Package ‘Ibfgs’

October 13, 2022

Type Package

Title Limited-memory BFGS Optimization

Version 1.2.1.2

Date 2022-06-23

Maintainer Antonio Coppola <acoppola@stanford.edu>

Description
A wrapper built around the libLBFGS optimization library by Naoaki Okazaki. The Ibfgs pack-
age implements both the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) and the Orthant-Wise Quasi-Newton Limited-Memory (OWL-QN) optimization algo-
rithms. The L-BFGS algorithm solves the problem of minimizing an objective, given its gradi-
ent, by iteratively computing approximations of the inverse Hessian matrix. The OWL-QN algo-
rithm finds the optimum of an objective plus the L1-norm of the problem's parameters. The pack-
age offers a fast and memory-efficient implementation of these optimization rou-
tines, which is particularly suited for high-dimensional problems.

License GPL (>=2)
Imports Rcpp (>=0.11.2), methods
LinkingTo Rcpp

Author Antonio Coppola [aut, cre, cph],
Brandon Stewart [aut, cph],
Naoaki Okazaki [aut, cph],

David Ardia [ctb, cph],

Dirk Eddelbuettel [ctb, cph],
Katharine Mullen [ctb, cph],
Jorge Nocedal [ctb, cph]

NeedsCompilation yes
Repository CRAN
Date/Publication 2022-06-23 12:40:02 UTC

R topics documented:

Ibfgs . . . e 2
Leukemia e 6

2 Ibfgs

Index 8

1bfgs Optimize function using libLBFGS library

Description

Performs function optimization using the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) and Orthant-Wise Limited-memory Quasi-Newton optimization (OWL-QN) algorithms. A
wrapper to the libLBFGS library by Naoaki Okazaki, based on an implementation of the L-BFGS
method written by Jorge Nocedal. Please note that significant portions of this help file are taken
from Okazaki’s original documentation. For further information, please refer to the libLBFGS page.

Usage

lbfgs(call_eval, call_grad, vars, environment=NULL,
., invisible = @, m = 6, epsilon = 1e-5, past = 0,
delta = 0, max_iterations = 0,
linesearch_algorithm = "LBFGS_LINESEARCH_DEFAULT",
max_linesearch = 20, min_step = 1e-20,
max_step = 1e+20, ftol = le-4, wolfe = 0.9,
gtol = 0.9, orthantwise_c = 0,
orthantwise_start = 0,
orthantwise_end = length(vars))

Arguments

call_eval The function to be optimized. This should be either an R object taking in a nu-
meric vector as its first parameter, and returning a scalar output, or an external
pointer to a C++ function compiled using the inline interface. C++ implemen-
tations should yield considerable speed improvements. For more info about im-
plementing the objective function and the gradient as compiled C++ functions,
see the accompanying vignette.

call_grad A function returning the gradient vector of the objective. This should be ei-
ther an R object taking in a numeric vector as its first parameter, and returning
a scalar output, or an external pointer to a C++ function compiled using the
inline interface. C++ implementations should yield considerable speed im-
provements. For more info about implementing the objective function and the
gradient as compiled C++ functions, see the accompanying vignette.

vars A numeric vector containing the initial values for all variables.

environment An R environment containing all extra arguments to be passed to the objective
function and to the gradient, which must be matched exactly. If the objective
function and the gradient are implemented in C++, extra arguments must be
passed using this option, rather than the ... construct. If the functions are
implemented in R, extra arguments should be passed to them using the ...
construct instead.

http://www.chokkan.org/software/liblbfgs/index.html

Ibfgs 3

Other arguments to be passed to call_eval and call_grad. Note that these
must be matched exactly. Use this construct for extra arguments if call_eval
and call_grad are implemented as R functions. Ifcall_eval and call_grad
are C++ functions, use the environment construct instead.

invisible Defaults to @. Set to 1 to suppress console output.

m The number of corrections to approximate the inverse Hessian matrix. The L-
BFGS routine stores the computation results of previous m iterations to approxi-
mate the inverse hessian matrix of the current iteration. This parameter controls
the size of the limited memories (corrections). The default value is 6. Values less
than 3 are not recommended. Large values will result in excessive computing
time.

epsilon Epsilon for convergence test. This parameter determines the accuracy with
which the solution is to be found. A minimization terminates when | |g|| <
epsilon*max(1, ||x||),where | |. || denotes the Euclidean (L2) norm. The
default value is 1e-5.

past Distance for delta-based convergence test. This parameter determines the dis-
tance, in iterations, to compute the rate of decrease of the objective function. If
the value of this parameter is zero, the library does not perform the delta-based
convergence test. The default value is 0.

delta Delta for convergence test. This parameter determines the minimum rate of de-
crease of the objective function. The library stops iterations when the following
condition is met: (f' - f)} \code{/ f <delta}, where \code{f"' is the ob-
jective value of past iterations ago, and f is the objective value of the current
iteration. The default value is 0.

max_iterations The maximum number of iterations. The 1bfgs() function terminates an opti-
mization process with maximum iterations status code when the iteration count
exceedes this parameter. Setting this parameter to zero continues an optimiza-
tion process until a convergence or error. The default value is 0.
linesearch_algorithm
The line search algorithm. This parameter specifies a line search algorithm to
be used by the L-BFGS routine. Valid arguments are the following:

LBFGS_LINESEARCH_MORETHUENTE: More-Thuente method.

LBFGS_LINESEARCH_BACKTRACKING_ARMIJO: Backtracking method with the Armijo
condition. The backtracking method finds the step length such that it satisfies

the sufficient decrease (Armijo) condition, - f(x + a * d) <= f(x) + ftol x a »
g(x)*T d, where x is the current point, d is the current search direction, and a is

the step length.

LBFGS_LINESEARCH_BACKTRACKING: The backtracking method with the default
(regular Wolfe) condition.

LBFGS_LINESEARCH_BACKTRACKING_WOLFE: Backtracking method with regular
Wolfe condition. The backtracking method finds the step length such that it sat-
isfies both the Armijo condition and the curvature condition, - g(x +ax d)*Td

max_linesearch

min_step

max_step

ftol

wolfe

gtol

orthantwise_c

Ibfgs
>=wolfe x g(x)*Td.

LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE: Backtracking method with
strong Wolfe condition. The backtracking method finds the step length such that
it satisfies both the Armijo condition and the following condition, - |g(x + a *
d)*Td| <=wolfe* |g(x)*"Td]|.

If OWL-QN is invoked (orthantwise_c !=0), BACKTRACKING is used by de-
fault. Otherwise, the default option is MORETHUENTE. Note that the More-Thuente
method cannot be used with OWL-QN, and the function will halt if such a com-
bination of parameters is specified.

The maximum number of trials for the line search.This parameter controls the
number of function and gradients evaluations per iteration for the line search
routine. The default value is 20.

The minimum step of the line search routine. The default value is 1e-20. This
value need not be modified unless the exponents are too large for the machine
being used, or unless the problem is extremely badly scaled (in which case the
exponents should be increased).

The maximum step of the line search. The default value is 1e+2@. This value
need not be modified unless the exponents are too large for the machine being
used, or unless the problem is extremely badly scaled (in which case the expo-
nents should be increased).

A parameter to control the accuracy of the line search routine. The default value
is Te-4. This parameter should be greater than zero and smaller than 0. 5.

A coefficient for the Wolfe condition. This parameter is valid only when the
backtracking line-search algorithm is used with the Wolfe condition. The default
value is @.9. This parameter should be greater the ftol parameter and smaller
than 1.0.

A parameter to control the accuracy of the line search routine. The default value
is @.9. If the function and gradient evaluations are inexpensive with respect to
the cost of the iteration (which is sometimes the case when solving very large
problems) it may be advantageous to set this parameter to a small value. A typi-
cal small value is @. 1. This parameter should be greater than the ftol parameter
(default Te-4) and smaller than 1.0.

Coefficient for the L1 norm of variables. This parameter should be set to zero for
standard minimization problems. Setting this parameter to a positive value acti-
vates Orthant-Wise Limited-memory Quasi-Newton (OWL-QN) method, which
minimizes the objective function F(x) combined with the L1 norm |x| of the
variables, {F(x) + C |x|}. This parameter is the coefficient for the |x|, i.e., C.
As the L1 norm |x| is not differentiable at zero, the library modifies function
and gradient evaluations from a client program suitably. The default value is
zero. Note that the objective function minimized by alternative packages (e.g.,
glmnet) is of the form : F(x)/N+ C | x|, where N is the number of parameters.
1bfgs does not divide the likelihood function by N. To achieve equivalence with
glmnet result, take this difference of implementation into account.

Ibfgs

orthantwise_start

orthantwise_end

Value

Start index for computing L1 norm of the variables. This parameter is valid only
for OWL-QN method (i.e., orthantwise_c !=0). This parameter b (0 <= b <
N) specifies the index number from which the library computes the L1 norm of

the variables x, | x| := | x_{b}| + |x_{b+1}]| + ... + | x_{N}]|. In other words,
variables x_1, ..., x_{b-1} are not used for computing the .1 norm. Setting
b (0 <b <N), one can protect variables, x_1, ..., x_{b-1} (e.g., a bias term

of logistic regression) from being regularized. The default value is zero. Note
that the parameters are indexed starting from zero, and not one.

End index for computing L1 norm of the variables. This parameter is valid only
for OWL-QN method (i.e., orthantwise_c !=). This parameter e (0 < e <=
N) specifies the index number at which the library stops computing the L1 norm
of the variables x. Note that the parameters are indexed starting from zero, and
not one.

A list with the following components:

value
par

convergence

message

Examples

The minimized value of the objective function.
A numerical array. The best set of parameters found.

An integer code. Zero indicates that convergence was reached without issues.
Negative values indicate errors in the execution of the L-BFGS routine.

A character object detailing execution errors. This component is only returned
if the convergence code is different form zero.

Rosenbrock Banana function

objective <- function(x) {

100 % (x2 - x1 % x1)*2 + (1 - x1)"2

gradient <- function(x) { ## Gradient of 'fr'

x1 <- x[1]

x2 <- x[2]
3

x1 <- x[1]

x2 <- x[2]

c(-400 * x1 * (x2 - x1 x x1) -2 * (1 - x1),

200 *
3

(x2 - x1 * x1))

output <- lbfgs(objective, gradient, c(-1.2,1))

An example using OWL-QN to perform a Poisson regression using data from
Golub, Todd R., et al. "Molecular classification of cancer: class discovery
and class prediction by gene expression monitoring."” Science 286.5439 (1999):

*

*oH o ETE T

% R

#

531-537. A workspace with the dataset ("Leukemia.RData") is included

in the package distribution.
data(Leukemia)

X <- Leukemia$x

y <- Leukemia$y
X1 <= cbind(1, X)
pois.likelihood <- function(par, X, y, prec=0) {
Xbeta <- X%*x%par
-(sum(y*Xbeta - exp(Xbeta)) -.5*sum(par*2xprec))
3
pois.gradient <- function(par, X, y, prec=0) {
Xbeta <- X%x%par
expXbeta <- exp(Xbeta)
-(crossprod(X, (y-expXbeta)) -parx*prec)
3
output <- lbfgs(pois.likelihood,pois.gradient, X=X1, y=y, prec=0,
rep(@, ncol(X1)), invisible=1, orthantwise_c=10,
linesearch_algorithm="LBFGS_LINESEARCH_BACKTRACKING",
orthantwise_start = 1, orthantwise_end = ncol(X1))

Trivial Example

objective <- function(x){

}

a <- x[1]
b <- x[2]
return(a*2 + b*2)

gradient <- function(x){

3

return(2*xx)

output <- lbfgs(objective, gradient, c(100,13))

Leukemia

Leukemia Data from Golub et al. 1999

Description

Data from Golub, Todd R., et al. "Molecular classification of cancer: class discovery and class
prediction by gene expression monitoring.” Science 286.5439 (1999): 531-537. The study uses

microarray data to perform cancer classification based on gene expression monitoring.

Leukemia

Usage

data(Leukemia)

Value

y

A vector of binary values specifying the cancer class for 72 leukemia patients.
A value of 0 corresponds to patients with acute lymphoblastic leukemia (ALL),
and 1 corresponds to patients with acute myeloid leukemia (AML).

A 72-by-3571 matrix specifying the levels of expressions of 3571 genes for the
72 different patients.

Index

x datasets
Leukemia, 6

lbfgs, 2
Leukemia, 6

	lbfgs
	Leukemia
	Index

