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1 Introduction
This document provides a narrated example of how to use the comclim package. I show how to merge climate
niche data and species composition data into the format required by the framework, then, how to run analyses
and interpret results. For demonstration purposes, I use simulated data for species’ composition and climate
niches.

2 Preparing input

2.1 Climate niche data
First, I prepare a dataframe of climate niches for all species in the analysis at time t1. To do this, I begin by
loading in the community climate package.

> library(comclim)

Next, I generate an object called climateniches which describes three-dimensional climate niches of
100 species, approximated by 50 observations each. In a real-world analysis, you would instead fill this
dataframe with realized climate niches for each species based on experiments or from observational data.
For example, this could be done using georeferenced observations transformed into climate space using the
extract command in library(raster). The important thing is that the dataframe has one column named
taxon that can be used for matching species lists. The other columns, with arbitrary names, are assumed to
be the climate data.

> num_climateaxes = 3
> num_regionalpool = 100
> num_occurrences = 50
> climateniches <- NULL
> for (i in 1:num_regionalpool)
+ {
+ randdata = NULL
+ for (j in 1:num_climateaxes)
+ {
+ meanpos = runif(num_climateaxes,min=2,max=4)
+ tcol = rnorm(num_occurrences, mean=meanpos[j]
+ + runif(n=1,min=-2,max=2), sd=runif(1, 0.2,0.4))
+ randdata <- cbind(randdata, tcol)
+ }
+
+ randdata <- as.data.frame(randdata)
+
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+ names(randdata) <- paste("ClimateAxis", 1:num_climateaxes, sep='')
+ randdata$taxon = paste("Species", i, collapse='')
+
+ climateniches <- rbind(climateniches, randdata)
+ }
> climateniches$taxon <- factor(climateniches$taxon)

In a real analysis it is important that the climate axes are on comparable scales, because the community
climate statistics are calculated using Euclidean distances. One way to ensure this requirement is met is to
rescale all climate variables by z-transformation:

> climateniches[,1:num_climateaxes] <-
+ scale(climateniches[,1:num_climateaxes], center=TRUE, scale=TRUE)

The final climate niche dataframe is now ready.

> print(str(climateniches))

'data.frame': 5000 obs. of 4 variables:
$ ClimateAxis1: num -1.82 -1.75 -2.21 -1.61 -1.56 ...
$ ClimateAxis2: num -0.649 -0.382 -0.815 -0.483 -0.478 ...
$ ClimateAxis3: num -0.807 -0.849 -0.439 -0.72 -0.882 ...
$ taxon : Factor w/ 100 levels "Species 1","Species 10",..: 1 1 1 1 1 1 1 1 1 1 ...

NULL

2.2 Local community
The next step is to define the local community to be analyzed at time t1. Here I take a subset of five species,
intentionally choosing those with centroid positions that are closest to the value 1 along each axis. In a
real study, the localcommunity object would simply be a list of species names that is a subset of those in
levels(climateniches$taxon).

> num_community = 5
> nichedist <- do.call("rbind",by(
+ climateniches[,1:num_climateaxes],
+ climateniches$taxon, function(x) {
+ cm <- colMeans(x)
+ cm <- cm- rep(1, num_climateaxes);
+ return(data.frame(pos=sqrt(sum(cm^2))))
+ }
+ ))
> # select for species on the lower edge of the climate space
> whichsp <- order(nichedist,decreasing=FALSE)[1:num_community]
> localcommunity <- row.names(nichedist)[whichsp]
> print(localcommunity)

[1] "Species 70" "Species 98" "Species 33" "Species 7" "Species 51"

2.3 Regional pool
Like the local community, the regional pool list (regionalpool) is simply a vector of species names that
exist at time t1. In a real analysis, you would generate this vector based on some prior knowledge of your
system. In this case, we assume that it is equivalent to all the species for which we have already generated
climate niches:
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> regionalpool <- as.character(levels(climateniches$taxon))
> print(regionalpool)

[1] "Species 1" "Species 10" "Species 100" "Species 11" "Species 12"
[6] "Species 13" "Species 14" "Species 15" "Species 16" "Species 17"

[11] "Species 18" "Species 19" "Species 2" "Species 20" "Species 21"
[16] "Species 22" "Species 23" "Species 24" "Species 25" "Species 26"
[21] "Species 27" "Species 28" "Species 29" "Species 3" "Species 30"
[26] "Species 31" "Species 32" "Species 33" "Species 34" "Species 35"
[31] "Species 36" "Species 37" "Species 38" "Species 39" "Species 4"
[36] "Species 40" "Species 41" "Species 42" "Species 43" "Species 44"
[41] "Species 45" "Species 46" "Species 47" "Species 48" "Species 49"
[46] "Species 5" "Species 50" "Species 51" "Species 52" "Species 53"
[51] "Species 54" "Species 55" "Species 56" "Species 57" "Species 58"
[56] "Species 59" "Species 6" "Species 60" "Species 61" "Species 62"
[61] "Species 63" "Species 64" "Species 65" "Species 66" "Species 67"
[66] "Species 68" "Species 69" "Species 7" "Species 70" "Species 71"
[71] "Species 72" "Species 73" "Species 74" "Species 75" "Species 76"
[76] "Species 77" "Species 78" "Species 79" "Species 8" "Species 80"
[81] "Species 81" "Species 82" "Species 83" "Species 84" "Species 85"
[86] "Species 86" "Species 87" "Species 88" "Species 89" "Species 9"
[91] "Species 90" "Species 91" "Species 92" "Species 93" "Species 94"
[96] "Species 95" "Species 96" "Species 97" "Species 98" "Species 99"

2.4 Defining the observed climate
The next input is the observed climate at time t2. Here I choose a vector with all axes set to −1, to simulate
an ‘extreme’ climate. In a real study, you could obtain this vector from observations or gridded climate data.

> observedclimate <- rep(-1, num_climateaxes)
> names(observedclimate) <- paste("ClimateAxis", 1:num_climateaxes, sep='')
> print(observedclimate)

ClimateAxis1 ClimateAxis2 ClimateAxis3
-1 -1 -1

2.5 Putting it all together
The final step is to merge all of these data into a CommunityClimateInput object. The package provides a
helper function.

> cci <- inputcommunitydata(
+ localcommunity = localcommunity,
+ regionalpool = regionalpool,
+ climateniches = climateniches,
+ observedclimate = observedclimate)
> summary(cci)

Formal class 'CommunityClimateInput' [package "comclim"] with 5 slots
..@ species_list_tinf : chr [1:5] "Species 70" "Species 98" "Species 33" "Species 7" ...
..@ regional_pool_tinf : chr [1:100] "Species 1" "Species 10" "Species 100" "Species 11" ...
..@ regional_pool_weights_tinf: num(0)
..@ climate_niches_tinf :'data.frame': 5000 obs. of 4 variables:
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.. ..$ ClimateAxis1: num [1:5000] -1.82 -1.75 -2.21 -1.61 -1.56 ...

.. ..$ ClimateAxis2: num [1:5000] -0.649 -0.382 -0.815 -0.483 -0.478 ...

.. ..$ ClimateAxis3: num [1:5000] -0.807 -0.849 -0.439 -0.72 -0.882 ...

.. ..$ taxon : Factor w/ 100 levels "Species 1","Species 10",..: 1 1 1 1 1 1 1 1 1 1 ...

..@ observed_climate_tobs : Named num [1:3] -1 -1 -1

.. ..- attr(*, "names")= chr [1:3] "ClimateAxis1" "ClimateAxis2" "ClimateAxis3"
NULL

It is also possible to visualize the regional pool and local community in climate space.

> plot(cci,cex.community=0.75)
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Above you see the species in the community plotted with large symbols, and all the species in the regional
pool plotted with small symbols. By construction, the local community is at the ‘edge’ of the climate space
encompassed by the regional pool.

3 Running a community climate analysis
Now that the data are in the correct format, running an analysis is simple. I only have to specify the climate
axes to be used (in this case, all of them). In a real analysis you might choose only a subset of axes, or specify
larger values for the number of replicates (e.g. numreplicates = 1000 instead of 100), etc.

4



> result_community <- communityclimate(cci,
+ climateaxes=c("ClimateAxis1","ClimateAxis2","ClimateAxis3"),
+ numreplicates=100, verbose=F)

4 Interpreting and visualizing the results
By construction, the example defined a community whose volume was smaller than the regional pool’s, and
whose inferred climate was much further away from the observed climate than the regional pool’s. As a
result, I should expect to find δ(t1) < 0 and λ(t1, t2) > 0. The actual results can be seen from the output
object:

> summary(result_community)

*******************************************************************************
*** Community climate statistics - observed
*******************************************************************************
$meanNiches

ClimateAxis1 ClimateAxis2 ClimateAxis3
1 0.6023859 1.2707402 0.9654584
2 1.0899967 1.1973405 0.3998649
3 0.9266926 0.2855670 0.9504365
4 1.2244634 0.3448243 0.7647044
5 0.8971228 1.2437222 0.2999445

$inferredClimate
ClimateAxis1 ClimateAxis2 ClimateAxis3

0.9347598 1.0728614 0.7155768

$observedClimate
ClimateAxis1 ClimateAxis2 ClimateAxis3

-1 -1 -1

$volumeMagnitude
[1] 0.6615831

$mismatchMagnitude
[1] 3.320018

$mismatchDirections
ClimateAxis1 ClimateAxis2 ClimateAxis3

1.934760 2.072861 1.715577

*******************************************************************************
*** Community climate - deviations (n=100 nulls)
*******************************************************************************
$deviation_volumeMagnitude

ses pvalue
-2.397841 0.000000

$deviation_mismatchMagnitude
ses pvalue

1.338697 0.000000
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$deviation_mismatchDirections
ses pvalue

ClimateAxis1 1.4377619 0.10
ClimateAxis2 1.2777624 0.02
ClimateAxis3 0.4884658 0.28

Looking at the deviations, result_community$deviation_volumeMagnitude (i.e. δ(t1)) is significantly
smaller than zero, as predicted. Similarly, result_community$deviation_mismatchMagnitude (i.e. λ(t1, t2) >
0) is significantly greater than zero, as expected.

To visualize these inferences, it is also possible to plot a community climate diagram.

> plot(result_community)
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δ = −2.398,  λ = 1.339

Here I can confirm that the community has smaller climate volume (red circle vs gray circles) and larger
climate mismatch (red vector vs gray vectors) than expected. The community climate deviations are sum-
marized as the figure’s title.

It is also possible to directly plot the null and observed values for each community climate statisic, along
with projections of the mismatch vector along each climate axis. The gray lines show the kernel-smoothed
null distribution along with the 25% and 75% quantiles, and the red line shows the observed value.
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> plot(result_community, deviations=TRUE)
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Based on all of these results, I would infer that the community is structured by environmental filtering
and also by environmental disequilibrium.

5 Summary
In short, the necessary steps to using the comclim package on your own data are:

1. Obtain climate niche data for all species and transform it to standardized axes

2. Use inputcommunitydata to merge all input data

3. Run communityclimate to calculate community climate statistics

4. Analyze or plot the resulting deviations

That’s all!
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