClim tries to detect
serial number from file name (for TOMST) or header (for HOBO)

* logger_type - type of logger. This defines individual sensors attributes
(measurement heights and physical units) of the logger. Important when
combining the data from multiple loggers on the locality. If not provided,
myClim tries to detect loger_type from the source data file structure (ap-
plicable for HOBO, Dendro, Thermo and TMS), but automatic detection
of TMS_LA4S5 is not possible. Pre-defined logger types are: ("Dendro”,
"HOBO", "Thermo", "TMS", "TMS_L45") Default heights of sensor based
on logger types are defined in table mc_data_heights

» date_format A character vector specifying the custom date format(s) for the
lubridate: :parse_date_time() function (e.g., "%d.%m.%Y %H:%M:%S").
Multiple formats can be defined either in in CSV or in R data.frame us-
ing @ character as separator (e.g., "%d.%m.%Y %H:%M:%S @ %Y.%m.%d
9%H:%M:%S"). The first matching format will be selected for parsing, mul-
tiple formats are applicable to single file.

tz_offset - If source datetimes aren’t in UTC, then is possible define offset
from UTC in minutes. Value in this column have the highest priority. If
NA then auto detection of timezone in files. If timezone can’t be detected,
then UTC is supposed. Timezone offset in HOBO format can be defined
in header. In this case function try detect offset automatically. Ignored for

TOMST TMS data format (they are always in UTC)
* step - Time step of microclimatic time-series in seconds. When provided,
then used in mc_prep_clean instead of automatic step detection. See details.

localities_table

path to csv file ("c:/user/localities.table.csv") or R data.frame see example. Lo-
calities table is optional (default NULL). The locality_id is the only required
column. Other columns are optional. Column names corresponding with the

https://github.com/ibot-geoecology/myClim/blob/main/examples/data/TOMST/files_table.csv
https://github.com/ibot-geoecology/myClim/blob/main/examples/data/TOMST/localities_table.csv

74 mc_read_data

myclim pre-defined locality metadata (elevation, lon_wgs84, lat_wgs84, tz_offset)
are associted withthose pre-defined metadata slots, other columns are written
into metadata@user_data myClim-package.

required columns:
* locality_id - unique locality id
optional columns:
e clevation - elevation (in m)
* lon_wgs84 - longitude (in decimal degrees)
* lat_wgs84 - latitude (in decimal degrees)

* tz_offset - locality time zone offset from UTC, applicable for converting
time-series from UTC to local time.

e ... - any other columns are imported to metadata@user_data
clean if TRUE, then mc_prep_clean is called automatically while reading (default
TRUE)
silent if TRUE, then any information is not printed in console (default FALSE)

user_data_formats
custom data formats; use in case you have your own logger files not pre-defined
in myClim - list(key=mc_DataFormat) mc_DataFormat (default NULL)

If custom data format is defined the key can be used in data_format parameter in
mc_read_files() and mc_read_data(). Custom data format must be defined
first, and then an be used for reading.

Details

The input tables could be R data.frames or csv files. When loading files_table and localities_table
from external CSV they must have header, column separator must be comma ",". If you only need

to place loggers to correct localities, files_table is enough. If you wish to provide localities
additional metadata, you need also localities_table

By default, data are cleaned with the function mc_prep_clean see function description. mc_prep_clean
detects gaps in time-series data, duplicated records, or records in the wrong order. Importantly,
mc_prep_clean also applies a step parameter if provided. The step parameter can be used either
instead of automatic step detection which can sometime failed, or to prune microclimatic data. For
example, if you have a 15-minute time series but you wish to keep only one record per hour (without
aggregating), you can use step parameter. However, if a step is provided and clean = FALSE, then
the step is only stored in the metadata of myClim, and the time-series data is not cleaned, and the
step is not applied.

Value

myClim object in Raw-format see myClim-package

See Also

mc_DataFormat

mc_read_files 75

Examples
files_csv <- system.file("extdata”, "files_table.csv”, package = "myClim")
localities_csv <- system.file("extdata”, "localities_table.csv", package = "myClim")

tomst_data <- mc_read_data(files_csv, localities_csv)

mc_read_files Reading files or directories

Description

This function read one or more CSV/TXT files or directories of identical, pre-defined logger type
(format) see mc_DataFormat and mc_data_formats. This function does not support loading locality
or sensor metadata while reading. Metadata can be loaded through mc_read_data() or can be
provided later with function mc_prep_meta_locality()

Usage

mc_read_files(
paths,
dataformat_name,
logger_type = NA_character_,
recursive = TRUE,
date_format = NA_character_,
tz_offset = NA_integer_,
step = NA_integer_,
clean = TRUE,
silent = FALSE,
user_data_formats = NULL

Arguments

paths vector of paths to files or directories

dataformat_name
data format of logger; one of names(mc_data_formats)

logger_type type of logger (default NA), can be one of pre-defined see mc_read_data() or
any custom string

recursive recursive search in sub-directories (default TRUE)

date_format format of date in your hobo files e.g. "%d.%m.%y %H:%M:%S" (default NA).
TOMST TMS files used to have stable date format, therefore this parameter
may be omitted for TMS files because myClim will try to detect one of for-
merly stable formats, but nowadays user can adjust any date format also for
TMS. For other loggers this parameter is required. You can provide multiple
formats to by tried, multiple formats can be combined for reading single file.
e.g. ¢("%d.%m. %Y %H:%M:%S", "%Y.%m.%d %H:%M", "%d.%m.%Y")

76 mc_read_files

tz_offset timezone offset in minutes; It is required only for non-UTC data (custom settings
in HOBO). Not used in TMS (default NA)
step time step of microclimatic time-series in seconds. When provided, then is used

in mc_prep_clean instead of automatic step detection. See details. If not pro-
vided (NA), is automatically detected in mc_prep_clean. (default NA)

clean if TRUE, then mc_prep_clean is called automatically while reading (default
TRUE)
silent if TRUE, then any information is not printed in console (default FALSE)

user_data_formats

custom data formats; use in case you have your own logger files not pre-defined
in myClim - list(key=mc_DataFormat) mc_DataFormat (default NULL)

If custom data format is defined the key can be used in data_format parameter in
mc_read_files() and mc_read_data(). Custom data format must be defined
first, and then an be used for reading.

Details

If file is not in expected format, then file is skipped and warning printed in console. CSV/TXT
files (loggers raw data) are in resulting myClim object placed to separate localities with empty
metadata. Localities are named after serial_number of logger. Pre-defined logger types are ("Den-
dro","HOBO","Thermo","TMS","TMS_L45")

By default, data are cleaned with the function mc_prep_clean see function description. mc_prep_clean
detects gaps in time-series data, duplicated records, or records in the wrong order. Importantly,
mc_prep_clean also applies a step parameter if provided. The step parameter can be used either
instead of automatic step detection which can sometime failed, or to prune microclimatic data. For
example, if you have a 15-minute time series but you wish to keep only one record per hour (without
aggregating), you can use step parameter. However, if a step is provided and clean = FALSE, then
the step is only stored in the metadata of myClim, and the time-series data is not cleaned, and the
step is not applied.

It is good to specify date_formatas this can often be the reason why reading have failed (see
warnings after reading).

Value

myClim object in Raw-format see myClim-package

See Also

mc_DataFormat, mc_prep_clean()

Examples

files <- c(system.file("extdata”, "data_91184101_0.csv", package = "myClim"),
system.file("extdata”, "data_94184102_0.csv", package = "myClim"))
tomst_data <- mc_read_files(files, "TOMST",
date_format = c("%d.%m.%Y %H:%M:%S",
"%Y.%m.%d %H:%M",
"%d. %m.%Y"))

mc_read_long 77

user_data_formats

files <- system.file("extdata”, "TMS94184102.csv"”, package = "myClim")

user_data_formats <- list(my_logger=new("mc_DataFormat"))
user_data_formats$my_logger@date_column <- 2

user_data_formats$my_logger@date_format <- "%Y-%m-%d %H:%M:%S"
user_data_formats$my_logger@tz_offset <- @
user_data_formats$my_logger@columns[[mc_const_SENSOR_T_C]] <- c(3, 4, 5)
user_data_formats$my_logger@columns[[mc_const_SENSOR_reall] <- 6

my_data <- mc_read_files(files, "my_logger"”, silent=TRUE, user_data_formats=user_data_formats)

mc_read_long Reading data from long data.frame

Description
This is universal function designed to read time series and values from long data.frame to myClim
object.

Usage

mc_read_long(data_table, sensor_ids = list(), clean = TRUE, silent = FALSE)

Arguments
data_table long data.frame with Columns:
* locality_id - character; id of locality
* sensor_name - can be any character string, recommended are these: names(mc_data_sensors)
* datetime - POSIXct in UTC timezone is required
e value
sensor_ids list with relations between sensor_names and sensor_ids (default list()); sen-
sor_id is key from names (mc_data_sensors). E.g., sensor_ids <- list(precipitation="real”,
maxAirT="T_C") If sensor_name is the same as sensor_id does not have to be
provided.
clean if TRUE, then mc_prep_clean is called automatically while reading (default
TRUE)
silent if TRUE, then any information is not printed in console (default FALSE)
Details

Similar like mc_read_wide but is capable to read multiple sensors from single table. Useful for data
not coming from supported microclimatic loggers. E.g. meteorological station data. By default data
are cleaned with function mc_prep_clean().

Value

myClim object in Raw-format

78 mc_read_tubedb

See Also

mc_read_wide

mc_read_problems Environment for reading problems

Description

Environment for reading problems

Usage

mc_read_problems

Format

An object of class environment of length 0.

mc_read_tubedb Reading data from TubeDB

Description

Function is reading data from TubeDB (https://environmentalinformatics-marburg.github.io/tubedb/)
into myClim object.

Usage

mc_read_tubedb(
tubedb,
region = NULL,
plot = NULL,
sensor_ids = NULL,
clean = TRUE,
silent = FALSE,
aggregation = "raw”,
quality = "no",

mc_read_wide 79

Arguments
tubedb object for connection to server see rTubeDB::TubeDB
region vector of TubeDB region ids - see rTubeDB::query_regions (default NULL)
Regions are used mainly for loading metadata from TubeDB localities.
plot vector of localities ids see rTubeDB::query_region_plots rTubeDB::query_timeseries
(default NULL)
If plot is NULL, then all localities are loaded from whole region.
sensor_ids listin format 1ist (tubedb_sensor_name=myClim_sensor_name) (default NULL)
If sensor names in TubeDB match the default sensor names in myClim, then the
value is detected automatically.
clean if TRUE, then mc_prep_clean is called automatically while reading (default
TRUE)
silent if TRUE, then any information is not printed in console (default FALSE)
aggregation parameter used in function rTubeDB::query_timeseries (default raw)
quality parameter used in function rTubeDB::query_timeseries (default no)
other parameters from function rTubeDB::query_timeseries
Details

In case you store your microclimatic time-series in TubeDB, you can read data with TubeDB API
into myClim object. You need to know database URL, username and password.

Value

myClim object in Raw-format

Examples

Not run: To retrieve data from TubeDB, a running TubeDB server with a user account
and a secret password is required.

Not run:

tubedb <- TubeDB(url="server", user="user", password="password")

data <- mc_read_tubedb(tubedb, region="ckras"”, plot=c("TP_KAR_19", "TP_KODA_61"))

End(Not run)

mc_read_wide Reading data from wide data.frame

Description

This is universal function designed to read time-series and values from wide data.frame to myClim
object. Useful for data not coming from supported microclimatic loggers. E.g. meteorological
station data.

80 mc_read_wide

Usage

mc_read_wide(
data_table,
sensor_id = mc_const_SENSOR_real,
sensor_name = NULL,
clean = TRUE,
silent = FALSE

)
Arguments
data_table data.frame with first column of POSIXct time format UTC timezone, followed
by columns with (micro)climatic records. See details.
Columns:
* datetime column - POSIXct in UTC timezone is required
* Name of locality[1] - values
e Name of locality[n] - values
sensor_id define the sensor type, one of names(mc_data_sensors) (default real)
sensor_name custom name of sensor; if NULL (default) than sensor_name == sensor_id
clean if TRUE, then mc_prep_clean is called automatically while reading (default
TRUE)
silent if TRUE, then any information is printed in console (default FALSE)
Details

The first column of input data.frame must be datetime column in POSIXct time format UTC time-
zone. Following columns represents localities. Column names are the localities names. All values
in wide data.frame represents the same sensor type, e.g. air temperature. If you wish to read multi-
ple sensors use mc_read_long or use mc_read_wide multiple times separately for each sensor type
and that merge myClim objects with mc_prep_merge By default data are cleaned with function
mc_prep_clean(). See function description. It detects holes in time-series, duplicated records or
records in wrong order.

Value

myClim object in Raw-format

See Also

mc_read_long

mc_reshape_long 81

mc_reshape_long Export values to long table

Description

This function converts myClim object to long R data.frame.

Usage

mc_reshape_long(data, localities = NULL, sensors = NULL, use_utc = TRUE)

Arguments
data myClim object see myClim-package
localities names of localities; if NULL then all (default NULL)
sensors names of sensors; if NULL then all (default NULL) see names (mc_data_sensors)
use_utc if FALSE, then the time shift from tz_offset metadata is used to correct (shift)
the output time-series (default TRUE)
In the Agg-format myClim object use_utc = FALSE is allowed only for steps
shorter than one day. In myClim the day nd longer time steps are defined by
the midnight, but this represent whole day, week, month, year... shifting daily,
weekly, monthly... data (shift midnight) does not make sense in our opinion. But
when user need more flexibility, then myClim Raw-format can be used, In Raw-
format use_utc is not limited, user can shift an data without the restrictions.
See myClim-package
Value
data.frame
columns:

* locality_id

¢ serial_number
* sensor_name
* height

* datetime

* time_to

e value

Examples

head(mc_reshape_long(mc_data_example_clean, c("A6W79", "A2E32"), c("TMS_T1", "TMS_T2")), 10)

82 mc_reshape_wide

mc_reshape_wide Export values to wide table

Description

This function converts myClim object to the R data.frame with values of sensor in wide format.

Usage

mc_reshape_wide(
data,
localities = NULL,
sensors = NULL,
use_utc = TRUE,
show_logger_name = FALSE

)
Arguments
data myClim object see myClim-package
localities names of localities; if NULL then all (default NULL)
sensors names of sensors; if NULL then all (default NULL) see names (mc_data_sensors)
use_utc if FALSE, then the time shift from tz_offset metadata is used to correct (shift)

the output time-series (default TRUE)

In the Agg-format myClim object use_utc = FALSE is allowed only for steps
shorter than one day. In myClim the day nd longer time steps are defined by
the midnight, but this represent whole day, week, month, year... shifting daily,
weekly, monthly... data (shift midnight) does not make sense in our opinion. But
when user need more flexibility, then myClim Raw-format can be used, In Raw-
format use_utc is not limited, user can shift an data without the restrictions.
See myClim-package
show_logger_name
if TRUE, the logger name is included in the column name (default FALSE)

Details

First column of the output data.frame is datetime followed by the columns for every sensor. Name
of the column is in format:

* localityid_loggerid_serialnumber_sensorname for Raw-format and show_logger_name=FALSE
* localityid_loggername_sensorname for Raw-format and show_logger_name=TRUE

* localityid_sensorname for Agg-format

The less complex wide table is returned when exporting single sensor ascross localities.

mc_save 83

Value

data.frame with columns:

e datetime

* localityl_sensorl

* localityn_sensorn

Examples
example_tms_wideformat <- mc_reshape_wide(mc_data_example_raw, c("A6W79", "A2E32"),
c("TMS_T1", "TMS_T2"))
mc_save Save myClim object
Description

This function was designed for saving the myClim data object to an .rds file, which can be later
correctly loaded by any further version of myClim package with mc_load. This is the safest way
how to store and share your myClim data.

Usage

mc_save(data, file)

Arguments
data myClim object see myClim-package
file path to output .rds file

Value

RDS file saved at the output path destination

Examples

tmp_dir <- tempdir()
tmp_file <- tempfile(tmpdir = tmp_dir)
mc_save(mc_data_example_agg, tmp_file)
file.remove(tmp_file)

84 mc_Sensor-class

mc_save_localities Save myClim object separated by localities

Description
This function was designed for saving the myClim data object to multiple .rds files, which every
contains data of one locality. Every file is named by locality_id.

Usage

mc_save_localities(data, directory)

Arguments
data myClim object see myClim-package
directory path to output directory

Value

RDS files saved at the output path destination

Examples

tmp_dir <- tempdir()

tmp_dir <- file.path(tmp_dir, "localities"”)
dir.create(tmp_dir)
mc_save_localities(mc_data_example_agg, tmp_dir)
unlink(tmp_dir, recursive = TRUE)

mc_Sensor-class Class for sensor definition

Description

Sensor definitions are stored in mc_data_sensors.

Slots

sensor_id unique identifier of sensor (TMS_T1, TMS_T2, TMS_T3, TMS_moist, ...)
logger name of logger (TMS, Thermo, ...)

physical unit of sensor (T_C, moisture_raw, moisture, RH) (default NA)
description character info

value_type type of values (real, integer, logical) (default real)

min_value minimal value (default NA)

max_value maximal value (default NA)

plot_color color in plot (default "")

plot_line_width width of line in plot (default 1)

mc_SensorMetadata-class 85

See Also

mc_data_sensors

mc_SensorMetadata-class
Class for sensor metadata

Description

Class for sensor metadata

Details

sensor_id must be one of the defined id in myClim. see mc_data_sensors. It is useful to select on
of predefined, because it makes plotting and calculaton easier. Through sensor_id myClim assign
pre-deined physicyl units or plotting colors see mc_Sensor.

Slots

sensor_id unique identifier of sensor (TMS_T1, TMS_T2, TMS_T3, TMS_moist, ...) mc_data_sensors
e.g. TMS_T1, TMS_moist, snow_{resh...

name character, could be same as sensor_id but also defined by function or user.
height character

calibrated logical - detect if sensor is calibrated

See Also

myClim-package, mc_LoggerMetadata, mc_data_sensors

mc_states_delete Delete sensor states (tags)

Description

This function removes states (tags) defined by locality ID, sensor name, or tag value, or any combi-
nation of these three.

Usage

mc_states_delete(data, localities = NULL, sensors = NULL, tags = NULL)

86

Arguments

data
localities
sensors

tags

Value

mc_states_from_sensor

cleaned myClim object see myClim-package

locality ids where delete states (tags). If NULL then all. (default NULL)
sensor names where delete states (tags). If NULL then all. (default NULL)
specific tag to be deleted. If NULL then all. (default NULL)

myClim object in the same format as input, with deleted sensor states

Examples

data <- mc_states_delete(mc_data_example_clean, localities="A1EQ5",

sensors=c(mc_const_SENSOR_Dendro_T, mc_const_SENSOR_Dendro_raw))

mc_states_from_sensor Convert a sensor to a state

Description

This function creates a new state from an existing logical (TRUE/FALSE) sensor and assigns this
new state to selected existing sensors.

Usage

mc_states_from_sensor(

data,

source_sensor,

tag,
to_sensor,
value = NA,

inverse = FALSE

Arguments

data
source_sensor
tag

to_sensor
value

inverse

myClim object see myClim-package

A logical sensor to be converted to states.

A tag for the new states, e.g., "snow".

A vector of sensor names to which the new states should be attributed.
The value of the new states (default is NA)

A logical value. If FALSE, states are created for periods when source_sensor
is TRUE (default is FALSE).

mc_states_insert 87

Details

The function is applicable only for logical (TRUE/FALSE) sensors. It allows you to convert such
sensors into a state, represented as a tag. For example, you might calculate the estimation of snow
cover using mc_calc_snow (TRUE/FALSE) and then want to remove temperature records when the
logger was covered by snow. In this case, you can convert the snow sensor to a state, and then
replace the values with NA for that state using mc_states_replace. In opposite case when you wish
to keep e.g. only the moisture records when sensor was covered by snow, use inverse = TRUE.

Value

Returns a myClim object in the same format as the input, with added states.

Examples

data <- mc_calc_snow(mc_data_example_agg, "TMS_T2", output_sensor="snow")
data <- mc_states_from_sensor(data, source_sensor="snow", tag="snow", to_sensor="TMS_T2")

mc_states_insert Insert new sensor states (tags)

Description

This function inserts new states (tags) into the selected part of the sensor time-series. For more
information about the structure of states (tags), see myClim-package. mc_states_insert() does
not affect existing rows in the states (tags) table but only inserts new rows even if the new ones are
identical with existing (resulting in duplicated states).

Usage

mc_states_insert(data, states_table)

Arguments

data cleaned myClim object see myClim-package

states_table Output of mc_info_states() can be used as template for input data.frame.
data.frame with columns:

* locality_id - the name of locality (in some cases identical to logger id, see
mc_read_files)
* logger_name - name of logger in myClim object at the locality. See mc_info_logger.

* sensor_name - sensor name either original (e.g., TMS_T1, T_C), or calcu-
lated/renamed (e.g., "TMS_T1_max", "my_sensor01")

* tag - category of state (e.g., "conflict", "error", "source", "quality")

* start - start datetime

* end - end datetime

* value - value of tag (e.g., "out of soil", "c:/users/John/tmsData/data_911235678.csv")

88 mc_states_join

Details

As a template for inserting states (tags), it is recommended to use the output of mc_info_states(),
which will return the table with all necessary columns correctly named. The sensor_name and
value columns are optional and do not need to be filled in.

When locality_id is provided but sensor_name is NA in the states (tags) table, states are inserted
for all sensors within the locality.

The states (tags) are associated with the sensor time-series, specifically to the defined part of the
time-series identified by start and end date times. A single time series can contain multiple states
(tags) of identical or different types, and these states (tags) can overlap. Start and end date times
are adjusted to fit within the range of logger/locality datetime and are rounded according to the
logger’s step. For instance, if a user attempts to insert a tag beyond the sensor time-series range,
mc_states_insert will adjust the start and end times to fit the available measurements. If a user
defines a start time as *2020-01-01 10:23:00’ on a logger with a 15-minute step, it will be rounded
to *2020-01-01 10:30:00’.

Value

myClim object in the same format as input, with inserted sensor states

Examples

states <- data.frame(locality_id="A1E@5", logger_name="Thermo_1",
sensor_name="Thermo_T", tag="error",
start=lubridate::ymd_hm("2020-10-28 9:00"),
end=lubridate::ymd_hm("2020-10-28 9:30"))
data <- mc_states_insert(mc_data_example_clean, states)

mc_states_join Create states for join conflicts

Description
This function creates a state (tag) when joining multiple overlapping time-series with different
microclimate values. State is created for all values that are in conflict in joining process.

Usage

mc_states_join(data, tag = "join_conflict”, by_type = TRUE, tolerance = NULL)

Arguments
data myClim object in Raw-format. see myClim-package
tag The tag name (default "join_conflict").
by_type for mc_join function (default TRUE)

tolerance for mc_join function (default NULL)

mc_states_outlier 89

Details

For more info see details of mc_join function.

Value

Returns a myClim object with added states.

mc_states_outlier Create states for outlying values

Description

This function creates a state (tag) for all values that are either above or below certain thresholds
(min_value, max_value), or at break points where consecutive values of microclimate time-series
suddenly jump down or up (positive_jump, negative_jump).

Usage
mc_states_outlier(
data,
table,
period = NULL,
range_tag = "range”,
jump_tag = "jump”
)
Arguments
data myClim object see myClim-package
table The table with outlying values (thresholds). You can use the output of mc_info_range().
The columns of the table are:
* sensor_name - Name of the sensor (e.g., TMS_T1, TMS_moist, HOBO_T);
see mc_data_sensors
* min_value - Minimal value (threshold; all below are tagged)
* max_value - Maximal value
* positive_jump - Maximal acceptable increase between two consecutive
values (next value is higher than the previous)
* negative_jump - Maximal acceptable decrease between two consecutive
values (next value is lower than the previous)
period Period for standardizing the value of jump. If NULL, then the difference is not
standardized (default NULL); see details.
It is a character string usable by lubridate::period, for example, "1 hour", "30
minutes", "2 days".
range_tag The tag for states indicating that the value is out of range (default "range").
jump_tag The tag for states indicating that the difference between two consecutive values

is too high (default "jump").

90 mc_states_replace

Details

The best way to use this function is to first generate a table (data.frame) with pre-defined minimum,
maximum, and jump thresholds using the mc_info_range function. Then modify the thresholds as
needed and apply the function (see example). All values above max_value and below min_value
are tagged by default with the range tag. When consecutive values suddenly decrease by more than
negative_jump or increase by more than positive_jump, such break points are tagged with the
jump tag. It is possible to use only the range case, only the jump case, or both.

When the period parameter is used, the jump values are modified; range values are not affected.
Depending on the logger step, the value of jump is multiplied or divided. For example, when the
loggers are recording with a step of 15 minutes (900 s) and the user sets period = "1 hour" together
with positive_jump = 10, then consecutive values differing by (10 * (15 / 60) = 2.5) would be
tagged. In this example, but with recording step 2 hours (7200 s), consecutive values differing by
(10 * (120 / 60) = 20) would be tagged.

Value

Returns a myClim object in the same format as the input, with added states.

Examples

range_table <- mc_info_range(mc_data_example_clean)
range_table$negative_jump[range_table$sensor_name == "TMS_moist"] <- 500
data <- mc_states_outlier(mc_data_example_clean, range_table)

mc_states_replace Replace values by states with tag

Description

This function replace values of sensors by states with tag.

Usage

mc_states_replace(data, tags, replace_value = NA, crop_margins_NA = FALSE)

Arguments
data myClim object see myClim-package
tags tag assigned to the the sensor values to be replaced. e.g. "error"”

replace_value (default NA) The value which will be written into sensor.
crop_margins_NA

if TRUE function crops NAs on the beginning or end of time-series (default
FALSE)

mc_states_to_sensor 91

Details

The typical use of this function is for deleting/removing error/compromised records from time-
series by tagging them and then replacing tagged values with NA. Typically, when error/unwanted
data appears at the beginning or end of time series, it can be useful to crop time-series (delete
records completely) using crop_margins_NA.

Value

myClim object in the same format as input, with replaced values

Examples

states <- data.frame(locality_id="A1E@5", logger_name="Thermo_1",
sensor_name="Thermo_T", tag="error”,
start=lubridate: :ymd_hm("2020-10-28 9:00"),
end=lubridate: :ymd_hm("2020-10-28 9:30"))

data <- mc_states_insert(mc_data_example_clean, states)

data <- mc_states_replace(data, "error")

mc_states_to_sensor Convert states to logical (TRUE/FALSE) sensor

Description

This function creates a logical (TRUE/FALSE) sensor from specified states.

Usage

mc_states_to_sensor(
data,
tag,
to_sensor,
source_sensor = NULL,
inverse = FALSE

)
Arguments
data myClim object see myClim-package
tag The tag of states to be converted into a sensor.
to_sensor A vector of names for the output sensors.

If “to_sensor™ is a single sensor name, the logical sensor is created

from the union of states across all sensors with the same tag. If ~to_sensor”
contains multiple sensor names, the length of the vector must match the length
of “source_sensor”.

92 mc_states_update

source_sensor A vector of sensors containing the states to be converted into a new sensor. If
NULL, states from all sensors are used. (default is NULL)

inverse A logical value. If TRUE, the sensor value is FALSE for state intervals (default
is FALSE).

Details

The function allows you to create a TRUE/FALSE sensor based on a tag. By default, it generates
a new sensor by combining all tags specified in the tag parameter from all available sensors at
a particular logger or locality. If you specify a source_sensor, the function converts only the
tags from that specific sensor. You can also create multiple new sensors from multiple tags by
specifying more values in to_sensor and providing exactly the same number of corresponding
values in source_sensor. For example, you can create one TRUE/FALSE sensor from states on a
temperature sensor and another from tags on a moisture sensor.

If you use parameter inverse = TRUE you get FALSE for each record where tag is assigned to and
FALSE for the records where tag is absent. By default you get TRUE for all the records where tag
is assigned.

Value

Returns a myClim object in the same format as the input, with added sensors.

Examples

states <- data.frame(locality_id="A1E@5", logger_name="Thermo_1",
sensor_name="Thermo_T", tag="error",
start=lubridate::ymd_hm("2020-10-28 9:00"),
end=lubridate::ymd_hm("2020-10-28 9:30"))

data <- mc_states_insert(mc_data_example_clean, states)

data <- mc_states_to_sensor(data, tag="error”, to_sensor="error_sensor")

mc_states_update Update sensor states (tags)

Description

This function updates (replaces) existing states (tags). For more information about the structure of
states (tags), see myClim-package. In contrast with mc_states_insert, which does not affect existing
states (tags), mc_states_update deletes all old states and replaces them with new ones, even if the
new states table contains fewer states than original object.

Usage

mc_states_update(data, states_table)

mc_states_update 93

Arguments

data cleaned myClim object see myClim-package

states_table Output of mc_info_states() can be used as template for input data.frame.

data.frame with columns:

* locality_id - the name of locality (in some cases identical to logger id, see
details of mc_read_files)

* logger_name - name of logger in myClim object at the locality. See mc_info_logger.

* sensor_name - sensor name either original (e.g., TMS_T1, T_C), or calcu-
lated/renamed (e.g., "TMS_T1_max", "my_sensor01")

"non non non

* tag - category of state (e.g., "conflict", "error", "source", "quality")
* start - start datetime
 end - end datetime

* value - value of tag (e.g., "out of soil", "c:/users/John/tmsData/data_911235678.csv")

Details

As a template for updating states (tags), it is recommended to use the output of mc_info_states(),
which will return the table with all necessary columns correctly named. The sensor_name and
value columns are optional and do not need to be filled in.

The states (tags) are associated with the sensor time-series, specifically to the defined part of the
time-series identified by start and end date times. A single time series can contain multiple states
(tags) of identical or different types, and these states (tags) can overlap. Start and end date times
are adjusted to fit within the range of logger/locality datetime and are rounded according to the
logger’s step. For instance, if a user attempts to insert a tag beyond the sensor time-series range,
mc_states_insert will adjust the start and end times to fit the available measurements. If a user
defines a start time as *2020-01-01 10:23:00° on a logger with a 15-minute step, it will be rounded
to *2020-01-01 10:30:00°.

In contrast with mc_states_insert, the automatic filling of states when locality_id is provided but
sensor_name is NA is not implemented in mc_states_update. When a user needs to update states
(tags) for all sensors within the locality, each state (tag) needs to have a separate row in the input
table.

Value

myClim object in the same format as input, with updated sensor states

Examples

states <- mc_info_states(mc_data_example_clean)
states$value <- basename(states$value)
data <- mc_states_update(mc_data_example_clean, states)

94 myClimList

mc_TOMSTDataFormat-class
Class for reading TOMST logger files

Description

Provides the key for the column in source files. Where is the date, in what format is the date, in
which columns are records of which sensors. The code defining the class is in section methods
JR/model.R

See Also

mc_DataFormat, mc_data_formats, mc_TOMST]JoinDataFormat

mc_TOMSTJoinDataFormat-class
Class for reading TMS join files

Description

Provides the key for the column in source files. Where is the date, in what format is the date, in
which columns are records of which sensors. The code defining the class is in section methods
/R/model.R

Details

TMS join file format is the output of IBOT internal post-processing of TOMST logger files.

See Also

mc_DataFormat,mc_data_formats,mc_TOMSTDataFormat, mc_TOMST]JoinDataFormat

myClimList Custom list for myClim object

Description

Top level list for store myClim data. (see myClim-package) Rather service function used for check-
ing, whether object is myClimList. The same time can be used to create standard R list from
myClimList.

Usage

myClimList(metadata = NULL, localities = list())

print. myClimList
Arguments
metadata of data object
localities list of licalities
Value

the list containing myClim object’s metadata and localities

95

print.myClimList Print function for myClim object

Description

Function print metadata of myClim object and table from function mc_info().

Usage
S3 method for class 'myClimList'
print(x, ...)
Arguments
X myClim object see myClim-package
other parameters from function print for tibble tibble::tibble
Examples

print(mc_data_example_agg, n=10)

[.myClimList Extract localities with []

Description

Using [] for extract localities.

Usage
S3 method for class 'myClimList'
x[...]
Arguments
X myClim object see myClim-package

indexes for extract localities

96 [.myClimList

Value

myClim object with subset of localities see myClim-package

Examples

filtered_data <- mc_data_example_raw[1:2]

Index

x datasets

mc_const_CALIB_MOIST_ACOR_T, 18
mc_const_CALIB_MOIST_REF_T, 19
mc_const_CALIB_MOIST_WCOR_T, 19
mc_const_SENSOR_count, 19
mc_const_SENSOR_coverage, 20
mc_const_SENSOR_dendro_1_um, 20
mc_const_SENSOR_Dendro_raw, 21
mc_const_SENSOR_Dendro_T, 21
mc_const_SENSOR_FDD, 22
mc_const_SENSOR_GDD, 22
mc_const_SENSOR_HOBO_EXTT, 22
mc_const_SENSOR_HOBO_RH, 23
mc_const_SENSOR_HOBO_T, 23
mc_const_SENSOR_integer, 23
mc_const_SENSOR_logical, 24

mc_const_SENSOR_precipitation, 24

mc_const_SENSOR_real, 24
mc_const_SENSOR_RH, 25
mc_const_SENSOR_snow_bool, 25
mc_const_SENSOR_snow_fresh, 25
mc_const_SENSOR_snow_total, 26
mc_const_SENSOR_sun_shine, 26
mc_const_SENSOR_T_C, 28
mc_const_SENSOR_Thermo_T, 26
mc_const_SENSOR_TMS_moist, 27
mc_const_SENSOR_TMS_T1, 27
mc_const_SENSOR_TMS_T2, 28
mc_const_SENSOR_TMS_T3, 28
mc_const_SENSOR_VPD, 29
mc_const_SENSOR_VWC, 29
mc_const_SENSOR_wind_speed, 29
mc_data_example_agg, 31
mc_data_example_clean, 32
mc_data_example_raw, 32
mc_data_formats, 33
mc_data_heights, 34
mc_data_physical, 35
mc_data_sensors, 36

97

mc_data_vwc_parameters, 37
mc_read_problems, 78
[.myClimList, 95

length.myClimList, 4
lubridate: :parse_date_time(), 73
lubridate: :period, 89

mc_agg, 5

mc_agg(), 6, 9, 10, 19, 20, 36, 38, 40, 41, 54

mc_calc_cumsum, 7

mc_calc_fdd, 8
mc_calc_fdd(), 22, 36, 40
mc_calc_gdd, 9
mc_calc_gdd(), 22, 36, 40
mc_calc_snow, 10, 87
mc_calc_snow(), 11, 12, 25, 36
mc_calc_snow_agg, 11, 11
mc_calc_tomst_dendro, 12, 21
mc_calc_tomst_dendro(), 36
mc_calc_vpd, 13
mc_calc_vpd(), 29, 41
mc_calc_vwc, 14, 18, 19, 27
mc_calc_vwc(), 17, 29, 37, 38, 62
mc_calib_moisture, 15,17
mc_calib_moisture(), 15
mc_const_CALIB_MOIST_ACOR_T, 18
mc_const_CALIB_MOIST_REF_T, 19
mc_const_CALIB_MOIST_WCOR_T, 19
mc_const_SENSOR_count, 19
mc_const_SENSOR_coverage, 20
mc_const_SENSOR_dendro_1_um, 20
mc_const_SENSOR_Dendro_raw, 21
mc_const_SENSOR_Dendro_T, 21
mc_const_SENSOR_FDD, 22
mc_const_SENSOR_GDD, 22
mc_const_SENSOR_HOBO_EXTT, 22
mc_const_SENSOR_HOBO_RH, 23
mc_const_SENSOR_HOBO_T, 23
mc_const_SENSOR_integer, 23

98

mc_const_SENSOR_logical, 24
mc_const_SENSOR_precipitation, 24
mc_const_SENSOR_real, 24
mc_const_SENSOR_RH, 25
mc_const_SENSOR_snow_bool, 25
mc_const_SENSOR_snow_fresh, 25
mc_const_SENSOR_snow_total, 26
mc_const_SENSOR_sun_shine, 26
mc_const_SENSOR_T_C, 28
mc_const_SENSOR_Thermo_T, 26
mc_const_SENSOR_TMS_moist, 27
mc_const_SENSOR_TMS_T1, 27
mc_const_SENSOR_TMS_T2, 28
mc_const_SENSOR_TMS_T3, 28
mc_const_SENSOR_VPD, 29
mc_const_SENSOR_VWC, 29
mc_const_SENSOR_wind_speed, 29
mc_data_example_agg, 31
mc_data_example_clean, 32
mc_data_example_raw, 32
mc_data_formats, 31, 33,43, 73,75, 94
mc_data_heights, 34, 73
mc_data_physical, 35, 50, 55, 58, 64
mc_data_sensors, 36, 48, 84, 85, 89
mc_data_sensors(), 62
mc_data_vwc_parameters, 15, 16, 37
mc_DataFormat, 33, 35, 36, 43, 74-76, 94
mc_DataFormat (mc_DataFormat-class), 30
mc_DataFormat-class, 30
mc_env_moist, 38
mc_env_temp, 39
mc_env_vpd, 41
mc_filter, 42
mc_HOBODataFormat, 31, 33
mc_HOBODataFormat
(mc_HOBODataFormat-class), 43
mc_HOBODataFormat-class, 43
mc_info, 44
mc_info_clean, 45
mc_info_clean(), 64, 65
mc_info_count, 46
mc_info_logger, 46, 66, 87, 93
mc_info_meta, 47
mc_info_range, 48, 90
mc_info_range(), 89
mc_info_states, 49
mc_info_states(), 87, 88, 93
mc_join, 50, 88, 89

INDEX

mc_load, 51, 83
mc_LocalityMetadata, 68, 69
mc_LocalityMetadata
(mc_LocalityMetadata-class), 52
mc_LocalityMetadata-class, 52
mc_LoggerCleanInfo
(mc_LoggerCleanInfo-class), 53
mc_LoggerCleanInfo-class, 53
mc_LoggerMetadata, 50, 52, 64, 85
mc_LoggerMetadata
(mc_LoggerMetadata-class), 53
mc_LoggerMetadata-class, 53
mc_MainMetadata, 54
mc_MainMetadata
(mc_MainMetadata-class), 54
mc_MainMetadata-class, 54
mc_MainMetadataAgg
(mc_MainMetadataAgg-class), 54
mc_MainMetadataAgg-class, 54
mc_Physical, 35, 58
mc_Physical (mc_Physical-class), 55
mc_Physical-class, 55
mc_plot_image, 55
mc_plot_line, 57
mc_plot_line(), 59
mc_plot_loggers, 59
mc_plot_raster, 60
mc_prep_calib, 61
mc_prep_calib(), 62, 63
mc_prep_calib_load, 62
mc_prep_calib_load(), 17, 61, 62
mc_prep_clean, 63, 73, 74, 76, 77, 79, 80
mc_prep_clean(), 5,45, 53,76, 77, 80
mc_prep_crop, 65
mc_prep_fillNA, 67
mc_prep_merge, 50, 51, 67, 80
mc_prep_meta_locality, 68
mc_prep_meta_locality(), 6, 12, 70, 75
mc_prep_meta_sensor, 34, 69
mc_prep_solar_tz, 70
mc_prep_solar_tz(), 6, 12, 69
mc_prep_TMSoffsoil, 71
mc_read_data, 50, 72
mc_read_data(), 33, 35, 63, 70, 74-76
mc_read_files, 50, 75, 87, 93
mc_read_files(), 33, 35, 63,74, 76
mc_read_long, 77, 80
mc_read_problems, 78

INDEX

mc_read_tubedb, 78
mc_read_wide, 77, 78, 79, 80
mc_reshape_long, 81
mc_reshape_wide, 82
mc_save, 51, 83
mc_save_localities, 84
mc_Sensor, 36, 85
mc_Sensor (mc_Sensor-class), 84
mc_Sensor-class, 84
mc_SensorMetadata, 52, 69
mc_SensorMetadata
(mc_SensorMetadata-class), 85
mc_SensorMetadata-class, 85
mc_states_delete, 85
mc_states_from_sensor, 86
mc_states_insert, 49, 63, 64, 87, 92, 93
mc_states_join, 88
mc_states_outlier, 89
mc_states_outlier(), 48
mc_states_replace, 87, 90
mc_states_to_sensor, 91
mc_states_update, 49, 92, 92, 93
mc_TOMSTDataFormat, 3/, 33, 94
mc_TOMSTDataFormat
(mc_TOMSTDataFormat-class), 94
mc_TOMSTDataFormat-class, 94
mc_TOMSTJoinDataFormat, 317, 33, 94
mc_TOMSTJoinDataFormat
(mc_TOMSTJoinDataFormat-class),
94
mc_TOMSTJoinDataFormat-class, 94
myClim-package, 4-10, 12-15, 30, 38, 4042,
44-50, 52, 54, 56-62, 64, 65, 67, 68,
70, 71,74, 76, 81-96
myClimList, 94

print.myClimList, 95

rTubeDB: :query_region_plots, 79
rTubeDB: :query_regions, 79
rTubeDB: :query_timeseries, 79
rTubeDB: : TubeDB, 79

strptime(), 30
tibble::tibble, 95
vroom: :vroom(), 30

Z00: :na.approx, 67

99

	length.myClimList
	mc_agg
	mc_calc_cumsum
	mc_calc_fdd
	mc_calc_gdd
	mc_calc_snow
	mc_calc_snow_agg
	mc_calc_tomst_dendro
	mc_calc_vpd
	mc_calc_vwc
	mc_calib_moisture
	mc_const_CALIB_MOIST_ACOR_T
	mc_const_CALIB_MOIST_REF_T
	mc_const_CALIB_MOIST_WCOR_T
	mc_const_SENSOR_count
	mc_const_SENSOR_coverage
	mc_const_SENSOR_dendro_l_um
	mc_const_SENSOR_Dendro_raw
	mc_const_SENSOR_Dendro_T
	mc_const_SENSOR_FDD
	mc_const_SENSOR_GDD
	mc_const_SENSOR_HOBO_EXTT
	mc_const_SENSOR_HOBO_RH
	mc_const_SENSOR_HOBO_T
	mc_const_SENSOR_integer
	mc_const_SENSOR_logical
	mc_const_SENSOR_precipitation
	mc_const_SENSOR_real
	mc_const_SENSOR_RH
	mc_const_SENSOR_snow_bool
	mc_const_SENSOR_snow_fresh
	mc_const_SENSOR_snow_total
	mc_const_SENSOR_sun_shine
	mc_const_SENSOR_Thermo_T
	mc_const_SENSOR_TMS_moist
	mc_const_SENSOR_TMS_T1
	mc_const_SENSOR_TMS_T2
	mc_const_SENSOR_TMS_T3
	mc_const_SENSOR_T_C
	mc_const_SENSOR_VPD
	mc_const_SENSOR_VWC
	mc_const_SENSOR_wind_speed
	mc_DataFormat-class
	mc_data_example_agg
	mc_data_example_clean
	mc_data_example_raw
	mc_data_formats
	mc_data_heights
	mc_data_physical
	mc_data_sensors
	mc_data_vwc_parameters
	mc_env_moist
	mc_env_temp
	mc_env_vpd
	mc_filter
	mc_HOBODataFormat-class
	mc_info
	mc_info_clean
	mc_info_count
	mc_info_logger
	mc_info_meta
	mc_info_range
	mc_info_states
	mc_join
	mc_load
	mc_LocalityMetadata-class
	mc_LoggerCleanInfo-class
	mc_LoggerMetadata-class
	mc_MainMetadata-class
	mc_MainMetadataAgg-class
	mc_Physical-class
	mc_plot_image
	mc_plot_line
	mc_plot_loggers
	mc_plot_raster
	mc_prep_calib
	mc_prep_calib_load
	mc_prep_clean
	mc_prep_crop
	mc_prep_fillNA
	mc_prep_merge
	mc_prep_meta_locality
	mc_prep_meta_sensor
	mc_prep_solar_tz
	mc_prep_TMSoffsoil
	mc_read_data
	mc_read_files
	mc_read_long
	mc_read_problems
	mc_read_tubedb
	mc_read_wide
	mc_reshape_long
	mc_reshape_wide
	mc_save
	mc_save_localities
	mc_Sensor-class
	mc_SensorMetadata-class
	mc_states_delete
	mc_states_from_sensor
	mc_states_insert
	mc_states_join
	mc_states_outlier
	mc_states_replace
	mc_states_to_sensor
	mc_states_update
	mc_TOMSTDataFormat-class
	mc_TOMSTJoinDataFormat-class
	myClimList
	print.myClimList
	[.myClimList
	Index

