## ----echo = FALSE, message = FALSE-------------------------------------------- knitr::opts_chunk$set(prompt = TRUE, highlight = F, background = '#FFFFFF', collapse = T, comment = "#>") library(missingHE) set.seed(1014) ## ----menss-------------------------------------------------------------------- str(MenSS) ## ----hist, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE, fig.width=15,fig.height=9,out.width='65%',fig.align='center'---- par(mfrow=c(2,2)) hist(MenSS$e[MenSS$t==1], main = "QALYs - Control") hist(MenSS$e[MenSS$t==2], main = "QALYs - Intervention") hist(MenSS$c[MenSS$t==1], main = "Costs - Control") hist(MenSS$c[MenSS$t==2], main = "Costs - Intervention") ## ----sv, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- #proportions of ones and zeros in the control group c(sum(MenSS$e[MenSS$t==1]==1, na.rm = TRUE) / length(MenSS$e[MenSS$t==1]), sum(MenSS$c[MenSS$t==1]==0, na.rm = TRUE) / length(MenSS$e[MenSS$t==1])) #proportions of ones and zeros in the intervention group c(sum(MenSS$e[MenSS$t==2]==1, na.rm = TRUE) / length(MenSS$e[MenSS$t==2]), sum(MenSS$c[MenSS$t==2]==0, na.rm = TRUE) / length(MenSS$e[MenSS$t==2])) ## ----mv, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- #proportions of missing values in the control group c(sum(is.na(MenSS$e[MenSS$t==1])) / length(MenSS$e[MenSS$t==1]), sum(is.na(MenSS$c[MenSS$t==1])) / length(MenSS$e[MenSS$t==1])) #proportions of missing values in the intervention group c(sum(is.na(MenSS$e[MenSS$t==2])) / length(MenSS$e[MenSS$t==2]), sum(is.na(MenSS$c[MenSS$t==2])) / length(MenSS$e[MenSS$t==2])) ## ----selection1_no, eval=TRUE, echo=FALSE, include=FALSE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- NN.sel=selection(data = MenSS, model.eff = e ~ u.0, model.cost = c ~ e, model.me = me ~ age + ethnicity + employment, model.mc = mc ~ age + ethnicity + employment, type = "MAR", n.iter = 1000, dist_e = "norm", dist_c = "norm", ppc = TRUE) ## ----selection1, eval=FALSE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- # NN.sel=selection(data = MenSS, model.eff = e ~ u.0, model.cost = c ~ e, # model.me = me ~ age + ethnicity + employment, # model.mc = mc ~ age + ethnicity + employment, type = "MAR", # n.iter = 1000, dist_e = "norm", dist_c = "norm", ppc = TRUE) ## ----print_selection1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- print(NN.sel, value.mis = FALSE, only.means = TRUE) ## ----coef_selection1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- coef(NN.sel, random = FALSE) ## ----summary_selection1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- summary(NN.sel) ## ----BCEA_selection1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE, fig.width=15,fig.height=9,out.width='65%',fig.align='center'---- par(mfrow=c(1,2)) BCEA::ceplane.plot(NN.sel$cea) BCEA::ceac.plot(NN.sel$cea) ## ----pattern1_no, eval=TRUE, echo=FALSE, include=FALSE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- NN.pat=pattern(data = MenSS, model.eff = e ~ u.0, model.cost = c ~ e, type = "MAR", restriction = "CC", n.iter = 1000, Delta_e = 0, Delta_c = 0, dist_e = "norm", dist_c = "norm", ppc = TRUE) ## ----pattern1, eval=FALSE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- # NN.pat=pattern(data = MenSS, model.eff = e ~ u.0, model.cost = c ~ e, # type = "MAR", restriction = "CC", n.iter = 1000, Delta_e = 0, Delta_c = 0, # dist_e = "norm", dist_c = "norm", ppc = TRUE) ## ----coef_pattern1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- coef(NN.pat, random = FALSE) ## ----summary_pattern1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- summary(NN.pat) ## ----hurdle1_no, eval=TRUE, echo=FALSE, include=FALSE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- NN.hur=hurdle(data = MenSS, model.eff = e ~ u.0, model.cost = c ~ e, model.se = se ~ 1, model.sc = sc ~ age, type = "SAR", se = 1, sc = 0, n.iter = 1000, dist_e = "norm", dist_c = "norm", ppc = TRUE) ## ----hurdle1, eval=FALSE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- # NN.hur=hurdle(data = MenSS, model.eff = e ~ u.0, model.cost = c ~ e, # model.se = se ~ 1, model.sc = sc ~ age, type = "SAR", se = 1, sc = 0, # n.iter = 1000, dist_e = "norm", dist_c = "norm", ppc = TRUE) ## ----coef_hurdle1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- coef(NN.hur, random = FALSE) ## ----summary_hurdle1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- summary(NN.hur) ## ----diag_sel1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE, fig.width=15,fig.height=9,out.width='65%',fig.align='center'---- diagnostic(NN.sel, type = "denplot", param = "mu.e", theme = NULL) ## ----diag_pat1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE, fig.width=15,fig.height=9,out.width='65%',fig.align='center'---- diagnostic(NN.pat, type = "traceplot", param = "mu.c", theme = NULL) ## ----diag_hur1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE, fig.width=15,fig.height=9,out.width='65%',fig.align='center'---- diagnostic(NN.hur, type = "acf", param = "p.c", theme = "base") ## ----plot_selection1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE, fig.width=15,fig.height=9,out.width='65%',fig.align='center'---- plot(NN.sel, class = "scatter", outcome = "all") ## ----plot_pattern1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE, fig.width=15,fig.height=9,out.width='65%',fig.align='center'---- plot(NN.pat, class = "histogram", outcome = "all") ## ----plot_hurdle1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE, fig.width=15,fig.height=9,out.width='65%',fig.align='center'---- plot(NN.hur, class = "scatter", outcome = "costs_arm1") ## ----ppc_selection1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE, fig.width=15,fig.height=9,out.width='65%',fig.align='center'---- ppc(NN.sel, type = "histogram", outcome = "effects_arm1", ndisplay = 8) ## ----ppc_pattern1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE, fig.width=15,fig.height=9,out.width='65%',fig.align='center'---- ppc(NN.pat, type = "dens", outcome = "effects_arm1", ndisplay = 8) ## ----ppc_hurdle1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE, fig.width=15,fig.height=9,out.width='65%',fig.align='center'---- ppc(NN.hur, type = "dens_overlay", outcome = "all", ndisplay = 25) ## ----pic_model1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE, fig.width=15,fig.height=9,out.width='65%',fig.align='center'---- pic_sel <- pic(NN.sel, criterion = "waic", module = "both") pic_pat <- pic(NN.pat, criterion = "waic", module = "both") pic_hur <- pic(NN.hur, criterion = "waic", module = "both") #print results c(pic_sel$waic, pic_pat$waic, pic_hur$waic)