
Package ‘microbats’
October 13, 2022

Type Package

Title An Implementation of Bat Algorithm in R

Version 0.1-1

Date 2016-02-16

Author Seong Hyun Hwang with contributions from Rachel Myoung Moon

Maintainer Seong Hyun Hwang <krshh1412@gmail.com>

Description A nature-inspired metaheuristic algorithm based on the echolocation behavior of micro-
bats that uses frequency tuning to optimize problems in both continuous and discrete dimen-
sions. This R package makes it easy to implement the standard bat algorithm on any user-
supplied function. The algorithm was first developed by Xin-
She Yang in 2010 (<DOI:10.1007/978-3-642-12538-
6_6>, <DOI:10.1109/CINTI.2014.7028669>).

Depends R (>= 3.2.1)

License GPL (>= 2)

URL https://github.com/stathwang/microbats

LazyData TRUE

RoxygenNote 5.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2016-02-18 06:51:33

R topics documented:

bat_optim . 2

Index 4

1

https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1109/CINTI.2014.7028669
https://github.com/stathwang/microbats

2 bat_optim

bat_optim Bat Algorithm

Description

The function bat_optim implements a nature-inspired metaheuristic algorithm that deals with both
continuous and discrete optimization problems. The algorithm is based on the echolocation behav-
ior of microbats and uses frequency tuning.

Usage

bat_optim(D, NP, N_Gen, A, r, Qmin, Qmax, Lower, Upper, FUN, ...)

Arguments

D integer: the dimension of the search variables

NP integer: the population size, typically between 10 and 40

N_Gen integer: the number of generations, or iterations

A numeric; loudness, between 0 and 1, can be constant or decreasing

r numeric; pulse rate, must be positive, can be constant or decreasing

Qmin minimum frequency

Qmax maximum frequency

Lower lower bound of the search variables

Upper upper bound of the search variables

FUN the objective function to optimize, must be supplied by a user

... optional arguments to FUN

Details

bat_optim implements the standard bat algorithm in three robust steps. The first step is to initialize
the parameters of algorithm to generate and evaluate the initial population from which to determine
the best solution.

Secondly, a population of virtual microbats are moved in a d-dimensional search or solution space
according to the updating rules of the algorithm: each bat is encoded with a velocity and a location
at each iteration in the search space. The location is a solution vector, and the current best solution
is achieved.

Then the current best solution is improved using random walks. The new solution is evaluated and
updated. See References below for more details.

In essence, frequency tuning acts as mutation to vary the solutions locally; hence, increasing the
range of frequencies leads to a global search. The mutation, compared with genetic algorithms, has
no crossover but depends on loudness and pulse emission. So technically, varying loudness and
pulse emission rates can also make the search intensive approaching the global optimality.

One of the advantages of the bat algorithm is that it can converge very quickly at the initial stage
and can switch from exploration to exploitation when the optimality is approaching.

bat_optim 3

Value

Returns a list of four values: minimum fitness, population of solutions, fitness, best solution(s)

Author(s)

Seong Hyun Hwang, Rachel Myoung Moon

References

[1] Yang, X.-S. "A new metaheuristic bat-inspired algorithm." Nature inspired cooperative strategies
for optimization (NICSO 2010). Springer Berlin Heidelberg, 2010. 65-74.

[2] Fister, I. Jr., Fister, I., Yang, X.-S., Fong, S., Zhuang, Y. "Bat algorithm: Recent advances."
IEEE 15th International Symposium on Computational Intelligence and Informatics (CINTI), IEEE,
2014. 163-167.

Examples

find the x-value that gives the minimum of the quadratic function y = x^2 - 3x
x should then be 1.5
quad_func <- function(D, sol) {
val = 0
for (i in 1:D) {
val <- val + sol[i] * sol[i] - sol[i] * 3

}
return(val)

}

run a simulation using the standard bat algorithm
set.seed(5) # for reproducive results
fit <- bat_optim(D = 1, NP = 20, N_Gen = 100, A = 0.5, r = 0.5,

Qmin = 0, Qmax = 2, Lower = -10, Upper = 10, FUN = quad_func)
x <- fit$best_solution

Index

bat_optim, 2

4

	bat_optim
	Index

