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1 Internal clustering criteria

1.1 Algebraic background and notations
Let us denote by A the data matrix: each row is an observation Oi corresponding to an
individual and each column represents a variable observed for all the individuals.

There are N observations and p variables. The size of matrix A is N × p.
The data are assumed to be partitioned in K groups (or clusters). Let us denote

by P the vector representing a partition of the data: it is an integer vector with values
between 1 and K. The size of P is equal to the number N of observations. For each
index i (1 ≤ i ≤ N ), the coordinate Pi is equal to the number k (1 ≤ k ≤ K) of the
cluster the observation Oi belongs to.

The cluster Ck can be represented by a submatrix A{k} of matrix A made of the
rows of A whose index i is such that Pi = k. If nk denotes the cardinal of Ck, the
matrix A{k} has size nk × p and one has the relation

∑
k nk = N . Let us denote by Ik

the set of the indices of the observations belonging to the cluster Ck:

Ik = {i |Oi ∈ Ck} = {i |Pi = k}.

The matrix A{k} can also be denoted formally as A{Ik}.
Let us denote by µ{k} the barycenter of the observations in the cluster Ck and by µ

the barycenter of all the observations. µ{k} and µ are row-vectors with length p: they
are the means of the rows of the matrices A{k} and A respectively:

µ{k} =
1

nk

∑
i∈Ik

xi (1)

µ =
1

N

N∑
i=1

xi (2)

where xi designates the row of index i in A.

1.1.1 Total dispersion

Each column vector Vj (1 ≤ j ≤ p) of the matrix A can be interpreted as a sample of
size N of the j-th observed variable. Let us center each of these vectors with respect
to its mean by setting vj = Vj − µj . If X is the matrix formed by the centered vectors
vj , the scatter matrix T is the matrix defined by

T = tXX.

The general term of T is:

tij =

N∑
l=1

(ali − µi)(alj − µj) (3)

The matrix T is equal to N times the variance-covariance matrix of the family of col-
umn vectors (V1, . . . , Vp). The general term of T can thus also be written as

tij = N × Cov(Vi, Vj). (4)

In particular, the diagonal terms are N times the variances of the vectors Vi:

tii = N ×Var(Vi). (5)
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One can also write:
tij =

t(Vi − µi)(Vj − µj) (6)

where, by a slight abuse of notation, µi and µj are here identified with the vectors µi1
and µj1 respectively.

The scatter matrix is a square symmetric matrix of size p × p. As it is of the form
tXX , the quadratic form it represents is positive semi-definite. Indeed, if one takes
any vector v in Rp:

tvTv = tvtXXv = t(Xv) (Xv) = ||Xv||2 ≥ 0 (7)

In particular, the eigenvalues and the determinant of the scatter matrix are also greater
than or equal to 0. If N > p and if the matrix X has maximal rank p, the form is in
fact positive definite.

The total scattering TSS (total sum of squares) is the trace of the matrix T :

TSS = Tr(T ) = N

p∑
j=1

Var(Vj) (8)

Geometric interpretation: let us denote by M1, . . . ,MN the points of the space Rp

representing all the observations: the coordinates of Mi are the coefficients of the i-th
row of the data matrix A. Similarly, let us denote by G the barycenter of these points:
its coordinates are the coefficients of the vector µ. One can easily prove the following
relations:

Tr(T ) =

N∑
i=1

||Mi −G||2 (9)

=
1

N

∑
i<j

||Mi −Mj ||2 (10)

It means that the trace of T , in other words the total scattering TSS, is equal to the
scattering (sum of the squared distances) of the points around the barycenter. The
second equality shows that this quantity is also the sum of the distances between all the
pairs of points, divided by N .

1.1.2 Within-group scatter

There are similar definitions for the different clusters Ck: each column vector V {k}
j of

the matrix A{k} represents a sample of size nk of the j-th observed variable.
For each cluster Ck, one defines the within-group scatter matrix (abbreviated as

WG). If µ{k} designates the barycenter of the observations in cluster k and X{k} is the
matrix formed by the centered vectors v{k}j = V

{k}
j − µ

{k}
j , the within-group scatter

matrix is defined by the following relation:

WG{k} = tX{k} X{k} (11)

and its general term is defined as:

w
{k}
ij = t

(
V

{k}
i − µ

{k}
i

)(
V

{k}
j − µ

{k}
j

)
(12)
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In terms of variance and covariance, by analogy with the relations (4) and (5), the
coefficients of the matrix WG{k} can also be written as:w

{k}
ij = nk × Cov

(
V

{k}
i , V

{k}
j

)
w

{k}
ii = nk ×Var

(
V

{k}
i

) (13)

The matrices WG{k} are square symmetric matrices of size p × p. Let us denote
by WG their sum for all the clusters:

WG =

K∑
k=0

WG{k} (14)

As was the case with the matrix T seen in section 1.1.1, the matrices WG{k} rep-
resent a positive semi-definite quadratic form Qk and, in particular, their eigenvalues
and their determinant are greater than or equal to 0.

The within-cluster dispersion, noted WGSS{k} or WGSSk, is the trace of the
scatter matrix WG{k}:

WGSS{k} = Tr(WG{k}) =
∑
i∈Ik

||M{k}
i −G{k}||2 (15)

The within-cluster dispersion is the sum of the squared distances between the ob-
servations M{k}

i and the barycenter G{k} of the cluster.
Finally the pooled within-cluster sum of squares WGSS is the sum of the within-

cluster dispersions for all the clusters:

WGSS =

K∑
k=0

WGSS{k} (16)

The abovementioned geometric interpretation remains true at the level of each
group: in each cluster Ck, the sum of the squared distances from the points of the
cluster to their barycenter is also the sum of the squared distances between all the pairs
of points in the cluster, divided par nk. In other words:

WGSS{k} =
∑
i∈Ik

||M{k}
i −G{k}||2 (17)

=
1

nk

∑
i<j∈Ik

||M{k}
i −M

{k}
j ||2 (18)

Inverting the formula, one gets:∑
i ̸=j

||M{k}
i −M

{k}
j ||2 = 2

∑
i<j

||M{k}
i −M

{k}
j ||2

= 2nk

∑
i∈Ik

||M{k}
i −G{k}||2

= 2nk WGSS{k} (19)
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1.1.3 Between-group scatter

The between-group dispersion measures the dispersion of the clusters between each
other. Precisely it is defined as the dispersion of the barycenters G{k} of each cluster
with respect to the barycenter G of the whole set of data.

Let us denote by B the matrix formed in rows by the vectors µ{k} − µ, each one
being reproduced nk times (1 ≤ k ≤ K). The between-group scatter matrix is the
matrix

BG = tBB. (20)

The general term of this matrix is:

bij =

K∑
k=1

nk(µ
{k}
i − µi)(µ

{k}
j − µj) (21)

The between-group dispersion BGSS is the trace of this matrix:

BGSS = Tr(BG) =

K∑
k=1

nk
t(µ{k} − µ)(µ{k} − µ)

=

K∑
k=1

nk ||µ{k} − µ||2

=

K∑
k=1

nk

p∑
j=0

(µ
{k}
j − µj)

2 (22)

Geometrically, this sum is the weighted sum of the squared distances between the
G{k} and G, the weight being the number nk of elements in the cluster Ck:

BGSS =

K∑
k=1

nk||G{k} −G||2. (23)

1.1.4 Pairs of points

The observations (rows of the matrix A) can be represented by points in the space
Rp. Several quality indices defined in section 1.2 consider the distances between these
points. One is led to distinguish between pairs made of points belonging to the same
cluster and pairs made of points belonging to different clusters.

In the cluster Ck, there are nk(nk − 1)/2 pairs of distinct points (the order of the
points does not matter). Let us denote by NW the total number of such pairs:

NW =

K∑
k=1

nk(nk − 1)

2
(24)

=
1

2

(
K∑

k=1

n2
k −

K∑
k=1

nk

)
(25)

=
1

2

(
K∑

k=1

n2
k −N

)
(26)
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The total number of pairs of distinct points in the data set is

NT =
N(N − 1)

2
(27)

Since N =
∑K

k=1 nk, one can write :

NT =
N(N − 1)

2
=

1

2

(
K∑

k=1

nk

)2

− 1

2

K∑
k=1

nk

=
1

2

(
K∑

k=1

n2
k + 2

∑
k<k′

nknk′

)
− 1

2

K∑
k=1

nk

= NW +
∑
k<k′

nknk′ (28)

Let us denote by NB the number of pairs constituted of points which do not belong to
the same cluster, one has NT = NW +NB and consequently:

NB =
∑
k<k′

nknk′ . (29)

In the remainder, IB will denote the set of the NB pairs of between-cluster indices
and IW the set of the NW pairs of within-cluster indices.

1.2 Internal indices
The following sections provide the precise definitions of the various internal quality
indices which have been proposed by various authors in order to determine an optimal
clustering. They are sorted in alphabetical order. These indices, also called quality
indices, are all denoted by the same letter C. Let us also denote by d the distance
function between two points (usually the ordinary euclidean distance).

Table 1 summarizes the existing indices, their name in the package clusterCrit for
R, the bibliographic reference and the date of the article where they were originally
defined.

1.2.1 The Ball-Hall index

The mean dispersion of a cluster is the mean of the squared distances of the points of
the cluster with respect to their barycenter. The Ball-Hall index is the mean, through
all the clusters, of their mean dispersion:

C =
1

K

K∑
k=1

1

nk

∑
i∈Ik

||M{k}
i −G{k}||2 (30)

In the particular case where all the clusters have the same size N/K, this sum
reduces to 1

NWGSS.
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Index Name in R Ref. Date

Ball-Hall Ball_Hall [2] 1965

Banfeld-Raftery Banfeld_Raftery [3] 1974

C index C_index [15] 1976

Calinski-Harabasz Calinski_Harabasz [5] 1974

Davies-Bouldin Davies_Bouldin [6] 1979

|T |/|W | Det_Ratio [24] 1971

Dunn Dunn [7] 1974

Dunn generalized GDImn [4] 1998

Gamma Gamma [1] 1975

G + G_plus [23] 1974

k2|W | Ksq_DetW [16] 1975

log(|T |/|W |) Log_Det_Ratio [24] 1971

log(BGSS/WGSS) Log_SS_Ratio [14] 1975

McClain-Rao McClain_Rao [17] 2001

PBM PBM [19] 2004

Point biserial Point_biserial [18] 1981

Ratkowsky-Lance Ratkowsky_Lance [21] 1978

Ray-Turi Ray_Turi [22] 1999

Scott-Symons Scott_Symons [24] 1971

SD SD_Scat [13] 2001

SD SD_Dis [13] 2001

S_Dbw S_Dbw [12] 2001

Silhouette Silhouette [20] 1987

Tr(W ) Trace_W [8] 1965

Tr(W−1B) Trace_WiB [10] 1967

Wemmert-Gançarski Wemmert_Gancarski

Xie-Beni Xie_Beni [25] 1991

Table 1: Index names in the package clusterCrit for R and bibliographic references.
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1.2.2 The Banfeld-Raftery index

This index is the weighted sum of the logarithms of the traces of the variance-covariance
matrix of each cluster.

The index can be written like this:

C =

K∑
k=1

nk log

(
Tr(WG{k})

nk

)
(31)

The quantity Tr(WG{k})/nk can be interpreted, after equation (15), as the mean
of the squared distances between the points in cluster Ck and their barycenter G{k}. If
a cluster contains a single point, this trace is equal to 0 and the logarithm is undefined.

1.2.3 The C index

Let us consider the distances between the pairs of points inside each cluster. The num-
bers NW and NT have been defined in section 1.1.4. One computes the following three
quantities:

• SW is the sum of the NW distances between all the pairs of points inside each
cluster ;

• Smin is the sum of the NW smallest distances between all the pairs of points in
the entire data set. There are NT such pairs (see section 1.1.4): one takes the
sum of the NW smallest values ;

• Smax is the sum of the NW largest distances between all the pairs of points in
the entire data set. There are NT such pairs: one takes the sum of the NW largest
values.

The C index is defined like this:

C =
SW − Smin

Smax − Smin
(32)

If one considers the NT distances between pairs of points as a sequence of values
sorted in increasing order, the C index uses the NW smallest values and the NW largest
values in order to compute the sums Smin and Smax: the sum S involves the NW

distances in this sequence which correspond to pairs present in some cluster (that is to
say pairs whose two points are in a same cluster). No more than 3NW distances are
effectively retained in the calculation of this index.

1.2.4 The Calinski-Harabasz index

Using the notations of equations (16) and (23), the Calinski-Harabasz index is defined
like this:

C =
BGSS/(K − 1)

WGSS/(N −K)
=

N −K

K − 1

BGSS

WGSS
(33)
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1.2.5 The Davies-Bouldin index

Let us denote by δk the mean distance of the points belonging to cluster Ck to their
barycenter G{k}:

δk =
1

nk

∑
i∈Ik

||M{k}
i −G{k}|| (34)

Let us also denote by

∆kk′ = d(G{k}, G{k′}) = ||G{k′} −G{k}||

the distance between the barycenters G{k} and G{k′} of clusters Ck and Ck′ .

One computes, for each cluster k, the maximum Mk of the quotients
δk + δk′

∆kk′
for

all indices k′ ̸= k. The Davies-Bouldin index is the mean value, among all the clusters,
of the quantities Mk:

C =
1

K

K∑
k=1

Mk =
1

K

K∑
k=1

max
k′ ̸=k

(δk + δk′

∆kk′

)
(35)

1.2.6 The Det_Ratio index

The Det_Ratio index is defined like this:

C =
det(T )

det(WG)
(36)

T designates the total scatter matrix defined in section 1.1.1. This is the sum of
matrices BG and WG defined in equations (14) and (20).

1.2.7 The Dunn index

Let us denote by dmin the minimal distance between points of different clusters and
dmax the largest within-cluster distance.

The distance between clusters Ck and Ck′ is measured by the distance between
their closest points:

dkk′ = min
i∈Ik
j∈I

k′

||M{k}
i −M

{k′}
j || (37)

and dmin is the smallest of these distances dkk′ :

dmin = min
k ̸=k′

dkk′ (38)

For each cluster Ck, let us denote by Dk the largest distance separating two distinct
points in the cluster (sometimes called the diameter of the cluster):

Dk = max
i,j∈Ik
i̸=j

||M{k}
i −M

{k}
j ||. (39)

Then dmax is the largest of these distances Dk:

dmax = max
1≤k≤K

Dk (40)
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The Dunn index is defined as the quotient of dmin and dmax:

C =
dmin

dmax
(41)

1.2.8 The Baker-Hubert Gamma index

The Gamma index of Baker-Hubert is an adaptation, in the context of clustering, of the
index Γ of correlation between two vectors of data A and B with the same size.

Generally, for two indices i and j such that ai < aj , one says that the two vectors
are concordant if bi < bj , in other words, if the values classify in the same order in both
vectors. One calculates the number s+ of concordant pairs {i, j} and the number s−

of discordant pairs. Note that the inequalities are strict, meaning that ties are dropped.
In this context, the Γ index is classically defined like this (see [11]):

C = Γ =
s+ − s−

s+ + s−
(42)

Its value is between -1 and 1.
In the context of a partition, the first vector A is chosen to be the set of distances

dij between pairs of points {Mi,Mj} (with i < j). The second vector B is a binary
vector: in this vector, the coordinate corresponding to a pair {Mi,Mj} has value 0 if
the two points lie in the same cluster and 1 otherwise. These two vectors have length
NT = N(N − 1)/2.

The number s+ represents the number of times a distance between two points which
belong to the same cluster (that is to say a pair for which the value of vector B is 0) is
strictly smaller than the distance between two points not belonging to the same cluster
(that is to say a pair for which the value of vector B is 1). The number s− represents the
number of times the opposite situation occurs, that is to say that a distance between two
points lying in the same cluster (value 0 in B) is strictly greater than a distance between
two points not belonging to the same cluster (value 1 in B). The cases where there is
equality (ties or ex-aequos) are not taken into account. As defined in section 1.1.4,
there are NB between-cluster distances and, for each of them, one compares with the
NW within-cluster distances: one finally performs NB ×NW comparisons.

One can write the numbers s+ and s− in the following form:

s+ =
∑

(r,s)∈IB

∑
(u,v)∈IW

1{duv<drs} (43)

s− =
∑

(r,s)∈IB

∑
(u,v)∈IW

1{duv>drs} (44)

Their difference is:

s+ − s− =
∑

(r,s)∈IB

∑
(u,v)∈IW

sgn(drs − duv) (45)

1.2.9 The GDI index

The GDI indices are generalisations of the Dunn index seen in section 1.2.7 (GDI is
the abbreviation of Generalized Dunn’s Indices). They use different quantities in order
to evaluate the between-clusters and within-groups distances.
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Let us denote by the letter δ a measure of the between-cluster distance and by ∆ a
measure of the within-cluster distance (which is also called the diameter of the cluster).
The GDI index, relatively to these distances, is defined like this:

C =
mink ̸=k′ δ(Ck, Ck′)

maxk ∆(Ck)
(46)

with 1 ≤ k ≤ K and 1 ≤ k′ ≤ K.
Six different definitions of δ (denoted as δ1 through δ6) and three definitions of ∆

(denoted as ∆1 through ∆3) have been suggested. This leads to 18 different indices
denoted as Cuv: here u is an integer designating the between-clusters distance (1 ≤
u ≤ 6) and v an integer designating the within-groups distance (1 ≤ v ≤ 3).

The definitions of the within-cluster distances ∆ are:

∆1(Ck) = max
i,j∈Ik
i̸=j

d(Mi,Mj) (47)

∆2(Ck) =
1

nk(nk − 1)

∑
i,j∈Ik
i̸=j

d(Mi,Mj) (48)

∆3(Ck) =
2

nk

∑
i∈Ik

d(Mi, G
{k}) (49)

Here d is the euclidean distance. The facteur 2 in the definition of ∆3 allows us to
interpret the value as a diameter rather than a radius.

The definitions of the between-cluster distances δ are:

δ1(Ck, Ck′) = min
i∈Ik
j∈I

k′

d(Mi,Mj) (50)

δ2(Ck, Ck′) = max
i∈Ik
j∈I

k′

d(Mi,Mj) (51)

δ3(Ck, Ck′) =
1

nknk′

∑
i∈Ik
j∈I

k′

d(Mi,Mj) (52)

δ4(Ck, Ck′) = d(G{k}, G{k′}) (53)

δ5(Ck, Ck′) =
1

nk + nk′

(∑
i∈Ik

d(Mi, G
{k}) +

∑
j∈Ik′

d(Mj , G
{k′})

)
(54)

δ6(Ck, Ck′) = max
{
sup
i∈Ik

inf
j∈Ik′

d(Mi,Mj), sup
j∈Ik′

inf
i∈Ik

d(Mi,Mj)
}

(55)

The first four distances (δ1 to δ4) occur in ascendant clustering algorithms and are
called single linkage, complete linkage, average linkage, centroid linkage respectively.
The measure δ5 is the weighted mean (with weights nk and nk′ ) of the mean distances
between the points in clusters Ck and Ck′ and their respective barycenter. The measure
δ6 is the Hausdorff distance DH .
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1.2.10 The G_plus index

Using the same notations as for the Baker-Hubert Γ index seen in section 1.2.8, the G+
index is defined like this:

C =
s−

NT (NT − 1)/2
=

2s−

NT (NT − 1)
(56)

This is the proportion of discordant pairs among all the pairs of distinct points.

1.2.11 The Ksq_DetW index

The Ksq_DetW index (also denoted as k2 |W |) is defined like this:

C = K2 det(WG) (57)

where WG is defined as in equation (14).

1.2.12 The Log_Det_Ratio index

The Log_Det_Ratio index is defined like this:

C = N log

(
det(T )

det(WG)

)
(58)

where T is the scatter matrix defined in section 1.1.1 and WG is defined by equa-
tion (14). This is a logarithmic variant of the Det_Ratio index seen in section .

1.2.13 The Log_SS_Ratio index

The Log_SS_Ratio index is defined like this:

C = log

(
BGSS

WGSS

)
(59)

where BGSS and WGSS are defined by equations (23) and (16) respectively: they
are the traces of the BG and WG matrices respectively.

1.2.14 The McClain-Rao index

As for the C index seen in section 1.2.3, let us denote by SW the sum of the within-
cluster distances:

SW =
∑

(i,j)∈IW

d(Mi,Mj) =

K∑
k=1

∑
i,j∈Ik
i<j

d(Mi,Mj) (60)

Recall that the total number of distances between pairs of points belonging to a same
cluster is NW .

Let us denote by SB the sum of the between-cluster distances:

SB =
∑

(i,j)∈IB

d(Mi,Mj) =
∑
k<k′

∑
i∈Ik, j∈I

k′
i<j

d(Mi,Mj) (61)
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The total number of distances between pairs of points which do not belong to the same
cluster is NB = N(N − 1)/2−NW .

The McClain-Rao index is defined as the quotient between the mean within-cluster
and between-cluster distances:

C =
SW /NW

SB/NB
=

NB

NW

SW

SB
(62)

1.2.15 The PBM index

The PBM index (acronym constituted of the initals of the names of its authors, Pakhira,
Bandyopadhyay and Maulik) is calculated using the distances between the points and
their barycenters and the distances between the barycenters themselves.

Let us denote by DB the largest distance between two cluster barycenters:

DB = max
k<k′

d
(
G{k}, G{k′}) (63)

On the other hand, let us denote by EW the sum of the distances of the points of
each cluster to their barycenter and ET the sum of the distances of all the points to the
barycenter G of the entire data set:

EW =

K∑
k=1

∑
i∈Ik

d(Mi, G
{k}) (64)

ET =

N∑
i=1

d(Mi, G) (65)

The PBM index is defined like this:

C =

(
1

K
× ET

EW
×DB

)2

(66)

ET is a constant which does not depend on the partition, nor on the number of
clusters.

1.2.16 The Point-Biserial index

Generally speaking, in statistics, the point-biserial coefficient is a correlation measure
between a continuous variable A and a binary variable B (i-e a variable whose values
are 0 or 1). A and B are sets with the same length n.

The values of A are dispatched into two groups A0 and A1 depending on the cor-
responding value in B being 0 or 1.

Let us denote by MA0
and MA1

the means in A0 and A1, and nA0
and nA1

the
number of elements in each group. The point-biserial correlation coefficient is defined
as the quantity:

rpb(A,B) =
MA1

−MA0

sn

√
nA0

nA1

n2
(67)

where sn is the standard deviation of A.
In the context of a comparison between different clusterings, the term sn may be

omitted because it does not depend on the partitions but only on the set of data.
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As in the case of the Γ index seen in section 1.2.8, one adapts this definition by
choosing A to be the set of the NT distances between pairs of points Mi and Mj . The
corresponding value in B is 1 if the two points lie in the same cluster and 0 otherwise:

Aij = d(Mi,Mj) (68)

Bij =

{
1 if (i, j) ∈ IW

0 otherwise
(69)

MA1
is the mean of all the within-cluster distances and MA0

is the mean of all the
between-cluster distances.

Using the notations introduced in section 1.2.14, the definition of the point-biserial
index is :

C = sn × rpb(A,B) = (SW /NW − SB/NB)

√
NWNB

NT
(70)

1.2.17 The Ratkowsky-Lance index

One computes the mean R̄ of the quotients between BGSS and TSS for each dimension
of the data, that is to say for each column of the matrix A.

Let us denote

BGSSj =

K∑
k=1

nk(µ
{k}
j − µj)

2 = bjj (71)

TSSj = NVar(Vj) =

N∑
i=1

(aij − µj)
2 (72)

Then

c̄2 = R̄ =
1

p

p∑
j=1

BGSSj

TSSj
(73)

BGSSj is in fact the j-th diagonal term of the matrix BG defined by equation (20).
The Ratkowsky_Lance index (c̄/

√
K) is defined like this:

C =

√
R̄

K
=

c̄√
K

(74)

1.2.18 The Ray-Turi index

The Ray-Turi index is defined as a quotient:

• the numerator is the mean of the squared distances of all the points with respect
to the barycenter of the cluster they belong to:

1

N

K∑
k=1

∑
i∈Ik

||M{k}
i −G{k}||2 =

1

N

K∑
k=1

WGSS{k} =
1

N
WGSS

• the denominator is the minimum of the squared distances ∆kk′ between all the
cluster barycenters:

min
k<k′

∆2
kk′ = min

k<k′
d(G{k}, G{k′})2 = min

k<k′
||G{k} −G{k′}||2 (75)
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So the Ray-Turi index can be written like this:

C =
1

N

WGSS

min
k<k′

∆2
kk′

(76)

1.2.19 The Scott-Symons index

This index is the weighted sum of the logarithms of the determinants of the variance-
covariance matrix of each cluster.

It can be written like this:

C =

K∑
k=1

nk log det
(WG{k}

nk

)
(77)

The determinants of the matrices WG{k} are greater than or equal to 0 because
these matrices are positive semi-definite. If one of them is equal to 0, the index is
undefined.

1.2.20 The SD index

One defines two quantities S and D called respectively the average scattering for clus-
ters and the total separation between clusters.

The average scattering for the clusters, noted S, is defined as follows. Let us con-
sider the vector of variances for each variable in the data set. It is a vector V of size p
defined by:

V = (Var(V1), . . . ,Var(Vp)) (78)

Similarly, one defines variance vectors V{k} for each cluster Ck:

V{k} = (Var(V
{k}
1 ), . . . ,Var(V {k}

p )). (79)

The quantity S is the mean of the norms of the vectors V{k} divided by the norm of
vector V:

S =

1

K

K∑
k=1

||V{k}||

||V||
. (80)

On the other hand, the total separation between clusters, noted D, is defined as
follows. Let us denote by Dmax and Dmin respectively the largest and the smallest
distance between the barycenters of the clusters:

Dmax = max
k ̸=k′

||G{k} −G{k′}|| (81)

Dmin = min
k ̸=k′

||G{k} −G{k′}|| (82)

Let us denote

D =
Dmax

Dmin

K∑
k=1

1
K∑

k′=1
k′ ̸=k

||G{k} −G{k′}||

(83)
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The SD index is finally defined like this:

C = αS +D (84)

where α is a weight equal to the value of D obtained for the partition with the greatest
number of clusters. In order to compare several partitions of the data, one must first
calculate the value of D corresponding to the greatest number of clusters in order to
find the value of the coefficient α and then calculate the other indices based on this
coefficient.

1.2.21 The S_Dbw index

This index relies on the notion of density of points belonging to two clusters. One first
defines a limit value σ equal to the square root of the sum of the norms of the variance
vectors V{k} (introduced in section 1.2.20) divided by the number of clusters:

σ =
1

K

√√√√ K∑
k=1

||V{k}|| (85)

The density γkk′ for a given point, relative to two clusters Ck and Ck′ , is equal to
the number of points in these two clusters whose distance to this point is less than σ.
Geometrically, this amounts to considering the ball with radius σ centered at the given
point and counting the number of points of Ck ∪ Ck′ located in this ball.

For each pair of clusters, let us evaluate the densities for the barycenters G{k} and
G{k′} of the clusters and for their midpoint Hkk′ . One forms the quotient Rkk′ between
the density at the midpoint and the largest density at the two barycenters:

Rkk′ =
γkk′(Hkk′)

max
(
γkk′(G{k}), γkk′(G{k′})

) (86)

On the other hand, one defines a between-cluster density G as the mean of the
quotients Rkk′ :

G =
2

K(K − 1)

∑
k<k′

Rkk′ (87)

The S-Dbw index is defined as the sum of the mean dispersion in the clusters S
(defined in section 1.2.20) and of the between-cluster density G:

C = S + G (88)

1.2.22 The Silhouette index

Let us consider, for each point Mi, its mean distance to each cluster. One defines the
within-cluster mean distance a(i) as the mean distance of point Mi to the other points
of the cluster it belongs to: if Mi ∈ Ck, we thus have

a(i) =
1

nk − 1

∑
i′∈Ik
i′ ̸=i

d(Mi,Mi′) (89)
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On the other hand, let us evaluate the mean distance d(Mi, Ck′) of Mi to the points
of each of the other clusters Ck′ :

d(Mi, Ck′) =
1

nk′

∑
i′∈Ik′

d(Mi,Mi′) (90)

Let us also denote by b(i) the smallest of these mean distances:

b(i) = min
k′ ̸=k

d(Mi, Ck′) (91)

The value k′ which realizes this minimum indicates the best choice for reaffecting, if
necessary, the point Mi to another cluster than the one it currently belongs to.

For each point Mi, one then forms the quotient

s(i) =
b(i)− a(i)

max
(
a(i), b(i)

) (92)

which is called the silhouette width of the point. It is a quantity between -1 and 1: a
value near 1 indicates that the point Mi is affected to the right cluster whereas a value
near -1 indicates that the point should be affected to another cluster.

The mean of the silhouette widths for a given cluster Ck is called the cluster mean
silhouette and is denoted as sk:

sk =
1

nk

∑
i∈Ik

s(i) (93)

Finally, the global silhouette index is the mean of the mean silhouettes through all
the clusters:

C =
1

K

K∑
k=1

sk (94)

1.2.23 The Tau index

Using the same notations as for the Gamma index in section 1.2.8, the τ index of
Kendall between two vectors of data of length NT is classically defined in statistics as
the quantity:

τ =
s+ − s−

NT (NT − 1)

2

(95)

The numbers s+ and s− do not count ties, so if a between-cluster distance and a
within-cluster distance are equal, they do not enter in the numerator. In order to take
ties into account, one modifies the denominator and defines the corrected index τc like
this:

τc =
s+ − s−√

(ν0 − ν1)(ν0 − ν2)
(96)
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with

ν0 =
NT (NT − 1)

2
(97)

ν1 =
∑
i

ti(ti − 1)

2
(98)

ν2 =
∑
j

uj(uj − 1)

2
(99)

where ti is the number of values in the i-th group of ties for the vector A and uj is
the number of values in the j-th group of ties for the vector B. Here the vector B is
constituted only of values 0 and 1 (corresponding to the between-cluster and within-
cluster pairs respectively) and we thus have:

ν2 = NB(NB − 1)/2 +NW (NW − 1)/2 (100)

An easy calculation shows that ν0 − ν2 = NBNW .
If one makes the reasonable hypothesis that the vector A contains few identical

values, one can estimate that ν2 is negligible with respect to ν0. This justifies the
following definition of the Tau index of clustering:

C =
s+ − s−√

NBNW

(
NT (NT − 1)

2

) (101)

1.2.24 The Trace_W index

The Trace_W index is defined like this:

C = Tr(WG) = WGSS (102)

where WG and WGSS are defined by equations (14) and (16) respectively.

1.2.25 The Trace_WiB index

The Trace_WiB (or Trace_W−1B) index is defined like this:

C = Tr(WG−1 . BG) (103)

where WG and BG are defined by equations (14) and (20) respectively.

1.2.26 The Wemmert-Gançarski index

The Wemmert-Gançarski index is built using quotients of distances between the points
and the barycenters of all the clusters.

For a point M belonging to cluster Ck, one forms the quotient R(M) between the
distance of this point to the barycenter of the cluster it belongs to and the smallest
distance of this point to the barycenters of all the other clusters:

R(M) =
||M −G{k}||

min
k′ ̸=k

||M −G{k′}||
(104)
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One then takes the mean of these quotients in each cluster. If this mean is greater
than 1, it is ignored, otherwise one takes its complement to 1. Precisely, let us define:

Jk = max
{
0, 1− 1

nk

∑
i∈Ik

R(Mi)
}

(105)

The Wemmert-Gançarski index is defined as the weighted mean, for all the clusters,
of the quantities Jk like this:

C =
1

N

K∑
k=1

nkJk (106)

This expression can be rewritten as follows:

C =
1

N

K∑
k=1

max
{
0, nk −

∑
i∈Ik

R(Mi)
}

(107)

1.2.27 The Xie-Beni index

The Xie-Beni index is an index of fuzzy clustering, but it is also applicable to crisp
clustering.

It is defined as the quotient between the mean quadratic error and the minimum of
the minimal squared distances between the points in the clusters.

The mean quadratic error, in the case of a crisp clustering, is simply the quantity
1
NWGSS, in other words the mean of the squared distances of all the points with
respect to the barycenter of the cluster they belong to.

Using the same notation as in section 1.2.9, one has

δ1(Ck, Ck′) = min
i∈Ik
j∈I

k′

d(Mi,Mj) (108)

and the Xie-Beni index can be written like this:

C =
1

N

WGSS

min
k<k′

δ1(Ck, Ck′)2
(109)

1.3 Choice of the best partition
In order to find the best partition of the data, one usually executes a clustering algorithm
with different values of the expected number of clusters K: let us say that Km ≤ K ≤
KM . The clustering algorithm which is applied could be an ascending hierarchical
clustering (AHC) or the k-means algorithm or any other technique. One then computes
a quality index QK for each value of K and selects the partition which led to the "best"
value for QK . This section explains what is considered the "best" value for the different
quality indices.

Table 2 summarizes, for each index, which rule must be applied in order to deter-
mine the best index value. For instance, in the case of the Calinski-Harabasz index,
if the quality index has been computed for different partitions of the data, the best
partition is the one corresponding to the greatest value of the index.
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Index Rule
Ball_Hall max diff
Banfeld_Raftery min
C_index min
Calinski_Harabasz max
Davies_Bouldin min
Det_Ratio min diff
Dunn max
GDI max
Gamma max
G_plus min
Ksq_DetW max diff
Log_Det_Ratio min diff
Log_SS_Ratio min diff
McClain_Rao min
PBM max
Point_biserial max
Ratkowsky_Lance max
Ray_Turi min
Scott_Symons min
SD min
S_Dbw min
Silhouette max
Tau max
Trace_W max diff
Trace_WiB max diff
Wemmert_Gancarski max
Xie_Beni min

Table 2: Method to determine the best partition.
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The decision rules called max and min in table 2 mean that one should select re-
spectively the greatest or the smallest index value.

The decision rule called max diff means that the best value for K is the one cor-
responding to the greatest difference between two successive slopes. On a diagram
representing the index values against the number of selected clusters, this corresponds
to an elbow. More precisely, let us denote Vi = Qi+1 − Qi the slope between to
successive points of the diagram. Then K is defined by:

K = arg max
Km<i≤KM

(Vi − Vi−1) (110)

This is better explained on the following graphic. The figure on the right displays
the values of the Hall_Ball index corresponding to different clusterings of the data
represented by the figure on the left. The index has been computed with tentative
partitions made of 2 to 7 clusters. The figure exhibits an elbow for the four-clusters
partition and indeed the data clearly belong to four distinct groups.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

2 3 4 5 6 7

0
1

2
3

4
Ball_Hall

# of clusters

In
de

x

2 External comparison indices
The external indices of comparison are indices designed to measure the similitude be-
tween two partitions. They take into account only the distribution of the points in the
different clusters and do not allow to measure the quality of this distribution.

2.1 Notation
All the suggested indices rely on a confusion matrix representing the count of pairs of
points depending on whether they are considered as belonging to the same cluster or
not according to partition P1 or to partition P2. There are thus four possibilities:

• the two points belong to the same cluster, according to both P1 and P2

• the two points belong to the same cluster according to P1 but not to P2

• the two points belong to the same cluster acording to P2 but not to P1

• the two points do not belong to the same cluster, according to both P1 and P2.

Let us denote by yy, yn, ny, nn (y means yes, and n means no) the number of
points belonging to these four categories respectively. NT being the total number of
pairs of points, one has:

NT =
N(N − 1)

2
= yy + yn+ ny + nn. (111)
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2.2 Precision and recall coefficients
If partition P1 is used as a reference, one defines the precision coefficient as the pro-
portion of points rightly grouped together in P2, that is to say which are also grouped
together according to the reference partition P1. Among the yy + ny points grouped
together according to P2, yy are rightly grouped. One thus has:

P =
yy

yy + ny
. (112)

Similarly, one defines the recall coefficient as the proportion of points grouped
together in P1 which are also grouped together in partition P2. This is the proportion
of points which are supposed to be grouped together according to the reference partition
P1 and which are effectively marked as such by partition P2. Among the yy+yn points
grouped together in P1, yy are also grouped together in P2. One thus has:

R =
yy

yy + yn
(113)

In terms of conditional probabilities, one can write

P = P (gp1|gp2) and R = P (gp2|gp1) (114)

where the events gp1 and gp2 mean that two points are grouped together in P1 and in
P2 respectively.

The F-measure is the harmonic mean of the precision and recall coefficients:

F =
2

1

P
+

1

R

=
2P ×R
P +R

=
2yy

2yy + yn+ ny
(115)

There is also a weighted version of this measure, called the Fα-measure, defined
like this:

Fα =
(1 + α)P ×R

αP +R
with α > 0 (116)

2.3 Indicator variables
Let us associate to each partition Pa (a = 1, 2) the binary random variable Xa defined
on the set of indices i and j such that i < j as follows: its value is 1 if the points Mi

and Mj are classified in the same cluster than in partition Pa and 0 otherwise. The
variable Xa works as an indicator variable.

There are NT pairs of points and one is interested only in the indices i and j such
that i < j. Let us consider the mean and the standard deviation of Xa:

µXa
=

1

NT

∑
i<j

Xa(i, j) (117)

σ2
Xa

=
1

NT

∑
i<j

Xa(i, j)
2 − µ2

Xa
(118)

The following formulas establish a link between these random variables and the
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concordant and discordant count variables:

yy + yn =
∑
i<j

X1(i, j) (119)

yy + ny =
∑
i<j

X2(i, j) (120)

yy =
∑
i<j

X1(i, j)X2(i, j) (121)

From this we get:

µX1 =
yy + yn

NT
σ2
X1

=
yy + yn

NT
−
(yy + yn

NT

)2
µX2

=
yy + ny

NT
σ2
X2

=
yy + ny

NT
−
(yy + ny

NT

)2
2.4 External indices definition
The following sections give the definition of several (more or less) widely used external
indices.

2.4.1 The Czekanowski-Dice index

The Czekanowski-Dice index (aka the Ochiai index) is defined like this:

C =
2yy

2yy + yn+ ny
(122)

This index is the harmonic mean of the precision and recall coefficients, that is to
say it is identical to the F-measure defined in section 2.2:

C = 2
P ×R
P +R

(123)

2.4.2 The Folkes-Mallows index

The Folkes-Mallows index is defined like this:

C =
yy√

(yy + yn)× (yy + ny)
(124)

This index is the geometric mean of the precision and recall coefficients:

C =
√
PR (125)

2.4.3 The Hubert Γ̂ index

The index of Hubert Γ̂ is the correlation coefficient of the indicator variables introduced
in section 2.3. It is defined like this:

C = Corr(X1, X2) =

∑
i<j

(
X1(i, j)− µX1

)(
X2(i, j)− µX2

)
NT σX1σX2

(126)
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Comparing with equation (136), the index of Hubert Γ̂ appears as a standardized
variant (centered and reduced) of the Russel-Rao index defined in section 2.4.10. Its
value is between -1 and 1.

Using the relations of section 2.3, one may write the Γ̂ index as follows:

C =
NT × yy − (yy + yn)(yy + ny)√

(yy + yn)(yy + ny)(nn+ yn)(nn+ ny)
(127)

2.4.4 The Jaccard index

The Jaccard index is defined like this:

C =
yy

(yy + yn+ ny)
(128)

2.4.5 The Kulczynski index

The Kulczynski index is defined like this:

C =
1

2

(
yy

yy + ny
+

yy

yy + yn

)
(129)

This index is the arithmetic mean of the precision and recall coefficients:

C =
1

2
(P +R) (130)

2.4.6 The McNemar index

The McNemar index is defined like this:

C =
yn− ny√
yn+ ny

(131)

Under the null hypothesis H0 that the discordances between the partitions P1 and
P2 are random, the index C follows approximatively a normal distribution. It is an
adaptation of the non-parametric test of McNemar for the comparison of frequencies
between two paired samples: the statistic of McNemar’s test (called the χ2 distance) is
the square of the index

C2 =
(yn− ny)2

yn+ ny

and follows, under the null hypothesis of marginal homogeneity of the contingency
table, a χ2 distribution with 1 degree of freedom.

2.4.7 The Phi index

The Phi index is a classical measure of the correlation between two dichotomic vari-
ables. It is defined like this:

C =
yy × nn− yn× ny

(yy + yn)(yy + ny)(yn+ nn)(ny + nn)
(132)
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2.4.8 The Rand index

The Rand index is defined like this:

C =
yy + nn

NT
(133)

2.4.9 The Rogers-Tanimoto index

The Rogers-Tanimoto index is defined like this:

C =
yy + nn

yy + nn+ 2(yn+ ny)
(134)

2.4.10 The Russel-Rao index

The Russel-Rao index measures the proportion of concordances between the two par-
titions. It is defined like this:

C =
yy

NT
(135)

Using the notations introduced in section 2.3, this index can be written:

C =
1

NT

∑
i<j

X1(i, j)X2(i, j) (136)

2.4.11 The Sokal-Sneath indices

There are two versions of the Sokal-Sneath index. They are defined respectively like
this:

C1 =
yy

yy + 2(yn+ ny)

C2 =
yy + nn

yy + nn+ 1
2 (yn+ ny)

(137)

3 Usage of the clusterCrit package
The clusterCrit package for R provides an implementation of all the indices described
in the preceding sections. The core of the package is written in Fortran and is optimized
in order to avoid duplicate calculations.

It can be installed from the R console with the following instruction:

install.packages(clusterCrit)

Once it is installed, it can be loaded in an R session with the following instruction:

load(clusterCrit)
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3.1 Available commands
The clusterCrit package defines several functions which let you compute internal qual-
ity indices or external comparison indices. The partitions are specified as an integer
vector giving the index of the cluster each observation belongs to. The possible values
are integers between 1 and K, where K is the number of clusters.

The intCriteria function calculates one or several internal quality indices. Its syntax
is:

intCriteria(traj, part, crit)

The traj argument is the matrix of observations (aka as trajectories). The part argument
is the partition vector. The crit argument is a list containing the names of the indices
to compute. One can use the keyword "all" in order to compute all the available
indices. See the getCriteriaNames function to see the names of the currently avail-
able indices. All the names are case insensitive and can be abbreviated as long as the
abbreviation remains unambiguous.

The extCriteria function calculates one or several external indices (including the
precision and recall coefficients). Its syntax is:

extCriteria(part1, part2, crit)

The part1 and part2 arguments are the partition vectors. The meaning of the crit argu-
ment is the same as for the intCriteria function.

Given a vector of several clustering quality index values computed with a given cri-
terion, the function bestCriterion returns the index of the one which must be considered
as the best in the sense of the specified criterion. Its syntax is:

bestCriterion(x, crit)

The x argument is a numeric vector of quality index values. The crit argument is the
name of the criterion: it is case insensitive and can be abbreviated.

Typically, a set of data is clusterized several times (using different algorithms or
specifying a different number of clusters) and a clustering index is calculated each
time: the bestCriterion function tells which value is considered the best. For instance,
if one uses the Calinski_Harabasz index, the best value is the largest one.

The concordance function calculates the concordance matrix between two parti-
tions of the same data. Its syntax is:

concordance(part1, part2)

The arguments are the partition vectors. The function returns a 2 × 2 matrix of the
form: (

yy yn
ny nn

)
These are the number of pairs classified as belonging or not belonging to the same
cluster with respect to both partitions. Since there are N(N − 1)/2 pairs of distinct
points, one has:

yy + yn+ ny + nn = N(N − 1)/2

The getCriteriaNames function is a convenience function which returns the names
of the currently implemented indices. Its syntax is:
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getCriteriaNames(isInternal)

where the argument isInternal is a logical value: if TRUE it returns the names of the
internal indices, otherwise it returns the names of the external ones.

3.2 Examples of use
First load the package:

> library(clusterCrit)

Let us create some artificial data:

> x <- rbind(matrix(rnorm(100, mean = 0, sd = 0.5), ncol = 2),
+ matrix(rnorm(100, mean = 1, sd = 0.5), ncol = 2),
+ matrix(rnorm(100, mean = 2, sd = 0.5), ncol = 2))

Now perform the kmeans algorithm in order to get a partition with 3 clusters (the
kmeans function is provided by R in the stats package and is available by default):

> cl <- kmeans(x, 3)

Let us get the names of the internal indices:

> getCriteriaNames(TRUE)

[1] "Ball_Hall" "Banfeld_Raftery" "C_index"
[4] "Calinski_Harabasz" "Davies_Bouldin" "Det_Ratio"
[7] "Dunn" "Gamma" "G_plus"

[10] "GDI11" "GDI12" "GDI13"
[13] "GDI21" "GDI22" "GDI23"
[16] "GDI31" "GDI32" "GDI33"
[19] "GDI41" "GDI42" "GDI43"
[22] "GDI51" "GDI52" "GDI53"
[25] "Ksq_DetW" "Log_Det_Ratio" "Log_SS_Ratio"
[28] "McClain_Rao" "PBM" "Point_Biserial"
[31] "Ray_Turi" "Ratkowsky_Lance" "Scott_Symons"
[34] "SD_Scat" "SD_Dis" "S_Dbw"
[37] "Silhouette" "Tau" "Trace_W"
[40] "Trace_WiB" "Wemmert_Gancarski" "Xie_Beni"

Let us compute all the internal indices and display one of them:

> intIdx <- intCriteria(x,cl$cluster,"all")
> length(intIdx)

[1] 42

> intIdx[["trace_w"]]

[1] 67.44501

It is possible to compute only a few indices:

> intCriteria(x,cl$cluster,c("C_index","Calinski_Harabasz","Dunn"))
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$c_index
[1] 0.06240864

$calinski_harabasz
[1] 255.5711

$dunn
[1] 0.03600579

The names are case insensitive and can be abbreviated:

> intCriteria(x,cl$cluster,c("det","cal","dav"))

$det_ratio
[1] 9.955364

$calinski_harabasz
[1] 255.5711

$davies_bouldin
[1] 0.7899807

Here is now an example of the external criteria. Let us generate two artificial parti-
tions:

> part1<-sample(1:3,150,replace=TRUE)
> part2<-sample(1:5,150,replace=TRUE)

Let us get the names of the external indices:

> getCriteriaNames(FALSE)

[1] "Czekanowski_Dice" "Folkes_Mallows" "Hubert" "Jaccard"
[5] "Kulczynski" "McNemar" "Phi" "Precision"
[9] "Rand" "Recall" "Rogers_Tanimoto" "Russel_Rao"

[13] "Sokal_Sneath1" "Sokal_Sneath2"

Let us compute all the external indices and retrieve one of them:

> extIdx <- extCriteria(part1,part2,"all")
> length(extIdx)

[1] 14

> extIdx[["jaccard"]]

[1] 0.140622

Let us compute only some of them:

> extCriteria(part1,part2,c("Rand","Folkes"))

$rand
[1] 0.5920358

$folkes_mallows
[1] 0.2539172
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The names are case insensitive and can be abbreviated:

> extCriteria(part1,part2,c("ra","fo"))

$rand
[1] 0.5920358

$folkes_mallows
[1] 0.2539172

3.3 Benchmark
The clusterCrit package is written in Fortran which makes the calculations quite fast.
Nevertheless some indices are more demanding and require more computations than
the others. The following timings have been evaluated using the rbenchmark package:
the various indices have been computed separately 100 times on a set of 400 points
partitionned in four groups. The results are not interesting per se but rather to compare
the amount of computations required by the different indices.

The following table summarizes the timings for the internal indices (they are ex-
pressed in seconds for 100 replications, so they must all be divided by 100):
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all 3.095
Ball_Hall 0.944

Banfeld_Raftery 0.946
C_index 2.898

Calinski_Harabasz 0.930
Davies_Bouldin 0.926

Det_Ratio 0.930
Dunn 0.969

Gamma 2.188
G_plus 2.170
GDI11 0.985
GDI12 0.971
GDI13 0.957
GDI21 0.966
GDI22 0.961
GDI23 0.953
GDI31 0.959
GDI32 0.957
GDI33 0.948
GDI41 0.936
GDI42 0.933
GDI43 0.923
GDI51 0.934
GDI52 0.934
GDI53 0.921

Ksq_DetW 0.930
Log_Det_Ratio 0.930
Log_SS_Ratio 0.923
McClain_Rao 0.958

PBM 0.928
Point_Biserial 0.959

Ray_Turi 0.923
Ratkowsky_Lance 0.923

Scott_Symons 0.965
SD_Scat 0.930
SD_Dis 0.923
S_Dbw 0.924

Silhouette 0.992
Tau 2.174

Trace_W 0.945
Trace_WiB 0.952

Wemmert_Gancarski 0.960
Xie_Beni 0.978

We observe that the C index is the most time consuming. The gamma, g_plus and
tau indices also need intensive calculations because the concordance and discordance
counts concern a huge quantity of pairs of points. All the other indices yield more or
less the same values.

Using the keyword "all" in the intCriteria function is quite efficient because the
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code is optimized to avoid duplicate calculations and to reuse values already computed
for other indices. The timing result for calculating all the indices simultaneously 100
times is 3.095.

On the contrary, benchmarking the external indices does not exhibit any noticeable
difference. They all take more or less the same time and are very fast. Here are the re-
sults for 100 replications of the extCriteria function applied to two partitions containing
150 items:

all 0.010
Czekanowski_Dice 0.010

Folkes_Mallows 0.010
Hubert 0.011
Jaccard 0.010

Kulczynski 0.011
McNemar 0.010

Phi 0.010
Precision 0.010

Rand 0.010
Recall 0.011

Rogers_Tanimoto 0.010
Russel_Rao 0.011

Sokal_Sneath1 0.010
Sokal_Sneath2 0.009
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