
Package ‘miniCRAN’
April 23, 2025

Version 0.3.1

License GPL-2

Copyright Andrie de Vries, Microsoft Corporation

Title Create a Mini Version of CRAN Containing Only Selected Packages

Description Makes it possible to create an internally consistent
repository consisting of selected packages from CRAN-like repositories.
The user specifies a set of desired packages, and 'miniCRAN' recursively
reads the dependency tree for these packages, then downloads only this
subset. The user can then install packages from this repository directly,
rather than from CRAN. This is useful in production settings, e.g. server
behind a firewall, or remote locations with slow (or zero) Internet access.

URL https://github.com/andrie/miniCRAN

BugReports https://github.com/andrie/miniCRAN/issues

Imports graphics, httr, methods, stats, tools, utils, igraph,
assertthat (>= 0.2.0)

Suggests devtools, knitr, rmarkdown, testthat (>= 2.1.0), covr, withr,
mockery, testthis, roxygen2, mockr, spelling

LazyData true

LazyLoad true

VignetteBuilder knitr

RoxygenNote 7.3.1

Encoding UTF-8

Language en-US

Config/testthat/edition 3

NeedsCompilation no

Author Andrie de Vries [aut, cre, cph],
Alex Chubaty [ctb],
Microsoft Corporation [cph]

Maintainer Andrie de Vries <apdevries@gmail.com>

Repository CRAN

Date/Publication 2025-04-23 11:20:02 UTC

1

https://github.com/andrie/miniCRAN
https://github.com/andrie/miniCRAN/issues

2 miniCRAN-package

Contents
miniCRAN-package . 2
.listFiles . 4
addLocalPackage . 4
addOldPackage . 6
addPackage . 8
addPackageListingGithub . 11
basePkgs . 12
checkVersions . 12
cranJuly2014 . 14
getCranDescription . 15
is.online . 16
makeDepGraph . 16
makeLibrary . 18
makeRepo . 18
pkgAvail . 20
pkgDep . 21
plot.pkgDepGraph . 23
repoPrefix . 24
twodigitRversion . 26
updatePackages . 26

Index 30

miniCRAN-package description

Description

At the end of 2014, CRAN consisted of more than 6,000 packages. Many organisations need to
maintain a private mirror of CRAN, but with only a subset of packages that are relevant to them.

Details

miniCRAN makes it possible to create an internally consistent repository consisting of selected pack-
ages from CRAN-like repositories. The user specifies a set of desired packages, and miniCRAN
recursively reads the dependency tree for these packages, then downloads only this subset.

There are many reasons for not creating a complete mirror CRAN using rsync:

• You may wish to mirror only a subset of CRAN, for security, legal compliance or any other
in-house reason

• You may wish to restrict internal package use to a subset of public packages, to minimize
package duplication, or other reasons of coding standards

• You may wish to make packages available from public repositories other than CRAN, e.g.
BioConductor, r-forge, OmegaHat, etc.

• You may wish to add custom in-house packages to your repository

The ambition of miniCRAN is to eventually satisfy all of these considerations.

miniCRAN-package 3

Making a private repo

• pkgAvail(): Read from a local (or remote) CRAN-like repository and determine available
packages.

• pkgDep(): Find (recursive) package dependencies.
• makeRepo() : Make a mini CRAN repository, by downloading packages (and their depen-

dencies) and creating the appropriate file structure for a repository. This allows you to use
functions like utils::available.packages() and utils::install.packages() on your
local repository.

This subset will be internally consistent, i.e. the following functions will work as expected:

• utils::available.packages()

• utils::install.packages()

The main function is makeRepo() - this will download all the required packages, with their depen-
dencies, into the appropriate repository file structure, and then create the repository index (PACK-
AGES) file.

Updating packages in a repo

• oldPackages(): Indicates packages which have a (suitable) later version on the repositories
* updatePackages(): Offers to download and install such packages

Creating dependencies

To get a recursive list of dependencies as well as a plot, use pkgDep() followed by makeDepGraph().

• pkgDep(): Find (recursive) package dependencies.
• makeDepGraph(): Create graph of selected package dependencies.
• plot.pkgDepGraph(): Create a visualization of the dependency graph

Package options

minicran.mran preferred p3m URL. Defaults to https://packagemanager.posit.co/cran for
R versions 3.2.2 and greater. Versions earlier than 3.2.2 use HTTP instead of HTTPS.

Author(s)

Maintainer: Andrie de Vries <apdevries@gmail.com> [copyright holder]

Other contributors:

• Alex Chubaty <alex.chubaty@gmail.com> [contributor]
• Microsoft Corporation [copyright holder]

See Also

Useful links:

• https://github.com/andrie/miniCRAN

• Report bugs at https://github.com/andrie/miniCRAN/issues

https://packagemanager.posit.co/cran
https://github.com/andrie/miniCRAN
https://github.com/andrie/miniCRAN/issues

4 addLocalPackage

.listFiles List pre-built packages in a directory based on file extension

Description

List pre-built packages in a directory based on file extension

Usage

.listFiles(pkgs, path, type)

Arguments

pkgs Character vector of package names

path Character string specifying the directory containing packages to be added.

type Character indicating the package type (e.g., "source", "win.binary", etc.).

Value

Installs the packages and returns the new package index.

Examples

Not run:
.listFiles('path/to/my/packages', type = "source")

End(Not run)

addLocalPackage Add local packages to a miniCRAN repository.

Description

Examine the contents of a directory specified by pkgPath for pre-built packages matching the names
specified by pkgs, and add these to the miniCRAN repository.

Usage

addLocalPackage(
pkgs = NULL,
pkgPath = NULL,
path = NULL,
type = "source",
Rversion = R.version,
writePACKAGES = TRUE,

addLocalPackage 5

deps = FALSE,
quiet = FALSE,
build = FALSE

)

Arguments

pkgs Character vector of packages to download

pkgPath Character vector of directory location containing packages to be added. Note
that pkgPath should be the parent directory of the package (i.e., the package
directory path is constructed from file.path(pkgPath, pkgs)).

path Destination download path. This path is the root folder of your new repository.

type Possible values are (currently) "source", "mac.binary" and "win.binary": the
binary types can be listed and downloaded but not installed on other platforms.
Passed to download.packages().

Rversion Version of R (only used if type is not source.) Defaults to R.version, but this
can be specified as any of the following formats:

• a character string with the two digit R version, e.g. "3.1"
• a list with components major and minor

• the result of getRversion()
• the result of R.version

writePACKAGES If TRUE, calls write_PACKAGES() to update the repository PACKAGES file.

deps Not used. See note.

quiet If TRUE, suppress status messages (if any), and the progress bar during down-
load.

build Logical indicating whether packages should be build prior to adding.

Details

To build a package from source and then add it, use build = TRUE. Note that package development
libraries and the devtools package must be installed on your system in order to build packages.

Value

Installs the packages and returns the new package index.

Note

Currently, adding local packages does not check nor download their dependencies.

Author(s)

Alex Chubaty

6 addOldPackage

Examples

Not run:
addLocalPackage("myPackage", "path/to/my/prebuilt/package",

"path/to/my/miniCRAN/repo")

addLocalPackage("myPackage", "path/to/my/package/sourcecode",
"path/to/my/miniCRAN/repo", build = TRUE)

End(Not run)

addOldPackage Add old package versions to a miniCRAN repository.

Description

Will download and add older source package versions. Older binary versions are not normally
available on CRAN and should be built from source on the platform for which they are required.
As such, specifying type!="source" will likely fail as the download will not be successful.

Usage

addOldPackage(
pkgs = NULL,
path = NULL,
vers = NULL,
repos = getOption("repos"),
type = "source",
Rversion = R.version,
writePACKAGES = TRUE,
deps = FALSE,
quiet = TRUE

)

Arguments

pkgs Character vector of packages to download

path Destination download path. This path is the root folder of your new repository.

vers The package version to install.

repos URL(s) of the ’contrib’ sections of the repositories, e.g. "https://cran.us.r-project.org".
Passed to available.packages()

type Possible values are (currently) "source", "mac.binary" and "win.binary": the
binary types can be listed and downloaded but not installed on other platforms.
Passed to download.packages().

Rversion Version of R (only used if type is not source.) Defaults to R.version, but this
can be specified as any of the following formats:

addOldPackage 7

• a character string with the two digit R version, e.g. "3.1"
• a list with components major and minor

• the result of getRversion()
• the result of R.version

writePACKAGES If TRUE, calls write_PACKAGES() to update the repository PACKAGES file.

deps logical indicating whether the package dependencies should be added (default
TRUE).

quiet If TRUE, suppress status messages (if any), and the progress bar during down-
load.

Value

Adds the packages, rebuilds the package index, and invisibly returns the number of packages written
to the index files.

Note

Dependencies for old package versions cannot be determined automatically and must be specified
by the user in pkgs and vers. Thus, deps=FALSE is the default for this function.

See Also

Other update repo functions: addPackage(), checkVersions(), makeRepo(), updatePackages()

Examples

`checkVersions` and `add.packages.miniCRAN` require an existing miniCRAN repo

Specify list of packages to download
mirror <- c(CRAN = "https://cloud.r-project.org")
mirror
pkgs <- c("foreach")
pkgTypes <- c("source", "win.binary")

if (interactive()) {
if (!is.online()) {
message("p3m seems to be not available. Check your internet connection.")

} else {
pdb <- pkgAvail(repos = mirror, type = "source")

}
} else {

pdb <- cranJuly2014
}

if (interactive()) {
if (!is.online()) {

message("p3m seems to be not available. Check your internet connection.")
} else {
pkgList <- pkgDep(pkgs, availPkgs = pdb, repos = mirror, type = "source", suggests = FALSE)

8 addPackage

pkgList
}

}

Create temporary folder for miniCRAN

if (interactive()) {
if (!is.online()) {

message("p3m seems to be not available. Check your internet connection.")
} else {

dir.create(pth <- file.path(tempdir(), "miniCRAN"))

Make repo for source and win.binary
makeRepo(pkgList, path = pth, repos = mirror, type = pkgTypes)

Add other versions of a package (and assume these were added previously)
oldVers <- data.frame(

package = c("foreach", "codetools", "iterators"),
version = c("1.4.0", "0.2-7", "1.0.5"),
stringsAsFactors = FALSE

)
pkgs <- oldVers$package

addOldPackage(pkgs, path = pth, vers = oldVers$version, repos = mirror, type = "source")
NOTE: older binary versions would need to be build from source

List package versions in the miniCRAN repo (produces warning about duplicates)
pkgVersionsSrc <- checkVersions(pkgs, path = pth, type = "source")
pkgVersionsBin <- checkVersions(pkgs, path = pth, type = "win.binary")

After inspecting package versions, remove old versions
basename(pkgVersionsSrc$source) # "foreach_1.4.0.tar.gz" "foreach_1.4.2.tar.gz"
basename(pkgVersionsBin$win.binary) # "foreach_1.4.0.zip" "foreach_1.4.2.zip"
file.remove(c(pkgVersionsSrc$source[1], pkgVersionsBin$win.binary[1]))

Rebuild package index after adding/removing files
updateRepoIndex(pth, type = pkgTypes, Rversion = R.version)

pkgAvail(pth, type = "source")

Add new packages (from CRAN) to the miniCRAN repo
addPackage("Matrix", path = pth, repos = mirror, type = pkgTypes)

Delete temporary folder
unlink(pth, recursive = TRUE)

}
}

addPackage Add packages to a miniCRAN repository.

addPackage 9

Description

Add packages to a miniCRAN repository.

Usage

addPackage(
pkgs = NULL,
path = NULL,
repos = getOption("repos"),
type = "source",
Rversion = R.version,
writePACKAGES = TRUE,
deps = TRUE,
quiet = FALSE

)

Arguments

pkgs Character vector of packages to download

path Destination download path. This path is the root folder of your new repository.

repos URL(s) of the ’contrib’ sections of the repositories, e.g. "https://cran.us.r-project.org".
Passed to available.packages()

type Possible values are (currently) "source", "mac.binary" and "win.binary": the
binary types can be listed and downloaded but not installed on other platforms.
Passed to download.packages().

Rversion Version of R (only used if type is not source.) Defaults to R.version, but this
can be specified as any of the following formats:

• a character string with the two digit R version, e.g. "3.1"
• a list with components major and minor

• the result of getRversion()
• the result of R.version

writePACKAGES If TRUE, calls write_PACKAGES() to update the repository PACKAGES file.

deps logical indicating whether the package dependencies should be added (default
TRUE).

quiet If TRUE, suppress status messages (if any), and the progress bar during down-
load.

Value

Installs the packages, rebuilds the package index, and invisibly returns the number of packages
written to the index files.

See Also

Other update repo functions: addOldPackage(), checkVersions(), makeRepo(), updatePackages()

10 addPackage

Examples

`checkVersions` and `add.packages.miniCRAN` require an existing miniCRAN repo

Specify list of packages to download
mirror <- c(CRAN = "https://cloud.r-project.org")
mirror
pkgs <- c("foreach")
pkgTypes <- c("source", "win.binary")

if (interactive()) {
if (!is.online()) {
message("p3m seems to be not available. Check your internet connection.")

} else {
pdb <- pkgAvail(repos = mirror, type = "source")

}
} else {

pdb <- cranJuly2014
}

if (interactive()) {
if (!is.online()) {

message("p3m seems to be not available. Check your internet connection.")
} else {
pkgList <- pkgDep(pkgs, availPkgs = pdb, repos = mirror, type = "source", suggests = FALSE)
pkgList

}
}

Create temporary folder for miniCRAN

if (interactive()) {
if (!is.online()) {

message("p3m seems to be not available. Check your internet connection.")
} else {

dir.create(pth <- file.path(tempdir(), "miniCRAN"))

Make repo for source and win.binary
makeRepo(pkgList, path = pth, repos = mirror, type = pkgTypes)

Add other versions of a package (and assume these were added previously)
oldVers <- data.frame(

package = c("foreach", "codetools", "iterators"),
version = c("1.4.0", "0.2-7", "1.0.5"),
stringsAsFactors = FALSE

)
pkgs <- oldVers$package

addOldPackage(pkgs, path = pth, vers = oldVers$version, repos = mirror, type = "source")
NOTE: older binary versions would need to be build from source

List package versions in the miniCRAN repo (produces warning about duplicates)
pkgVersionsSrc <- checkVersions(pkgs, path = pth, type = "source")

addPackageListingGithub 11

pkgVersionsBin <- checkVersions(pkgs, path = pth, type = "win.binary")

After inspecting package versions, remove old versions
basename(pkgVersionsSrc$source) # "foreach_1.4.0.tar.gz" "foreach_1.4.2.tar.gz"
basename(pkgVersionsBin$win.binary) # "foreach_1.4.0.zip" "foreach_1.4.2.zip"
file.remove(c(pkgVersionsSrc$source[1], pkgVersionsBin$win.binary[1]))

Rebuild package index after adding/removing files
updateRepoIndex(pth, type = pkgTypes, Rversion = R.version)

pkgAvail(pth, type = "source")

Add new packages (from CRAN) to the miniCRAN repo
addPackage("Matrix", path = pth, repos = mirror, type = pkgTypes)

Delete temporary folder
unlink(pth, recursive = TRUE)

}
}

addPackageListingGithub

Add DESCRIPTION information from package on github.

Description

Downloads the DESCRIPTION file from a package on github, parses the fields and adds (or re-
places) a row in the available package database.

Usage

addPackageListingGithub(
pdb = pkgAvail(),
repo,
username = NULL,
branch = "main"

)

Arguments

pdb Package database, usually the result of pkgAvail() or available.packages()

repo Character vector. Name of repository on github, e.g. "andrie/rrd"

username Optional character vector. Name of repository on github, e.g. "andrie/rrd"

branch name of branch, defaults to "main"

12 checkVersions

Examples

Create package database
pdb <- cranJuly2014

if (interactive()) {
pdb <- pkgAvail(repos = c(CRAN = "https://cloud.r-project.org"))

Overwrite pdb with development version of miniCRAN at github
newpdb <- addPackageListingGithub(pdb = pdb, "andrie/miniCRAN")
newpdb["miniCRAN",]

Add package from github that's not currently on CRAN
newpdb <- addPackageListingGithub(pdb = pdb, repo = "tidyverse/ggplot2", branch = "main")
newpdb["ggplot2",]

set.seed(1)
plot(makeDepGraph("ggplot2", availPkgs = newpdb, suggests = TRUE))

}

basePkgs Returns names of base packages.

Description

Retrieves names of installed packages by calling utils::installed.packages() and returning
only those packages where Priority == "base".

Usage

basePkgs()

See Also

pkgDep()

Other dependency functions: makeDepGraph(), pkgDep(), plot.pkgDepGraph()

checkVersions Check for previous versions of packages in a miniCRAN repository.

Description

Checks for previous versions, and returns the file paths for packages with multiple versions. You
can subsequently decide which version to keep.

Usage

checkVersions(pkgs = NULL, path = NULL, type = "source", Rversion = R.version)

checkVersions 13

Arguments

pkgs Character vector of packages to be installed. If not provided, checks all files for
multiple package versions.

path The local path to the directory where the miniCRAN repo resides.

type character, indicating the type of package to download and install. See install.packages().

Rversion Version of R (only used if type is not source.) Defaults to R.version, but this
can be specified as any of the following formats:

• a character string with the two digit R version, e.g. "3.1"
• a list with components major and minor

• the result of getRversion()
• the result of R.version

Value

Returns invisibly the file paths to packages with multiple versions for removal.

list with an element for each type, consisting of a character vector of download paths

See Also

Other update repo functions: addOldPackage(), addPackage(), makeRepo(), updatePackages()

Examples

`checkVersions` and `add.packages.miniCRAN` require an existing miniCRAN repo

Specify list of packages to download
mirror <- c(CRAN = "https://cloud.r-project.org")
mirror
pkgs <- c("foreach")
pkgTypes <- c("source", "win.binary")

if (interactive()) {
if (!is.online()) {
message("p3m seems to be not available. Check your internet connection.")

} else {
pdb <- pkgAvail(repos = mirror, type = "source")

}
} else {

pdb <- cranJuly2014
}

if (interactive()) {
if (!is.online()) {

message("p3m seems to be not available. Check your internet connection.")
} else {
pkgList <- pkgDep(pkgs, availPkgs = pdb, repos = mirror, type = "source", suggests = FALSE)
pkgList

}

14 cranJuly2014

}

Create temporary folder for miniCRAN

if (interactive()) {
if (!is.online()) {
message("p3m seems to be not available. Check your internet connection.")

} else {
dir.create(pth <- file.path(tempdir(), "miniCRAN"))

Make repo for source and win.binary
makeRepo(pkgList, path = pth, repos = mirror, type = pkgTypes)

Add other versions of a package (and assume these were added previously)
oldVers <- data.frame(

package = c("foreach", "codetools", "iterators"),
version = c("1.4.0", "0.2-7", "1.0.5"),
stringsAsFactors = FALSE

)
pkgs <- oldVers$package

addOldPackage(pkgs, path = pth, vers = oldVers$version, repos = mirror, type = "source")
NOTE: older binary versions would need to be build from source

List package versions in the miniCRAN repo (produces warning about duplicates)
pkgVersionsSrc <- checkVersions(pkgs, path = pth, type = "source")
pkgVersionsBin <- checkVersions(pkgs, path = pth, type = "win.binary")

After inspecting package versions, remove old versions
basename(pkgVersionsSrc$source) # "foreach_1.4.0.tar.gz" "foreach_1.4.2.tar.gz"
basename(pkgVersionsBin$win.binary) # "foreach_1.4.0.zip" "foreach_1.4.2.zip"
file.remove(c(pkgVersionsSrc$source[1], pkgVersionsBin$win.binary[1]))

Rebuild package index after adding/removing files
updateRepoIndex(pth, type = pkgTypes, Rversion = R.version)

pkgAvail(pth, type = "source")

Add new packages (from CRAN) to the miniCRAN repo
addPackage("Matrix", path = pth, repos = mirror, type = pkgTypes)

Delete temporary folder
unlink(pth, recursive = TRUE)

}
}

cranJuly2014 Stored version of available.packages()

Description

Copy of the result of utils::available.packages() on July 1, 2014.

getCranDescription 15

Usage

cranJuly2014

Format

matrix

getCranDescription Obtains DESCRIPTION metadata from CRAN for each package.

Description

This is a wrapper around tools::CRAN_package_db and may be deprecated in future versions of
the package.

Usage

getCranDescription(
pkg,
repos = getOption("repos"),
type = "source",
pkgs = pkgDep(pkg, repos = repos, type = type)

)

Arguments

pkg Character vector of packages.

repos URL(s) of the ’contrib’ sections of the repositories, e.g. "https://cran.us.r-project.org".
Passed to available.packages()

type Possible values are (currently) "source", "mac.binary" and "win.binary": the
binary types can be listed and downloaded but not installed on other platforms.
Passed to download.packages().

pkgs Character vector of packages to download

Examples

if (interactive()) {
getCranDescription(c("igraph", "ggplot2", "XML"),

repos = c(CRAN = getOption("minicran.mran"))
)

}

16 makeDepGraph

is.online Returns TRUE if the p3m URL can be accessed.

Description

Returns TRUE if the p3m URL can be accessed.

Usage

is.online(url = NULL, tryHttp = TRUE)

Arguments

url p3m url

tryHttp If TRUE, also attempts http URL, for compatibility with older versions of R

makeDepGraph Create dependency graph from available packages.

Description

Each package is a node, and a dependency is an edge

Usage

makeDepGraph(
pkg,
availPkgs,
repos = getOption("repos"),
type = "source",
suggests = TRUE,
enhances = FALSE,
includeBasePkgs = FALSE,
...

)

Arguments

pkg Character vector of packages.

availPkgs Data frame with an element called package. The package element is a vector of
available packages. Defaults to reading this list from CRAN, using available.packages()

repos URL(s) of the ’contrib’ sections of the repositories, e.g. "https://cran.us.r-project.org".
Passed to available.packages()

makeDepGraph 17

type Possible values are (currently) "source", "mac.binary" and "win.binary": the
binary types can be listed and downloaded but not installed on other platforms.
Passed to download.packages().

suggests If TRUE, retrieves Suggests dependencies (non-recursively)

enhances If TRUE, retrieves Enhances dependencies (non-recursively)
includeBasePkgs

If TRUE, include base R packages in results

... Other arguments passed to available.packages()

See Also

pkgDep() to extract package dependencies

Other dependency functions: basePkgs(), pkgDep(), plot.pkgDepGraph()

Examples

if (interactive()) {
availPkgs <- cranJuly2014

availPkgs <- pkgAvail(
repos = c(CRAN = "https://cloud.r-project.org"),
type = "source"

)

Create dependency graph using stored database of available packages
p <- makeDepGraph(

c("ggplot2", "forecast"),
availPkgs = availPkgs

)

if(require(igraph)) plot(p)

Create dependency graph using newly retrieved database from CRAN

p <- makeDepGraph(
c("ggplot2", "forecast"),
repos = c(CRAN = getOption("minicran.mran")),
type = "source"

)
if(requireNamespace("igraph", quietly = TRUE)) {

plot(p)
} else {

message("install package `igraph` to view dependency graph")
}

}

18 makeRepo

makeLibrary Deprecated function to download packages to local folder.

Description

Deprecated function to download packages to local folder.

Usage

makeLibrary(pkgs, path, type = "source")

Arguments

pkgs Character vector of packages to download

path Destination download path. This path is the root folder of your new repository.

type Possible values are (currently) "source", "mac.binary" and "win.binary": the
binary types can be listed and downloaded but not installed on other platforms.
Passed to download.packages().

makeRepo Downloads packages from CRAN to specified path and creates a local
repository.

Description

Given a list of packages, downloads these packages to a specified destination folder using the re-
quired CRAN folder structure, and finally creates the PACKAGES index file. Since the folder
structure mimics the required structure and files of a CRAN repository, it supports functions like
utils::install.packages().

Usage

makeRepo(
pkgs,
path,
repos = getOption("repos"),
type = "source",
Rversion = R.version,
download = TRUE,
writePACKAGES = TRUE,
filters = NULL,
quiet = FALSE

)

updateRepoIndex(path, type = "source", Rversion = R.version)

makeRepo 19

Arguments

pkgs Character vector of packages to download

path Destination download path. This path is the root folder of your new repository.

repos URL(s) of the ’contrib’ sections of the repositories, e.g. "https://cran.us.r-project.org".
Passed to available.packages()

type Possible values are (currently) "source", "mac.binary" and "win.binary": the
binary types can be listed and downloaded but not installed on other platforms.
Passed to download.packages().

Rversion Version of R (only used if type is not source.) Defaults to R.version, but this
can be specified as any of the following formats:

• a character string with the two digit R version, e.g. "3.1"
• a list with components major and minor

• the result of getRversion()
• the result of R.version

download If TRUE downloads packages.

writePACKAGES If TRUE, calls write_PACKAGES() to update the repository PACKAGES file.

filters passed to utils::available.packages

quiet If TRUE, suppress status messages (if any), and the progress bar during down-
load.

Value

character vector of downloaded package files

Repo folder structure

A repository has two main folders, one for source packages, and the other for binary packages.
Inside the binary package folder, bin, you will find subfolders for Windows as well as the various
OSX binaries.

+- Root

...+- src/contrib

......+- PACKAGES

..+- bin

.......+- windows/contrib/version

..........+- PACKAGES

.......+- macosx/contrib/version

..........+- PACKAGES

.......+- macosx/mavericks/contrib/version

..........+- PACKAGES

.......+- macosx/leopard/contrib/version

..........+- PACKAGES

20 pkgAvail

Note

Internally makes use of utils::download.packages() and write_PACKAGES()

See Also

Other update repo functions: addOldPackage(), addPackage(), checkVersions(), updatePackages()

Examples

Specify list of packages to download
mirror <- c(CRAN = "https://cloud.r-project.org")
pkgs <- c("foreach")

if (interactive()) {
pdb <- cranJuly2014

pdb <- pkgAvail(
repos = c(CRAN = getOption("minicran.mran")),
type = "source"

)

pkgList <- pkgDep(pkgs, availPkgs = pdb, repos = mirror,
type = "source", suggests = FALSE)

pkgList

Create temporary folder for miniCRAN
dir.create(pth <- file.path(tempdir(), "miniCRAN"))

Make repo for source and win.binary
makeRepo(pkgList, path = pth, repos = mirror, type = "source")

List all files in miniCRAN
list.files(pth, recursive = TRUE)

Check for available packages
pkgAvail(repos = pth, type = "source")

Repeat process for windows binaries
makeRepo(pkgList, path = pth, repos = mirror, type = "win.binary")
pkgAvail(repos = pth, type = "win.binary")

Delete temporary folder
unlink(pth, recursive = TRUE)

}

pkgAvail Reads available packages from CRAN repository.

pkgDep 21

Description

This is a thin wrapper around utils::available.packages(). If the argument path is supplied,
then the function attempts to read from a local repository, otherwise attempts to read from a CRAN
mirror at the repos url.

Usage

pkgAvail(
repos = getOption("repos"),
type = "source",
Rversion = R.version,
quiet = FALSE,
filters = NULL

)

Arguments

repos URL(s) of the ’contrib’ sections of the repositories, e.g. "https://cran.us.r-project.org".
Passed to available.packages()

type Possible values are (currently) "source", "mac.binary" and "win.binary": the
binary types can be listed and downloaded but not installed on other platforms.
Passed to download.packages().

Rversion Version of R (only used if type is not source.) Defaults to R.version, but this
can be specified as any of the following formats:

• a character string with the two digit R version, e.g. "3.1"
• a list with components major and minor

• the result of getRversion()
• the result of R.version

quiet If TRUE, suppresses warnings

filters passed to utils::available.packages

See Also

pkgDep()

pkgDep Retrieves package dependencies.

Description

Performs recursive retrieve for Depends, Imports and LinkLibrary. Performs non-recursive re-
trieve for Suggests.

22 pkgDep

Usage

pkgDep(
pkg,
availPkgs,
repos = getOption("repos"),
type = "source",
depends = TRUE,
suggests = TRUE,
enhances = FALSE,
includeBasePkgs = FALSE,
Rversion = R.version,
quiet = FALSE,
...

)

Arguments

pkg Character vector of packages.
availPkgs Data frame with an element called package. The package element is a vector of

available packages. Defaults to reading this list from CRAN, using available.packages()

repos URL(s) of the ’contrib’ sections of the repositories, e.g. "https://cran.us.r-project.org".
Passed to available.packages()

type Possible values are (currently) "source", "mac.binary" and "win.binary": the
binary types can be listed and downloaded but not installed on other platforms.
Passed to download.packages().

depends If TRUE, retrieves Depends, Imports and LinkingTo dependencies (non-recursively)
suggests If TRUE, retrieves Suggests dependencies (non-recursively)
enhances If TRUE, retrieves Enhances dependencies (non-recursively)
includeBasePkgs

If TRUE, include base R packages in results
Rversion Version of R (only used if type is not source.) Defaults to R.version, but this

can be specified as any of the following formats:
• a character string with the two digit R version, e.g. "3.1"
• a list with components major and minor

• the result of getRversion()
• the result of R.version

quiet If TRUE, suppresses warnings
... Other arguments passed to available.packages()

Value

character vector of package names

See Also

Other dependency functions: basePkgs(), makeDepGraph(), plot.pkgDepGraph()

plot.pkgDepGraph 23

Examples

if (interactive()) {
pkgDep(pkg = c("ggplot2", "plyr", "reshape2"),

repos = c(CRAN = "https://cloud.r-project.org")
)

pdb <- cranJuly2014
pdb <- pkgAvail(repos = c(CRAN = getOption("minicran.mran")))

pkgDep(pkg = c("ggplot2", "plyr", "reshape2"), pdb)

}

plot.pkgDepGraph Plots a package dependency graph.

Description

Plots a package dependency graph.

Usage

S3 method for class 'pkgDepGraph'
plot(
x,
pkgsToHighlight,
main = paste(attr(x, "pkgs"), collapse = ", "),
legendPosition = c(-1.2, -1),
shape = "circle",
vertex.size = 8,
cex = 1,
...

)

Arguments

x Object to plot
pkgsToHighlight

Optional character vector with names of package to highlight. If missing, de-
faults to packages used in original call to makeDepGraph()

main Title of plot
legendPosition Numeric vector of length 2, indicating (x, y) position of edge legend. Both

values should be in the range [-1; 1]. If NULL, the edge legend is not displayed.
shape Shape of edge. See igraph::igraph.plotting(). Could be "none", "circle",

"square", ...
vertex.size Size of vertex shape. igraph::igraph.plotting()
cex Vertex label size.
... Ignored

24 repoPrefix

See Also

Other dependency functions: basePkgs(), makeDepGraph(), pkgDep()

Examples

tags <- "chron"

Plot using defaults

if (interactive()){
pdb <- pkgAvail(
repos = c(CRAN = getOption("minicran.mran")),
type = "source"

)
} else {

pdb <- cranJuly2014
}

if (interactive()) {
dg <- makeDepGraph(tags, availPkgs = pdb , includeBasePkgs = FALSE,

suggests = TRUE, enhances = TRUE)

set.seed(43);
plot(dg)

Move edge legend to top left
set.seed(42);
plot(dg, legendPosition = c(-1, 1))

Change font size and shape size
set.seed(42);
plot(dg, legendPosition = c(-1, 1), vertex.size = 20, cex = 0.5)

Move vertex legend to top right
set.seed(42);
plot(dg, legendPosition = c(1, 1), vertex.size = 20, cex = 0.5)

}

repoPrefix Get the path to the repo directory containing the package files.

Description

Get the path to the repo directory containing the package files.

repoPrefix 25

Usage

repoPrefix(type, Rversion)

Arguments

type character, indicating the type of package to download and install. See install.packages().

Rversion Version of R (only used if type is not source.) Defaults to R.version, but this
can be specified as any of the following formats:

• a character string with the two digit R version, e.g. "3.1"
• a list with components major and minor

• the result of getRversion()
• the result of R.version

Value

The file path to the package files directory.

Repo folder structure

A repository has two main folders, one for source packages, and the other for binary packages.
Inside the binary package folder, bin, you will find subfolders for Windows as well as the various
OSX binaries.

+- Root

...+- src/contrib

......+- PACKAGES

..+- bin

.......+- windows/contrib/version

..........+- PACKAGES

.......+- macosx/contrib/version

..........+- PACKAGES

.......+- macosx/mavericks/contrib/version

..........+- PACKAGES

.......+- macosx/leopard/contrib/version

..........+- PACKAGES

Note

Not all versions of R are compatible with with all package types (e.g., mac.binary.el-capitan is
only valid for R > 3.4.0).

26 updatePackages

twodigitRversion Get a two-digit version of the R version

Description

Get a two-digit version of the R version

Usage

twodigitRversion(Rversion = R.version)

Arguments

Rversion Version of R (only used if type is not source.) Defaults to R.version, but this
can be specified as any of the following formats:

• a character string with the two digit R version, e.g. "3.1"
• a list with components major and minor

• the result of getRversion()
• the result of R.version

Value

A character string representing the two-digit R version.

updatePackages Check for available package updates in a miniCRAN repo.

Description

oldPackages() indicates packages which have a (suitable) later version on the repositories whereas
updatePackages() offers to download and install such packages.

Usage

oldPackages(
path = NULL,
repos = getOption("repos"),
availPkgs = pkgAvail(repos = repos, type = type, Rversion = Rversion),
method,
availableLocal = pkgAvail(repos = path, type = type, Rversion = Rversion, quiet =

quiet),
type = "source",
Rversion = R.version,
quiet = FALSE

)

updatePackages 27

updatePackages(
path = NULL,
repos = getOption("repos"),
method = NULL,
ask = TRUE,
availPkgs = pkgAvail(repos = repos, type = type, Rversion = Rversion),
oldPkgs = NULL,
type = "source",
Rversion = R.version,
quiet = FALSE

)

Arguments

path Destination download path. This path is the root folder of your new repository.

repos URL(s) of the ’contrib’ sections of the repositories, e.g. "https://cran.us.r-project.org".
Passed to available.packages()

availPkgs Data frame with an element called package. The package element is a vector of
available packages. Defaults to reading this list from CRAN, using available.packages()

method Download method, see download.file().

availableLocal all packages hosted in the miniCRAN repo, as returned by pkgAvail(). A
subset can be specified; currently this must be in the same (character matrix)
format as returned by pkgAvail().

type Possible values are (currently) "source", "mac.binary" and "win.binary": the
binary types can be listed and downloaded but not installed on other platforms.
Passed to download.packages().

Rversion Version of R (only used if type is not source.) Defaults to R.version, but this
can be specified as any of the following formats:

• a character string with the two digit R version, e.g. "3.1"
• a list with components major and minor

• the result of getRversion()
• the result of R.version

quiet If TRUE, suppress status messages (if any), and the progress bar during down-
load.

ask logical indicating whether to ask user before packages are actually downloaded
and installed. Alternatively, the value "graphics" starts an interactive widget
to allow the user to (de-)select from the list of packages which could be up-
dated or added. The latter value only works on systems with a GUI version of
select.list(), and is otherwise equivalent to ask = TRUE.

oldPkgs if specified as non-NULL, updatePackages() only considers these packages
for updating. This may be a character vector of package names or a matrix as
returned by oldPackages().

28 updatePackages

Details

These functions are based on update.packages(). However, rather than looking for locally in-
stalled packages they look for the package source and binaries in the miniCRAN repository.

Value

oldPackages() returns a matrix with one row per package and columns for "Package", "LocalVer",
"ReposVer" and "Repository". The matrix row names the package names.

updatePackages returns NULL invisibly.

See Also

updatePackages(), pkgAvail().

Other update repo functions: addOldPackage(), addPackage(), checkVersions(), makeRepo()

Examples

`oldPackages` and `updatePackages` require an existing miniCRAN repo

Specify list of packages to download
mirror <- c(CRAN = "https://cloud.r-project.org")
pkgs <- c("foreach")

pdb <- cranJuly2014

if (interactive()) {
pdb <- pkgAvail(repos = mirror, type = "source")

pkgList <- pkgDep(pkgs, availPkgs = pdb, repos = mirror, type = "source", suggests = FALSE)
pkgList

Create temporary folder for miniCRAN
dir.create(pth <- file.path(tempdir(), "miniCRAN"))

create the miniCRAN directory structure but only add bin files
makeRepo(pkgList, path = pth, repos = mirror, type = "source", download = FALSE)
makeRepo(pkgList, path = pth, repos = mirror, type = "win.binary", download = TRUE)

download old source package version and create repo index
oldVers <- data.frame(package = c("foreach", "codetools", "iterators"),

version = c("1.4.0", "0.2-7", "1.0.5"),
stringsAsFactors = FALSE)

addOldPackage(pkgList, path = pth, repos = mirror, vers = oldVers$version, type = "source")
NOTE: older binary versions would need to be build from source

Check if updated packages are available
oldPackages(path = pth, repos = mirror, type = "source") # should need update
oldPackages(path = pth, repos = mirror, type = "win.binary") # should be current

Update available packages
updatePackages(path = pth, repos = mirror, type = "source", ask = FALSE) # should need update

updatePackages 29

updatePackages(path = pth, repos = mirror, type = "win.binary") # should be current

Delete temporary folder
unlink(pth, recursive = TRUE)

}

Index

∗ Internal
.listFiles, 4
repoPrefix, 24
twodigitRversion, 26

∗ create repo functions
pkgAvail, 20

∗ datasets
cranJuly2014, 14

∗ dependency functions
basePkgs, 12
makeDepGraph, 16
pkgDep, 21
plot.pkgDepGraph, 23

∗ github functions
addPackageListingGithub, 11

∗ package
miniCRAN-package, 2

∗ update repo functions
addOldPackage, 6
addPackage, 8
checkVersions, 12
makeRepo, 18
updatePackages, 26

.listFiles, 4

addLocalPackage, 4
addOldPackage, 6, 9, 13, 20, 28
addPackage, 7, 8, 13, 20, 28
addPackageListingGithub, 11
available.packages(), 6, 9, 11, 15–17, 19,

21, 22, 27

basePkgs, 12, 17, 22, 24

checkVersions, 7, 9, 12, 20, 28
cranJuly2014, 14

download.file(), 27
download.packages(), 5, 6, 9, 15, 17–19, 21,

22, 27

getCranDescription, 15
getRversion(), 5, 7, 9, 13, 19, 21, 22, 25–27

igraph::igraph.plotting(), 23
install.packages(), 13, 25
is.online, 16

makeDepGraph, 12, 16, 22, 24
makeDepGraph(), 3, 23
makeLibrary, 18
makeRepo, 7, 9, 13, 18, 28
makeRepo(), 3
miniCRAN (miniCRAN-package), 2
minicran (miniCRAN-package), 2
miniCRAN-package, 2

oldPackages (updatePackages), 26
oldPackages(), 3

pkgAvail, 20
pkgAvail(), 3, 11, 27, 28
pkgDep, 12, 17, 21, 24
pkgDep(), 3, 12, 17, 21
plot.pkgDepGraph, 12, 17, 22, 23
plot.pkgDepGraph(), 3

R.version, 5–7, 9, 13, 19, 21, 22, 25–27
repoPrefix, 24

select.list(), 27

twodigitRversion, 26

update.packages(), 28
updatePackages, 7, 9, 13, 20, 26
updatePackages(), 3, 28
updateRepoIndex (makeRepo), 18
utils::available.packages, 19, 21
utils::available.packages(), 3, 14, 21
utils::download.packages(), 20
utils::install.packages(), 3, 18

30

INDEX 31

utils::installed.packages(), 12

write_PACKAGES(), 5, 7, 9, 19, 20

	miniCRAN-package
	.listFiles
	addLocalPackage
	addOldPackage
	addPackage
	addPackageListingGithub
	basePkgs
	checkVersions
	cranJuly2014
	getCranDescription
	is.online
	makeDepGraph
	makeLibrary
	makeRepo
	pkgAvail
	pkgDep
	plot.pkgDepGraph
	repoPrefix
	twodigitRversion
	updatePackages
	Index

