Package ‘funMoDisco’

April 15, 2025
Type Package
Title Motif Discovery in Functional Data
Version 1.0.0
Date 2025-03-22

Author Marzia Angela Cremona [aut],
Francesca Chiaromonte [aut],
Jacopo Di Iorio [aut, cre],
Niccolo Feresini [aut],

Riccardo Lazzarini [aut]

Maintainer Jacopo Di lorio <jacopo.di.iorio@emory.edu>

Description Efficiently implementing two complementary methodologies for discovering mo-
tifs in functional data: ProbKMA and FunBlalign.
Cremona and Chiaromonte (2023) * * Probabilistic K-means with Local Alignment for Cluster-
ing and Motif Discovery in Functional Data" <doi:10.1080/10618600.2022.2156522> is a proba-
bilistic K-means algorithm that leverages local alignment and fuzzy clustering to identify recur-
ring patterns (candidate functional motifs) across and within curves, allowing different por-
tions of the same curve to belong to different clusters. It includes a family of distances and a nor-
malization to discover various motif types and learns motif lengths in a data-driven man-
ner. It can also be used for local clustering of misaligned data.
Di Iorio, Cremona, and Chiaromonte (2023) * * funBlalign: A Hierarchical Algorithm for Func-
tional Motif Discov-
ery Based on Mean Squared Residue Scores" <doi:10.48550/arXiv.2306.04254> applies hierar-
chical agglomerative clustering with a functional generaliza-
tion of the Mean Squared Residue Score to identify motifs of a speci-
fied length in curves. This deterministic method includes a small set of user-tunable parameters.
Both algorithms are suitable for single curves or sets of curves. The package also includes a flex-
ible function to simulate functional data with embedded motifs, allowing users to gener-
ate benchmark datasets for validating and comparing motif discovery methods.

License GPL (>=2)

Suggests knitr, rmarkdown, tinytest, kableExtra, R.rsp
Encoding UTF-8

RoxygenNote 7.3.2


https://doi.org/10.1080/10618600.2022.2156522
https://doi.org/10.48550/arXiv.2306.04254

2 Contents
Imports Rcpp (>= 1.0.12),dendextend,fastcluster,
fda,ggtext,methods,purrr,scales,shinyWidgets,shinybusy,shinyjs,
zoo,utils,class,combinat,data.table,stringr

Depends R (>= 3.5.0),dplyr,parallel,ggplot2,shiny,progress

LinkingTo Rcpp, ReppArmadillo

SystemRequirements C++20

LazyData true

VignetteBuilder R.rsp

BuildVignettes true

Language en-US

NeedsCompilation yes

Repository CRAN

Date/Publication 2025-04-15 20:10:09 UTC

Contents
funMoDisco-package . . . . . . ... 3
check fitS . . . o s 4
diss_dO_dI_L2 ..o o 4
domain ... L L e e 6
And min_disS. . . . . L L 6
find_occurrences . . . ... e 8
.generate_coefficients . . . . . . ... L 9
amapply_custom . . ...l e 10
resample ... oL L e e e e 11
select_domain ... oL L L L e e 11
gdransform_ list . . . . . L L s 12
Aransform_to_matrixX . . . . . . . .. e e e e e e e 13
add_error_to_motif . . . . . ... 13
add_motif . . . . . e 14
cluster_candidate_motifs . . . . . . . . ... 15
cluster_candidate_motifs_plot . . . . . . ... ... 16
compare_nodes . . . ... e e e 17
discoverMotifs . . . . . . . L e 18
filter_candidate_motifs . . . . . . . .. 24
find_recommended_path . . . . . . ... L o 26
generateCUIVES . . . . . . . ot e e e e e e e e e e e 27
generateCurves,motifSimulation-method . . . . . . . . ... ... oo 30
generate_background_curve . . . . ... oL 34
GENETate_CUIVE_VECIOT . . . « v v v v v e it e e e e e e e e e e e e 34
get_accolites . . . . ... 35
get_minidend . . . . . ... L e e 36
GELPArENtS . . . . . . .. e e 36

get_path_complete . . . . . . .. e 37



funMoDisco-package 3

initialChecks . . . . . . . . e e e e e 38
motifSimulation-class . . . . . . . . ... 39
motifSimulationApp . . . . . . L e 40
motifSimulationBuilder . . . . . . .. ... ... 41
motifs_search . . . . . . . . e 43
motifs_search_plot . . . . . . . . ... 46
padding . . . . ... 47
plot_motifs . . . . . . e e e e e 48
plot_motifs,motifSimulation-method . . . . . . . . .. ... oL oL 49
ProbKMA . . . . . e e 51
probKMA_plot . . . . . . e 52
probKMA _silhouette_filter . . . . . . . . . . ... 54
probKMA _silhouette_plot . . . . . . . . . . . 55
probKMA _wrap . . . . . . . . e 56
recommend_node . . . ... e 58
simulated200 . . . . .. L e e 59
simulatedHighDimensional . . . . . . . .. ... .. ... ... ... ... 59
to_motifDiscovery . . . . . . .. 60
to_motifDiscovery,list-method . . . . . . . . ... ... 60
Index 62
funMoDisco-package funMoDisco: Motif Discovery in Functional Data
Description

Efficiently implementing two complementary methodologies for discovering motifs in functional
data: ProbKMA and FunBlalign. Cremona and Chiaromonte (2023) "Probabilistic K-means with
Local Alignment for Clustering and Motif Discovery in Functional Data" doi: 10.1080/10618600.2022.2156522
is a probabilistic K-means algorithm that leverages local alignment and fuzzy clustering to identify
recurring patterns (candidate functional motifs) across and within curves, allowing different por-
tions of the same curve to belong to different clusters. It includes a family of distances and a
normalization to discover various motif types and learns motif lengths in a data-driven manner.
It can also be used for local clustering of misaligned data. Di Iorio, Cremona, and Chiaromonte
(2023) "funBlalign: A Hierarchical Algorithm for Functional Motif Discovery Based on Mean
Squared Residue Scores" doi:10.48550/arXiv.2306.04254 applies hierarchical agglomerative clus-
tering with a functional generalization of the Mean Squared Residue Score to identify motifs of a
specified length in curves. This deterministic method includes a small set of user-tunable param-
eters. Both algorithms are suitable for single curves or sets of curves. The package also includes
a flexible function to simulate functional data with embedded motifs, allowing users to generate
benchmark datasets for validating and comparing motif discovery methods.

Author(s)

Maintainer: Jacopo Di lorio <jacopo.di.iorio@emory.edu>

Authors:


https://doi.org/10.1080/10618600.2022.2156522
https://doi.org/10.48550/arXiv.2306.04254

4 .diss_d0_d1_L2

* Marzia Angela Cremona
¢ Francesca Chiaromonte
¢ Niccolo Feresini

¢ Riccardo Lazzarini

.check_fits Check Fits

Description
This function checks if motifs fit within a specified curve length and whether there are overlaps
between motifs. It returns TRUE if all conditions are met and FALSE otherwise.

Usage

.check_fits(df, min_dist_motifs, len)

Arguments

df A data frame containing motif information with columns ‘start* and ‘end‘ indi-
cating the positions of motifs.

min_dist_motifs
A numeric value specifying the minimum distance required between motifs.

len A numeric value representing the total length of the curve.
Details

Check Fits for Motifs
Value

A logical value indicating whether the motifs fit within the curve and do not overlap.

.diss_do_d1_L2 Dissimilarity Index for Multidimensional Curves

Description

Computes a Sobolev-type dissimilarity index for multidimensional curves based on a weighted
combination of L2 norms of the function and its derivative. The distance is normalized on a common
support, allowing for a comparison between curves considering both their levels and variations.

Usage

.diss_do_d1_L2(y, v, w, alpha, transform_y = FALSE, transform_v = FALSE)



.diss_d0_d1_L2

Arguments

y

alpha

transform_y

transform_v

Details

A list of two matrices:

e y[[1]1]: Values of the curve at points in the domain (y(x)).
* y[[2]1]: Values of the derivative of the curve at the same points (y’(x)).

Each matrix should have d columns, where d is the dimensionality of the curves.
A list of two matrices:

e v[[1]1]: Values of the reference curve at points in the domain (v(x)).
e v[[2]1]: Values of the derivative of the reference curve at the same points
(V' (x)).
Each matrix should have d columns, where d is the dimensionality of the curves.

A numeric vector of weights for the dissimilarity index in different dimensions.
Each weight should be greater than 0.

A numeric value (between 0 and 1) that specifies the weight coefficient between
the L2 norm of the function (d0.L2) and the L2 norm of the derivative (d1.L2):

¢ alpha = @: Only the levels (d0.L2) are considered.
* alpha = 1: Only the derivative information (d1.L2) is considered.

* Values between 0 and 1 provide a mixture of both.

A logical value indicating whether to normalize y to the range [0, 1] before
applying the distance computation. Default is FALSE.

A logical value indicating whether to normalize v to the range [0, 1] before
applying the distance computation. Default is FALSE.

The dissimilarity index is calculated based on the following Sobolev-type distance:

where:

D=(1-a)-d0.L2+ «-d1.L2

e d0.L2: L2 distance considering only the levels of the curves.

e d1.L2: L2 distance considering only the derivatives of the curves.

The function normalizes the inputs based on the specified flags to ensure that all features are com-

parable.

Value

A numeric value representing the dissimilarity index between the curves defined by y and v.



6 find_min_diss

.domain Domain Length Calculation for Curves

Description

Computes the length of the domain of a curve by checking the presence of non-NA values in the
specified matrix. The function returns a logical vector indicating which rows contain at least one
non-NA element, allowing for an evaluation of the effective length of the domain.

Usage

.domain(v, use®)

Arguments
v A list containing two elements:
e v[[1]1]: A matrix representing the values of the curve (v(x)).
e v[[2]1]: A matrix representing the values of the derivative of the curve
(v’ (x).
Each matrix should have d columns, where d is the dimensionality of the curve.
useo A logical value indicating which element of v to consider:
e If use@ = TRUE, the function considers v[[1]1] (the curve values).
e If use® = FALSE, the function considers v[[2]] (the derivative values).
Details

The function evaluates each row of the specified matrix (either vL[1]] or v[[2]]) to determine if
there is at least one non-NA entry. This is particularly useful for assessing the effective domain of
curves where some values may be missing.

Value

A logical vector where each element is TRUE if at least one element in the corresponding row of the
selected matrix (either v[L[11] or v[[2]1]) is not NA, and FALSE otherwise.

.find_min_diss Find Minimum Dissimilarity

Description

Finds the shift warping that minimizes dissimilarity between multidimensional curves. The function
operates on curves represented by two sets of data, each containing multiple dimensions.



find_min_diss

Usage

.find_min_diss(

Y,

v,

alpha,

w,

c_k,

d,

useo,

usel,
transform_y
transform_v

Arguments

y

d

use®

usel

transform_y

transform_v

Details

FALSE,
FALSE

A list containing two matrices: - y@: The first set of curve values \(y(x)\). - y1:
The second set of curve values \(y’(x)\). Each matrix should have \(d\) columns
corresponding to the dimensions.

A list containing two matrices: - v@: The first set of curve values \(v(x)\). - v1:
The second set of curve values \(v’(x)\). Each matrix should have \(d\) columns
corresponding to the dimensions.

A numeric weight coefficient that balances the contributions of the L2 norms of
the two curve sets.

A numeric vector of weights for the dissimilarity index across different dimen-
sions. All weights must be positive (\(w > 0\)).

An integer specifying the minimum length of the intersection of the supports of
the shifted \(y\) and \(W\).

An integer indicating the dimensionality of the curves.

A logical value indicating whether to use the first component of the curves (i.e.,
\(y0\) and \(vO\)).

A logical value indicating whether to use the second component of the curves
(i.e., \(y1\) and \(v1})).

A logical value indicating whether to normalize \(y\) to the range \([0,1]\) before
calculating the distance.

A logical value indicating whether to normalize \(v\) to the range \([0,1]\) before
calculating the distance.

This function computes the shift warping between the provided multidimensional curves by exam-
ining various shifts and calculating the corresponding dissimilarity. The user can control which
components of the curves to include in the calculation and whether to normalize the data.

The function returns both the optimal shift and the minimal dissimilarity, which can be used to
assess the similarity between the two sets of curves under the specified constraints.



8 .find_occurrences
Value
A numeric vector containing: - The optimal shift that minimizes the dissimilarity. - The minimum
dissimilarity value found.
Author(s)
Marzia Angela Cremona & Francesca Chiaromonte
.find_occurrences Find Occurrences of a Motif
Description

Finds occurrences of a specified motif in a set of curves, where the dissimilarity is lower than a

specified threshold \( R \). The function compares the motif against curves represented in multiple

dimensions and returns the details of matching occurrences.
Usage

.find_occurrences(v, Y, R, alpha, w, c_k, use@, usel, transformed = FALSE)
Arguments

v A list containing two matrices: - v@: The first set of motif values. - v1: The sec-
ond set of motif values. Each matrix should have \( d \) columns corresponding
to the dimensions.

Y A list of \( N'\) lists, each containing two matrices: - YO: The first set of curve
values. - Y1: The second set of curve values. Each matrix should have \( d \)
columns corresponding to the dimensions.

R A numeric value representing the maximum allowed dissimilarity.

alpha A numeric value that serves as a weight coefficient between the L2 norms of the
two sets of motifs when using the dissimilarity function diss_d@_d1_L2.

w A numeric vector of weights for the dissimilarity index across different dimen-
sions. All weights must be positive (\( w > 0 ))).

c_k An integer specifying the minimum length of the intersection of the supports of
the shifted motif and the curves.

useo A logical value indicating whether to use the first component of the curves (i.e.,
\(YOV) and \( vO ).

usel A logical value indicating whether to use the second component of the curves
(1.e,\(Y1V) and \( v1\)).

transformed A logical value indicating whether to normalize the curve segments to the in-

terval [0,1] before applying the dissimilarity measure. Setting ‘transformed =
TRUE® scales each curve segment between 0 and 1, which allows for the iden-
tification of motifs with consistent shapes but different amplitudes. This nor-
malization is useful for cases where motif occurrences may vary in amplitude
but have similar shapes, enabling better pattern recognition across diverse data
scales.



.generate_coefficients 9

Details

The function systematically checks each curve in the provided list against the specified motif to
identify positions where the dissimilarity does not exceed the defined threshold \( R \). It handles
multidimensional curves and can selectively consider different components of the motifs and curves.

Value

A matrix with three columns: - curve: The ID of the curve where the motif was found. - shift:
The optimal shift at which the motif occurs. - diss: The dissimilarity value associated with the
match. If no occurrences are found, an empty matrix is returned.

Author(s)

Marzia Angela Cremona & Francesca Chiaromonte

.generate_coefficients
Generate Coefficients

Description

This function generates a vector of coefficients for a motif based on the specified distribution. It
can sample coefficients from a numeric vector, a uniform distribution, or a beta distribution.

Usage
.generate_coefficients(
motif_i,
distrib,
dist_knots,
norder,
coeff_min,
coeff_max
)
Arguments
motif_i A list representing the motif structure that includes the length (‘len*).
distrib A string or numeric vector indicating the distribution from which to generate
coefficients. Accepted values are "unif", "beta", or a numeric vector.
dist_knots A numeric value indicating the distance between knots.
norder An integer specifying the order of the B-spline.
coeff_min A numeric value indicating the minimum coefficient value for uniform or beta
distributions.
coeff_max A numeric value indicating the maximum coefficient value for uniform or beta

distributions.



10 .mapply_custom

Details

Generate Coefficients for Motif

- For uniform distribution, coefficients are generated within the specified range defined by ‘co-
eff_min‘ and ‘coeff_max‘. - For beta distribution, coefficients are scaled to the desired range using
the specified minimum and maximum values.

Value

A modified motif structure containing the generated coefficients.

.mapply_custom Custom mapply Function for Parallel Processing

Description

A wrapper function that conditionally applies either the classical ‘mapply‘ function or ‘paral-
lel::clusterMap* based on whether a cluster object is provided. If the number of clusters is not
null, it applies ‘clusterMap* for parallel execution; otherwise, it defaults to the classical ‘mapply°.

Usage
.mapply_custom(
cl,
FUN,
MoreArgs = NULL,
SIMPLIFY = TRUE,
USE.NAMES = TRUE
)
Arguments
cl A cluster object created by ‘makeCluster’. If ‘NULL®, the classical ‘mapply*
function is used.
FUN A function to apply to the arguments.
Arguments to be passed to ‘FUN*. These should be vectors of equal length.
MoreArgs A list of additional arguments to be passed to ‘FUN".
SIMPLIFY A logical value indicating whether to simplify the result if possible. Default is
‘TRUE".
USE . NAMES A logical value indicating whether to use names from the first argument. Default
is ‘TRUE".
Details

This function is useful for switching between parallel and non-parallel execution based on the avail-
ability of a cluster, allowing for more flexible and efficient code.



.resample 11

Value
A vector or list containing the results of applying the function ‘FUN° to the provided arguments.
The output type depends on the value of ‘SIMPLIFY ‘.

Author(s)

Marzia Angela Cremona & Francesca Chiaromonte

.resample Resample Vector

Description

This function resamples a vector by randomly selecting indices. The number of samples can be
specified.

Usage
.resample(x, ...)
Arguments
X A vector to be resampled.
Additional arguments passed to the sampling function.
Details

Resample Vector

Value

A resampled vector.

.select_domain .select_domain

Description
This function selects the portion of a motif that is free from NA values based on a specified domain.
It allows for the selection of two matrices, ‘vO‘ and ‘v1°, depending on the boolean flags provided.
Usage

.select_domain(v, v_dom, use@, usel)



12 .transform_list

Arguments
v A list containing two elements:
e v[[1]]: A matrix representing \( v(x) \) with \( d ) columns.
* v[[2]]: A matrix representing \( v’(x) \) with \( d \) columns.
v_dom A boolean vector indicating the domain for ‘vO* and ‘v1°.
useo A boolean value indicating whether to select ‘vO‘. If TRUE, ‘vO‘ is selected
based on ‘v_dom°.
usel A boolean value indicating whether to select ‘v1‘. If TRUE, ‘v1°‘ is selected
based on ‘v_dom".
Details

Select Domain of a Motif

Value
A list containing the selected portions of ‘vO‘ and ‘v1° (if applicable), with dimensions adjusted
accordingly.

Author(s)

Marzia Angela Cremona & Francesca Chiaromonte

.transform_list Transform List Structure

Description
This function modifies a list of structures by checking for the presence of a "with_noise" field. If
absent, it creates a new sub-list containing relevant fields.

Usage

.transform_list(lst, noise_str)

Arguments
1st A list containing elements to be transformed.
noise_str A string indicating the noise structure to apply.
Details

Transform List Structure

Value

The transformed list with updated structures.



transform_to_matrix 13

.transform_to_matrix  Transform to Matrix

Description

This function transforms a numeric vector into a matrix. If the input is a single number, it creates a
1x1 matrix. If the input is a vector, it creates a 1xN matrix. If the input is already a matrix, it returns
it unchanged.

Usage

.transform_to_matrix(input)

Arguments

input A numeric vector or matrix to be transformed.

Details

Transform Input to Matrix

- If the input is neither a numeric vector nor a matrix, an error is raised.

Value

A matrix representation of the input.

add_error_to_motif Add Additive Error to Motif

Description
This function adds an additive noise to a given motif based on specified parameters. The noise is
generated as a percentage of the standard deviation of the motif.

Usage

add_error_to_motif(or_y, noise_str, start_point, end_point, k)

Arguments
or_y A numeric vector representing the original motif values.
noise_str A string or numeric vector indicating the structure of the noise to be added.
start_point A numeric vector indicating the starting points of motifs.
end_point A numeric vector indicating the ending points of motifs.

k An integer representing the current iteration or motif index.



14 add_motif

Details
Add Error to Motif

Value

A numeric vector of the motif values with added noise.

add_motif Add Motif to Base Curve

Description

This function adds specified motifs to a base curve, adjusting coefficients and applying noise as
needed. It also computes the signal-to-noise ratio (SNR) for the motifs.

Usage

add_motif(
base_curve,
mot_pattern,
mot_len,
dist_knots,
mot_order,
mot_weights,
noise_str,
only_der,
coeff_min_shift,
coeff_max_shift

)

Arguments
base_curve A list representing the base curve structure with coefficients and basis.
mot_pattern A data frame containing information about the motif patterns to add.
mot_len A matrix specifying the lengths of the motifs.
dist_knots A numeric value indicating the distance between knots for the motifs.
mot_order An integer specifying the order of the B-spline for the motifs.
mot_weights A list of numeric vectors containing weights for each motif.
noise_str A list of structures defining the noise to be added to motifs.
only_der A logical value indicating whether to add only derivatives.

coeff_min_shift

A numeric value for the minimum shift to apply to coefficients.
coeff_max_shift

A numeric value for the maximum shift to apply to coefficients.



cluster_candidate_motifs 15

Details
Add Motif to Base Curve

Value

A list containing the updated base curve, background information, motifs with and without noise,
and SNR data.

cluster_candidate_motifs
Cluster Candidate Motifs

Description

This function clusters candidate motifs based on their distances and computes group-specific radii
for motif clusters. It utilizes K-nearest neighbors (KNN) for determining a global radius and evalu-
ates overlaps among motifs. The function supports parallel computation for efficiency.

Usage

cluster_candidate_motifs(
filter_candidate_motifs_results,
motif_overlap = 0.6,
k_knn = 3,
votes_knn_Rall = 0.
votes_knn_Rm = 0.5,
worker_number = NULL

5,

Arguments

filter_candidate_motifs_results
A list containing results from filtering candidate motifs, including various com-
ponents like ‘YO, “Y1°, “VO_clean‘, ‘V1_clean‘, ‘D_clean‘, and more, which
are essential for the clustering process.

motif_overlap A numeric value representing the minimum proportion of overlap required be-
tween motifs to be considered similar (default is 0.6).

k_knn An integer specifying the number of nearest neighbors to consider when deter-
mining the global radius (default is 3).

votes_knn_Rall A numeric value indicating the threshold for KNN voting when determining the
global radius (default is 0.5).

votes_knn_Rm A numeric value indicating the threshold for KNN voting when determining
group-specific radii (default is 0.5).

worker_number  An optional integer specifying the number of parallel workers to use. If NULL,
it defaults to the number of available cores minus one.



16 cluster_candidate_motifs_plot

Details

This function performs the following steps: 1. Sets up parallel jobs based on the specified ‘worker_number*.
2. Prepares input data based on the type of distance measure used. 3. Computes distances between
motifs. 4. Determines a global radius (‘R_all) using KNN classification. 5. Clusters motifs and
determines group-specific radii (‘R_m*) for each cluster.

Value

A list containing: - ‘VV_D*‘: Matrix of distances between motifs. - ‘VV_S*: Matrix of shifts
between motifs. - ‘’k_knn‘: The value of K used in KNN. - ‘votes_knn_Rall‘: Voting threshold for
the global radius. - ‘R_all‘: The global radius determined from the clustering process. - ‘hclust_res*:
Result of hierarchical clustering (if applicable). - ‘votes_knn_Rm*: Voting threshold for group-
specific radius. - ‘R_m*: Vector of group-specific radii for each cluster. - All components from the
input ‘filter_candidate_motifs_results*.

cluster_candidate_motifs_plot
cluster_candidate_motifs_plot

Description

This function generates plots to visualize the results of the ‘cluster_candidate_motifs‘ function. It
provides insights into the distances between motifs and curves, group-specific radii, and displays
aligned motifs for each cluster.

Usage

cluster_candidate_motifs_plot(
cluster_candidate_motifs_results,

ylab = HH’
R_all = cluster_candidate_motifs_results$R_all,
R_m = NULL,
ask = TRUE
)
Arguments

cluster_candidate_motifs_results

A list containing the output of the ‘cluster_candidate_motifs‘ function, which
includes clustering results and distances between motifs and curves.

ylab A character string specifying the label for the y-axis in the plots. Default is an
empty string.

R_all A numeric value representing the global radius. This is used to cut the dendro-
gram, requiring groups to be more than twice ‘R_all‘ apart. The default is set to
the ‘R_all* component of the input results.



compare_nodes 17

R_m A numeric vector with group-specific radii. The length of this vector must match
the number of clusters obtained by cutting the dendrogram at height ‘2 * R_all°.
If set to NULL, the radius ‘R_m* is determined within each group based on the
distances between motifs of the same group and all curves.

ask A logical value indicating whether the user should be prompted before a new
plot is drawn. Default is TRUE.

Details

This function produces: - Histograms of distances between all motifs and all curves, highlighting
the global radius. - A dendrogram of motifs cut at ‘2 * R_all‘, which allows visualization of the
clustering structure. - Histograms of distances for motifs within specific clusters, comparing motifs
from curves with and without the motifs. - Plots of aligned motifs for each cluster, showing their
positions and distributions. - A scatter plot displaying the approximate average distance against the
approximate frequency for motifs in each cluster.

Author(s)

Marzia Angela Cremona & Francesca Chiaromonte

compare_nodes Compare Nodes

Description

This function compares two nodes to determine if all elements of the first node (‘node_1°) are
present within the accolites of the second node (‘node_2°). Accolites are defined as a set of elements
retrieved from the ‘get_accolites® function, which operates on ‘node_1° within a specified window
of data. The comparison is successful if all elements in ‘node_1° are found in the accolites of
‘node_2°.

Usage

compare_nodes(node_1, node_2)

Arguments
node_1 A vector representing the first node whose elements will be compared against
the accolites of ‘node_2°.
node_2 A vector representing the second node, from which accolites will be derived for
comparison.
Value

A logical value. The function returns “TRUE® if all elements of ‘node_1° are found in the accolites
of ‘node_2°. It returns ‘FALSE® otherwise.



18 discoverMotifs

discoverMotifs Functional Motif Discovery

Description

The ‘discoverMotifs* function facilitates the discovery of recurring patterns, or motifs, within func-
tional data by employing two sophisticated algorithms: ProbKMA (Probabilistic K-means with Lo-
cal Alignment) and funBIalign. These algorithms are designed to identify and cluster functional
motifs across multiple curves, leveraging advanced clustering and alignment techniques to handle
complex data structures.

ProbKMA integrates probabilistic clustering with local alignment strategies, enabling the detection
of motifs that exhibit variability in both shape and position across different curves. This method is
particularly adept at handling noisy data and motifs that may appear at varying scales or locations
within the curves.

On the other hand, funBIalign utilizes hierarchical clustering based on mean squared residue
scores to uncover motifs. This approach effectively captures the additive nature of functional motifs,
considering both portion-specific adjustments and time-varying components to accurately identify
recurring patterns.

By providing a flexible interface that accommodates different clustering paradigms, ‘discoverMo-
tifs* empowers users to perform robust motif discovery tailored to their specific data characteristics
and analytical requirements. Whether opting for the probabilistic and alignment-focused ProbKMA
or the hierarchical and residue-based funBIalign, users can leverage these methods to extract
meaningful and interpretable motifs from their functional datasets.

Usage

discoverMotifs(
Yo,
method,
stopCriterion,
name,
plot,
probKMA_options = list(),
funBIalign_options = list(portion_len = NULL, min_card = NULL, cut_off = NULL),
worker_number = NULL

)
Arguments
Y0 A list containing N vectors (for univariate curves) or N matrices (for multivariate
curves) representing the functional data.
method A character string specifying the motif discovery algorithm to use. Acceptable

values are "ProbKMA" for Probabilistic K-means with Local Alignment and
"funBlalign" for Functional Bi-directional Alignment.

stopCriterion A character string indicating the convergence criterion for the selected algo-
rithm.



discoverMotifs 19

name A character string specifying the name of the output directory where results will
be saved.
plot A logical value indicating whether to generate and save plots of the discovered

motifs and clustering results.

probKMA_options
A list of options specific to the ProbKMA algorithm.

funBIalign_options
A list of options specific to the funBlIalign algorithm.

worker_number  An integer specifying the number of CPU cores to utilize for parallel computa-
tions.

Details

The ‘discoverMotifs‘ function dynamically switches between two advanced motif discovery algo-
rithms based on the user’s specification. Each algorithm employs distinct strategies to identify
and cluster motifs within functional data, offering flexibility and adaptability to various analytical
scenarios.

Value

A list containing the discovered motifs and their corresponding statistics, tailored to the selected
method:

motifs A list of identified motifs, each containing the motif’s representative curve, membership
probabilities, and alignment information.

statistics Detailed statistics for each motif, including measures such as silhouette scores, vari-
ance explained, and other relevant metrics that quantify the quality and significance of the
discovered motifs.

parameters The final parameters and configurations used during the motif discovery process, pro-
viding transparency and facilitating reproducibility of the results.

plots If plot = TRUE, this component contains the generated plots visualizing the motifs and their
distribution across the functional data.

Theoretical Background for ProbKMA

ProbKMA is inspired by methodologies prevalent in bioinformatics, particularly those involving local
alignment techniques extended from high-similarity seeds. This algorithm combines fuzzy cluster-
ing approaches with local alignment strategies to effectively minimize a generalized least squares
functional. The minimization process can incorporate both the levels and derivatives of the curves
through a Sobolev-based distance metric, enhancing the algorithm’s sensitivity to both shape and
rate changes in the data.

Throughout its iterative process, ProbKMA refines motif centers, membership probabilities, and
alignment shifts, making it highly effective for capturing complex motif structures and motifs dis-
tributed across multiple curves. This ensures that the discovered motifs are both representative and
robust against variations and noise within the functional data.



20 discoverMotifs

Theoretical Background for funBlalign

funBIalign models functional motifs as an additive combination of motif means, portion-specific
adjustments, and time-varying components. The algorithm constructs a hierarchical dendrogram
utilizing the generalized mean squared residue score (fMSR) to identify candidate motifs across
curves.

A critical aspect of funBIalign is its post-processing step, which filters out redundant motifs and
refines the final selection to ensure that only the most significant and representative motifs are
retained. This hierarchical approach allows for a nuanced identification of motifs, capturing both
broad and subtle patterns within the data.

Common Parameters
The following parameters are common to both ProbKMA and funBIalign algorithms:

Y0 A list containing N vectors (for univariate curves) or N matrices (for multivariate curves) repre-
senting the functional data. Each curve is evaluated on a uniform grid, ensuring consistency
across the dataset.

method A character string specifying the motif discovery algorithm to use. Acceptable values are
"ProbKMA" for Probabilistic K-means with Local Alignment and "funBIalign" for Func-
tional Bi-directional Alignment.

stopCriterion A character string indicating the convergence criterion for the selected algorithm.
For ProbKMA, options include "max"”, "mean”, or "quantile” based on the Bhattacharyya
distance between memberships in successive iterations. For funBIalign, options are "fMRS"
(functional Mean Squared Residue) or "Variance” to guide the ranking of motifs.

name A character string specifying the name of the output directory where results will be saved.
This facilitates organized storage and easy retrieval of analysis results.

plot A logical value indicating whether to generate and save plots of the discovered motifs and
clustering results. When set to TRUE, visualizations are produced to aid in the qualitative
assessment of the motif discovery process.

worker_number An integer specifying the number of CPU cores to utilize for parallel computa-
tions. By default, the function uses the total number of available cores minus one, optimizing
computational efficiency without overloading the system.

ProbKMA Options
The following parameters are specific to the ProbKMA algorithm:

K An integer or vector specifying the number of motifs to be discovered. It can be a single integer
for uniform motif discovery or a vector for specifying different numbers of motifs.

¢ An integer or vector indicating the minimum motif lengths. This ensures that each discovered
motif meets a specified minimum length requirement, maintaining the integrity of motif struc-
tures.

c_max An integer or vector specifying the maximum motif lengths, allowing control over the upper
bounds of motif sizes to prevent excessively long motifs.

diss A character string defining the dissimilarity measure to use. Possible values include "d@_L2",
"d1_L2", and "d@_d1_L2", which determine how the algorithm quantifies differences between
motifs based on level and derivative information.



discoverMotifs 21

alpha A numeric value between 0 and 1 that serves as a weight parameter between do_L2 and
d1_L2 when using d@_d1_L2. An alpha of 0 emphasizes d0_L2, while an alpha of 1 empha-
sizes d1_L2, allowing for balanced consideration of both metrics.

w A numeric vector specifying the weight for the dissimilarity index across different dimensions.
All values must be positive, enabling the algorithm to prioritize certain dimensions over others
based on their relative importance.

m A numeric value greater than 1 that acts as the weighting exponent in the least-squares functional
method. This parameter influences the sensitivity of the algorithm to differences in motif
alignment and membership probabilities.

iter_max An integer specifying the maximum number of iterations allowed for the algorithm to
converge. This prevents excessive computation time by limiting the number of optimization
steps.

quantile A numeric value representing the quantile probability used when stopCriterion is set
to "quantile”. This determines the threshold for convergence based on the distribution of
Bhattacharyya distances.

tol A numeric value specifying the tolerance level for convergence. The algorithm stops iterat-
ing if the change in the stop criterion falls below this threshold, ensuring precise and stable
convergence.

iter4elong An integer indicating the number of iterations after which motif elongation is per-
formed. If set to a value greater than iter_max, no elongation is performed. Motif elongation
allows the algorithm to extend motifs to better fit the data.

tol4elong A numeric value defining the tolerance on the Bhattacharyya distance for motif elonga-
tion. This parameter controls how much the objective function can increase during elongation,
ensuring that motif extensions do not degrade the overall fit.

max_elong A numeric value representing the maximum elongation allowed in a single iteration,
expressed as a percentage of the motif length. This prevents excessive extension of motifs in
any single step.

trials_elong An integer specifying the number of elongation trials (equispaced) on each side of
the motif in a single iteration. Multiple trials enhance the robustness of motif elongation by
exploring various extension possibilities.

deltaJK_elong A numeric value indicating the maximum relative increase in the objective func-
tion permitted during motif elongation. This ensures that elongation steps contribute positively
to the motif fitting process.

max_gap A numeric value defining the maximum gap allowed in each alignment as a percentage of
the motif length. This parameter controls the allowable discontinuity between aligned motifs,
maintaining coherence in motif placement.

iter4clean An integer specifying the number of iterations after which motif cleaning is per-
formed. If set to a value greater than iter_max, no cleaning is performed. Motif cleaning
removes redundant or poorly fitting motifs to refine the final motif set.

tol4clean A numeric value representing the tolerance on the Bhattacharyya distance for motif
cleaning. This parameter determines the threshold for identifying and removing redundant
motifs during the cleaning process.

quantile4clean A numeric value specifying the dissimilarity quantile used for motif cleaning.
This quantile determines which motifs are considered sufficiently dissimilar to be retained in
the final set.



22

discoverMotifs

return_options A logical value indicating whether to return the options passed to the ProbKMA
method. When set to TRUE, users receive detailed information about the algorithm’s configu-
ration, facilitating transparency and reproducibility.

Y1 A list of derivative curves used if the dissimilarity measure "d@_d1_L2" is selected. These
derivatives enhance the algorithm’s ability to capture both shape and rate changes in the func-
tional data.

P@ An initial membership matrix (N x K), where N is the number of curves and K is the number
of clusters. If set to NULL, a random matrix is generated, initiating the probabilistic clustering
process.

SO An initial shift warping matrix (N x K). If set to NULL, a random matrix is generated to initialize
the alignment process, allowing motifs to adapt to variations in the data.

n_subcurves An integer specifying the number of splitting subcurves used when the number of
curves is equal to one. This parameter allows the algorithm to handle single-curve datasets by
dividing them into manageable segments for motif discovery.

sil_threshold A numeric value representing the threshold to filter candidate motifs based on their
silhouette scores. This ensures that only motifs with sufficient clustering quality are retained
in the final results.

set_seed A logical value indicating whether to set a random seed for reproducibility. When set to
TRUE, the function initializes the random number generator to ensure consistent results across
multiple runs.

seed An integer specifying the random seed used for initialization when set_seed is TRUE. This
parameter guarantees reproducibility of the clustering and alignment processes.

exe_print A logical value determining whether to print execution details for each iteration. When
set to TRUE, users receive real-time feedback on the algorithm’s progress, aiding in monitoring
and debugging.

V_init A list of motif sets provided as specific initializations for clustering rather than using ran-
dom initializations. The ‘V_init* parameter allows users to provide a set of motifs as starting
points for the algorithm, instead of relying on random initialization. If ‘n_init* is specified
as greater than the number of motifs given in ‘V_init‘, the remaining initializations will be
randomly generated. For example, if ‘n_init = 10° but only 5 motif sets are given in ‘V_init",
the algorithm will use these 5 initializations and generate an additional 5 randomly.

transformed A logical value indicating whether to normalize the curve segments to the interval
[0,1] before applying the dissimilarity measure. Setting ‘transformed = TRUE* scales each
curve segment between 0 and 1, which allows for the identification of motifs with consistent
shapes but different amplitudes. This normalization is useful for cases where motif occur-
rences may vary in amplitude but have similar shapes, enabling better pattern recognition
across diverse data scales.

n_init_motif The number of initial motif sets from “V_init* to be used directly as starting points
in clustering. If ‘n_init_motif* is set to a value larger than the number of motifs provided in
‘V_init‘, additional initializations will be generated randomly to meet the specified number.
For example, if ‘n_init = 10° and ‘n_init_motif = 5° with only 3 motif sets in ‘V_init‘, the
algorithm will use these 3 sets and generate 7 additional random initializations.

funBlalign Options

The following parameters are specific to the funBIalign algorithm:



discoverMotifs 23

portion_len An integer specifying the length of curve portions to align. This parameter controls
the granularity of alignment, allowing the algorithm to focus on specific segments of the curves
for motif discovery.

min_card An integer representing the minimum cardinality of motifs, i.e., the minimum number
of motif occurrences required for a motif to be considered valid. This ensures that only motifs
with sufficient representation across the dataset are retained.

cut_off A double that specifies the number of top-ranked motifs to keep based on the ranking cri-
teria, facilitating focused visualization of the most significant motifs. In particular, all motifs
that rank below the cut_off are retained.

See Also

ProbKMA: Probabilistic K-means with Local Alignment
funBlalign: Hierarchical Clustering with Mean Squared Residue Scores.

Examples

# Example 1: Discover motifs using ProbkKMA

# Define dissimilarity measure and weight parameter
diss <- 'do_d1_L2'
alpha <- 0.5

# Define number of motifs and their minimum lengths
K <- c(2, 3)

c <- c(61, 51)

n_init <- 10

# Load simulated data
data("simulated200")

# Perform motif discovery using ProbKMA
results <- funMoDisco::discoverMotifs(
YO = simulated200%$Y0,
method = "ProbkMA",

stopCriterion = "max",
name = tempdir(),
plot = TRUE,

probKMA_options = list(
Y1 = simulated200%$Y1,
K =K,
c=oc,
n_init = n_init,
diss = diss,
alpha = alpha

),

worker_number = NULL

)

# Modify silhouette threshold and re-run post-processing
results <- funMoDisco::discoverMotifs(


https://arxiv.org/pdf/1808.04773
https://arxiv.org/pdf/2306.04254

24

)

# Example 2: Discover motifs using funBIalign
results_funbialign <- funMoDisco::discoverMotifs(

Y0 = simulated200$Y0,
method = "ProbkKMA",

stopCriterion = "max",
name = tempdir(),
plot = TRUE,

probKMA_options = list(
Y1 = simulated200%$Y1,
K =K,
c=c,
n_init = n_init,
diss = diss,
alpha = alpha,
sil_threshold = 0.5
),

worker_number = NULL

YO = simulated2003%Y0,
method = "funBIalign",

stopCriterion = 'Variance',

name = tempdir(),
plot = TRUE,

funBIalign_options = list(

portion_len = 60,
min_card = 3,
cut_off = 1.0

filter_candidate_motifs

filter_candidate_motifs

Filter Candidate Motifs

Description

Filters the candidate motifs based on a specified threshold for the average silhouette index and a
threshold for the size of the curves in the motif. This function is useful for refining the set of

candidate motifs by removing those that do not meet the defined criteria.

Usage

filter_candidate_motifs(

find_candidate_motifs_results,

sil_threshold = 0.5,
size_threshold = 2,



filter_candidate_motifs 25

find_candidate_motifs_results$K,
find_candidate_motifs_results$c

[N
1

Arguments

find_candidate_motifs_results
Output from the find_candidate_motif function, which contains the results
of the motif discovery process.

sil_threshold A numeric value representing the threshold for the average silhouette index.
Values should be between -1 and 1.

size_threshold An integer representing the threshold for the size of the motif, defined as the
number of curves in the cluster. Should be at least 1.

K A vector containing the numbers of motifs that must be considered. This should
be a subset of find_candidate_motifs_results$K.

c A vector with the minimum motif lengths that must be considered. This should
be a subset of find_candidate_motifs_results$c.

Details

This function checks the provided thresholds for silhouette indices and motif sizes, ensuring they are
valid before filtering the motifs. If any parameters are invalid, default values from the find_candidate_motifs_results
are used.

The function then loads the necessary data files for each combination of motif numbers and sizes,
filtering them using the silhouette criteria. The resulting motifs are sorted by their length in de-
scending order, and the filtered results are returned in a structured list.

Value

A list containing the filtered candidate motifs and some ProbKMA options:

V@_clean A vector of candidate motifs after filtering.

V1_clean A vector of derived candidate motifs after filtering.

D_clean A matrix of distances of candidate motifs from the curves after filtering.
P_clean A matrix of probabilities of membership of the candidate motifs after filtering.
Yo The original input data for the first curve.

Y1 The original input data for the derivative of the curve.

diss The dissimilarity matrix used in motif discovery.

alpha The weight parameter for the Sobolev distance.

w Weights for the dissimilarity index across different dimensions.

max_gap Maximum allowable gap between curves.



26 find_recommended_path

find_recommended_path Find Recommended Path in a Tree Structure

Description

This function identifies a recommended path in a tree structure based on user-defined minimum
criteria. It filters nodes based on the number of leaves and calculates scores for potential recom-
mendations.

Usage

find_recommended_path(minidend, window_data, min_card)

Arguments
minidend A tree structure representing the hierarchy of nodes, from which leaves will be
derived for analysis.
window_data A matrix or data frame containing data associated with each node.
min_card An integer specifying the minimum number of leaves that must be present in a
node for it to be considered for recommendation.
Details

The function follows these steps: 1. Extracts the leaves and heights of each node in the tree. 2.
Filters nodes based on the minimum number of leaves specified by min_card. 3. Identifies nodes
that are parents of the filtered nodes, marking them for deletion. 4. For each seed node, calculates
crossing points with other seed nodes. 5. Calculates adjusted scores for nodes in the seed path
using the C++ function fMSR_adj. 6. Recommends nodes based on calculated scores and returns a
summary of results.

Value

A list containing: - seed_path_info: A data frame summarizing the valid seed nodes, their number
of leaves, heights, and recommended nodes. - seed_path_list: A list containing the names of
elements for each node in the seed path. - score_path_list: A list of scores adjusted for each
node in the seed path. - recommended_node_labels: A list of labels for the recommended nodes.
- recommended_node_scores: A numeric vector containing scores for the recommended nodes.



generateCurves 27

generateCurves Generate Functional Curves with Embedded Motifs

Description

The ‘generateCurves* function is designed to create synthetic functional data by embedding prede-
fined motifs into background curves. This is particularly useful for testing and benchmarking motif
discovery and clustering algorithms in functional data analysis. By allowing the incorporation of
various noise types and controlled motif placements, the function provides a flexible framework for
simulating realistic scenarios where motifs may or may not be noisy.

The function supports two types of noise addition:

* Pointwise Noise: Adds noise directly to the data points of the curves, simulating random
fluctuations or measurement errors.

* Coefficient Noise: Perturbs the coefficients of the basis functions used to represent the curves,
allowing for smoother variations and controlled distortions.

Additionally, ‘generateCurves* allows for the specification of vertical shifts to motifs, enabling the
simulation of motifs appearing at different baseline levels within the curves. The function ensures
that all generated subcurves meet the minimum motif length requirement, maintaining the integrity
of the embedded motifs.

This function is integral to the ‘funMoDisco‘ package’s motif simulation capabilities, providing
users with the ability to create complex functional datasets tailored to their specific research or
testing needs.

Usage

generateCurves(
object,
noise_type = NULL,
noise_str = NULL,
seed_background = 777,
seed_motif = 43213,
only_der = TRUE,

coeff_min_shift = -10,
coeff_max_shift = 10
)
Arguments
object An S4 object of class ‘motifSimulation® that has been previously constructed
using the ‘motifSimulationBuilder‘ function. This object encapsulates all neces-
sary parameters and configurations for curve and motif generation (mandatory).
noise_type A character string specifying the type of noise to add to the curves. Acceptable

values are “’pointwise’* for adding noise directly to data points or “’coeff’* for
perturbing the coefficients of the basis functions (mandatory).



28

noise_str

seed_background

seed_motif

only_der

coeff_min_shift

coeff_max_shift

Value

generateCurves

A list detailing the structure and magnitude of the noise to be added for each
motif.

* If ‘noise_type* is “’pointwise’‘, ‘noise_str‘ should contain vectors or matri-
ces indicating the noise level for each motif.

¢ ¢

* If ‘noise_type‘ is “’coeff’*, ‘noise_str‘ should include individual values or
vectors representing the noise to be applied to the coefficients.

This parameter allows fine-grained control over the noise characteristics applied
to each motif (mandatory).

An integer value setting the seed for the random number generator used in back-
ground curve generation. This ensures reproducibility of the background curves.
Default is “777°.

An integer value setting the seed for the random number generator used in motif
generation. This ensures reproducibility of the motif embedding process. De-
fault is ‘43213

A logical value indicating whether to apply only derivative-based modifications
to the motifs (‘“TRUE®) or to add a vertical shift in addition to derivative modi-
fications (‘FALSE®). Setting to ‘FALSE" introduces vertical shifts to each motif
instance, allowing motifs to appear at different baseline levels within the curves.
Default is ‘TRUE".

A numeric value specifying the minimum vertical shift to be applied to motifs
when ‘only_der‘ is set to ‘FALSE‘. This parameter controls the lower bound of
the vertical displacement of motifs. Default is ‘-10°.

A numeric value specifying the maximum vertical shift to be applied to motifs
when ‘only_der‘ is set to ‘FALSE‘. This parameter controls the upper bound of
the vertical displacement of motifs. Default is ‘10°.

A list containing the following components:

* basis: The basis functions used to represent the curves.

* background: A list containing the coefficients and the background curves without any motifs.

* no_noise: A list containing the coefficients and the background curves with embedded motifs
but without added noise.

» with_noise: A list containing the noise structure and the curves with embedded motifs and

added noise.

* SNR: A list of Signal-to-Noise Ratio (SNR) metrics calculated for each motif within each
curve, useful for assessing the quality of motif embedding.

Examples

# Example @: Special case with no motifs

mot_len <- 100



generateCurves 29

mot_details <- NULL # or list()
builder <- funMoDisco::motifSimulationBuilder(N = 20, len = 300, mot_details)
curves <- funMoDisco: :generateCurves(builder)

# Example 1: Set the motif position and add pointwise noise
# Define motif positions and their respective curves
motif_str <- rbind.data.frame(

c(1, 1, 20),

c(2, 1, 2),

c(2, 7, 10,

c(2,17,1)
)

names(motif_str) <- c("motif_id", "curve"”, "start_break_pos")

# Define motif details
motl <- list(

"len” = mot_len,

"coeffs” = NULL,

"occurrences” = motif_str %>% filter(motif_id == 1)
)
mot2 <- list(

"len” = mot_len,

"coeffs" = NULL,

"occurrences” = motif_str %>% filter(motif_id == 2)
)
mot_details <- list(motl, mot2)

# Define noise structure for pointwise noise

noise_str <- list(
rbind(rep(2, 100), rep(c(rep(@.1, 50), rep(2, 50)), 1)),
rbind(rep(0.0, 100), rep(0.5, 100))

)

# Build the simulation object
builder <- funMoDisco: :motifSimulationBuilder(N = 20, len = 300, mot_details, distribution = 'beta')

# Generate curves with pointwise noise
curves <- funMoDisco: :generateCurves(builder, noise_type = 'pointwise', noise_str = noise_str)

# Example 2: Set the motif position and add coefficient noise
# Define noise structure for coefficient noise
noise_str <- list(c(0.1, 1.0, 5.0), c(0.0, 0.9, 0.0))

# Generate curves with coefficient noise without vertical shifts
curves <- funMoDisco: :generateCurves(builder, noise_type = 'coeff', noise_str, only_der = FALSE)

# Example 3: Random motif positions and add pointwise noise
motl <- list(

"len” = mot_len,

"coeffs" = NULL,

"occurrences” = 5

)
mot2 <- list(



30 generateCurves,motitSimulation-method

"len"” = mot_len,
"coeffs” = NULL,
"occurrences” = 6

)
mot_details <- list(motl, mot2)

# Define noise structure for pointwise noise
noise_str <- list(

rbind(rep(2, 100)),

rbind(rep(0.5, 100))
)

# Build the simulation object
builder <- funMoDisco: :motifSimulationBuilder(N = 20, len = 300, mot_details, distribution = 'beta')

# Generate curves with pointwise noise and vertical shifts
curves <- funMoDisco: :generateCurves(builder, noise_type = 'pointwise', noise_str, only_der = FALSE)

# Example 4: Random motif positions and add coefficient noise
# Define noise structure for coefficient noise
noise_str <- list(c(0.1, 5.0, 10.9), c(0.1, 5.0, 10.0))

# Generate curves with coefficient noise and vertical shifts
curves <- funMoDisco: :generateCurves(builder, noise_type = 'coeff', noise_str, only_der = FALSE)

generateCurves,motifSimulation-method
Generate Functional Curves with Embedded Motifs

Description

The ‘generateCurves* function is designed to create synthetic functional data by embedding prede-
fined motifs into background curves. This is particularly useful for testing and benchmarking motif
discovery and clustering algorithms in functional data analysis. By allowing the incorporation of
various noise types and controlled motif placements, the function provides a flexible framework for
simulating realistic scenarios where motifs may or may not be noisy.

The function supports two types of noise addition:

* Pointwise Noise: Adds noise directly to the data points of the curves, simulating random
fluctuations or measurement errors.

* Coefficient Noise: Perturbs the coefficients of the basis functions used to represent the curves,
allowing for smoother variations and controlled distortions.

Additionally, ‘generateCurves* allows for the specification of vertical shifts to motifs, enabling the
simulation of motifs appearing at different baseline levels within the curves. The function ensures
that all generated subcurves meet the minimum motif length requirement, maintaining the integrity
of the embedded motifs.



generateCurves,motifSimulation-method 31

This function is integral to the ‘funMoDisco‘ package’s motif simulation capabilities, providing
users with the ability to create complex functional datasets tailored to their specific research or
testing needs.

Usage

## S4 method for signature 'motifSimulation'
generateCurves(

object,

noise_type = NULL,

noise_str = NULL,

seed_background = 777,

seed_motif = 43213,

only_der = TRUE,

coeff_min_shift = -10,
coeff_max_shift = 10
)
Arguments
object An S4 object of class ‘motifSimulation® that has been previously constructed
using the ‘motifSimulationBuilder* function. This object encapsulates all neces-
sary parameters and configurations for curve and motif generation (mandatory).
noise_type A character string specifying the type of noise to add to the curves. Acceptable
values are “’pointwise’‘ for adding noise directly to data points or “’coeff”* for
perturbing the coefficients of the basis functions (mandatory).
noise_str A list detailing the structure and magnitude of the noise to be added for each

motif.

* If ‘noise_type‘ is “’pointwise’‘, ‘noise_str should contain vectors or matri-
ces indicating the noise level for each motif.

* If ‘noise_type‘ is “coeff’*, ‘noise_str* should include individual values or
vectors representing the noise to be applied to the coefficients.

This parameter allows fine-grained control over the noise characteristics applied
to each motif (mandatory).

seed_background
An integer value setting the seed for the random number generator used in back-
ground curve generation. This ensures reproducibility of the background curves.
Default is “777¢.

seed_motif An integer value setting the seed for the random number generator used in motif
generation. This ensures reproducibility of the motif embedding process. De-
fault is ‘43213

only_der A logical value indicating whether to apply only derivative-based modifications
to the motifs (‘TRUE®) or to add a vertical shift in addition to derivative modi-
fications (‘FALSE®). Setting to ‘FALSE* introduces vertical shifts to each motif
instance, allowing motifs to appear at different baseline levels within the curves.
Default is “TRUE".



32 generateCurves,motitSimulation-method

coeff_min_shift
A numeric value specifying the minimum vertical shift to be applied to motifs
when ‘only_der* is set to ‘FALSE‘. This parameter controls the lower bound of
the vertical displacement of motifs. Default is ‘-10°.

coeff_max_shift
A numeric value specifying the maximum vertical shift to be applied to motifs
when ‘only_der* is set to ‘FALSE‘. This parameter controls the upper bound of
the vertical displacement of motifs. Default is ‘10°.

Value

A list containing the following components:

* basis: The basis functions used to represent the curves.
* background: A list containing the coefficients and the background curves without any motifs.

* no_noise: A list containing the coefficients and the background curves with embedded motifs
but without added noise.

» with_noise: A list containing the noise structure and the curves with embedded motifs and
added noise.

* SNR: A list of Signal-to-Noise Ratio (SNR) metrics calculated for each motif within each
curve, useful for assessing the quality of motif embedding.

Examples

# Example 0: Special case with no motifs

mot_len <- 100

mot_details <- NULL # or list()

builder <- funMoDisco::motifSimulationBuilder(N = 20, len = 300, mot_details)
curves <- funMoDisco::generateCurves(builder)

# Example 1: Set the motif position and add pointwise noise
# Define motif positions and their respective curves
motif_str <- rbind.data.frame(

c(1, 1, 20),

c(2, 1, 2),

c(2, 7, 1),

c(2,17,1)
)

names(motif_str) <- c("motif_id", "curve"”, "start_break_pos")

# Define motif details
motl <- list(

"len"” = mot_len,

"coeffs" = NULL,

"occurrences” = motif_str %>% filter(motif_id == 1)
)
mot2 <- list(

"len” = mot_len,

"coeffs” = NULL,
"occurrences” = motif_str %>% filter(motif_id == 2)



generateCurves,motifSimulation-method 33

)
mot_details <- list(motl, mot2)

# Define noise structure for pointwise noise

noise_str <- list(
rbind(rep(2, 100), rep(c(rep(@.1, 50), rep(2, 50)), 1)),
rbind(rep(0.0, 100), rep(0.5, 100))

)

# Build the simulation object
builder <- funMoDisco: :motifSimulationBuilder(N = 20, len = 300, mot_details, distribution = 'beta')

# Generate curves with pointwise noise
curves <- funMoDisco: :generateCurves(builder, noise_type = 'pointwise', noise_str = noise_str)

# Example 2: Set the motif position and add coefficient noise
# Define noise structure for coefficient noise
noise_str <- list(c(0.1, 1.0, 5.0), c(0.0, 0.9, 0.0))

# Generate curves with coefficient noise without vertical shifts
curves <- funMoDisco: :generateCurves(builder, noise_type = 'coeff', noise_str, only_der = FALSE)

# Example 3: Random motif positions and add pointwise noise
motl <- list(
"len” = mot_len,
"coeffs" = NULL,
"occurrences” = 5
)
mot2 <- list(
"len” = mot_len,
"coeffs” = NULL,
"occurrences” = 6

)
mot_details <- list(mot1, mot2)

# Define noise structure for pointwise noise
noise_str <- list(

rbind(rep(2, 100)),

rbind(rep(0.5, 100))
)

# Build the simulation object
builder <- funMoDisco: :motifSimulationBuilder(N = 20, len = 300, mot_details, distribution = 'beta')

# Generate curves with pointwise noise and vertical shifts
curves <- funMoDisco: :generateCurves(builder, noise_type = 'pointwise', noise_str, only_der = FALSE)

# Example 4: Random motif positions and add coefficient noise
# Define noise structure for coefficient noise
noise_str <- list(c(0.1, 5.0, 10.9), c(0.1, 5.0, 10.0))

# Generate curves with coefficient noise and vertical shifts
curves <- funMoDisco: :generateCurves(builder, noise_type = 'coeff', noise_str, only_der = FALSE)



34 generate_curve_vector

generate_background_curve
Generate Background Curve

Description

This function generates a background curve using B-splines with specified parameters, including
knots, order, and weights. Optionally, additive noise can be added to the curve.

Usage

generate_background_curve(len, dist_knots, norder, weights, add_noise)

Arguments
len An integer indicating the length of the curve to generate.
dist_knots A numeric value indicating the distance between knots.
norder An integer specifying the order of the B-spline.
weights A numeric vector containing the coefficients for the B-spline.
add_noise A logical value indicating whether to add Gaussian noise to the curve.
Details

Generate Background Curve

Value

A list containing the generated basis, coefficients, and curve values with or without noise.

generate_curve_vector Generate Curve Vector from FD Object

Description

This function generates a curve vector from a functional data (fd) object, with a specified step size
and optional derivative.

Usage

generate_curve_vector(fd_curve, step_by = 1, Lfdobj = 0)



get_accolites 35

Arguments
fd_curve A functional data object from which to generate the curve.
step_by A numeric value indicating the step size for generating the curve.
Lfdobj A numeric value indicating the order of the derivative to compute. Default is O
(no derivative).
Details

Generate Curve Vector

Value

A numeric vector representing the generated curve.

get_accolites Get Accolites for a Given Leaf Label

Description

This function retrieves the accolites (adjacent elements) of a specified leaf label from a dataset.
Accolites are defined as the elements that overlap with the specified portion length around the leaf.
The function can filter accolites based on their origin curve in cases where multiple curves are
present.

Usage

get_accolites(leaf_label, window_data, portion_len, multiple)

Arguments
leaf_label A character string representing the label of the leaf for which to find accolites.
window_data A data frame or matrix where the row names correspond to the labels of ele-
ments, containing the data from which accolites will be extracted.
portion_len An integer specifying the total length of the portion used to define the accolites.
The overlap is computed as half of this length.
multiple A logical indicating whether to check for multiple curves. If TRUE, the function
filters out accolites that do not originate from the same curve as the specified leaf
label.
Details

The function works as follows: 1. It calculates the index of the specified leaf label within the
provided ‘window_data‘. 2. Determines the range of indices representing the accolites by cal-
culating the overlap based on ‘portion_len‘. 3. Retrieves the corresponding leaf labels from the
‘window_data‘. 4. If the ‘multiple‘ argument is TRUE, it checks if the accolites come from the
same curve as the leaf label, removing those that do not.



36 get_parents

Value

A character vector containing the labels of the identified accolites. If no accolites are found, the
function returns an empty vector.

get_minidend Generate Minimum Dendrogram from Hierarchical Clustering

Description

This function generates a minimum dendrogram by performing hierarchical clustering on an input
distance matrix. The function identifies an optimal height cut based on the largest gap in cluster
heights and returns the resulting dendrogram, allowing for further analysis of clustering structures.

Usage
get_minidend(adj_fMSR)

Arguments
adj_fMSR A numeric matrix or a distance object representing the dissimilarity matrix com-
puted from functional data. This matrix is used to perform hierarchical cluster-
ing.
Details

The function performs the following steps: 1. Uses ‘fastcluster::hclust® to perform hierarchical
clustering on the provided dissimilarity matrix using the "complete" method. 2. Extracts the heights
of the clusters and identifies the largest gap in heights to determine the optimal cut position for the
dendrogram. 3. Cuts the dendrogram at the identified height and returns the lower part of the cut.

Value

A dendrogram object representing the clustered data. The dendrogram is cut at the identified height,
resulting in a tree structure that can be used for further analysis or visualization.

get_parents Get Parent Nodes from a Given Node

Description
This function identifies the parent nodes of a given node in a hierarchical structure. It checks which
nodes in the provided list contain the specified node, thereby determining its parent nodes.

Usage

get_parents(node, node_list)



get_path_complete

Arguments

node

node_list

Details

37

A vector representing a single node whose parents are to be found. It is expected
to contain the elements that may be present in the parent nodes.

A list of vectors, where each vector represents a node in the hierarchical struc-
ture. The function will search through these nodes to find parents of the specified
node.

The function works by applying a logical check across the ‘node_list*. It returns the indices of
all nodes that contain all elements of the specified node vector. If no parent nodes are found, the
function will return an empty integer vector.

Value

A numeric vector containing the indices of the parent nodes in the ‘node_list‘ that include the

specified node.

get_path_complete

Get Complete Paths from a Dendrogram

Description

This function computes recommended paths from a dendrogram structure using parallel processing.
It utilizes the ‘find_recommended_path* function to identify optimal paths based on a minimum
cardinality constraint, distributing the computation across multiple worker nodes.

Usage

get_path_complete(minidend, window_data, min_card, worker_number)

Arguments

minidend
window_data
min_card

worker_number

Details

A dendrogram structure from which to derive paths. This should be created from
a hierarchical clustering result.

A data frame or matrix containing the data associated with the nodes in the
dendrogram. This data is used for path recommendations.

An integer specifying the minimum number of leaves (or nodes) that must be
present in a path for it to be considered valid.

An integer representing the number of worker nodes to be used for parallel pro-
cessing.

The function creates a cluster of worker nodes, loads necessary libraries, and exports required vari-
ables and functions to each worker. It then applies the ‘find_recommended_path‘ function in parallel
to the leaves of the provided dendrogram, gathering results into a single list. Finally, the cluster is
stopped, and the results are returned.



38 initial Checks

Value

A list where each element contains the recommended paths for the corresponding node in the den-
drogram. Each path includes information about the nodes and their associated scores.

initialChecks Initial Checks for ProbKMA

Description

This function performs various input checks on the parameters provided by the user to ensure they
are valid for running the ProbKMA algorithm. It verifies the structure and content of the input
data, including curves, derivatives, initial membership probabilities, shift matrices, and various
parameters.

Usage
initialChecks(YQ, Y1, P@, SO, params, diss, V_init)

Arguments
Yo A list of matrices or vectors representing the curves.
Y1 A list of matrices or vectors representing the derivatives of the curves.
Po A numeric matrix representing initial membership probabilities. Rows corre-
spond to curves, and columns correspond to clusters.
S0 A numeric matrix representing the initial shift matrix.
params A list containing various parameters for ProbKMA, including:

* standardize Logical indicating whether to standardize the curves.
* K Number of motifs.

* ¢ Minimum motif length.

* c_max Maximum motif length.

* iter_max Maximum number of iterations.

* quantile Quantile value for stopping criterion.

* alpha A numeric value related to the dissimilarity measure.
* w Weights used in the algorithm.

* stopCriterion Stopping criterion for the algorithm.

* m Weighting exponent.

 tol Tolerance level for stopping criteria.

¢ iter4elong Maximum iterations for elongation.
 tol4elong Tolerance for elongation.

* max_elong Maximum elongation allowed.

* trials_elong Number of trials for elongation.

* deltaJK_elong Threshold for elongation.

* max_gap Maximum gap allowed.



motitSimulation-class 39

e iter4clean Number of iterations for cleaning.

* tol4clean Tolerance for cleaning.

* quantile4clean Quantile for cleaning.

* return_options Options for returning results.

* seed Seed for random number generation.

* exe_print Boolean to control printing of execution messages.
* set_seed Boolean to control whether to set a random seed.

* transformed A logical value indicating whether to normalize the curve
segments to the interval [0,1] before applying the dissimilarity measure.
Setting ‘transformed = TRUE® scales each curve segment between 0 and
1, which allows for the identification of motifs with consistent shapes but
different amplitudes. This normalization is useful for cases where motif
occurrences may vary in amplitude but have similar shapes, enabling better
pattern recognition across diverse data scales.

* n_threads Number of threads for parallel processing.

diss A character string indicating the type of dissimilarity measure to be used. Pos-
sible values are: 'do_L2', 'd1_L2", 'do_d1_L2".

V_init A list containing initial values for the clusters. If provided, it must match the
expected structure based on K.
Value
A list containing:

FuncData A list of processed curves and derivatives after performing the checks.

Parameters A list of validated parameters ready for use in initializing the ProbKMA object.

motifSimulation-class motifSimulationS4Class

Description

The ‘motifSimulation class is an S4 class designed for simulating functional data with embedded
motifs. This class is essential for modeling various aspects of the data, such as the number of
curves, motif details, curve characteristics, and knot-based spline definitions. It allows users to
generate realistic synthetic functional data to test and benchmark motif discovery algorithms like
ProbKMA and funBlalign.

Slots

N A numeric value representing the number of curves to be simulated. This parameter controls the
number of functional curves generated in the simulation.

mot_details A list containing details of the motifs to be embedded within the curves. Each motif
detail specifies attributes such as motif shape, location, and frequency of occurrence across
the simulated curves.



40

motifSimulationApp

motifs_in_curves A list specifying which curves contain motifs and the positions where they
are embedded. This slot allows precise control over the placement of motifs in the generated
curves, enabling flexible motif-to-curve assignments.

distribution A character string or numeric value representing the distribution of the weights
for the motifs. This slot defines the distribution used to generate the weight coefficients for
the motifs, influencing their amplitude in the simulated data. Accepted values include any
distribution supported in R or a custom vector provided by the user.

dist_knots A numeric value indicating the distance between knots in the spline representation of
the curves. This parameter is crucial for defining the smoothness of the generated curves and
the precision of the spline-based motif embedding process.

len A numeric value representing the length of the generated curves. This parameter determines
the number of time points or the granularity of the data, allowing for high-resolution simula-
tions.

norder A numeric value specifying the order of the B-spline used in the functional data represen-
tation. Higher-order splines provide smoother representations of the curves, while lower-order
splines offer more flexible curve shapes.

coeff_min A numeric value specifying the minimum coefficient value for the spline-based curve
generation. This controls the lower bound of the weight coefficients applied to the basis func-
tions, influencing the range of curve amplitudes.

coeff_max A numeric value specifying the maximum coefficient value for the spline-based curve
generation. This controls the upper bound of the weight coefficients applied to the basis
functions, setting the maximum amplitude for the curves.

min_dist_motifs A numeric value indicating the minimum distance between motifs in the simu-
lated curves. This ensures that motifs are not placed too closely, preserving their distinctive-
ness and reducing overlap during the simulation.

motifSimulationApp motifSimulationApp: A Shiny-Based GUI for Motif Simulation

Description

The ‘motifSimulationApp* is a Shiny-based graphical user interface (GUI) designed to simplify
the execution of the ‘motifSimulation® functions. The app allows users to interact with all motif
simulation features in an intuitive and user-friendly manner, offering a seamless experience for
generating and analyzing synthetic functional data with embedded motifs. It consistently provides
summary plots to enhance data visualization and facilitate analysis.

Usage

motifSimulationApp(noise_str, mot_details)



motitSimulationBuilder 41

Arguments

noise_str A list corresponding to the number of motifs, specifying the noise structure to
be applied to each motif. Users can choose between two noise types:

e 'pointwise' Allows the specification of noise as a list of vectors or matri-
ces. Each element of the list defines the amount of noise applied pointwise
to the corresponding motif.

» 'coeff' Enables the specification of noise in terms of coefficients, where a
list of individual values or vectors can be provided to define the noise level
for each motif.

mot_details A list outlining the specifications for the motifs to be embedded within the func-
tional curves. Each motif is characterized by its:
* length The length of the motif (number of points or time steps).

* coefficients An optional set of coefficients that can be provided to define
the motif’s shape.

* occurrences The number of occurrences of each motif within the curves.
These can be specified by exact positions within the curves or by providing
a total count of occurrences, in which case the algorithm will randomly
assign the positions.

Details

The app provides an accessible platform for users to experiment with different motif definitions,
noise structures, and curve characteristics. By interacting with the app, users can simulate func-
tional data, visualize the results in real-time, and adjust the parameters accordingly to fine-tune the
simulation process.

Value

A shiny app representing the simulated curves.

Examples

# Launch the motifSimulationApp with specified noise structure and motif details
funMoDisco: :motifSimulationApp(noise_str, mot_details)

motifSimulationBuilder
Create motifSimulation Object

Description

It represents the constructor of the S4 class *motifSimulation’..



42 motifSimulationBuilder
Usage
motifSimulationBuilder(
N,
len,
mot_details,
norder = 3,
coeff_min = -15,
coeff_max = 15,
dist_knots = 10,
min_dist_motifs = NULL,
distribution = "unif”
)
Arguments
N An integer specifying the number of background curves to be generated (manda-
tory).
len An integer specifying the length of the background curves (mandatory).
mot_details A list outlining the definitions of the motifs to be included. Each motif is char-
acterized by its length, a set of coefficients that may be optionally specified,
and the number of occurrences. These occurrences can be indicated either by
specific positions within the curves or by a total count. In the latter case, the
algorithm will randomly position the motifs throughout the curves (mandatory).
norder An integer specifying the order of the B-splines (default = 3).
coeff_min Additive coefficients to be incorporated into the generation of coefficients for
the background curves (default = -15).
coeff_max Additive coefficients to be incorporated into the generation of coefficients for
the background curves (default = 15).
dist_knots An integer specifying the distance between two consecutive knots (default = 10).
min_dist_motifs
An integer specifying the minimum distance between two consecutive motifs
embedded in the same curve (default = 'norder’ * ’dist_knots’).
distribution A character string specifying the distribution from which the coefficients of the
background curves are generated. You can choose between a uniform distribu-
tion or a beta distribution. Alternatively, you can pass a vector representing the
empirical distribution from which you wish to sample (default = "unif").
Value
An object of class motifSimulation
Examples

mot_len <- 100

motif_str <- rbind.data.frame(c(1, 1, 20),

C(Zl 1, 2)7
C(17 37 1)7



motifs_search 43

c(1, 2, 1),
c(1, 2, 15),
c(1, 4, D,
c(2, 5, 1),
c(2, 7, 1),
c(2,17,1)
names(motif_str) <- c("motif_id", "curve","start_break_pos")

motl <- list("len"” = mot_len, #length
"coeffs” = NULL, # weights for the motif

"occurrences” = motif_str %>% filter(motif_id == 1))
mot2 <- list("len" = mot_len,

"coeffs” = NULL,

"occurrences” = motif_str %>% filter(motif_id == 2))

mot_details <- list(mot1,mot2)

# MATRIX ERROR
noise_str <- list(rbind(rep(2, 100)),
rbind(rep(0.0, 100)))

builder <- funMoDisco::motifSimulationBuilder(N = 20,len = 300,mot_details,
distribution = 'beta')

motifs_search Motif Search in Curves

Description

The ‘motifs_search‘ function identifies and ranks motifs within a set of curves based on their fre-
quencies and dissimilarity measures. It processes candidate motifs clustered from hierarchical clus-
tering results, selects optimal motifs within each cluster, and determines their occurrences in the
original curves. The function supports parallel processing to enhance computational efficiency and
offers flexibility in handling different dissimilarity metrics and motif selection criteria.

Usage

motifs_search(
cluster_candidate_motifs_results,
R_all = cluster_candidate_motifs_results$R_all,
R_m = NULL,
different_R_m_finding = FALSE,
R_m_finding = NULL,
use_real_occurrences = FALSE,
length_diff = Inf,
worker_number = NULL



44

Arguments

motifs_search

cluster_candidate_motifs_results

R_all

A list containing the output from the ‘cluster_candidate_motifs‘ function. This
list must include elements such as:

YO0 A list of matrices representing the original curves.

Y1 A list of matrices representing the derivatives of the curves (if applicable).

VO0_clean A list of candidate motifs derived from ‘YO°.

V1_clean A list of candidate motifs derived from ‘Y1° (if applicable).

D_clean A matrix of dissimilarity measures between motifs and curves.

P_clean A matrix indicating positive matches (e.g., presence of motifs in curves).

hclust_res A hierarchical clustering object obtained from ‘hclust’.

R_all A numeric value representing the global radius used for dendrogram cut-
ting.

w A numeric vector of weights for the dissimilarity index across different di-
mensions.

transformed A logical value indicating whether to normalize the curve seg-
ments to the interval [0,1] before applying the dissimilarity measure. Set-
ting ‘transformed = TRUE® scales each curve segment between 0 and 1,
which allows for the identification of motifs with consistent shapes but dif-
ferent amplitudes. This normalization is useful for cases where motif oc-
currences may vary in amplitude but have similar shapes, enabling better
pattern recognition across diverse data scales.

max_gap A numeric value defining the maximum allowed gap in distances for
cluster separation.

k_knn An integer specifying the number of neighbors for K-Nearest Neighbors
classification.

votes_knn_Rm A numeric value defining the probability threshold for KNN-
based radius determination.

¢ A numeric vector specifying the minimum number of overlapping elements
required for motif validation.

A numeric value representing the global radius used to cut the dendrogram, en-
suring that clusters are at least twice this radius apart. This parameter defines
the grouping of motifs into clusters.

A numeric vector containing group-specific radii used to identify motif occur-
rences within each cluster. The length of this vector must match the number
of clusters obtained by cutting the dendrogram at a height of 2 * R_all‘. If
‘NULL', the function automatically determines ‘R_m* for each group based on
the distances between motifs within the same cluster and all curves.

different_R_m_finding

R_m_finding

A logical value indicating whether to use a different radius (‘R_m_finding*) for
finding motif occurrences compared to the initial radius (‘R_m*). If ‘TRUE",
‘R_m_finding" is used; otherwise, ‘R_m"* is employed. This allows for separate
tuning of motif occurrence detection.

A numeric vector containing group-specific radii used specifically for finding
motif occurrences when ‘different_R_m_finding® is set to “TRUE‘. The length



motifs_search 45

of this vector must match the number of clusters obtained by cutting the den-
drogram at a height of ‘2 * R_all*. If ‘NULL®, ‘R_m_finding* is determined
automatically for each group based on distances between motifs within the same
cluster and all curves.
use_real_occurrences

A logical value indicating whether to compute real occurrences of candidate
motifs within the curves. If “TRUE’, the function calculates actual frequencies
and mean dissimilarities for motif selection, providing more accurate results
at the cost of increased computation time. If ‘FALSE‘, it uses approximate
frequencies and mean dissimilarities for faster execution. Defaults to ‘FALSE*.

length_diff A numeric value specifying the minimum percentage difference in length re-
quired among motifs within the same group to retain multiple motifs. This
parameter ensures diversity in motif selection by preventing motifs of similar
lengths from being selected simultaneously. It is defined as a percentage rel-
ative to the length of the most frequent motif. Defaults to ‘Inf‘, meaning no
additional motifs are selected based on length differences.

worker_number  An integer indicating the number of CPU cores to utilize for parallel processing.
By default, the function uses one less than the total number of available cores
(‘detectCores() - 1°). Setting ‘worker_number = 1° forces the function to run
sequentially without parallelization. If ‘NULL®, the function automatically de-
termines the optimal number of workers based on the system’s available cores.

Details
The ‘motifs_search® function operates through the following steps:
1. **Parallelization Setup**: Determines the number of worker cores to use based on ‘worker_number*.
If ‘worker_number > 1°, it initializes a cluster for parallel processing.
2. **Input Preparation**: Depending on the dissimilarity metric (‘d0_L2°, ‘d1_L2°, or ‘d0_d1_L2°),
it prepares the data structures ‘Y * and ‘V* for processing.

3. **Dendrogram Cutting**: Cuts the hierarchical clustering dendrogram at a height of 2 *
R_all* to define clusters of motifs.

4. **Radius Determination**: If ‘R_m* or ‘R_m_finding* is not provided, the function calcu-
lates these radii for each cluster based on motif distances and K-Nearest Neighbors (KNN)
classification.

5. **Candidate Motif Selection**: Depending on ‘use_real_occurrences®, the function either
computes real occurrences and uses actual frequencies and mean dissimilarities to select mo-
tifs, or it uses approximate measures for faster processing.

6. **Motif Filtering**: Within each cluster, motifs are ranked based on their frequency and
mean dissimilarity. Additional motifs can be selected if their lengths differ sufficiently from
the most frequent motif, as defined by ‘length_diff".

7. **QOutput Compilation**: The selected motifs and their associated properties are compiled
into a comprehensive list for further analysis or visualization.

Value

A list containing:



46 motifs_search_plot

VO A list of selected motifs derived from ‘YO".

V1 A list of selected motifs derived from “Y1° (if applicable).

V_length A numeric vector representing the real lengths of the selected motifs.

V_occurrences A list detailing the occurrences of each selected motif within the curves.

V_frequencies A numeric vector indicating the real frequencies of each selected motif.

V_mean_diss A numeric vector representing the average dissimilarity of each selected motif.

YO0 A list of matrices corresponding to the original curves, as provided in ‘cluster_candidate_motifs_results‘.

Y1 A list of matrices corresponding to the derivatives of the curves (if applicable), as provided in
‘cluster_candidate_motifs_results®.

R_motifs A numeric vector containing the radii associated with each selected motif.

motifs_search_plot Plot Motif Search Results

Description

The ‘motifs_search_plot‘ function visualizes the results obtained from the ‘motifs_search* function.
It generates plots for detected motifs across multiple dimensions, displaying both the motifs and
their corresponding derivative curves (if available). Users can filter motifs based on frequency
thresholds and choose to display either all motifs or the top ‘n‘ motifs. Additionally, the function
provides an option to plot all underlying curves with colored motifs highlighted.

Usage

motifs_search_plot(
motifs_search_results,

ylab = Il”,
freq_threshold = 5,
top_n = "all",

plot_curves = TRUE,
transformed = FALSE

Arguments

motifs_search_results
A list containing the output from the ‘motifs_search® function. This includes ele-
ments such as “VO, ‘V1°, ‘V_frequencies‘, ‘YO, ‘Y1, ‘V_length‘, “V_occurrences’,
‘V_mean_diss‘, and ‘R_motifs‘, which store information about the detected mo-
tifs and their properties.

ylab A character string specifying the label for the y-axis in the plots. This label will
be appended with the dimension number to create individual titles for each plot.
Default is an empty string (“’°).



padding 47

freqg_threshold An integer indicating the minimum frequency a motif must have to be included
in the plots. Only motifs with a frequency equal to or greater than ‘freq_threshold*
will be visualized. Default value is ‘5°.

top_n Determines how many motifs to plot based on their frequency. If set to “’all’*,
all motifs meeting the ‘freq_threshold‘ will be plotted. If an integer is provided,
only the top ‘top_n‘ motifs with the highest frequencies will be displayed. De-
fault is “all’“.

plot_curves A logical value indicating whether to plot all underlying curves with colored
motifs highlighted. If ‘TRUE", the function overlays motifs on the curves for
better visualization. Default is “TRUE‘.

transformed A logical value indicating whether to normalize the curve segments to the in-
terval [0,1] before applying the dissimilarity measure. Setting ‘transformed =
TRUE" scales each curve segment between 0 and 1, which allows for the iden-
tification of motifs with consistent shapes but different amplitudes. This nor-
malization is useful for cases where motif occurrences may vary in amplitude
but have similar shapes, enabling better pattern recognition across diverse data
scales.

Details

The ‘motifs_search_plot® function performs the following steps:

1. Validates input parameters, ensuring that the frequency threshold and ‘top_n‘ are appropriate.

2. Selects motifs that meet the frequency threshold and, if specified, limits the number of motifs
to the top ‘n°.

3. For each dimension, it plots the motif centers (‘VO‘) and their derivatives (‘V1°, if available).

4. If ‘plot_curves® is “TRUE®, it overlays the motifs on the original curves, highlighting them
with distinct colors.

5. Adds legends to the plots for clear identification of each motif.

Value

The function does not return a value but generates plots visualizing the motifs and their occurrences
across different dimensions. It creates separate plots for each dimension and includes legends for
easy identification of motifs.

padding Pad a Matrix to a Specified Number of Rows

Description

This function pads a matrix with ‘NA‘ values to ensure that the matrix reaches a specified number
of rows (‘maxLen‘). If the matrix has fewer rows than the desired length, additional rows of ‘NA*
are appended to the matrix. Otherwise, the matrix is returned unchanged.



48 plot_motits

Usage

padding(dataMatrix, maxLen)

Arguments
dataMatrix A matrix to be padded. Each row represents a data point.
maxLen An integer specifying the desired number of rows in the matrix.
Details

The function compares the number of rows in ‘dataMatrix‘ with ‘maxLen‘. If the matrix has fewer
rows, it pads the matrix with ‘NA°® values until it reaches the specified number of rows. No changes
are made if ‘dataMatrix‘ has rows equal to or greater than ‘maxLen‘.

Value

A matrix padded with ‘NA‘ values up to the specified number of rows. If ‘dataMatrix* already has
the desired number of rows or more, the original matrix is returned.

plot_motifs Plot Embedded Motifs in Functional Curves

Description

The ‘plot_motifs® function visualizes the results generated by the ‘generateCurves‘ function. It
provides comprehensive plots of functional curves with embedded motifs, allowing users to inspect
the placement and characteristics of each motif within the curves. This visualization is crucial for
validating the correctness of motif embedding and for gaining insights into the distribution and
variability of motifs across different curves.

The function supports saving the generated plots to a specified directory, facilitating the creation of
reports or the sharing of visual results. By plotting motifs in distinct colors or styles, ‘plot_motifs*
ensures that overlapping motifs and their respective curves remain distinguishable, enhancing the
clarity and interpretability of the visualizations.

This plotting utility is an essential tool within the ‘funMoDisco‘ package, aiding users in the ex-
ploratory analysis of simulated functional data and the assessment of motif detection algorithms.

Usage

plot_motifs(object, curves, name, path)



plot_motits,motifSimulation-method 49

Arguments
object An S4 object of class ‘motifSimulation® that has been previously constructed
using the ‘motifSimulationBuilder® function. This object contains all necessary
parameters and configurations used during curve and motif generation (manda-
tory).
curves The output list from the ‘generateCurves‘ function, containing the generated
functional curves with embedded motifs. This parameter provides the data to be
visualized (mandatory).
name Name of the output file.
path A character string specifying the directory path where the generated plots will be
saved. The function will save the plots in this directory, allowing for organized
storage and easy access to visual results (mandatory).
Value

The function does not return any value but generates and saves plots of the functional curves with
embedded motifs in the specified directory. Each plot visually represents the motifs within the
curves, aiding in the qualitative assessment of motif embedding.

Examples

# Example: Plotting motifs in generated curves

# Assume 'builder' has been created and 'curves' have been generated using generateCurves
builder <- funMoDisco::motifSimulationBuilder(N = 20, len = 300, mot_details)

curves <- funMoDisco: :generateCurves(builder, noise_type = 'pointwise', noise_str = noise_str)

# Specify the directory to save plots
plots_name <- "plots_1"

# Generate and save the plots
funMoDisco: :plot_motifs(builder, curves, plots_name)

plot_motifs,motifSimulation-method
Plot Embedded Motifs in Functional Curves

Description

The ‘plot_motifs‘ function visualizes the results generated by the ‘generateCurves‘ function. It
provides comprehensive plots of functional curves with embedded motifs, allowing users to inspect
the placement and characteristics of each motif within the curves. This visualization is crucial for
validating the correctness of motif embedding and for gaining insights into the distribution and
variability of motifs across different curves.

The function supports saving the generated plots to a specified directory, facilitating the creation of
reports or the sharing of visual results. By plotting motifs in distinct colors or styles, ‘plot_motifs*



50 plot_motits,motifSimulation-method
ensures that overlapping motifs and their respective curves remain distinguishable, enhancing the
clarity and interpretability of the visualizations.

This plotting utility is an essential tool within the ‘funMoDisco‘ package, aiding users in the ex-
ploratory analysis of simulated functional data and the assessment of motif detection algorithms.

Usage

## S4 method for signature 'motifSimulation'
plot_motifs(object, curves, name, path)

Arguments
object An S4 object of class ‘motifSimulation® that has been previously constructed
using the ‘motifSimulationBuilder function. This object contains all necessary
parameters and configurations used during curve and motif generation (manda-
tory).
curves The output list from the ‘generateCurves‘ function, containing the generated
functional curves with embedded motifs. This parameter provides the data to be
visualized (mandatory).
name Name of the output file.
path A character string specifying the directory path where the generated plots will be
saved. The function will save the plots in this directory, allowing for organized
storage and easy access to visual results (mandatory).
Value

The function does not return any value but generates and saves plots of the functional curves with
embedded motifs in the specified directory. Each plot visually represents the motifs within the
curves, aiding in the qualitative assessment of motif embedding.

Examples

# Example: Plotting motifs in generated curves

# Assume 'builder' has been created and 'curves' have been generated using generateCurves
builder <- funMoDisco::motifSimulationBuilder(N = 20, len = 300, mot_details)

curves <- funMoDisco: :generateCurves(builder, noise_type = 'pointwise', noise_str = noise_str)

# Specify the directory to save plots
plots_name <- "plots_1"

# Generate and save the plots
funMoDisco: :plot_motifs(builder, curves, plots_name)



ProbKMA 51

ProbKMA ProbKMA Class

Description

The ‘ProbKMA"* class is an R wrapper for the C++ implementation of the Probabilistic K-means
Algorithm (ProbKMA) with local alignment. This class facilitates local clustering of functional
data and functional motif discovery, as proposed in the paper ‘Probabilistic K-means with local
alignment for clustering and motif discovery in functional data‘, authored by Marzia A. Cremona
and Francesca Chiaromonte.

Value

A ‘ProbKMA object from the C++ ProbKMA class.

Constructor

Create a ‘ProbKMA ‘ object using the following constructor:
prok <- new(ProbKMA, data$yY, data$V, params, data$P@, data$se, "H1")

Parameters

Y A list containing functional data and possibly derivatives.

params An instance of the Parameters class, containing algorithm settings.
PO A matrix representing the initial membership probabilities.

SO A matrix representing the initial shift warping parameters.

diss A character string specifying the dissimilarity measure. Possible choices are:

e d0_L2¢
° ‘7d1_L2"
e d0_d1_L2¢

Usage
You can access and modify the ‘ProbKMA * object with the following methods:

Getters: prok$get_parameters() Returns a list of parameters.
prok$get_motifs() Returns a list containing the motifs found.
Setters: prok$set_PO(P) Sets the membership matrix.
prok$set_SO(S) Sets the shift warping matrix.
prok$set_parameters(param) Sets parameters field by passing a list of parameters.

Initialize Motifs: prok$reinit_motifs(c, d) Reinitializes (empty) K motifs with dimension c¢_k x
d.

Run ProbKMA algorithm: prok$probKMA_run() Runs the algorithm.



52 probKMA_plot

Author(s)

Niccolo Feresini and Riccardo Lazzarini

probKMA_plot Plot the Results of probKMA

Description

The ‘probKMA_plot® function visualizes the results obtained from the ‘probKMA*® analysis. It
generates a series of plots including motif memberships across different curves, the progression of
the objective function over iterations, and the Bhattacharyya distance between memberships. De-
pending on the parameters, it can plot both original and cleaned motifs across multiple dimensions,
providing insights into the embedding and characteristics of identified motifs.

Usage

probKMA_plot(
probKMA_results,
plot,
ylab = "",
sil_avg = NULL,
cleaned = FALSE,
transformed = FALSE

Arguments

probKMA_results
A list containing the output from the ‘probKMA°* function. This list should
include elements such as:
YO0 A list of matrices representing the original curves.
Y1 A list of matrices representing the derivatives of the curves (if applicable).
VO A list of motifs.
V1 A list of derived motifs (if applicable).
P A matrix indicating motif memberships across curves.
S A matrix indicating motif start positions in curves.
S_clean A matrix indicating cleaned motif start positions (if applicable).
P_clean A matrix indicating cleaned motif memberships (if applicable).
VO0_clean A list of cleaned motifs (if applicable).
V1_clean A list of derived cleaned motifs (if applicable).
iter An integer indicating the number of iterations performed.
J_iter A numeric vector recording the objective function value at each iteration.

BC_dist_iter A numeric vector recording the Bhattacharyya distance between
memberships at each iteration.



probKMA_plot 53

plot A logical flag indicating whether to produce the plots. If ‘TRUE®, the function
generates all relevant plots. If ‘FALSE®, no plots are produced.

ylab A character vector of length ‘d‘, providing labels for the y-axis in each dimen-
sion. Defaults to an empty string () for all dimensions.

sil_avg A numeric vector containing the average silhouette scores for each embedded
motif. This parameter is used to annotate the plots with silhouette information.
Defaults to ‘NULL*, meaning no silhouette scores are displayed.

cleaned A logical value indicating whether to plot only the cleaned motifs (‘“TRUE‘) or
all motifs (‘FALSE®). When set to ‘TRUE®, the function highlights motifs that
have been cleaned based on predefined criteria. Defaults to ‘FALSE".

transformed A logical value indicating whether to normalize the curve segments to the in-
terval [0,1] before applying the dissimilarity measure. Setting ‘transformed =
TRUE" scales each curve segment between 0 and 1, which allows for the iden-
tification of motifs with consistent shapes but different amplitudes. This nor-
malization is useful for cases where motif occurrences may vary in amplitude
but have similar shapes, enabling better pattern recognition across diverse data
scales.

Details

The ‘probKMA_plot‘ function performs the following operations:

1. **Motif Visualization**:
* Plots the original curves (‘YO‘) with embedded motifs (‘VO). If derivatives (‘Y1 and
‘V1°) are available, additional plots are generated for them.

* When ‘cleaned = TRUE', the function highlights only the cleaned motifs (‘VO_clean‘ and
‘V1_clean®), providing a clearer view of significant motifs.

» Utilizes color coding and legends to differentiate between different motifs and their in-
stances.
2. **Memberships**:
* Generates bar plots showing the membership scores (‘P‘ or ‘P_clean‘) of each motif
across all curves.
* Provides a visual representation of how strongly each motif is associated with different
curves.
3. **Objective Function and Bhattacharyya Distance**:
* Plots the objective function (‘J_iter‘) over the iterations to demonstrate the optimization
process.

* Plots the Bhattacharyya distance (‘BC_dist_iter‘) to measure the similarity between motif
memberships across iterations.

The function is designed to handle multiple dimensions (‘d‘) and can accommodate both original
and derivative data if provided. It also supports the visualization of cleaned motifs, which are motifs
that have been refined based on specific criteria to ensure quality and relevance.



54 probKMA_silhouette_filter

Value
The function generates a series of plots visualizing:
* Motifs with Matched Curves: Displays the original curves with embedded motifs overlaid.

If ‘cleaned = TRUE®, only cleaned motifs are highlighted.

e Memberships: Shows bar plots representing the membership scores of each motif across all
curves.

* Objective Function: Plots the progression of the objective function (‘J_iter‘) over iterations
to illustrate convergence.

* Bhattacharyya Distance: Plots the Bhattacharyya distance (‘BC_dist_iter) between mem-
berships over iterations to assess similarity.

No value is returned; the function is used solely for its side effects of generating visualizations.

probKMA_silhouette_filter
Filter Motifs from probKMA Results Based on Silhouette and Size
Thresholds

Description

This function filters the motifs identified by the ‘probKMA algorithm based on a threshold for the
average silhouette index and a minimum size criterion. Motifs that meet or exceed both the silhou-
ette index threshold and the minimum number of curves (size) are retained. The function returns
a cleaned version of the input data, including the filtered motifs, their derivatives, and associated
matrices.

Usage

probKMA_silhouette_filter(
probKMA_results,
silhouette,
sil_threshold = 0.5,
size_threshold = 2

Arguments

probKMA_results
A list representing the output of the ‘probKMA * function with ‘return_options =
TRUE’. This output includes the motifs, dissimilarity matrices, and membership
matrices required for filtering.

silhouette A list output from the ‘probKMA_silhouette‘ function, which provides silhou-
ette scores for each motif.

sil_threshold A numeric value representing the threshold for the average silhouette index.
Motifs with a silhouette index greater than or equal to this value will be retained.
Default is 0.5.



probKMA_silhouette_plot 55

size_threshold An integer representing the minimum number of curves (size) in a motif cluster.

Value

Motifs with a cluster size greater than or equal to this value will be retained.
Default is 2.

A list containing the filtered results:

VO_clean
V1_clean
D
D_clean
P
P_clean
c

K

Filtered motifs.

Derivatives of the filtered motifs.

Dissimilarity matrix.

Filtered dissimilarity matrix after cleaning motifs.
Membership matrix.

Filtered membership matrix after cleaning motifs.
Filtered minimum motif lengths.

Vector containing the number of motifs repeated by the filtered motifs.

probKMA_silhouette_plot

Plot Silhouette Index from probKMA Results

Description

This function generates a bar plot displaying the adapted silhouette index based on the results from
the ‘probKMA ¢ algorithm. It visually represents the quality of the motifs identified by illustrating
the average silhouette width for each motif. Additionally, it provides relevant information about the
number of curves associated with each motif.

Usage

probKMA_silhouette_plot(silhouette_results, K, plot = TRUE)

Arguments

silhouette_results

plot

A list containing the results from the silhouette analysis, including: - Silhouette
indices for each motif. - Motif identifiers. - Curves associated with each motif.
- Average silhouette widths. - Number of curves in each motif.

An integer representing the number of motifs identified by the ‘probKMA* al-
gorithm.

A logical value indicating whether to generate the plot. Default is “TRUE".



56

Value

A list containing the following elements:

silhouette
motifs

curves

silhouette_average

A vector of average silhouette widths for each motif.

A vector of silhouette indices for the motifs.
A vector of motif identifiers.

A vector containing all curves associated with the motifs.

probKMA_wrap

probKMA_wrap

Wrapper for the Probabilistic K-means Algorithm (ProbKMA)

Description

This function serves as a wrapper for the Probabilistic K-means Algorithm (ProbKMA) to cluster
functional data. It handles preprocessing, parameter setup, and execution of the core algorithm,

returning the results along with silhouette analysis to assess the clustering quality.

Usage

probKMA_wrap(

YO = NULL,
Y1 = NULL,
PO = matrix(),

SO = matrix(),
standardize = FALSE,
c_max = Inf,
iter_max = 1000,
iterd4elong = 10,
trials_elong = 10,

return_options = TRUE,

alpha = 0,
max_gap = 0.2,
quantile = 0.25,

stopCriterion = "max",

tol = 1e-08,
tol4elong = 0.001,
max_elong = 0.5,
deltaJK_elong = 0.05,
iter4clean = 50,
tol4clean = 1e-04,
m= 2,

w=1,
seed = 1,
K =2,



probKMA_wrap

57

quantile4clean = 1/K,
exe_print = FALSE,
set_seed = FALSE,

FALSE,

A matrix of functional data for the first set of observations.

A matrix of functional data for the second set of observations.

A matrix representing the initial membership probabilities.

A matrix representing the initial shift parameters.

A logical value indicating whether to standardize the data. Default is ‘FALSE".
Maximum number of motifs to extract. Default is ‘Inf*.

Maximum number of iterations for the algorithm. Default is 1000.

diss = "de_2",
transformed =
V_init = NULL,
align = TRUE,
n_threads =

)

Arguments

YO

Y1

Po

SO

standardize

c_max

iter_max

iter4elong

trials_elong
return_options
alpha

max_gap
quantile

stopCriterion

tol

tol4elong
max_elong
deltaJK_elong
iter4clean

tol4clean

quantile4clean

exe_print

Number of iterations for elongation. Default is 10.

Number of trials for elongation. Default is 10.

A logical value indicating whether to return additional options. Defaultis “TRUE".
A numeric value representing the weighting parameter. Default is 0.

Maximum allowable gap between motifs. Default is 0.2.

Quantile to be used for cleaning. Default is 0.25.

Stopping criterion for the algorithm, can be 'max’ or other specified values.
Default is *max’.

Tolerance for convergence. Default is 1e-8.

Tolerance for elongation iterations. Default is 1e-3.
Maximum elongation allowed. Default is 0.5.

Increment for the elongation. Default is 0.05.

Number of iterations for the cleaning process. Default is 50.
Tolerance for the cleaning process. Default is 1e-4.
Parameter controlling the clustering behavior. Default is 2.
Weighting parameter for the dissimilarity measure. Default is 1.
Random seed for reproducibility. Default is 1.

Number of motifs to extract. Default is 2.

Minimum motif length. Default is 40.

Quantile used for the cleaning process. Default is 1/K.

A logical value indicating whether to print execution details. Defaultis ‘FALSE*.



58 recommend_node

set_seed A logical value indicating whether to set the random seed. Default is ‘FALSE‘.
diss Dissimilarity measure to be used. Default is *d0_2’.
transformed A logical value indicating whether to normalize the curve segments to the in-

terval [0,1] before applying the dissimilarity measure. Setting ‘transformed =
TRUE" scales each curve segment between 0 and 1, which allows for the iden-
tification of motifs with consistent shapes but different amplitudes. This nor-
malization is useful for cases where motif occurrences may vary in amplitude
but have similar shapes, enabling better pattern recognition across diverse data

scales.
V_init Initial values for the motifs. Default is ‘NULL".
align A logical value indicating whether to align the curves. Default is ‘TRUE".
n_threads Number of threads to use for parallel processing. Default is 1.

Value

A list containing:

probKMA_results
A list of results from the ProbKMA algorithm, including processed functional
data and model parameters.

silhouette_results
Results from silhouette analysis, indicating the quality of the clustering.

recommend_node Recommend Node from a Numeric Vector

Description

This function analyzes a numeric vector and recommends an index based on the characteristics of
the vector. If the vector is strictly increasing, it suggests stopping before the maximum growth rate.
If the vector is not strictly increasing, it recommends the index of the minimum value.

Usage

recommend_node (node)

Arguments
node A numeric vector representing scores or metrics. Must contain at least two ele-
ments.
Details

Recommend Node Function

- If the input vector has fewer than two elements, the function defaults to returning an index of 1. -
The function first checks if the input is a numeric vector. If not, an error is thrown. - The function
calculates the differences between successive elements and identifies whether the vector is strictly
increasing. - In the case of a strictly increasing vector, it returns the index of the maximum growth
rate. - For non-increasing vectors, it returns the index of the minimum value.



simulated200 59

Value

An integer index indicating the recommended node based on the analysis of the input vector.

simulated200 Simulated data for local clustering

Description

18 curves of length 200 (corresponding to 201 evaluation points), each containing exactly one motif
of length 60 (corresponding to 61 evaluation points), with noise level sigma=0.1 Curves 1-6, 14-
16 contain one occurrence of motif 1 Curves 7-13, 17-18 contain one occurrence of motif 2 The
data have been generated using a B-spline basis of order 3 and knots at distance 10, following the
simulation procedure presented in Cremona and Chiaromonte (Comparison with non-sparse and
sparse functional clustering simulation section).

Usage

data(simulated200)

Format

An object of class 1ist of length 2.

simulatedHighDimensional
High Dimensional simulated data for local clustering

Description

The functional dataset consists of 43 matrices for curves and an equal number for their derivatives
of two columns and a variable number of rows ranging from a minimum of 1836 to a maximum of
43868. The data presents a lot of missing values (large gaps).

Usage

data(simulatedHighDimensional)

Format

An object of class 1ist of length 2.



60 to_motifDiscovery,list-method

to_motifDiscovery to_motifDiscovery

Description

Transforms the result of generateCurves into a format suitable for discoverMotifs

Usage

to_motifDiscovery(curves)

Arguments

curves A list coming from the generateCurves function.

Value

A list containing all curves formatted to be suitable for input into the discoverMotifs function.

Examples

curves <- funMoDisco: :generateCurves(builder, noise_type = 'coeff', noise_str, only_der = FALSE)
formatted_curves <- to_motifDiscovery(curves)

to_motifDiscovery,list-method
to_motifDiscovery

Description

Transforms the result of generateCurves into a format suitable for discoverMotifs

Usage
## S4 method for signature 'list'
to_motifDiscovery(curves)
Arguments

curves A list coming from the generateCurves function.

Value

A list containing all curves formatted to be suitable for input into the discoverMotifs function.



to_motifDiscovery,list-method 61

Examples

curves <- funMoDisco: :generateCurves(builder, noise_type = 'coeff', noise_str, only_der = FALSE)
formatted_curves <- to_motifDiscovery(curves)



Index

+ datasets

simulated200, 59

simulatedHighDimensional, 59
.check_fits, 4
.diss_do_d1_L2,4
.domain, 6
.find_min_diss, 6
.find_occurrences, 8
.generate_coefficients, 9
.mapply_custom, 10
.resample, 11
.select_domain, 11
.transform_list, 12
.transform_to_matrix, 13

add_error_to_motif, 13
add_motif, 14

cluster_candidate_motifs, 15
cluster_candidate_motifs_plot, 16
compare_nodes, 17

discoverMotifs, 18

filter_candidate_motifs, 24
find_recommended_path, 26
funMoDisco (funMoDisco-package), 3
funMoDisco-package, 3

generate_background_curve, 34

generate_curve_vector, 34

generateCurves, 27

generateCurves,motifSimulation-method,
30

get_accolites, 35

get_minidend, 36

get_parents, 36

get_path_complete, 37

initialChecks, 38

62

motifs_search, 43
motifs_search_plot, 46
motifSimulation-class, 39
motifSimulationApp, 40
motifSimulationBuilder, 41

padding, 47

plot_motifs, 48
plot_motifs,motifSimulation-method, 49
ProbKMA, 51

probKMA_plot, 52
probKMA_silhouette_filter, 54
probKMA_silhouette_plot, 55
probKMA_wrap, 56

recommend_node, 58

simulated200, 59
simulatedHighDimensional, 59

to_motifDiscovery, 60
to_motifDiscovery,list-method, 60



	funMoDisco-package
	.check_fits
	.diss_d0_d1_L2
	.domain
	.find_min_diss
	.find_occurrences
	.generate_coefficients
	.mapply_custom
	.resample
	.select_domain
	.transform_list
	.transform_to_matrix
	add_error_to_motif
	add_motif
	cluster_candidate_motifs
	cluster_candidate_motifs_plot
	compare_nodes
	discoverMotifs
	filter_candidate_motifs
	find_recommended_path
	generateCurves
	generateCurves,motifSimulation-method
	generate_background_curve
	generate_curve_vector
	get_accolites
	get_minidend
	get_parents
	get_path_complete
	initialChecks
	motifSimulation-class
	motifSimulationApp
	motifSimulationBuilder
	motifs_search
	motifs_search_plot
	padding
	plot_motifs
	plot_motifs,motifSimulation-method
	ProbKMA
	probKMA_plot
	probKMA_silhouette_filter
	probKMA_silhouette_plot
	probKMA_wrap
	recommend_node
	simulated200
	simulatedHighDimensional
	to_motifDiscovery
	to_motifDiscovery,list-method
	Index

