## ----echo = FALSE, message = FALSE-------------------------------------------- knitr::opts_chunk$set(prompt = TRUE, highlight = F, background = '#FFFFFF', collapse = T, comment = "#>") library(missingHE) set.seed(1234) ## ----menss_data2, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- MenSS2 <- MenSS MenSS2$e <- MenSS$sex_inst #first 10 entries of e head(MenSS2$e, n = 10) ## ----hist_sex, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE, fig.width=15,fig.height=9,out.width='65%',fig.align='center'---- par(mfrow=c(1,2)) hist(MenSS2$e[MenSS2$t==1], main = "N sex instances - Control") hist(MenSS2$e[MenSS2$t==2], main = "N sex instances - Intervention") ## ----mv, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- #proportions of missing values in the control group sum(is.na(MenSS2$e[MenSS$t==1])) / length(MenSS2$e[MenSS$t==1]) #proportions of missing values in the intervention group sum(is.na(MenSS2$e[MenSS$t==2])) / length(MenSS2$e[MenSS$t==2]) ## ----costs_const, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- MenSS2$c <- MenSS2$c + 0.01 ## ----selection1_no, eval=TRUE, echo=FALSE, include=FALSE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- PG.sel=selection(data = MenSS2, model.eff = e ~ sex_inst.0, model.cost = c ~ 1, model.me = me ~ age + ethnicity + employment, model.mc = mc ~ age + ethnicity + employment, type = "MAR", n.iter = 1000, dist_e = "pois", dist_c = "gamma") ## ----selection1, eval=FALSE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- # PG.sel=selection(data = MenSS2, model.eff = e ~ sex_inst.0, model.cost = c ~ 1, # model.me = me ~ age + ethnicity + employment, # model.mc = mc ~ age + ethnicity + employment, type = "MAR", # n.iter = 1000, dist_e = "pois", dist_c = "gamma") ## ----plot_selection1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE, fig.width=15,fig.height=9,out.width='65%',fig.align='center'---- plot(PG.sel, outcome = "effects") ## ----coef_selection1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- coef(PG.sel, prob = c(0.05, 0.95)) ## ----summary_selection1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- summary(PG.sel) ## ----pattern1_no, eval=TRUE, echo=FALSE, include=FALSE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- PG.pat=pattern(data = MenSS2, model.eff = e ~ sex_inst.0 + (1 | site), model.cost = c ~ 1 + (1 | site), type = "MAR", restriction = "AC", n.iter = 1000, Delta_e = 0, Delta_c = 0, dist_e = "pois", dist_c = "gamma") ## ----pattern1, eval=FALSE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- # PG.pat=pattern(data = MenSS2, model.eff = e ~ sex_inst.0 + (1 | site), # model.cost = c ~ 1 + (1 | site), type = "MAR", restriction = "AC", # n.iter = 1000, Delta_e = 0, Delta_c = 0, dist_e = "pois", dist_c = "gamma") ## ----coef_pattern1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- coef(PG.pat, random = TRUE) ## ----prior_hurdle1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- my.prior <- list( "alpha0.prior" = c(0 , 0.0000001), "alpha.prior" = c(0, 0.0000001), "beta0.prior" = c(0, 0.0000001), "gamma0.prior.c"= c(0, 1), "gamma.prior.c" = c(0, 0.01), "mu.b0.prior" = c(0, 0.001), "mu.g0.prior.c"= c(0, 0.001), "s.b0.prior" = c(0, 100), "s.g0.prior.c"= c(0, 100), "sigma.prior.c" = c(0, 10000) ) ## ----hurdle1_no, eval=TRUE, echo=FALSE, include=FALSE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- #remove added constant from costs #MenSS2$c <- MenSS2$c - 0.01 PG.hur=hurdle(data = MenSS2, model.eff = e ~ sex_inst.0, model.cost = c ~ 1 + (1 | site), model.se = se ~ 1, model.sc = sc ~ age + (1 | site), type = "SAR", se = 1, sc = 0, n.iter = 1000, dist_e = "pois", dist_c = "gamma", prior = my.prior) ## ----hurdle1, eval=FALSE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- # #remove added constant from costs # #MenSS2$c <- MenSS2$c - 0.01 # # PG.hur=hurdle(data = MenSS2, model.eff = e ~ sex_inst.0, model.cost = c ~ 1 + (1 | site), # model.se = se ~ 1, model.sc = sc ~ age + (1 | site), type = "SAR", se = NULL, sc = 0, # n.iter = 1000, dist_e = "pois", dist_c = "gamma", prior = my.prior) ## ----coef_hurdle1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- coef(PG.hur, random = FALSE) ## ----summary_hurdle1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- coef(PG.hur, random = TRUE)