Package ‘bbmle’

December 9, 2023

Title Tools for General Maximum Likelihood Estimation

Description Methods and functions for fitting maximum likelihood models in R. This package modi-
fies and extends the 'mle' classes in the 'stats4' package.

Version 1.0.25.1
Depends R (>=3.0.0), stats4

Imports stats, numDeriv, lattice, MASS, methods, bdsmatrix, Matrix,
mvtnorm

Suggests emdbook, rms, ggplot2, RUnit, MuMIn, AICcmodavg, Hmisc,
optimx (>= 2013.8.6), knitr, testthat

VignetteBuilder knitr
BuildVignettes yes
License GPL

URL https://github.com/bbolker/bbmle

Collate 'mle2-class.R' 'mle2-methods.R' 'mle.R' 'confint.R'
'‘predict.R' 'profile.R' 'update.R' 'dists.R' 'IC.R'" 'slice.R’
'impsamp.R' ' TMB.R'

RoxygenNote 7.1.0
Encoding UTF-8
NeedsCompilation no

Author Ben Bolker [aut, cre] (<https://orcid.org/0000-0002-2127-0443>),
R Development Core Team [aut],
Tago Giné-Vazquez [ctb]

Maintainer Ben Bolker <bolker@mcmaster.ca>
Repository CRAN
Date/Publication 2023-12-09 01:00:02 UTC

R topics documented:

as.data.frame.profilemle2o
BIC-methods

https://github.com/bbolker/bbmle
https://orcid.org/0000-0002-2127-0443

Index

calltochar.
dnorm_n.
GELMNAMES v v v e e e e e e
ICtab

mle2.options
namedropo
PArNAMEes e e e e e e e
pop_pred_samp
predict-methods L
profile-methods oL
profilemle2-class
relist2
sbinom.
slice
slicemle2-class
SLIWIAPX . o v v v v v e e e e e e e e e
summary.mle2-class.

as.data.frame.profile.mle2

as.data.frame.profile.mle2

convert profile to data frame

Description

converts a profile of a fitted mle2 object to a data frame

Usage

S3 method for class 'profile.mle2'
as.data.frame(x, row.names=NULL,
optional=FALSE, ...)

Arguments
X a profile object
row.names row names (unused)
optional unused

unused

BIC-methods 3

Value
a data frame with columns

param name of parameter being profiled

z signed square root of the deviance difference from the minimum

parameter values
named par.vals.parname

focal value of focal parameter: redundant, but included for plotting convenience

Author(s)

Ben Bolker

Examples

use as.data.frame and lattice to plot profiles

X <- 0:10
y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)
library(bbmle)

LL <- function(ymax=15, xhalf=6) {
-sum(stats: :dpois(y, lambda=ymax/(1+x/xhalf), log=TRUE))

}

uses default parameters of LL

fitl <- mle2(LL)

pl <- profile(fit1)

d1l <- as.data.frame(p1)

library(lattice)

xyplot(abs(z)~focal |param,data=d1,
subset=abs(z)<3,
type="b",
xlab="",
ylab=expression(paste(abs(z),
" (square root of ",Delta,"” deviance)")),
scale=list(x=list(relation="free")))

BIC-methods Log likelihoods and model selection for mle2 objects

Description

Various functions for likelihood-based and information-theoretic model selection of likelihood mod-
els

4 BIC-methods

Usage

S4 method for signature 'ANY,mle2,loglik'

AICc(object,...,nobs,k=2)
S4 method for signature 'ANY,mle2,loglLik'
gAIC(object, ..., k=2)
S4 method for signature 'ANY,mle2,loglLik'
gAICc(object,...,nobs,k=2)
Arguments
object A loglLik or mle2 object
An optional list of additional loglLik or mle2 objects (fitted to the same data
set).
nobs Number of observations (sometimes obtainable as an attribute of the fit or of the
log-likelihood)
k penalty parameter (nearly always left at its default value of 2)
Details
Further arguments to BIC can be specified in the ... list: delta (logical) specifies whether to

include a column for delta-BIC in the output.

Value

A table of the BIC values, degrees of freedom, and possibly delta-BIC values relative to the minimum-
BIC model

Methods

logLik signature(object = "mle2"): Extract maximized log-likelihood.
AIC signature(object = "mle2"): Calculate Akaike Information Criterion

AICc signature(object = "mle2"): Calculate small-sample corrected Akaike Information Cri-
terion

anova signature(object="mle2"): Likelihood Ratio Test comparision of different models

Note

This is implemented in an ugly way and could probably be improved!

Examples

d <- data.frame(x=0:10,y=c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8))

(fit <- mle2(y~dpois(lambda=ymax/(1+x/xhalf)),
start=list(ymax=25,xhalf=3),data=d))

(fit2 <- mle2(y~dpois(lambda=(x+1)*slope),
start=1list(slope=1),data=d))

BIC(fit)

call.to.char 5

BIC(fit,fit2)

call.to.char Convert calls to character

Description

Utility function (hack) to convert calls such as y~x to their character equivalent

Usage

call.to.char(x)

Arguments

X a formula (call)

Details

It would be nice if as.character(y~x) gave "y~x", but it doesn’t, so this hack achieves the same
goal

Value

a character vector of length 1

Author(s)

Ben Bolker

Examples

as.character(y~x)
call.to.char(y~x)

6 get.mnames

dnorm_n Normal distribution with profiled-out standard deviation

Description
Returns the Normal probability densities for a distribution with the given mean values and the
standard deviation equal to the root mean-squared deviation between x and mu

Usage

dnorm_n(x, mean, log = FALSE)

Arguments
X numeric vector of data
mean numeric vector or mean values
log logical: return the log-density?
Details

This is a convenience function, designed for the case where you’re trying to compute a MLE for the
mean but don’t want to bother estimating the MLE for the standard deviation at the same time

Value

Numeric vector of probability densities

Examples

set.seed(101)
x <= rnorm(5,mean=3,sd=2)
dnorm_n(x,mean=3, log=TRUE)

get.mnames extract model names

Description

given a list of models, extract the names (or "model n")

Usage

get.mnames(Call)

ICtab

Arguments

Call

Value

a function call (usually a list of models)

a vector of model names

Author(s)
Ben Bolker

ICtab

Compute table of information criteria and auxiliary info

Description

Computes information criteria for a series of models, optionally giving information about weights,
differences between ICs, etc.

Usage

ICtab(..., type=c("AIC","BIC","AICc","qAIC","qAICc"),

weights

FALSE, delta = TRUE, base = FALSE,

loglLik=FALSE, sort = TRUE,

nobs=NULL, dispersion = 1, mnames, k = 2)
AICtab(...,mnames)

BICtab(...,mnames)

AICctab(...,mnames)

S3 method for class 'ICtab'
print(x,...,min.weight)

Arguments

type
base
weights
logLik
delta
sort

nobs

dispersion

a list of (logLik or?) mle objects; in the case of AICtab etc., could also include
other arguments to ICtab

specify information criterion to use

(logical) include base IC (and log-likelihood) values?

(logical) compute IC weights?

(logical) include log-likelihoods in the table?

(logical) compute differences among ICs (and log-likelihoods)?
(logical) sort ICs in increasing order?

(integer) number of observations: required for type="BIC" or type="AICc"
unless objects have a nobs method

overdispersion estimate, for computing qAIC: required for type="gAIC" or type="gAICc"
unless objects have a "dispersion” attribute

8 ICtab

mnames names for table rows: defaults to names of objects passed

k penalty term (largely unused: left at default of 2)

X an ICtab object

min.weight minimum weight for exact reporting (smaller values will be reported as "<[min.weight]")
Value

A data frame containing:

IC information criterion
df degrees of freedom/number of parameters
dIC difference in IC from minimum-IC model
weights exp(-dIC/2)/sum(exp(-dIC/2))

Note

(1) The print method uses sensible defaults; all ICs are rounded to the nearest 0.1, and IC weights
are printed using format.pval to print an inequality for values <0.001. (2) The computation of
degrees of freedom/number of parameters (e.g., whether variance parameters are included in the
total) varies enormously between packages. As long as the df computations for a given set of
models is consistent, differences don’t matter, but one needs to be careful with log likelihoods and
models taken from different packages. If necessary one can change the degrees of freedom manually
by saying attr(obj,"df") <- df.new, where df.new is the desired number of parameters. (3)
Defaults have changed to sort=TRUE, base=FALSE, delta=TRUE, to match my conviction that it
rarely makes sense to report the overall values of information criteria

Author(s)
Ben Bolker

References

Burnham and Anderson 2002

Examples

set.seed(101)

d <- data.frame(x=1:20,y=rpois(20,lambda=2))

md <- glm(y~1,data=d)

ml <- update(m@, .~x)

m2 <- update(m@, .~poly(x,2))
AICtab(m@,m1,m2,mnames=LETTERS[1:3])
AICtab(m@,m1,m2,base=TRUE, logLik=TRUE)
AICtab(m@,m1,m2,loglLik=TRUE)
AICctab(m@,m1,m2,weights=TRUE)
print(AICctab(m@,m1,m2,weights=TRUE),min.weight=0.1)

mle2

mle2

Maximum Likelihood Estimation

Description

Estimate parameters by the method of maximum likelihood.

Usage

mle2(minuslogl, start, method, optimizer,

fixed = NULL, data=NULL,

subset=NULL,
default.start=TRUE, eval.only = FALSE, vecpar=FALSE,
parameters=NULL,

parnames=NULL,

skip.hessian=FALSE,
hessian.opts=NULL,

use.ginv=TRUE,

trace=FALSE,

browse_obj=FALSE,

gr=NULL,
optimfun,

namedrop_args=TRUE,

)

calc_mle2_function(formula,parameters, links, start,
parnames, use.deriv=FALSE, data=NULL,trace=FALSE)

Arguments

minuslogl
start
method

optimizer

fixed
data

subset
default.start
eval.only

vecpar

Function to calculate negative log-likelihood, or a formula
Named list. Initial values for optimizer
Optimization method to use. See optim.

Optimization function to use. Currently available choices are "optim" (the de-

"non non

fault), "nlm", "nlminb", "constrOptim", "optimx", and "optimize". If "optimx" is
used, (1) the optimx package must be explicitly loaded with load or require(Warning:
Options other than the default may be poorly tested, use with caution.)

Named list. Parameter values to keep fixed during optimization.

list of data to pass to negative log-likelihood function: must be specified if
minuslogl is specified as a formula

logical vector for subsetting data (STUB)
Logical: allow default values of minuslogl as starting values?
Logical: return value of minuslogl(start) rather than optimizing

Logical: is first argument a vector of all parameters? (For compatibility with
optim.) If vecpar is TRUE, then you should use parnames to define the parame-
ter names for the negative log-likelihood function.

10 mle2

parameters List of linear models for parameters. MUST BE SPECIFIED IN THE SAME
ORDER as the start vector (this is a bug/restriction that I hope to fix soon, but
in the meantime beware)

links (unimplemented) specify transformations of parameters
parnames List (or vector?) of parameter names
gr gradient function

Further arguments to pass to optimizer

formula a formula for the likelihood (see Details)
trace Logical: print parameter values tested?
browse_obj Logical: drop into browser() within the objective function?

skip.hessian Bypass Hessian calculation?

hessian.opts Options for Hessian calculation, passed through to the hessian function

use.ginv Use generalized inverse (ginv) to compute approximate variance-covariance

optimfun user-supplied optimization function. Must take exactly the same arguments and
return exactly the same structure as optim.

use.deriv (experimental, not yet implemented): construct symbolic derivatives based on
formula?

namedrop_args hack: drop names in sub-lists occurring in data?

Details

The optim optimizer is used to find the minimum of the negative log-likelihood. An approximate
covariance matrix for the parameters is obtained by inverting the Hessian matrix at the optimum.

The minuslogl argument can also specify a formula, rather than an objective function, of the form
x~ddistn(paraml, ... ,paramn). In this case ddistn is taken to be a probability or density func-
tion, which must have (literally) x as its first argument (although this argument may be interpreted
as a matrix of multivariate responses) and which must have a log argument that can be used to
specify the log-probability or log-probability-density is required. If a formula is specified, then
parameters can contain a list of linear models for the parameters.

If a formula is given and non-trivial linear models are given in parameters for some of the variables,
then model matrices will be generated using model .matrix. start can be given:

* as a list containing lists, with each list corresponding to the starting values for a particular
parameter;

* just for the higher-level parameters, in which case all of the additional parameters generated
by model.matrix will be given starting values of zero (unless a no-intercept formula with -1
is specified, in which case all the starting values for that parameter will be set equal)

* (to be implemented!) as an exhaustive (flat) list of starting values (in the order given by
model.matrix)

The trace argument applies only when a formula is specified. If you specify a function, you can
build in your own print() or cat() statement to trace its progress. (You can also specify a value
for trace as part of a control list for optim(): see optim.)

mle2 11

The skip.hessian argument is useful if the function is crashing with a "non-finite finite difference
value" error when trying to evaluate the Hessian, but will preclude many subsequent confidence
interval calculations. (You will know the Hessian is failing if you use method="Nelder-Mead” and
still get a finite-difference error.)

If convergence fails, see the manual page of the relevant optimizer (optim by default, but possibly
nlm, nlminb, optimx, or constrOptim if you have set the value of optimizer) for the meanings of
the error codes/messages.

Value

An object of class "mle2".

Warning

Do not use a higher-level variable named . i in parameters — this is reserved for internal use.

Note

Note that the minuslogl function should return the negative log-likelihood, -log L (not the log-
likelihood, log L, nor the deviance, -2 log L). It is the user’s responsibility to ensure that the likeli-
hood is correct, and that asymptotic likelihood inference is valid (e.g. that there are "enough" data
and that the estimated parameter values do not lie on the boundary of the feasible parameter space).

If lower, upper, control$parscale, or control$ndeps are specified for optim fits, they must be
named vectors.

The requirement that data be specified when using the formula interface is relatively new: it saves
many headaches on the programming side when evaluating the likelihood function later on (e.g.
for profiling or constructing predictions). Since data.frame uses the names of its arguments as
column names by default, it is probably the easiest way to package objects that are lying around in
the global workspace for use in mle2 (provided they are all of the same length).

When optimizer is set to "optimx" and multiple optimization methods are used (i.e. the methods
argument has more than one element, or all.methods=TRUE is set in the control options), the best
(minimum negative log-likelihood) solution will be saved, regardless of reported convergence status
(and future operations such as profiling on the fit will only use the method that found the best result).

See Also

mle2-class

Examples

X <- 0:10
y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)
d <- data.frame(x,y)

in general it is best practice to use the ‘data' argument,
but variables can also be drawn from the global environment
LL <- function(ymax=15, xhalf=6)

-sum(stats: :dpois(y, lambda=ymax/(1+x/xhalf), log=TRUE))
uses default parameters of LL

12

mle2

(fit <- mle2(LL))

fit1F <- mle2(LL, fixed=list(xhalf=6))
coef (fit1F)

coef (fit1F,exclude.fixed=TRUE)

(fit@ <- mle2(y~dpois(lambda=ymean),start=1ist(ymean=mean(y)),data=d))
anova(fite,fit)

summary (fit)

loglLik(fit)

veov(fit)

pl <- profile(fit)

plot(pl1, absVal=FALSE)

confint(fit)

use bounded optimization

the lower bounds are really > 0, but we use >=0 to stress-test
profiling; note lower must be named

(fit1 <- mle2(LL, method="L-BFGS-B"”, lower=c(ymax=0, xhalf=0)))
p1 <- profile(fit1)

plot(p1, absVal=FALSE)
a better parameterization:
LL2 <- function(lymax=log(15), lxhalf=log(6))
-sum(stats: :dpois(y, lambda=exp(lymax)/(1+x/exp(lxhalf)), log=TRUE))
(fit2 <- mle2(LL2))
plot(profile(fit2), absVal=FALSE)
exp(confint(fit2))
veov(fit2)
cov2cor(vcov(fit2))

mle2(y~dpois(lambda=exp(lymax)/(1+x/exp(lhalf))),
start=1ist(lymax=0,1half=0),
data=d,
parameters=1ist(lymax~1,1lhalf~1))

Not run:

try bounded optimization with nlminb and constrOptim

(fit1B <- mle2(LL, optimizer="nlminb", lower=c(lymax=1e-7, lhalf=1e-7)))

p1B <- profile(fiti1B)

confint(p1B)

(fit1C <- mle2(LL, optimizer="constrOptim”, ui = c(lymax=1,lhalf=1), ci=2,
method="Nelder-Mead"))

set.seed(1001)

lymax <- c(9,2)

lhalf <- @

x <= sort(runif(200))

g <- factor(sample(c("a","b"),200,replace=TRUE))

y <= rnbinom(200,mu=exp(lymax[g]l)/(1+x/exp(lhalf)),size=2)
d2 <- data.frame(x,g,y)

fit3 <- mle2(y~dnbinom(mu=exp(lymax)/(1+x/exp(lhalf)),size=exp(logk)),
parameters=list(lymax~g),data=d2,

mle2-class 13

start=1ist(lymax=0,1lhalf=0,logk=0))

End(Not run)

mle2-class Class "mle2". Result of Maximum Likelihood Estimation.

Description

This class encapsulates results of a generic maximum likelihood procedure.

Objects from the Class

Objects can be created by calls of the form new("mle2”, ...), but most often as the result of a call
tomle2.

Slots

call: (language) The call to mle2.

call.orig: (language) The call to mle2, saved in its original form (i.e. without data arguments
evaluated).

coef: (numeric) Vector of estimated parameters.
data: (data frame or list) Data with which to evaluate the negative log-likelihood function
fullcoef: (numeric) Fixed and estimated parameters.

vcov: (numeric matrix) Approximate variance-covariance matrix, based on the second derivative
matrix at the MLE.

min: (numeric) Minimum value of objective function = minimum negative log-likelihood.
details: (list) Return value from optim.

minuslogl: (function) The negative log-likelihood function.

optimizer: (character) The optimizing function used.

method: (character) The optimization method used.

formula: (character) If a formula was specified, a character vector giving the formula and param-
eter specifications.

Methods
coef signature(object = "mle2"): Extract coefficients. If exclude. fixed=TRUE (it is FALSE by
default), only the non-fixed parameter values are returned.

confint signature(object = "mle2"): Confidence intervals from likelihood profiles, or quadratic
approximations, or root-finding.

show signature(object = "mle2"): Display object briefly.
show signature(object = "summary.mle2"): Display object briefly.

summary signature(object = "mle2"): Generate object summary.

14 mle2.options

update signature(object = "mle2"): Update fit.
veov signature(object = "mle2"): Extract variance-covariance matrix.
formula signature(object="mle2"): Extract formula

plot signature(object="profile.mle2,missing"): Plot profile.

Details on the confint method

When the parameters in the original fit are constrained using lower or upper, or when prof . lower
or prof.upper are set, and the confidence intervals lie outside the constraint region, confint will
return NA. This may be too conservative — in some cases, the appropriate answer would be to set the
confidence limit to the lower/upper bound as appropriate — but it is the most general answer.

(If you have a strong opinion about the need for a new option to confint that sets the bounds to the
limits automatically, please contact the package maintainer.)

Examples

X <- 0:10

y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)
lowerbound <- c(a=2,b=-0.2)

d <- data.frame(x,y)

fitl <- mle2(y~dpois(lambda=exp(atb*x)),start=1ist(a=0,b=2),data=d,
method="L-BFGS-B", lower=c(a=2,b=-0.2))

(cc <= confint(fit1,quietly=TRUE))

to set the lower bounds to the limit
na_lower <- is.na(cc[,1]1)

cclna_lower,1] <- lowerbound[na_lower]

cc

mle2.options Options for maximum likelihood estimation

Description

Query or set MLE parameters

Usage

mle2.options(...)

Arguments

names of arguments to query, or a list of values to set

namedrop 15

Details

optim.method name of optimization method (see optim for choices)

non

confint name of confidence interval method: choices are "spline", "uniroot", "hessian" correspond-
ing to spline inversion, attempt to find best answer via uniroot, information-matrix approxi-
mation

non non

optimizer optimization function to use by default (choices: "optim", "nlm", "nlminb", "constrOp-
tim")

Value

Values of queried parameters, or (invisibly) the full list of parameters

See Also

mle2-class

namedrop drop unneeded names from list elements

Description
goes through a list (containing a combination of single- and multiple-element vectors) and removes
redundant names that will make trouble for mle

Usage

namedrop (x)

Arguments

X a list of named or unnamed, typically numeric, vectors

Details
examines each element of x. If the element has length one and is a named vector, the name is
removed; if length(x) is greater than 1, but all the names are the same, the vector is renamed
Value

the original list, with names removed/added

Author(s)
Ben Bolker

16 parnames

Examples

x = list(a=c(a=1),b=c(d=1,d=2),c=c(a=1,b=2,c=3))
names(unlist(namedrop(x)))
names (unlist(namedrop(x)))

parnames get and set parameter names

Description

Gets and sets the "parnames" attribute on a negative log-likelihood function

Usage

parnames (obj)
parnames(obj) <- value

Arguments
obj a negative log-likelihood function
value a character vector of parameter names
Details

The parnames attribute is used by mle2 () when the negative log-likelihood function takes a param-
eter vector, rather than a list of parameters; this allows users to use the same objective function for
optim() and mle2()

Value

Returns the parnames attribute (a character vector of parameter names) or sets it.

Author(s)
Ben Bolker

Examples

x <- 1:5
set.seed(1001)
y <= rbinom(5,prob=x/(1+x),size=10)
mfun <- function(p) {
a <- p[1]
b <- p[2]
-sum(dbinom(y, prob=a*x/(b+x),size=10,log=TRUE))
3
optim(fn=mfun,par=c(1,1))
parnames(mfun) <- c("a","b")
mle2(minuslogl=mfun,start=c(a=1,b=1),method="Nelder-Mead")

pop_pred_samp

17

pop_pred_samp

generate population prediction sample from parameters

Description

This [EXPERIMENTAL] function combines several sampling tricks to compute a version of an
importance sample (based on flat priors) for the parameters.

Usage

pop_pred_samp(
object,
n = 1000,

n_imp = n * 10,

return_wts =

FALSE,

impsamp = FALSE,
PDify = FALSE,
PDmethod = NULL,
Sigma = vcov(object),

tol = 1e-06,
return_all = FALSE,
rmvnorm_method = c("mvtnorm”, "MASS"),
fix_params = NULL,
)
Arguments
object a fitted mle2 object
n number of samples to return
n_imp number of total samples from which to draw, if doing importance sampling

return_wts

impsamp
PDify

PDmethod

tol

return_all
rmvnorm_method
fix_params

Sigma

return a column giving the weights of the samples, for use in weighted sum-
maries?

subsample values (with replacement) based on their weights?

use Gill and King generalized-inverse procedure to correct non-positive-definite
variance-covariance matrix if necessary?

method for fixing non-positive-definite covariance matrices

tolerance for detecting small eigenvalues

return a matrix including all values, and weights (rather than taking a sample)
package to use for generating MVN samples

parameters to fix (in addition to parameters that were fixed during estimation)
covariance matrix for sampling

additional parameters to pass to the negative log-likelihood function

18 predict-methods

References

Gill, Jeff, and Gary King. "What to Do When Your Hessian Is Not Invertible: Alternatives to Model
Respecification in Nonlinear Estimation." Sociological Methods & Research 33, no. 1 (2004): 54-
87. Lande, Russ and Steinar Engen and Bernt-Erik Saether, Stochastic Population Dynamics in
Ecology and Conservation. Oxford University Press, 2003.

predict-methods Predicted values from an mle?2 fit

Description

Given an mle2 fit and an optional list of new data, return predictions (more generally, summary
statistics of the predicted distribution)

Usage

S4 method for signature 'mle2’
predict(object, newdata=NULL,
location="mean", newparams=NULL, ...)
S4 method for signature 'mle2’
simulate(object, nsim,
seed, newdata=NULL, newparams=NULL, ...)
S4 method for signature 'mle2’

non

residuals(object, type=c("pearson”, "response”),

location="mean",...)

Arguments

object an mle2 object

newdata optional list of new data

newparams optional vector of new parameters

location name of the summary statistic to return

nsim number of simulations

seed random number seed

type residuals type

additional arguments (for generic compatibility)

Methods

x = "mle2" an mle2 fit

Note

For some models (e.g. constant models), predict may return a single value rather than a vector of
the appropriate length.

profile-methods

Examples

set.seed(1002)

lymax <- ¢(9,2)

lhalf <- 0

X <- runif(200)

g <- factor(rep(c(”a","b"),each=100))

y <= rnbinom(200,mu=exp(lymax[g]l)/(1+x/exp(lhalf)),size=2)
dat <- data.frame(y,g,x)

fit3 <- mle2(y~dnbinom(mu=exp(lymax)/(1+x/exp(lhalf)),size=exp(logk)),
parameters=list(lymax~g),
start=1ist(lymax=0,1lhalf=0,logk=0),

data=dat)

plot(y~x,col=g)

true curves

curve(exp(@)/(1+x/exp(0)),add=TRUE)

curve(exp(2)/(1+x/exp(@)),col=2,add=TRUE)

model predictions

xvec = seq(@,1,length=100)

lines(xvec,predict(fit3,newdata=list(g=factor(rep(”a",100),levels=c("a","b")),
X = xvec)),col=1,1ty=2)

lines(xvec,predict(fit3,newdata=list(g=factor(rep(”"b"”,100),levels=c("a","b")),
X = xvec)),col=2,1ty=2)

comparing automatic and manual predictions

pl = predict(fit3)

p2A =

with(as.list(coef(fit3)),exp(*lymax. (Intercept))/ (1+x[1:100]/exp(lhalf)))

p2B =
with(as.list(coef(fit3)),exp(lymax. (Intercept) +lymax.gb)/(1+x[101:200]/exp(lhalf)))
all(p1==c(p2A,p2B))

##

simulate(fit3)

profile-methods Likelihood profiles

Description

Compute likelihood profiles for a fitted model

Usage

proffun(fitted, which = 1:p, maxsteps = 100,
alpha = 0.01, zmax = sqrt(qchisq(1 - alpha/2, p)),
del = zmax/5, trace = FALSE, skiperrs=TRUE,
std.err,

20

profile-methods

tol.newmin = 0.001, debug=FALSE,
prof.lower, prof.upper,
skip.hessian = TRUE,
continuation = c("none","”
try_harder=FALSE, ...)

naive”,"linear"),

S4 method for signature 'mle2’

profile(fitted,

Arguments

fitted
which

maxsteps

alpha
zmax

del
trace
skiperrs
std.err

tol.newmin

debug
prof.lower
prof.upper
continuation

skip.hessian
try_harder

Details

)

A fitted maximum likelihood model of class “mle2”

a numeric or character vector describing which parameters to profile (default is
to profile all parameters)

maximum number of steps to take looking for an upper value of the negative
log-likelihood

maximum (two-sided) likelihood ratio test confidence level to find

maximum value of signed square root of deviance difference to find (default
value corresponds to a 2-tailed chi-squared test at level alpha)

step size for profiling
(logical) produce tracing output?
(logical) ignore errors produced during profiling?

Optional numeric vector of standard errors, for cases when the Hessian is badly
behaved. Will be replicated if necessary, and NA values will be replaced by the
corresponding values from the fit summary

tolerance for diagnosing a new minimum below the minimum deviance esti-
mated in initial fit is found

(logical) debugging output?
optional vector of lower bounds for profiles
optional vector of upper bounds for profiles

use continuation method to set starting values? "none"” sets starting values to
best fit; "naive” sets starting values to those of previous profiling fit; “linear”
(not yet implemented) would use linear extrapolation from the previous two
profiling fits

skip hessian (defunct?)
(logical) ignore NA and flat spots in the profile, try to continue anyway?
additional arguments (not used)

proffun is the guts of the profile method, exposed so that other packages can use it directly.

See the vignette (vignette("mle2",package="bbmle")) for more technical details of how profil-

ing is done.

See Also

profile.mle-class

profile.mle2-class 21

profile.mle2-class Methods for likelihood profiles

Description

Definition of the mle2 likelihood profile class, and applicable methods

Usage

S4 method for signature 'profile.mle2’

plot(x,
levels, which=1:p, conf = c(99, 95, 90, 80, 50)/100,
plot.confstr = TRUE,
confstr = NULL, absVal = TRUE, add = FALSE,
col.minval="green", lty.minval=2,
col.conf="magenta", lty.conf=2,
col.prof="blue", 1lty.prof=1,
xlabs=nm, ylab="z",
onepage=TRUE,
ask=((prod(par("mfcol”)) < length(which)) && dev.interactive() &&

lonepage),
show.points=FALSE,
main, xlim, ylim, ...)

S4 method for signature 'mle2’

confint(object, parm, level = 0.95, method,
trace=FALSE,quietly=!interactive(),
tol.newmin=0.001,...)

S4 method for signature 'profile.mle2'

confint(object, parm, level = 0.95, trace=FALSE, ...)
Arguments
X An object of class profile.mle2
object An object of class mle2 or profile.mle2 (as appropriate)
levels levels at which to plot likelihood cutoffs (set by conf by default)
level level at which to compute confidence interval
which (numeric or character) which parameter profiles to plot
parm (numeric or character) which parameter(s) to find confidence intervals for
method (character) "spline", "uniroot", or "quad", for spline-extrapolation-based (de-

fault), root-finding, or quadratic confidence intervals. By default it uses the
value of mle2.options("confint") — the factory setting is "spline".

trace trace progress of confidence interval calculation when using ‘uniroot” method?
conf (1-alpha) levels at which to plot likelihood cutoffs/confidence intervals
quietly (logical) suppress “Profiling ...” message when computing profile to get confi-

dence interval?

22 profile.mle2-class
tol.newmin see profile-methods
plot.confstr (logical) plot labels showing confidence levels?
confstr (character) labels for confidence levels (by default, constructed from conf levels)
absVal (logical) plot absolute values of signed square root deviance difference ("V" plot
rather than straight-line plot)?
add (logical) add profile to existing graph?
col.minval color for minimum line
l1ty.minval line type for minimum line
col.conf color for confidence intervals
lty.conf line type for confidence intervals
col.prof color for profile
lty.prof line type for profile
xlabs x labels
ylab y label
onepage (logical) plot all profiles on one page, adjusting par(mfcol) as necessary?
ask (logical) pause for user input between plots?
show.points (logical) show computed profile points as well as interpolated spline?
main (logical) main title
x1lim x limits
ylim y limits
other arguments
Details
The default confidence interval calculation computes a likelihood profile and uses the points therein,
or uses the computed points in an existing profile.mle2 object, to construct an interpolation spline
(which by default has three times as many points as were in the original set of profile points). It
then uses linear interpolation between these interpolated points (!)
Objects from the Class
Objects can be created by calls of the form new("profile.mle2"”, ...), but most often by invok-
ing profile on an "mle2" object.
Slots

profile: Object of class "list”. List of profiles, one for each requested parameter. Each profile
is a data frame with the first column called z being the signed square root of the deviance, and
the others being the parameters with names prefixed by par.vals.

summary: Object of class "summary.mle2”. Summary of object being profiled.

profile.mle2-class 23

Methods

confint signature(object = "profile.mle2"): Use profile to generate approximate confidence
intervals for parameters.

plot signature(x = "profile.mle2", y = "missing”): Plot profiles for each parameter.
summary signature(x = "profile.mle2"): Plot profiles for each parameter.

show signature(object = "profile.mle2"): Show object.

See Also

mle2, mle2-class, summary.mle2-class

Examples

x <- 0:10
y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)
d <- data.frame(x,y)
we have a choice here: (1) don't impose boundaries on the parameters,
put up with warning messages about NaN values:
fitl <- mle2(y~dpois(lambda=ymax/(1+x/xhalf)),
start=list(ymax=1,xhalf=1),
data=d)
p1 <- suppressWarnings(profile(fit1))
plot(pl,main=c("first"”,"second”),
xlab=c(~y[max],~x[1/2]),ylab="Signed square root deviance”,
show.points=TRUE)
suppressWarnings(confint(fit1)) ## recomputes profile
confint(p1) ## operates on existing profile
suppressWarnings(confint(fit1,method="uniroot"))
alternatively, we can use box constraints to keep ourselves
to positive parameter values ...
fit2 <- update(fitl,method="L-BFGS-B",lower=c(ymax=0.001,xhalf=0.001))
Not run:
p2 <- profile(fit2)
plot(p2, show.points=TRUE)
but the fit for ymax is just bad enough that the spline gets wonky
confint(p2) ## now we get a warning
confint(fit2,method="uniroot")
bobyga is a better-behaved bounded optimizer ...
BUT recent (development, 2012.5.24) versions of
#i# optimx no longer allow single-parameter fits!
if (require(optimx)) {
fit3 <- update(fiti,
optimizer="optimx",
method="bobyga", lower=c(ymax=0.001,xhalf=0.001))
p3 <- profile(fit3)
plot(p3, show.points=TRUE)
confint(p3)
3

End(Not run)

24 sbinom

relist2 reconstruct the structure of a list

Description

reshapes a vector according to a list template

Usage

relist2(v, 1)

Arguments
v vector, probably numeric, of values to reshape
1 template list giving structure

Details

attempts to coerce v into a list with the same structure and names as 1

Value

a list with values corresponding to v and structure corresponding to 1

Author(s)

Ben Bolker

Examples

1 = list(b=1,c=2:5,d=matrix(1:4,nrow=2))
relist2(1:9,1)

sbinom Abstract definitions of distributions

Description

Functions returning values for summary statistics (mean, median, etc.) of distributions

sbinom 25

Usage

sbeta(shapel, shape2)
sbetabinom(size, prob, theta)
sbinom(size, prob)
snbinom(size, prob, mu)
snorm(mean, sd)

spois(lambda)

slnorm(meanlog, sdlog)

Arguments
prob probability as defined for dbinom, dnbinom, or beta-binomial distribution (dbetabinom
in the emdbook package)
size size parameter as defined for dbinom or dbetabinom in the emdbook package,
or size/overdispersion parameter as in dnbinom
mean mean parameter as defined for dnorm
mu mean parameter as defined for dnbinom
sd standard deviation parameter as defined for dnorm
shape1 shape parameter for dbeta
shape2 shape parameter for dbeta
lambda rate parameter as defined for dpois
theta overdispersion parameter for beta-binomial (see dbetabinom in the emdbook
package)
meanlog as defined for d1norm
sdlog as defined for d1lnorm
Value
title name of the distribution

[parameters] input parameters for the distribution

mean theoretical mean of the distribution

median theoretical median of the distribution

mode theoretical mode of the distribution

variance theoretical variance of the distribution

sd theoretical standard deviation of the distribution
Note

these definitions are tentative, subject to change as I figure this out better. Perhaps construct func-
tions that return functions? Strip down results? Do more automatically?

Author(s)
Ben Bolker

26

See Also

dbinom, dpois, dnorm, dnbinom

Examples

sbinom(prob=0.2,size=10)
snbinom(mu=2,size=1.2)

slice

slice Calculate likelihood "slices"

Description

Computes cross-section(s) of a multi-dimensional likelihood surface

Usage

slice(x, dim=1, ...)
sliceOld(fitted, which = 1:p, maxsteps = 100,
alpha = 0.01, zmax = sqrt(qchisq(1 - alpha/2,
del = zmax/5, trace = FALSE,
tol.newmin=0.001, ...)
slicelD(params, fun,nt=101, lower=-Inf,
upper=Inf,verbose=TRUE, tranges=NULL,
fun_args = NULL,

L)
slice2D(params, fun,nt=31,lower=-Inf,
upper=Inf,

cutoff=10, verbose=TRUE,
tranges=NULL,
o)
slicetrans(params, params2, fun, extend=0.1, nt=401,
lower=-Inf, upper=Inf)

Arguments
X a fitted model object of some sort
dim dimensionality of slices (1 or 2)
params a named vector of baseline parameter values
params2 a vector of parameter values
fun an objective function
fun_args additional arguments to pass to fun
nt (integer) number of slice-steps to take
lower lower bound(s) (stub?)

upper upper bound(s) (stub?)

P)),

slice

cutoff
extend
verbose
fitted

which

maxsteps

alpha

Zmax

del
trace

tol.newmin

tranges

Details

27

maximum increase in objective function to allow when computing ranges
(numeric) fraction by which to extend range beyond specified points
print verbose output?

A fitted maximum likelihood model of class “mle2”

a numeric or character vector describing which parameters to profile (default is
to profile all parameters)

maximum number of steps to take looking for an upper value of the negative
log-likelihood

maximum (two-sided) likelihood ratio test confidence level to find

maximum value of signed square root of deviance difference to find (default
value corresponds to a 2-tailed chi-squared test at level alpha)

step size for profiling
(logical) produce tracing output?

tolerance for diagnosing a new minimum below the minimum deviance esti-
mated in initial fit is found

a two-column matrix giving lower and upper bounds for each parameter

additional arguments (not used)

Slices provide a lighter-weight way to explore likelihood surfaces than profiles, since they vary a
single parameter rather than optimizing over all but one or two parameters.

slice is a generic method

slicelD creates one-dimensional slices, by default of all parameters of a model

slice2D creates two-dimensional slices, by default of all pairs of parameters in a model. In each
panel the closed point represents the parameters given (typically the MLEs), while the open
point represents the observed minimum value within the 2D slice. If everything has gone
according to plan, these points should coincide (at least up to grid precision).

slicetrans creates a slice along a transect between two specified points in parameter space (see
calcslice in the emdbook package)

Value

An object of class slice with

slices a list of individual parameter (or parameter-pair) slices, each of which is a data frame with

elements

varl name of the first variable

var2 (for 2D slices) name of the second variable

X parameter values

y (for 2D slices) parameter values

z slice values

ranges a list (?) of the ranges for each parameter

28 slice.mle2-class

params vector of baseline parameter values
dim 1or2

slice0ld returns instead a list with elements profile and summary (see profile.mle2)

Author(s)
Ben Bolker

See Also

profile

Examples

x <- 0:10

y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)

d <- data.frame(x,y)

fitl <- mle2(y~dpois(lambda=exp(lymax)/(1+x/exp(lhalf))),
start=1list(lymax=0,1lhalf=0),
data=d)

s1 <- bbmle::slice(fit1,verbose=FALSE)

s2 <- bbmle::slice(fit1,dim=2,verbose=FALSE)

require(lattice)

plot(s1)

plot(s2)

'transect' slice, from best-fit values to another point

st <- bbmle::slice(fit1,params2=c(5,0.5))

plot(st)

slice.mle2-class likelihood-surface slices

Description

evaluations of log-likelihood along transects in parameter space

Objects from the Class

Objects can be created by calls of the form new("”slice.mle2"”, ...). The objects are similar to
likelihood profiles, but don’t involve any optimization with respect to the other parameters.

Slots

profile: Object of class "list". List of slices, one for each requested parameter. Each slice is a
data frame with the first column called z being the signed square root of the -2 log likelihood
ratio, and the others being the parameters with names prefixed by par.vals.

summary: Object of class "summary.mle2”. Summary of object being profiled.

strwrapx 29

Methods

plot signature(x = "profile.mle2”, y = "missing"): Plot profiles for each parameter.

See Also

profile.mle2-class

strwrapx Wrap strings at white space and + symbols

Description

Extended (hacked) version of strwrap: wraps a string at whitespace and plus symbols

Usage

strwrapx(x, width = 0.9 % getOption("width"), indent = 0,
exdent = @, prefix = "", simplify = TRUE,
parsplit = "\n[\t\nJ*\n"”, wordsplit = "[\t\n]")

Arguments
X a character vector, or an object which can be converted to a character vector by
as.character.
width a positive integer giving the target column for wrapping lines in the output.
indent a non-negative integer giving the indentation of the first line in a paragraph.
exdent a non-negative integer specifying the indentation of subsequent lines in para-
graphs.
prefix a character string to be used as prefix for each line.
simplify a logical. If TRUE, the result is a single character vector of line text; otherwise,
it is a list of the same length as x the elements of which are character vectors of
line text obtained from the corresponding element of x. (Hence, the result in the
former case is obtained by unlisting that of the latter.)
parsplit Regular expression describing how to split paragraphs
wordsplit Regular expression decribing how to split words
Details

Whitespace in the input is destroyed. Double spaces after periods (thought as representing sentence
ends) are preserved. Currently, possible sentence ends at line breaks are not considered specially.

Indentation is relative to the number of characters in the prefix string.

30 summary.mle2-class

Examples

Read in file 'THANKS'.

x <- paste(readLines(file.path(R.home("doc"), "THANKS")), collapse = "\n")
Split into paragraphs and remove the first three ones
x <= unlist(strsplit(x, "\n[\t\nJI*\n"))[-(1:3)]

Join the rest

x <- paste(x, collapse = "\n\n")

Now for some fun:

writeLines(strwrap(x, width = 60))

writeLines(strwrap(x, width = 60, indent = 5))
writeLines(strwrap(x, width = 60, exdent = 5))
writeLines(strwrap(x, prefix = "THANKS> "))

Note that messages are wrapped AT the target column indicated by
'width' (and not beyond it).
From an R-devel posting by J. Hosking <jh910@juno.com>.
X <- paste(sapply(sample(10, 100, rep=TRUE),
function(x) substring("aaaaaaaaaa”, 1, x)), collapse =" ")

sapply(10:40,

function(m)

c(target = m, actual = max(nchar(strwrap(x, m)))))

summary.mle2-class Class "summary.mle2", summary of "mle2" objects

Description

Extract of "mle2" object

Objects from the Class

Objects can be created by calls of the form new(”summary.mle2", ...), but most often by invok-
ing summary on an "mle2" object. They contain values meant for printing by show.

Slots

call: Object of class "language"” The call that generated the "mle2" object.

coef: Object of class "matrix”. Estimated coefficients and standard errors

m2logL: Object of class "numeric”. Minus twice the log likelihood.
Methods

show signature(object = "summary.mle2"): Pretty-prints object

coef signature(object = "summary.mle2"): Extracts the contents of the coef slot
See Also

summary, mle2, mle2-class

Index

+ character
strwrapx, 29

* classes
mle2-class, 13
profile.mle2-class, 21
slice.mle2-class, 28
summary.mle2-class, 30

* distribution
dnorm_n, 6

+ methods
BIC-methods, 3
predict-methods, 18
profile-methods, 19

* misc
as.data.frame.profile.mle2, 2
call.to.char, 5
get.mnames, 6
ICtab, 7
namedrop, 15
parnames, 16
relist2, 24
sbinom, 24
slice, 26

+* models
mle2, 9
mle2.options, 14

AIC,mle2-method (BIC-methods), 3
AIC-methods (BIC-methods), 3
AICc (BIC-methods), 3
AICc,ANY,mle2, loglik-method
(BIC-methods), 3
AICc,ANY-method (BIC-methods), 3
AICc,loglLik-method (BIC-methods), 3
AICc,mle2-method (BIC-methods), 3
AICc-methods (BIC-methods), 3
AICctab (ICtab), 7
AICtab (ICtab), 7
anova,mle2-method (BIC-methods), 3
as.character, 29

as.data.frame.profile.mle2, 2

BIC-methods, 3
BICtab (ICtab), 7

calc_mle2_function (mle2), 9
call.to.char,5
coef,mle2-method (mle2-class), 13
coef, summary.mle2-method
(summary.mle2-class), 30
coerce,mle,mle2-method (mle2-class), 13
coerce,profile.mle2,data. frame-method
(as.data.frame.profile.mle2), 2
coerce,profile.mle2-method
(as.data.frame.profile.mle2), 2
confint,mle2-method
(profile.mle2-class), 21
confint,profile.mle2-method
(profile.mle2-class), 21
confint.mle2 (profile.mle2-class), 21
constrOptim, /1

dbeta, 25

dbinom, 25, 26

deviance,mle2-method (mle2-class), 13
dlnorm, 25

dnbinom, 25, 26

dnorm, 25, 26

dnorm_n, 6

dpois, 25, 26

format.pval, 8
formula,mle2-method (mle2-class), 13

get.mnames, 6
gfun (predict-methods), 18
ginv, 10

hessian, 10

ICtab, 7

32

load, 9
loglLik,mle2-method (BIC-methods), 3
loglLik-methods (BIC-methods), 3

mle (mle2), 9
mle2,9, 13, 23, 30
mle2-class, 13
mle2.options, 14

namedrop, 15
nlm, 7/
nlminb, /17
nobs, 7

optim, 9-11, 13,15
optimx, 11/

parnames, 9, 16

parnames<- (parnames), 16

plot,profile.mle2,missing-method
(profile.mle2-class), 21

plot,profile.mle2-method
(profile.mle2-class), 21

plot.profile.mle2 (profile.mle2-class),
21

pop_pred_samp, 17

predict,mle2-method (predict-methods),
18

predict-methods, 18

print.ICtab (ICtab), 7

proffun (profile-methods), 19

profile, 28

profile,mle2-method (profile-methods),
19

profile-methods, 19

profile.mle2, 28

profile.mle2 (profile-methods), 19

profile.mle2-class, 21

gAIC (BIC-methods), 3
gAIC,ANY,mle2, loglLik-method
(BIC-methods), 3
gAIC,ANY-method (BIC-methods), 3
gAIC, loglLik-method (BIC-methods), 3
gAIC,mle2-method (BIC-methods), 3
gAIC-methods (BIC-methods), 3
gAICc (BIC-methods), 3
gAICc,ANY,mle2,loglLik-method
(BIC-methods), 3

INDEX

gAICc,ANY-method (BIC-methods), 3
gAICc,loglLik-method (BIC-methods), 3
gAICc,mle2-method (BIC-methods), 3
gAICc-methods (BIC-methods), 3

relist2, 24

require, 9

residuals,mle2-method
(predict-methods), 18

sbeta (sbinom), 24

sbetabinom (sbinom), 24

sbinom, 24

show,mle2-method (mle2-class), 13

show,profile.mle2-method
(profile.mle2-class), 21

show, summary.mle2-method
(summary.mle2-class), 30

simulate,mle2-method (predict-methods),
18

slice, 26

slice,mle2-method (mle2-class), 13

slice.mle2-class, 28

slicelD (slice), 26

slice2D (slice), 26

sliceOld (slice), 26

slicetrans (slice), 26

slnorm (sbinom), 24

snbinom (sbinom), 24

snorm (sbinom), 24

spois (sbinom), 24

stdEr (mle2-class), 13

stdEr,mle2-method (mle2-class), 13

strwrapx, 29

summary, 30

summary,mle2-method (mle2-class), 13

summary.mle2-class, 30

update,mle2-method (mle2-class), 13

vcov,mle2-method (mle2-class), 13

	as.data.frame.profile.mle2
	BIC-methods
	call.to.char
	dnorm_n
	get.mnames
	ICtab
	mle2
	mle2-class
	mle2.options
	namedrop
	parnames
	pop_pred_samp
	predict-methods
	profile-methods
	profile.mle2-class
	relist2
	sbinom
	slice
	slice.mle2-class
	strwrapx
	summary.mle2-class
	Index

