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This package implements a spectral approach to the parametric estimation of Hawkes processes from Binned
Observations through Whittle likelihood (HawkesBOW). It is based on the results of the article (Cheysson
and Lang 2020).
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1 Installation
You can install the released version of hawkesbow from CRAN with:
install.packages("hawkesbow")

Alternatively, you can install the up-to-date version of hawkesbow from GitHub with:
devtools::install_github("fcheysson/hawkesbow")

2 Details of the package
2.1 The Hawkes process
Hawkes processes form a family of models for point processes for which the occurrence of an event temporarily
increases the probability of future events occurring (Alan G. Hawkes 1971). Formally, a Hawkes process N
on R can be defined from its conditional intensity λ(·):

λ(t) = η +
∫ t

−∞
h(t− u)N(du)

= η +
∑
Ti<t

h(t− Ti),

where the variables Ti denote the arrival times of the process, the immigration intensity η is a positive
constant, and the reproduction function h : R≥0 → R≥0 is a measurable function. The reproduction function
can be further decomposed as h = µh∗, where µ =

∫
R h(t)dt < 1 is called the reproduction mean and h∗ is a

true density function,
∫
R h
∗(t)dt = 1, called the reproduction kernel.

Alternatively, the Hawkes process can be constructed as a poissonian cluster process (Alan G. Hawkes and
Oakes 1974). The process consists of a flow of immigrants, the cluster centres, arriving according to a
homogeneous Poisson process of intensity η. Then, an immigrant arriving at time Ti generates children
according to an inhomogeneous Poisson process of intensity h(· − Ti). These in turn independently generate
children according to the same process, and so on ad infinitum. The processes consisting of an immigrant
and all its descendants are therefore branching processes, and are independent of each other. Finally, the
process resulting from the superposition of all these branching processes is a Hawkes process of conditional
intensity λ(·) (see Figure 1).

This package also supports non-causal Hawkes processes, for which the reproduction kernel h∗ may take
non-negative values on R≤0. Such processes are not defined through their conditional intensity functions, but
through the poisson cluster representation, where each individual can potentially generate offsprings both in
the future and in the past.

The count sequence of a Hawkes process is the time series generated by the event counts of the process, that
is the series obtained by counting the events of the process on intervals of fixed length. Formally, the count
sequence with bin size ∆ associated to the point process N is the sequence (Xk)k∈Z.

2.2 Estimation procedure
This package fully supports the parametric estimation of Hawkes processes from their count sequences via
minimisation of the Whittle likelihood, and partially supports the estimation from the arrival times via
maximisation of the likelihood.

Maximum likelihood estimation The parameters of a Hawkes process with arrival times (Ti)1≤i≤n on
the interval [0, T ] can be estimated by maximising the following pseudo-likelihood

Ln(θ) =
(

n∏
i=1

λ(Ti)
)

exp
(
−
∫ T

0
λ(s)ds

)
.
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Figure 1: Realisation of an exponential Hawkes process, with η = 1, µ = 0.5 and h∗(t) = 2e−2t. The crosses
represent the arrival times of the process. (Top) Representation of the conditional intensity of the process:
each event increases the probability of occurrence of future events, according to the reproduction function
h = µh∗. (Bottom) Representation of the process as a poisson cluster process: each immigrant (black squares,
of generation 0) can generate children (red dots, of generation 1), which can in turn generate children, and so
on.

Note that each step of the optimisation is usually of complexity O(n2).

Minimisation of the Whittle likelihood Alternatively, the parameters of a Hawkes process with count
sequence (Xk)1≤k≤N can be estimated by minimising the log-spectral (Whittle) likelihood

L′N (θ) = 1
4π

∫ π

−π

(
log fθ(ω) + IN (ω)

fθ(ω)

)
dω,

where IN (ω) = (2πN)−1
∣∣∣∑N

k=1 Xk exp(−ikω)
∣∣∣2 denotes the periodogram of (Xk) and fθ(·) its spectral

density function. Note that each step of the optimisation is of complexity O(n) and the periodogram can be
calculated in complexity O(n logn) using a Fast Fourier Transform algorithm, making this method usually
faster than maximum likelihood estimation.

Spectral density function of the count sequence Note that the spectral density function fθ of (Xk)
can be related to the spectral density f ′θ of the time-continuous count sequence (Xt)t∈R by taking into account
spectral aliasing:

fθ(ω) =
∑
k∈Z

f ′θ(ω + 2kπ).

In turn, f ′θ can be derived from the Bartlett spectrum of the Hawkes process (Daley and Vere-Jones 2003,
example 8.2(e)) and is given by

f ′θ(ω) = 4∆
ω2

η

1− µ sin2
(ω

2

) ∣∣∣1− h̃( ω∆)∣∣∣−2
,

where h̃ denotes the Fourier transform of h:

h̃(ω) =
∫
R
h(t) exp(−iωt)dt.
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3 Main usage
This package supports both Hawkes processes and their count sequences.

3.1 Simulation of Hawkes processes
Hawkes processes can be simulated by the function hawkes:
hawkes(end, fun, repr, family, M=null, ...)

where end denotes the end of the interval [0, T ]. This function uses the cluster representation:

• First, the immigrants are drawn according to a (potentially inhomogeneous) Poisson process with
intensity measure fun.

• Second, the number of offsprings of an immigrant are drawn from a Poisson distribution with intensity
repr.

• Third, these offsprings are distributed according to the family distribution.

• Then, further offsprings are generated according to the last two steps.

The argument fun can take a numeric value or be specified as a function, in which case the argument M
must be specified as an upper bound on fun (to allow simulation of the immigration process by thinning).
The argument family can either be specified as a string name corresponding to a distribution with random
generation function rname (for example exp for rexp), or directly as a random generation function. The
optional arguments ... are passed to the random generation function specified by family.

This returns a list of class hawkes, whose realisations are stored in the member p. Other members of the list
are mainly used for support functions.

Examples

• Simulate a Hawkes process with immigration intensity η = 1, reproduction mean µ = 0.5 and
reproduction kernel h∗(t) = 2e−2t1{t≥0} on [0, 10]:

x <- hawkes(10, fun = 1, repr = 0.5, family = "exp", rate = 2)

• Simulate a Hawkes process with inhomogeneous immigration process with intensity η(t) = 1 + sin(t),
reproduction mean µ = 0.25 and [0, 1]-triangular reproduction kernel h∗(t) = (1− t)1{0≤t≤1}:

x <- hawkes(10, fun=function(y) {1+sin(y)}, M=2, repr=0.25,
family=function(n) {1 - sqrt(1 - runif(n))})

Plot function

• Hawkes processes can be plotted with the function plot.hawkes:
plot.hawkes(x, intensity = FALSE, precision = 1e3, fun = NULL, repr = NULL, family = NULL,

M = NULL, ...)

If x is of class hawkes, as for objects returned by the function hawkes, arguments fun through M can be
ignored. If intensity is set to FALSE, this plots the genealogy of the simulated Hawkes process (as in Figure
1, bottom). If it is set to TRUE, this plots the conditional intensity of the process (as in Figure 1, top).

3.2 Estimation of Hawkes processes
Two functions implement the estimation of Hawkes processes: mle from arrival times (Ti) and whittle from
count sequences (Xk). While the optimisation procedure rely on existing functions (see below), calculations
of both the usual and Whittle likelihood functions are done in C++ via Rcpp (Eddelbuettel and François
2011) and RcppArmadillo (Eddelbuettel and Sanderson 2014).
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By maximum likelihood The maximum likelihood method is implemented by the function
mle(events, kern, end, init = NULL, opts = NULL, ...)

events holds the arrival times (Ti) in ascending order, kern must be a string (partially) matching one of the
reproduction kernels (see below) and end denotes the endpoint T of observation of the process.

The optimisation of the maximum likelihood function is done by the function nloptr from the package nloptr
(Johnson, n.d.) with algorithm L-BFGS-B, where the derivatives of the likelihood are calculated explicitly. By
default, parameters are constrained to be positive, and additionally µ is constrained to be below 1. However,
both the arguments opts and ... are passed on to nloptr, so the algorithm, the constraints, or any other
parameter of the optimisation procedure can be changed.

Example of use:
x = hawkes(100, fun = 1, repr = .5, family = "exp", rate = 1)
mle(x$p, "Exponential", x$end)

By minimisation of the Whittle likelihood The Whittle likelihood method is implemented by the
function
whittle(counts, kern, binsize = NULL, trunc = 5L, init = NULL, ...)

counts holds the count sequence (Xk), kern must be a string (partially) matching one of the reproduction
kernels (see below), binsize denotes the bin size ∆ and trunc is the number of foldings due to aliasing taken
into account.

The optimisation of the Whittle likelihood function is done by the function optim, with algorithm L-BFGS-B
where the derivatives of the likelihood are approximated by finite differences. By default, parameters are
constrained to be positive, and additionally µ is constrained to be below 1. However, the argument ... is
passed to optim, so any optimisation parameter can be changed.

Example of use:
x = hawkes(1000, fun = 1, repr = .5, family = "exp", rate = 1)
y = discrete(x, binsize = 1)
whittle(y, "Exponential", 1)

Note that discrete is a useful function to create the count sequence (Xk) associated with an object x of
class hawkes.

3.3 Other functions
Other functions are all well documented and with examples. This subsection will be expanded in the future.

4 Reproduction kernels
We introduce the reproduction kernels that are currently implemented in this package. Recall that the Fourier
transform of a reproduction kernel is given by

h̃∗(ω) =
∫
R

exp(−iωt)h(t)dt,

and that it is a Hermitian function h̃∗(−ω) = h̃∗(ω).

4.1 The exponential kernel
This is the exponential density function with parameter β > 0:

h∗(t) = βe−βt1{t>0}.
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Its Fourier transform is
h̃∗(ω) = β

1
β + iω

= β
β − iω
β2 + ω2 .

The exponential kernel can be specified with the string Exponential and the parameter β with the usual
argument rate. Both maximum and Whittle likelihood methods are fully implemented for exponential
kernels. Moreover, the likelihood function is implemented in complexity O(n), using the relations in (Ozaki
and Ogata 1979).

4.2 The symmetric exponential kernel
This is a symmetrised version of the exponential density function with parameter β > 0:

h∗(t) = 1
2βe

−β|t|.

Its Fourier transform is
h̃∗(ω) = β2

β2 + ω2 .

The symmetric exponential kernel can be specified with the string SymmetricExponential and the parameter
β with the argument rate. Only the Whittle likelihood method is implemented for symmetric exponential
kernels. Note that it is a non-causal kernel, as h∗(t) 6= 0 for t < 0.

4.3 The gaussian kernel
This is the gaussian density function with mean ν ∈ R and variance σ2 > 0:

h∗(t) = 1
σ
√

2π
exp

(
− (t− ν)2

2σ2

)
.

Its Fourier transform is
h̃∗(ω) = exp

(
−σ

2ω2

2 − iνω
)
.

The gaussian kernel can be specified with the string Gaussian and its parameters ν and σ with the usual
arguments mean and sd respectively. Only the Whittle likelihood method is implemented for gaussian kernels.
Note that it is a non-causal kernel, as h∗(t) 6= 0 for t < 0.

4.4 The power law kernel
This is a normalised and shifted power law function, with shape θ > 0 and scale a > 0:

h∗(t) = θaθ(t+ a)−θ−11{θ>0}.

For positive ω, its Fourier transform is given by

h̃∗θ(ω) = θ exp(iωa)Eθ+1(iωa),

where Eθ(ix) denotes the integral
Eθ(ix) =

∫ ∞
1

t−θ exp(−ixt)dt.

With successive integration by parts, this integral can be related to Eθ′(ix), with 0 < θ′ ≤ 1.

If θ′ = 1 or equivalently θ ∈ N 6=0, the integral E1(ix), called the exponential integral with imaginary argument,
can be related the trigonometric integrals and calculated using Padé approximants (Rowe et al. 2015, Appendix
B), accurate to better than 10−16. The function E1_imaginary implements this approximation.
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If θ′ < 1 or equivalently θ ∈ R \N, the integral Eθ(ix) can be related to the incomplete gamma function with
imaginary argument

Γi(x, α) =
∫ ∞
x

tα−1e−itdt,

where 0 < α < 1. We implemented Taylor approximations of this integral, accurate to better than 10−7, in
the function inc_gamma_imag.

The power law kernel can be specified with the string PowerLaw and its parameters θ and a with the arguments
shape and scale respectively. Both maximum and Whittle likelihood methods are implemented for power
law kernels.

4.5 The Pareto kernels
This is the Pareto density function with shape θ > 0 and scale a > 0:

h∗θ(t) = θaθt−θ−11{t>a}.

For positive ω, its Fourier transform is given by

h̃∗θ(ω) = θEθ+1(iωa),

see above for the definition of Eθ(ix).

Only Pareto kernels with fixed θ = 1, 2, and 3 have been implemented and can specified with the strings
Pareto1, Pareto2 and Pareto3 respectively, with parameter a specified with the argument scale. Only the
Whittle method is available for Pareto kernels.

5 To be implemented
• Improve this vignette: it is currently too sparse and functions of the package could need some better

description.

• Add some real datasets to the package: real life case-studies with good datasets help understand the
functionalities of a package.

• Variance and confidence intervals for the estimation with function whittle: note that currently, the
variance-covariance matrix returned by the optimisation method in function whittle is not accurate,
as it ignores the dependence within the count sequence (Xk).

• Diagnostics for the estimated model: spectral density based goodness-of-fit tests are to be implemented
for the estimated Hawkes processes, based on the work of (Paparoditis 2000).

• Custom built-kernels: allow the user to input reproduction kernels that are not already implemented.
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