## ----echo = FALSE, message = FALSE-------------------------------------------- knitr::opts_chunk$set(prompt = TRUE, highlight = F, background = '#FFFFFF', collapse = T, comment = "#>") library(missingHE) set.seed(1014) ## ----selection1_no, eval=TRUE, echo=FALSE, include=FALSE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- NN.sel1=selection(data = MenSS, model.eff = e ~ u.0, model.cost = c ~ 1, model.me = me ~ e, model.mc = mc ~ 1, type = "MNAR", n.iter = 1000, dist_e = "norm", dist_c = "norm") ## ----selection1, eval=FALSE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- # NN.sel1=selection(data = MenSS, model.eff = e ~ u.0, model.cost = c ~ 1, # model.me = me ~ e, model.mc = mc ~ 1, type = "MNAR", # n.iter = 1000, dist_e = "norm", dist_c = "norm") ## ----print_selection1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- print(NN.sel1) ## ----prior_selection2, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- my.prior <- list( "delta.prior.e" = c(10, 1) ) ## ----selection2_no, eval=TRUE, echo=FALSE, include=FALSE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- NN.sel2=selection(data = MenSS, model.eff = e ~ u.0, model.cost = c ~ 1, model.me = me ~ e, model.mc = mc ~ 1, type = "MNAR", n.iter = 1000, dist_e = "norm", dist_c = "norm", prior = my.prior) ## ----selection2, eval=FALSE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- # NN.sel2=selection(data = MenSS, model.eff = e ~ u.0, model.cost = c ~ 1, # model.me = me ~ e, model.mc = mc ~ 1, type = "MNAR", # n.iter = 1000, dist_e = "norm", dist_c = "norm", prior = my.prior) ## ----print_selection2, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- print(NN.sel2) ## ----BCEA_selection, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE, fig.width=15,fig.height=9,out.width='65%',fig.align='center'---- par(mfrow=c(1,2)) BCEA::ceac.plot(NN.sel1$cea) BCEA::ceac.plot(NN.sel2$cea) ## ----sp_pattern1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- Delta_e <- matrix(NA, 2, 2) Delta_e[1, ] <- c(- 0.3, - 0.2) Delta_e[2, ] <- c(-0.1, 0) ## ----pattern2_no, eval=TRUE, echo=FALSE, include=FALSE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- NN.pat2=pattern(data = MenSS, model.eff = e ~ u.0, model.cost = c ~ 1, type = "MNAR", restriction = "CC", n.iter = 1000, Delta_e = Delta_e, Delta_c = 0, dist_e = "norm", dist_c = "norm") ## ----pattern2, eval=FALSE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- # NN.pat2=pattern(data = MenSS, model.eff = e ~ u.0, model.cost = c ~ 1, # type = "MNAR", restriction = "CC", n.iter = 1000, Delta_e = Delta_e, Delta_c = 0, # dist_e = "norm", dist_c = "norm") ## ----print_pattern2, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- print(NN.pat2) ## ----pattern1_no, eval=TRUE, echo=FALSE, include=FALSE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- NN.pat1=pattern(data = MenSS, model.eff = e ~ u.0, model.cost = c ~ 1, type = "MAR", restriction = "CC", n.iter = 1000, Delta_e = 0, Delta_c = 0, dist_e = "norm", dist_c = "norm") ## ----pattern1, eval=FALSE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- # NN.pat1=pattern(data = MenSS, model.eff = e ~ u.0, model.cost = c ~ 1, # type = "MAR", restriction = "CC", n.iter = 1000, Delta_e = 0, Delta_c = 0, # dist_e = "norm", dist_c = "norm") ## ----BCEA_pattern, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE, fig.width=15,fig.height=9,out.width='65%',fig.align='center'---- par(mfrow=c(1,2)) BCEA::ceac.plot(NN.pat1$cea) BCEA::ceac.plot(NN.pat2$cea) ## ----hurdle1_no, eval=TRUE, echo=FALSE, include=FALSE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- NN.hur1=hurdle(data = MenSS, model.eff = e ~ u.0, model.cost = c ~ 1, model.se = se ~ 1, model.sc = sc ~ 1, type = "SCAR", se = 1, sc = 0, n.iter = 1000, dist_e = "norm", dist_c = "norm") ## ----hurdle1, eval=FALSE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- # NN.hur1=hurdle(data = MenSS, model.eff = e ~ u.0, model.cost = c ~ 1, # model.se = se ~ 1, model.sc = sc ~ 1, type = "SCAR", se = 1, sc = 0, # n.iter = 1000, dist_e = "norm", dist_c = "norm") ## ----d_hur2, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- d_e <- ifelse(MenSS$e == 1, 1, 0) #number of ones sum(d_e == 1, na.rm = T) ## ----d_age_hur2, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- myd_e <- ifelse(is.na(d_e) & MenSS$age < 22, 1, d_e) #number of ones sum(myd_e == 1, na.rm = T) ## ----hurdle2_no, eval=TRUE, echo=FALSE, include=FALSE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- NN.hur2=hurdle(data = MenSS, model.eff = e ~ u.0, model.cost = c ~ 1, model.se = se ~ 1, model.sc = sc ~ 1, type = "SCAR", se = 1, sc = 0, n.iter = 1000, dist_e = "norm", dist_c = "norm", d_e = myd_e) ## ----hurdle2, eval=FALSE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- # NN.hur2=hurdle(data = MenSS, model.eff = e ~ u.0, model.cost = c ~ 1, # model.se = se ~ 1, model.sc = sc ~ 1, type = "SCAR", se = 1, sc = 0, # n.iter = 1000, dist_e = "norm", dist_c = "norm", d_e = myd_e) ## ----print_hurdle2, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE---- print(NN.hur2) ## ----plot_hurdle2, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE, fig.width=15,fig.height=9,out.width='65%',fig.align='center'---- plot(NN.hur2, outcome = "effects") ## ----BCEA_hurdle, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE, fig.width=15,fig.height=9,out.width='65%',fig.align='center'---- par(mfrow=c(1,2)) BCEA::ceac.plot(NN.hur1$cea) BCEA::ceac.plot(NN.hur2$cea)