
Package ‘WARDEN’
July 4, 2025

Title Workflows for Health Technology Assessments in R using Discrete
EveNts

Version 1.2.4

Description Toolkit to support and perform discrete event simulations without
resource constraints in the context of health technology assessments (HTA).
The package focuses on cost-effectiveness modelling and aims to be submission-ready
to relevant HTA bodies in alignment with 'NICE TSD 15'
<https://www.sheffield.ac.uk/nice-dsu/tsds/patient-level-simulation>.
More details an examples can be found in the package website <https:
//jsanchezalv.github.io/WARDEN/>.

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

BugReports https://github.com/jsanchezalv/WARDEN/issues

Suggests dplyr, ggplot2, knitr, rmarkdown, kableExtra, testthat (>=
3.0.0), survminer, survival

Imports purrr, data.table, foreach, future, doFuture, stats, utils,
flexsurv, MASS, zoo, progressr, magrittr, rlang, tidyr

VignetteBuilder knitr

Config/testthat/edition 3

Depends R (>= 2.10)

URL https://jsanchezalv.github.io/WARDEN/

NeedsCompilation no

Author Javier Sanchez Alvarez [aut, cre],
Gabriel Lemyre [ctb],
Valerie Aponte Ribero [ctb]

Maintainer Javier Sanchez Alvarez <javiersanchezeco@gmail.com>

Repository CRAN

Date/Publication 2025-07-04 15:20:02 UTC

1

https://www.sheffield.ac.uk/nice-dsu/tsds/patient-level-simulation
https://jsanchezalv.github.io/WARDEN/
https://jsanchezalv.github.io/WARDEN/
https://github.com/jsanchezalv/WARDEN/issues
https://jsanchezalv.github.io/WARDEN/

2 Contents

Contents
add_item . 3
add_item2 . 4
add_reactevt . 5
add_tte . 6
adj_val . 7
ast_as_list . 8
ceac_des . 10
cond_dirichlet . 11
cond_mvn . 11
create_indicators . 12
disc_cycle . 13
disc_cycle_v . 14
disc_instant . 15
disc_instant_v . 16
disc_ongoing . 16
disc_ongoing_v . 17
draw_tte . 18
evpi_des . 19
extract_elements_from_list . 20
extract_from_reactions . 21
extract_psa_result . 22
luck_adj . 23
modify_event . 24
modify_item . 25
modify_item_seq . 26
new_event . 27
pcond_gompertz . 28
pick_psa . 29
pick_val_v . 30
qbeta_mse . 32
qcond_exp . 33
qcond_gamma . 33
qcond_gompertz . 34
qcond_llogis . 35
qcond_lnorm . 35
qcond_norm . 36
qcond_weibull . 37
qcond_weibullPH . 37
qgamma_mse . 38
qtimecov . 39
random_stream . 42
rbeta_mse . 43
rcond_gompertz . 44
rcond_gompertz_lu . 44
rdirichlet . 45
rdirichlet_prob . 46

add_item 3

replicate_profiles . 46
rgamma_mse . 47
rpoisgamma . 48
run_sim . 49
run_sim_parallel . 54
sens_iterator . 58
summary_results_det . 59
summary_results_sens . 60
summary_results_sim . 61
tte.df . 62

Index 63

add_item Define parameters that may be used in model calculations (list)

Description

Define parameters that may be used in model calculations (list)

Usage

add_item(.data = NULL, ...)

Arguments

.data Existing data

... Items to define for the simulation

Details

The functions to add/modify events/inputs use lists. Whenever several inputs/events are added or
modified, it’s recommended to group them within one function, as it reduces the computation cost.
So rather than use two add_item with a list of one element, it’s better to group them into a single
add_item with a list of two elements.

Whenever a function is directly implemented which must be evaluated later and that has no object
name attached (e.g., pick_val_v), it should be implemented after a first add_item() (empty or with
content) to avoid confusing the .data argument, or wrapping the function within substitute()

Value

A list of items

4 add_item2

Examples

library(magrittr)

add_item(fl.idfs = 0)
add_item(util_idfs = if(psa_bool){rnorm(1,0.8,0.2)} else{0.8}, util.mbc = 0.6, cost_idfs = 2500)
common_inputs <- add_item() %>%
add_item(pick_val_v(

base = l_statics[["base"]],
psa = pick_psa(
l_statics[["function"]],
l_statics[["n"]],
l_statics[["a"]],
l_statics[["b"]]

),
sens = l_statics[[sens_name_used]],
psa_ind = psa_bool,
sens_ind = sensitivity_bool,
indicator = indicators_statics,
names_out = l_statics[["parameter_name"]]

)
)

add_item2 Define parameters that may be used in model calculations (uses ex-
pressions)

Description

Define parameters that may be used in model calculations (uses expressions)

Usage

add_item2(.data = NULL, input)

Arguments

.data Existing data

input Items to define for the simulation as an expression (i.e., using)

Details

The functions to add/modify events/inputs use lists. If chaining together add_item2, it will just
append the expressions together in the order established.

If using pick_val_v, note it should be used with the deploy_env = TRUE argument so that add_item2
process it correctly.

add_reactevt 5

Value

A substituted expression to be evaluated by engine

Examples

library(magrittr)

add_item2(input = {fl.idfs <- 0})
add_item2(input = {
util_idfs <- if(psa_bool){rnorm(1,0.8,0.2)} else{0.8}
util.mbc <- 0.6
cost_idfs <- 2500})

common_inputs <- add_item2(input = {
pick_val_v(

base = l_statics[["base"]],
psa = pick_psa(
l_statics[["function"]],
l_statics[["n"]],
l_statics[["a"]],
l_statics[["b"]]

),
sens = l_statics[[sens_name_used]],
psa_ind = psa_bool,
sens_ind = sensitivity_bool,
indicator = indicators_statics,
names_out = l_statics[["parameter_name"]],
deploy_env = TRUE #Note this option must be active if using it at add_item2

)
}
)

add_reactevt Define the modifications to other events, costs, utilities, or other items
affected by the occurrence of the event

Description

Define the modifications to other events, costs, utilities, or other items affected by the occurrence
of the event

Usage

add_reactevt(.data = NULL, name_evt, input)

6 add_tte

Arguments

.data Existing data for event reactions

name_evt Name of the event for which reactions are defined.

input Expressions that define what happens at the event, using functions as defined in
the Details section

Details

There are a series of objects that can be used in this context to help define the event reactions.

The following functions may be used to define event reactions within this add_reactevt() func-
tion: modify_item() | Adds & Modifies items/flags/variables for future events (does not consider
sequential) modify_item_seq() | Adds & Modifies items/flags/variables for future events in a se-
quential manner new_event() | Adds events to the vector of events for that patient modify_event()
| Modifies existing events by changing their time

Apart from the items defined with add_item(), we can also use standard variables that are always
defined within the simulation: curtime | Current event time (numeric) prevtime | Time of the
previous event (numeric) cur_evtlist | Named vector of events that is yet to happen for that
patient (named numeric vector) evt | Current event being processed (character) i | Patient being
iterated (character) simulation | Simulation being iterated (numeric)

The model will run until curtime is set to Inf, so the event that terminates the model should modify
curtime and set it to Inf.

The user can use extract_from_reactions function on the output to obtain a data.frame with all
the relationships defined in the reactions in the model.

Value

A named list with the event name, and inside it the substituted expression saved for later evaluation

Examples

add_reactevt(name_evt = "start",input = {})
add_reactevt(name_evt = "idfs",input = {modify_item(list("fl.idfs"= 0))})

add_tte Define events and the initial event time

Description

Define events and the initial event time

Usage

add_tte(.data = NULL, arm, evts, other_inp = NULL, input)

adj_val 7

Arguments

.data Existing data for initial event times

arm The intervention for which the events and initial event times are defined

evts A vector of the names of the events

other_inp A vector of other input variables that should be saved during the simulation

input The definition of initial event times for the events listed in the evts argument

Details

Events need to be separately defined for each intervention.

For each event that is defined in this list, the user needs to add a reaction to the event using the
add_reactevt() function which will determine what calculations will happen at an event.

Value

A list of initial events and event times

Examples

add_tte(arm="int",evts = c("start","ttot","idfs","os"),
input={
start <- 0
idfs <- draw_tte(1,'lnorm',coef1=2, coef2=0.5)
ttot <- min(draw_tte(1,'lnorm',coef1=1, coef2=4),idfs)
os <- draw_tte(1,'lnorm',coef1=0.8, coef2=0.2)
})

adj_val Adjusted Value Calculation

Description

This function calculates an adjusted value over a time interval with optional discounting. This
is useful for instances when adding cycles may not be desirable, so one can perform "cycle-like"
calculations without needing cycles, offering performance speeds. See the vignette on avoiding
cycles for an example in a model.

Usage

adj_val(curtime, nexttime, by, expression, discount = NULL)

8 ast_as_list

Arguments

curtime Numeric. The current time point.

nexttime Numeric. The next time point. Must be greater than or equal to curtime.

by Numeric. The step size for evaluation within the interval.

expression An expression evaluated at each step. Use time as the variable within the ex-
pression.

discount Numeric or NULL. The discount rate to apply, or NULL for no discounting.

Details

The user can use the .time variable to select the corresponding time of the sequence being eval-
uated. For example, in curtime = 0, nexttime = 4, by = 1, time would correspond to
0, 1, 2, 3. If using nexttime = 4.2, 0, 1, 2, 3, 4

Value

Numeric. The calculated adjusted value.

Examples

Define a function or vector to evaluate
bs_age <- 1
vec <- 1:8/10

Calculate adjusted value without discounting
adj_val(0, 4, by = 1, expression = vec[floor(.time + bs_age)])
adj_val(0, 4, by = 1, expression = .time * 1.1)

Calculate adjusted value with discounting
adj_val(0, 4, by = 1, expression = vec[floor(.time + bs_age)], discount = 0.03)

ast_as_list Transform a substituted expression to its Abstract Syntax Tree (AST)
as a list

Description

Transform a substituted expression to its Abstract Syntax Tree (AST) as a list

Usage

ast_as_list(ee)

Arguments

ee Substituted expression

ast_as_list 9

Value

Nested list with the Abstract Syntax Tree (AST)

Examples

expr <- substitute({

a <- sum(5+7)

modify_item(list(afsa=ifelse(TRUE,"asda",NULL)))

modify_item_seq(list(

o_other_q_gold1 = if(gold == 1) { utility } else { 0 },

o_other_q_gold2 = if(gold == 2) { utility } else { 0 },

o_other_q_gold3 = if(gold == 3) { utility } else { 0 },

o_other_q_gold4 = if(gold == 4) { utility } else { 0 },

o_other_q_on_dup = if(on_dup) { utility } else { 0 }

))

if(a==1){
modify_item(list(a=list(6+b)))

modify_event(list(e_exn = curtime + 14 / days_in_year + qexp(rnd_exn, r_exn)))
} else{

modify_event(list(e_exn = curtime + 14 / days_in_year + qexp(rnd_exn, r_exn)))
if(a>6){
modify_item(list(a=8))

}

}

if (sel_resp_incl == 1 & on_dup == 1) {

modify_event(list(e_response = curtime, z = 6))

}

})

out <- ast_as_list(expr)

10 ceac_des

ceac_des Calculate the cost-effectiveness acceptability curve (CEAC) for a DES
model with a PSA result

Description

Calculate the cost-effectiveness acceptability curve (CEAC) for a DES model with a PSA result

Usage

ceac_des(wtp, results, interventions = NULL, sensitivity_used = 1)

Arguments

wtp Vector of length >=1 with the willingness to pay

results The list object returned by run_sim()

interventions A character vector with the names of the interventions to be used for the analysis

sensitivity_used

Integer signaling which sensitivity analysis to use

Value

A data frame with the CEAC results

Examples

res <- list(list(list(sensitivity_name = "", arm_list = c("int", "noint"
), total_lys = c(int = 9.04687362556945, noint = 9.04687362556945
), total_qalys = c(int = 6.20743830697466, noint = 6.18115138126336
), total_costs = c(int = 49921.6357486899, noint = 41225.2544659378
), total_lys_undisc = c(int = 10.8986618377039, noint = 10.8986618377039
), total_qalys_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), total_costs_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), c_default = c(int = 49921.6357486899, noint = 41225.2544659378
), c_default_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), q_default = c(int = 6.20743830697466, noint = 6.18115138126336
), q_default_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), merged_df = list(simulation = 1L, sensitivity = 1L))))

ceac_des(seq(from=10000,to=500000,by=10000),res)

cond_dirichlet 11

cond_dirichlet Calculate conditional dirichlet values

Description

Calculate conditional dirichlet values

Usage

cond_dirichlet(alpha, i, xi, full_output = FALSE)

Arguments

alpha mean vector

i index of the known parameter (1-based index)

xi known value of the i-th parameter (should be >0)

full_output boolean indicating whether to return the full list of parameters

Details

Function to compute conditional dirichlet values

Value

List of length 2, one with new mu and other with covariance parameters

Examples

alpha <- c(2, 3, 4)
i <- 2 # Index of the known parameter
xi <- 0.5 # Known value of the second parameter

Compute the conditional alpha parameters with full output
cond_dirichlet(alpha, i, xi, full_output = TRUE)

cond_mvn Calculate conditional multivariate normal values

Description

Calculate conditional multivariate normal values

Usage

cond_mvn(mu, Sigma, i, xi, full_output = FALSE)

12 create_indicators

Arguments

mu mean vector

Sigma covariance matrix

i index of the known parameter (1-based index)

xi known value of the i-th parameter

full_output boolean indicating whether to return the full list of parameters

Details

Function to compute conditional multivariate normal values

Value

List of length 2, one with new mu and other with covariance parameters

Examples

mu <- c(1, 2, 3)
Sigma <- matrix(c(0.2, 0.05, 0.1,

0.05, 0.3, 0.05,
0.1, 0.05, 0.4), nrow = 3)

i <- 1:2 # Index of the known parameter
xi <- c(1.2,2.3) # Known value of the first parameter

cond_mvn(mu, Sigma, i, xi,full_output = TRUE)

create_indicators Creates a vector of indicators (0 and 1) for sensitivity/DSA analysis

Description

Creates a vector of indicators (0 and 1) for sensitivity/DSA analysis

Usage

create_indicators(sens, n_sensitivity, elem, n_elem_before = 0)

Arguments

sens current analysis iterator

n_sensitivity total number of analyses to be run

elem vector of 0s and 1s of elements to iterate through (1 = parameter is to be included
in scenario/DSA)

n_elem_before Sum of 1s (# of parameters to be included in scenario/DSA) that go before elem

disc_cycle 13

Details

n_elem_before is to be used when several indicators want to be used (e.g., for patient level and
common level inputs) while facilitating readibility of the code

Value

Numeric vector composed of 0 and 1, where value 1 will be used by pick_val_v to pick the
corresponding index in its sens argument

Examples

create_indicators(10,20,c(1,1,1,1))
create_indicators(7,20,c(1,0,0,1,1,1,0,0,1,1),2)

disc_cycle Cycle discounting

Description

Cycle discounting

Usage

disc_cycle(
lcldr = 0.035,
lclprvtime = 0,
cyclelength,
lclcurtime,
lclval,
starttime = 0

)

Arguments

lcldr The discount rate

lclprvtime The time of the previous event in the simulation

cyclelength The cycle length

lclcurtime The time of the current event in the simulation

lclval The value to be discounted

starttime The start time for accrual of cycle costs (if not 0)

Details

Note this function counts both extremes of the interval, so the example below would consider 25
cycles, while disc_cycle_v leave the right interval open

14 disc_cycle_v

Value

Double based on cycle discounting

Examples

disc_cycle(lcldr=0.035, lclprvtime=0, cyclelength=1/12, lclcurtime=2, lclval=500,starttime=0)

disc_cycle_v Cycle discounting for vectors

Description

Cycle discounting for vectors

Usage

disc_cycle_v(
lcldr = 0.035,
lclprvtime = 0,
cyclelength,
lclcurtime,
lclval,
starttime = 0,
max_cycles = NULL

)

Arguments

lcldr The discount rate

lclprvtime The time of the previous event in the simulation

cyclelength The cycle length

lclcurtime The time of the current event in the simulation

lclval The value to be discounted

starttime The start time for accrual of cycle costs (if not 0)

max_cycles The maximum number of cycles

Details

This function per cycle discounting, i.e., considers that the cost/qaly is accrued per cycles, and
performs it automatically without needing to create new events. It can accommodate changes in
cycle length/value/starttime (e.g., in the case of induction and maintenance doses) within the same
item.

disc_instant 15

Value

Double vector based on cycle discounting

Examples

disc_cycle_v(lcldr=0.03, lclprvtime=0, cyclelength=1/12, lclcurtime=2, lclval=500,starttime=0)
disc_cycle_v(
lcldr=0.000001,
lclprvtime=0,
cyclelength=1/12,
lclcurtime=2,
lclval=500,
starttime=0,
max_cycles = 4)

#Here we have a change in cycle length, max number of cylces and starttime at time 2
#(e.g., induction to maintenance)

#In the model, one would do this by redifining cycle_l, max_cycles and starttime
#of the corresponding item at a given event time.

disc_cycle_v(lcldr=0,
lclprvtime=c(0,1,2,2.5),
cyclelength=c(1/12, 1/12,1/2,1/2),
lclcurtime=c(1,2,2.5,4), lclval=c(500,500,500,500),
starttime=c(0,0,2,2), max_cycles = c(24,24,2,2)
)

disc_instant Calculate instantaneous discounted costs or qalys

Description

Calculate instantaneous discounted costs or qalys

Usage

disc_instant(lcldr = 0.035, lclcurtime, lclval)

Arguments

lcldr The discount rate

lclcurtime The time of the current event in the simulation

lclval The value to be discounted

Value

Double based on discrete time discounting

16 disc_ongoing

Examples

disc_instant(lcldr=0.035, lclcurtime=3, lclval=2500)

disc_instant_v Calculate instantaneous discounted costs or qalys for vectors

Description

Calculate instantaneous discounted costs or qalys for vectors

Usage

disc_instant_v(lcldr = 0.035, lclcurtime, lclval)

Arguments

lcldr The discount rate

lclcurtime The time of the current event in the simulation

lclval The value to be discounted

Value

Double based on discrete time discounting

Examples

disc_instant_v(lcldr=0.035, lclcurtime=3, lclval=2500)

disc_ongoing Calculate discounted costs and qalys between events

Description

Calculate discounted costs and qalys between events

Usage

disc_ongoing(lcldr = 0.035, lclprvtime, lclcurtime, lclval)

disc_ongoing_v 17

Arguments

lcldr The discount rate

lclprvtime The time of the previous event in the simulation

lclcurtime The time of the current event in the simulation

lclval The value to be discounted

Value

Double based on continuous time discounting

Examples

disc_ongoing(lcldr=0.035,lclprvtime=0.5, lclcurtime=3, lclval=2500)

disc_ongoing_v Calculate discounted costs and qalys between events for vectors

Description

Calculate discounted costs and qalys between events for vectors

Usage

disc_ongoing_v(lcldr = 0.035, lclprvtime, lclcurtime, lclval)

Arguments

lcldr The discount rate

lclprvtime The time of the previous event in the simulation

lclcurtime The time of the current event in the simulation

lclval The value to be discounted

Value

Double based on continuous time discounting

Examples

disc_ongoing_v(lcldr=0.035,lclprvtime=0.5, lclcurtime=3, lclval=2500)

18 draw_tte

draw_tte Draw a time to event from a list of parametric survival functions

Description

Draw a time to event from a list of parametric survival functions

Usage

draw_tte(
n_chosen,
dist,
coef1 = NULL,
coef2 = NULL,
coef3 = NULL,
...,
beta_tx = 1,
seed = NULL

)

Arguments

n_chosen The number of observations to be drawn

dist The distribution; takes values ’lnorm’,’norm’,’mvnorm’,’weibullPH’,’weibull’,’llogis’,’gompertz’,’gengamma’,’gamma’,’exp’,’beta’,’poisgamma’

coef1 First coefficient of the distribution, defined as in the coef() output on a flex-
survreg object (rate in "rpoisgamma")

coef2 Second coefficient of the distribution, defined as in the coef() output on a flex-
survreg object (theta in "rpoisgamma")

coef3 Third coefficient of the distribution, defined as in the coef() output on a flex-
survreg object (not used in "rpoisgamma")

... Additional arguments to be used by the specific distribution (e.g., return_ind_rate
if dist = "poisgamma")

beta_tx Parameter in natural scale applied in addition to the scale/rate coefficient -e.g.,
a HR if used in an exponential- (not used in "rpoisgamma" nor "beta")

seed An integer which will be used to set the seed for this draw.

Details

Other arguments relevant to each function can be called directly

Value

A vector of time to event estimates from the given parameters

evpi_des 19

Examples

draw_tte(n_chosen=1,dist='exp',coef1=1,beta_tx=1)
draw_tte(n_chosen=10,"poisgamma",coef1=1,coef2=1,obs_time=1,return_ind_rate=FALSE)

evpi_des Calculate the Expected Value of Perfect Information (EVPI) for a DES
model with a PSA result

Description

Calculate the Expected Value of Perfect Information (EVPI) for a DES model with a PSA result

Usage

evpi_des(wtp, results, interventions = NULL, sensitivity_used = 1)

Arguments

wtp Vector of length >=1 with the willingness to pay

results The list object returned by run_sim()

interventions A character vector with the names of the interventions to be used for the analysis
sensitivity_used

Integer signaling which sensitivity analysis to use

Value

A data frame with the EVPI results

Examples

res <- list(list(list(sensitivity_name = "", arm_list = c("int", "noint"
), total_lys = c(int = 9.04687362556945, noint = 9.04687362556945
), total_qalys = c(int = 6.20743830697466, noint = 6.18115138126336
), total_costs = c(int = 49921.6357486899, noint = 41225.2544659378
), total_lys_undisc = c(int = 10.8986618377039, noint = 10.8986618377039
), total_qalys_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), total_costs_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), c_default = c(int = 49921.6357486899, noint = 41225.2544659378
), c_default_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), q_default = c(int = 6.20743830697466, noint = 6.18115138126336
), q_default_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), merged_df = list(simulation = 1L, sensitivity = 1L))))

evpi_des(seq(from=10000,to=500000,by=10000),res)

20 extract_elements_from_list

extract_elements_from_list

Extracts items and events by looking into assignments, modify_item,
modify_item_seq, modify_event and new_event

Description

Extracts items and events by looking into assignments, modify_item, modify_item_seq, modify_event
and new_event

Usage

extract_elements_from_list(node, conditional_flag = FALSE)

Arguments

node Relevant node within the nested AST list
conditional_flag

Boolean whether the statement is contained within a conditional statement

Value

A data.frame with the relevant item/event, the event where it’s assigned, and whether it’s contained
within a conditional statement

Examples

expr <- substitute({

a <- sum(5+7)

modify_item(list(afsa=ifelse(TRUE,"asda",NULL)))

modify_item_seq(list(

o_other_q_gold1 = if(gold == 1) { utility } else { 0 },

o_other_q_gold2 = if(gold == 2) { utility } else { 0 },

o_other_q_gold3 = if(gold == 3) { utility } else { 0 },

o_other_q_gold4 = if(gold == 4) { utility } else { 0 },

o_other_q_on_dup = if(on_dup) { utility } else { 0 }

))

if(a==1){
modify_item(list(a=list(6+b)))

extract_from_reactions 21

modify_event(list(e_exn = curtime + 14 / days_in_year + qexp(rnd_exn, r_exn)))
} else{

modify_event(list(e_exn = curtime + 14 / days_in_year + qexp(rnd_exn, r_exn)))
if(a>6){

modify_item(list(a=8))
}

}

if (sel_resp_incl == 1 & on_dup == 1) {

modify_event(list(e_response = curtime, z = 6))

}

})

out <- ast_as_list(expr)

results <- extract_elements_from_list(out)

extract_from_reactions

Extract all items and events and their interactions from the event re-
actions list

Description

Extract all items and events and their interactions from the event reactions list

Usage

extract_from_reactions(reactions)

Arguments

reactions list generated through add_reactevt

Value

A data.frame with the relevant item/event, the event where it’s assigned, and whether it’s contained
within a conditional statement

22 extract_psa_result

Examples

evt_react_list2 <-
add_reactevt(name_evt = "sick",

input = {modify_item(list(a=1+5/3))
assign("W", 5 + 3 / 6)
x[5] <- 18
for(i in 1:5){

assign(paste0("x_",i),5+3)
}
if(j == TRUE){

y[["w"]] <- 612-31+3
}#'
q_default <- 0
c_default <- 0
curtime <- Inf
d <- c <- k <- 67

})

extract_from_reactions(evt_react_list2)

extract_psa_result Extract PSA results from a treatment

Description

Extract PSA results from a treatment

Usage

extract_psa_result(x, element)

Arguments

x The output_sim data frame from the list object returned by run_sim()

element Variable for which PSA results are being extracted (single string)

Value

A dataframe with PSA results from the specified intervention

Examples

res <- list(list(list(sensitivity_name = "", arm_list = c("int", "noint"
), total_lys = c(int = 9.04687362556945, noint = 9.04687362556945
), total_qalys = c(int = 6.20743830697466, noint = 6.18115138126336
), total_costs = c(int = 49921.6357486899, noint = 41225.2544659378
), total_lys_undisc = c(int = 10.8986618377039, noint = 10.8986618377039

luck_adj 23

), total_qalys_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), total_costs_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), c_default = c(int = 49921.6357486899, noint = 41225.2544659378
), c_default_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), q_default = c(int = 6.20743830697466, noint = 6.18115138126336
), q_default_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), merged_df = list(simulation = 1L, sensitivity = 1L))))

extract_psa_result(res[[1]],"total_costs")

luck_adj Perform luck adjustment

Description

Perform luck adjustment

Usage

luck_adj(prevsurv, cursurv, luck, condq = TRUE)

Arguments

prevsurv Value of the previous survival

cursurv Value of the current survival

luck Luck used to be adjusted (number between 0 and 1)

condq Conditional quantile approach or standard approach

Details

This function performs the luck adjustment automatically for the user, returning the adjusted luck
number. Luck is interpreted in the same fashion as is standard in R (higher luck, higher time to
event).

Note that if TTE is predicted using a conditional quantile function (e.g., conditional gompertz, con-
ditional quantile weibull...) prevsurv and cursurv are the unconditional survival using the "previ-
ous" parametrization but at the previous time for presurv and at the current time for cursurv. For
other distributions, presurv is the survival up to current time using the previous parametrization,
and cursurv is the survival up to current time using the current parametrization.

Note that the advantage of the conditional quantile function is that it does not need the new parametriza-
tion to update the luck, which makes this approach computationally more efficient. This function
can also work with vectors, which could allow to update multiple lucks in a single approach, and it
can preserve names

Value

Adjusted luck number between 0 and 1

24 modify_event

Examples

luck_adj(prevsurv = 0.8,
cursurv = 0.7,
luck = 0.5,
condq = TRUE)

luck_adj(prevsurv = c(1,0.8,0.7),
cursurv = c(0.7,0.6,0.5),
luck = setNames(c(0.5,0.6,0.7),c("A","B","C")),
condq = TRUE)

luck_adj(prevsurv = 0.8,
cursurv = 0.7,
luck = 0.5,
condq = FALSE) #different results

#Unconditional approach, timepoint of change is 25,
parameter goes from 0.02 at time 10 to 0.025 to 0.015 at time 25,
starting luck is 0.37
new_luck <- luck_adj(prevsurv = 1 - pweibull(q=10,3,1/0.02),
cursurv = 1 - pweibull(q=10,3,1/0.025),
luck = 0.37,
condq = FALSE) #time 10 change

new_luck <- luck_adj(prevsurv = 1 - pweibull(q=25,3,1/0.025),
cursurv = 1 - pweibull(q=25,3,1/0.015),
luck = new_luck,
condq = FALSE) #time 25 change

qweibull(new_luck, 3, 1/0.015) #final TTE

#Conditional quantile approach
new_luck <- luck_adj(prevsurv = 1-pweibull(q=0,3,1/0.02),

cursurv = 1- pweibull(q=10,3,1/0.02),
luck = 0.37,

condq = TRUE) #time 10 change, previous time is 0 so prevsurv will be 1

new_luck <- luck_adj(prevsurv = 1-pweibull(q=10,3,1/0.025),
cursurv = 1- pweibull(q=25,3,1/0.025),
luck = new_luck,
condq = TRUE) #time 25 change

qcond_weibull(rnd = new_luck,
shape = 3,
scale = 1/0.015,
lower_bound = 25) + 25 #final TTE

modify_event Modify the time of existing events

modify_item 25

Description

Modify the time of existing events

Usage

modify_event(evt, create_if_null = TRUE)

Arguments

evt A list of events and their times

create_if_null A boolean. If TRUE, it will create non-existing events with the chosen time to
event. If FALSE, it will ignore those.

Details

The functions to add/modify events/inputs use lists. Whenever several inputs/events are added or
modified, it’s recommended to group them within one function, as it reduces the computation cost.
So rather than use two modify_event with a list of one element, it’s better to group them into a
single modify_event with a list of two elements.

This function does not evaluate sequentially.

This function is intended to be used only within the add_reactevt function in its input parameter
and should not be run elsewhere or it will return an error.

Value

No return value, modifies/adds event to cur_evtlist and integrates it with the main list for storage

Examples

add_reactevt(name_evt = "idfs",input = {modify_event(list("os"=5))})

modify_item Modify the value of existing items

Description

Modify the value of existing items

Usage

modify_item(list_item)

Arguments

list_item A list of items and their values or expressions

26 modify_item_seq

Details

The functions to add/modify events/inputs use lists. Whenever several inputs/events are added or
modified, it’s recommended to group them within one function, as it reduces the computation cost.
So rather than use two modify_item with a list of one element, it’s better to group them into a
single modify_item with a list of two elements.

Note that modify_item nor modify_item_seq can work on subelements (e.g., modify_item(list(obj$item = 5))
will not work as intended, for that is better to assign directly using the expression approach, so
obj$item <- 5).

Costs and utilities can be modified by using the construction type_name_category, where type is
either "qaly" or "cost", name is the name (e.g., "default") and category is the category used (e.g.,
"instant"), so one could pass cost_default_instant and modify the cost. This will overwrite the
value defined in the corresponding cost/utility section.

This function is intended to be used only within the add_reactevt function in its input parameter
and should not be run elsewhere or it will return an error.

Value

No return value, modifies/adds item to the environment and integrates it with the main list for
storage

Examples

add_reactevt(name_evt = "idfs",input = {modify_item(list("cost.it"=5))})

modify_item_seq Modify the value of existing items

Description

Modify the value of existing items

Usage

modify_item_seq(...)

Arguments

... A list of items and their values or expressions. Will be evaluated sequentially
(so one could have list(a= 1, b = a +2))

new_event 27

Details

The functions to add/modify events/inputs use lists. Whenever several inputs/events are added or
modified, it’s recommended to group them within one function, as it reduces the computation cost.
So rather than use two modify_item with a list of one element, it’s better to group them into a
single modify_item with a list of two elements.

Note that modify_item nor modify_item_seq can work on subelements (e.g., modify_item_seq(list(obj$item = 5))
will not work as intended, for that is better to assign directly using the expression approach, so
obj$item <- 5).

Costs and utilities can be modified by using the construction type_name_category, where type is
either "qaly" or "cost", name is the name (e.g., "default") and category is the category used (e.g.,
"instant"), so one could pass cost_default_instant and modify the cost. This will overwrite the
value defined in the corresponding cost/utility section.

The function is different from modify_item in that this function evaluates sequentially the arguments
within the list passed. This implies a slower performance relative to modify_item, but it can be more
cleaner and convenient in certain instances.

This function is intended to be used only within the add_reactevt function in its input parameter
and should not be run elsewhere or it will return an error.

Value

No return value, modifies/adds items sequentially and deploys to the environment and with the main
list for storage

Examples

add_reactevt(name_evt = "idfs",input = {
modify_item_seq(list(cost.idfs = 500, cost.tx = cost.idfs + 4000))
})

new_event Generate new events to be added to existing vector of events

Description

Generate new events to be added to existing vector of events

Usage

new_event(evt)

Arguments

evt Event name and event time

28 pcond_gompertz

Details

The functions to add/modify events/inputs use lists. Whenever several inputs/events are added or
modified, it’s recommended to group them within one function, as it reduces the computation cost.
So rather than use two new_event with a list of one element, it’s better to group them into a single
new_event with a list of two elements.

This function is intended to be used only within the add_reactevt function in its input parameter
and should not be run elsewhere or it will return an error.

Value

No return value, adds event to cur_evtlist and integrates it with the main list for storage

Examples

add_reactevt(name_evt = "idfs",input = {new_event(list("ae"=5))})

pcond_gompertz Survival Probaility function for conditional Gompertz distribution
(lower bound only)

Description

Survival Probaility function for conditional Gompertz distribution (lower bound only)

Usage

pcond_gompertz(time = 1, shape, rate, lower_bound = 0)

Arguments

time Vector of times

shape The shape parameter of the Gompertz distribution, defined as in the coef() output
on a flexsurvreg object

rate The rate parameter of the Gompertz distribution, defined as in the coef() output
on a flexsurvreg object

lower_bound The lower bound of the conditional distribution

Value

Estimate(s) from the conditional Gompertz distribution based on given parameters

Examples

pcond_gompertz(time=1,shape=0.05,rate=0.01,lower_bound = 50)

pick_psa 29

pick_psa Helper function to create a list with random draws or whenever a
series of functions needs to be called. Can be implemented within
pick_val_v.

Description

Helper function to create a list with random draws or whenever a series of functions needs to be
called. Can be implemented within pick_val_v.

Usage

pick_psa(f, ...)

Arguments

f A string or vector of strings with the function to be called, e.g., "rnorm"

... parameters to be passed to the function (e.g., if "rnorm", arguments n, mean, sd)

Details

This function can be used to pick values for the PSA within pick_val_v.

The function will ignore NA items within the respective parameter (see example below). If an ele-
ment in f is NA (e.g., a non PSA input) then it will return NA as its value This feature is convenient
when mixing distributions with different number of arguments, e.g., rnorm and rgengamma.

While it’s slightly lower than individually calling each function, it makes the code easier to read
and more transparent

Value

List with length equal to f of parameters called

Examples

params <- list(
param=list("a","b"),
dist=list("rlnorm","rnorm"),
n=list(4,1),
a=list(c(1,2,3,4),1),
b=list(c(0.5,0.5,0.5,0.5),0.5),
dsa_min=list(c(1,2,3,4),2),
dsa_max=list(c(1,2,3,4),3)
)
pick_psa(params[["dist"]],params[["n"]],params[["a"]],params[["b"]])

#It works with functions that require different number of parameters
params <- list(
param=list("a","b","c"),

30 pick_val_v

dist=list("rlnorm","rnorm","rgengamma"),
n=list(4,1,1),
a=list(c(1,2,3,4),1,0),
b=list(c(0.5,0.5,0.5,0.5),0.5,1),
c=list(NA,NA,0.2),
dsa_min=list(c(1,2,3,4),2,1),
dsa_max=list(c(1,2,3,4),3,3)

)

pick_psa(params[["dist"]],params[["n"]],params[["a"]],params[["b"]],params[["c"]])

#Can be combined with multiple type of functions and distributions if parameters are well located

params <- list(
param=list("a","b","c","d"),
dist=list("rlnorm","rnorm","rgengamma","draw_tte"),
n=list(4,1,1,1),
a=list(c(1,2,3,4),1,0,"norm"),
b=list(c(0.5,0.5,0.5,0.5),0.5,1,1),
c=list(NA,NA,0.2,0.5),
c=list(NA,NA,NA,NA), #NA arguments will be ignored
dsa_min=list(c(1,2,3,4),2,1,0),
dsa_max=list(c(1,2,3,4),3,3,2)
)

pick_val_v Select which values should be applied in the corresponding loop for
several values (vector or list).

Description

Select which values should be applied in the corresponding loop for several values (vector or list).

Usage

pick_val_v(
base,
psa,
sens,
psa_ind = psa_bool,
sens_ind = sens_bool,
indicator,
indicator_psa = NULL,
names_out = NULL,
indicator_sens_binary = TRUE,
sens_iterator = NULL,
distributions = NULL,
covariances = NULL,
deploy_env = FALSE

)

pick_val_v 31

Arguments

base Value if no PSA/DSA/Scenario

psa Value if PSA

sens Value if DSA/Scenario

psa_ind Boolean whether PSA is active

sens_ind Boolean whether Scenario/DSA is active

indicator Indicator which checks whether the specific parameter/parameters is/are active
in the DSA or Scenario loop

indicator_psa Indicator which checks whether the specific parameter/parameters is/are active
in the PSA loop. If NULL, it’s assumed to be a vector of 1s of length equal to
length(indicator)

names_out Names to give the output list
indicator_sens_binary

Boolean, TRUE if parameters will be varied fully, FALSE if some elements of
the parameters may be changed but not all

sens_iterator Current iterator number of the DSA/scenario being run, e.g., 5 if it corresponds
to the 5th DSA parameter being changed

distributions List with length equal to length of base where the distributions are stored

covariances List with length equal to length of base where the variance/covariances are
stored (only relevant if multivariate normal are being used)

deploy_env Boolean, if TRUE will deploy all objects in the environment where the function
is called for. Must be active if using add_item2 (and FALSE if using add_item)

Details

This function can be used with vectors or lists, but will always return a list. Lists should be used
when correlated variables are introduced to make sure the selector knows how to choose among
those This function allows to choose between using an approach where only the full parameters are
varied, and an approach where subelements of the parameters can be changed

Value

List used for the inputs

Examples

pick_val_v(base = list(0,0),
psa =list(rnorm(1,0,0.1),rnorm(1,0,0.1)),
sens = list(2,3),
psa_ind = FALSE,
sens_ind = TRUE,
indicator=list(1,2),
indicator_sens_binary = FALSE,
sens_iterator = 2,
distributions = list("rnorm","rnorm")

)

32 qbeta_mse

pick_val_v(base = list(2,3,c(1,2)),
psa =sapply(1:3,

function(x) eval(call(
c("rnorm","rnorm","mvrnorm")[[x]],
1,
c(2,3,list(c(1,2)))[[x]],
c(0.1,0.1,list(matrix(c(1,0.1,0.1,1),2,2)))[[x]]

))),
sens = list(4,5,c(1.3,2.3)),
psa_ind = FALSE,
sens_ind = TRUE,
indicator=list(1,2,c(3,4)),
names_out=c("util","util2","correlated_vector") ,
indicator_sens_binary = FALSE,
sens_iterator = 4,
distributions = list("rnorm","rnorm","mvrnorm"),
covariances = list(0.1,0.1,matrix(c(1,0.1,0.1,1),2,2))

)

qbeta_mse Draw from a beta distribution based on mean and se (quantile)

Description

Draw from a beta distribution based on mean and se (quantile)

Usage

qbeta_mse(q, mean_v, se)

Arguments

q Quantiles to be used

mean_v A vector of the mean values

se A vector of the standard errors of the means

Value

A single estimate from the beta distribution based on given parameters

Examples

qbeta_mse(q=0.5,mean_v=0.8,se=0.2)

qcond_exp 33

qcond_exp Conditional quantile function for exponential distribution

Description

Conditional quantile function for exponential distribution

Usage

qcond_exp(rnd = 0.5, rate)

Arguments

rnd Vector of quantiles
rate The rate parameter

Note taht the conditional quantile for an exponential is independent of time due
to constant hazard

Value

Estimate(s) from the conditional exponential distribution based on given parameters

Examples

qcond_exp(rnd = 0.5,rate = 3)

qcond_gamma Conditional quantile function for gamma distribution

Description

Conditional quantile function for gamma distribution

Usage

qcond_gamma(rnd = 0.5, shape, rate, lower_bound = 0, s_obs)

Arguments

rnd Vector of quantiles
shape The shape parameter
rate The rate parameter
lower_bound The lower bound to be used (current time)
s_obs is the survival observed up to lower_bound time, normally defined from time 0

as 1 - pgamma(q = lower_bound, rate, shape) but may be different if parametriza-
tion has changed previously

34 qcond_gompertz

Value

Estimate(s) from the conditional gamma distribution based on given parameters

Examples

qcond_gamma(rnd = 0.5, shape = 1.06178, rate = 0.01108,lower_bound = 1, s_obs=0.8)

qcond_gompertz Quantile function for conditional Gompertz distribution (lower bound
only)

Description

Quantile function for conditional Gompertz distribution (lower bound only)

Usage

qcond_gompertz(rnd = 0.5, shape, rate, lower_bound = 0)

Arguments

rnd Vector of quantiles

shape The shape parameter of the Gompertz distribution, defined as in the coef() output
on a flexsurvreg object

rate The rate parameter of the Gompertz distribution, defined as in the coef() output
on a flexsurvreg object

lower_bound The lower bound of the conditional distribution

Value

Estimate(s) from the conditional Gompertz distribution based on given parameters

Examples

qcond_gompertz(rnd=0.5,shape=0.05,rate=0.01,lower_bound = 50)

qcond_llogis 35

qcond_llogis Conditional quantile function for loglogistic distribution

Description

Conditional quantile function for loglogistic distribution

Usage

qcond_llogis(rnd = 0.5, shape, scale, lower_bound = 0)

Arguments

rnd Vector of quantiles
shape The shape parameter
scale The scale parameter
lower_bound The lower bound to be used (current time)

Value

Estimate(s) from the conditional loglogistic distribution based on given parameters

Examples

qcond_llogis(rnd = 0.5,shape = 1,scale = 1,lower_bound = 1)

qcond_lnorm Conditional quantile function for lognormal distribution

Description

Conditional quantile function for lognormal distribution

Usage

qcond_lnorm(rnd = 0.5, meanlog, sdlog, lower_bound = 0, s_obs)

Arguments

rnd Vector of quantiles
meanlog The meanlog parameter
sdlog The sdlog parameter
lower_bound The lower bound to be used (current time)
s_obs is the survival observed up to lower_bound time, normally defined from time

0 as 1 - plnorm(q = lower_bound, meanlog, sdlog) but may be different if
parametrization has changed previously

36 qcond_norm

Value

Estimate(s) from the conditional lognormal distribution based on given parameters

Examples

qcond_lnorm(rnd = 0.5, meanlog = 1,sdlog = 1,lower_bound = 1, s_obs=0.8)

qcond_norm Conditional quantile function for normal distribution

Description

Conditional quantile function for normal distribution

Usage

qcond_norm(rnd = 0.5, mean, sd, lower_bound = 0, s_obs)

Arguments

rnd Vector of quantiles

mean The mean parameter

sd The sd parameter

lower_bound The lower bound to be used (current time)

s_obs is the survival observed up to lower_bound time, normally defined from time 0
as 1 - pnorm(q = lower_bound, mean, sd) but may be different if parametrization
has changed previously

Value

Estimate(s) from the conditional normal distribution based on given parameters

Examples

qcond_norm(rnd = 0.5, mean = 1,sd = 1,lower_bound = 1, s_obs=0.8)

qcond_weibull 37

qcond_weibull Conditional quantile function for weibull distribution

Description

Conditional quantile function for weibull distribution

Usage

qcond_weibull(rnd = 0.5, shape, scale, lower_bound = 0)

Arguments

rnd Vector of quantiles

shape The shape parameter as in R stats package weibull

scale The scale parameter as in R stats package weibull

lower_bound The lower bound to be used (current time)

Value

Estimate(s) from the conditional weibull distribution based on given parameters

Examples

qcond_weibull(rnd = 0.5,shape = 3,scale = 66.66,lower_bound = 50)

qcond_weibullPH Conditional quantile function for WeibullPH (flexsurv)

Description

Conditional quantile function for WeibullPH (flexsurv)

Usage

qcond_weibullPH(rnd = 0.5, shape, scale, lower_bound = 0)

Arguments

rnd Vector of quantiles (between 0 and 1)

shape Shape parameter of WeibullPH

scale Scale (rate) parameter of WeibullPH (i.e., as in hazard = scale * t^(shape - 1))

lower_bound Lower bound (current time)

38 qgamma_mse

Value

Estimate(s) from the conditional weibullPH distribution based on given parameters

Examples

qcond_weibullPH(rnd = 0.5, shape = 2, scale = 0.01, lower_bound = 5)

qgamma_mse Use quantiles from a gamma distribution based on mean and se

Description

Use quantiles from a gamma distribution based on mean and se

Usage

qgamma_mse(q = 1, mean_v, se, seed = NULL)

Arguments

q Quantile to draw

mean_v A vector of the mean values

se A vector of the standard errors of the means

seed An integer which will be used to set the seed for this draw.

Value

A single estimate from the gamma distribution based on given parameters

Examples

qgamma_mse(q=0.5,mean_v=0.8,se=0.2)

qtimecov 39

qtimecov Draw Time-to-Event with Time-Dependent Covariates and Luck Ad-
justment

Description

Simulate a time-to-event (TTE) from a parametric distribution with parameters varying over time.
User provides parameter functions and distribution name. The function uses internal survival and
conditional quantile functions, plus luck adjustment to simulate the event time. See the vignette on
avoiding cycles for an example in a model.

Usage

qtimecov(
luck,
a_fun,
b_fun = function(.time) NA,
dist,
dt = 0.1,
max_time = 100,
return_luck = FALSE,
start_time = 0

)

Arguments

luck Numeric between 0 and 1. Initial random quantile (luck).

a_fun Function of time .time returning the first distribution parameter (e.g., rate, shape,
meanlog).

b_fun Function of time .time returning the second distribution parameter (e.g., scale,
sdlog). Defaults to a function returning NA.

dist Character string specifying the distribution. Supported: "exp", "gamma", "lnorm",
"norm", "weibull", "llogis", "gompertz".

dt Numeric. Time step increment to update parameters and survival. Default 0.1.

max_time Numeric. Max allowed event time to prevent infinite loops. Default 100.

return_luck Boolean. If TRUE, returns a list with tte and luck (useful if max_time caps TTE)

start_time Numeric. Time to use as a starting point of reference (e.g., curtime).

Details

The objective of this function is to avoid the user to have cycle events with the only scope of updat-
ing some variables that depend on time and re-evaluate a TTE. The idea is that this function should
only be called at start and when an event impacts a variable (e.g., stroke event impacting death
TTE), in which case it would need to be called again at that point. In that case, the user would need
to call e.g., a <- qtimecov with max_time = curtime, return_luck = TRUE arguments, and then

40 qtimecov

call it again with no max_time, return_luck = FALSE, and luck = a$luck, start_time=a$tte
(so there is no need to add curtime to the resulting time).

It’s recommended to play with dt argument to balance running time and precision of the estimates.
For example, if we know we only update the equation annually (not continuously), then we could
just set dt = 1, which would make computations faster.

Value

Numeric. Simulated time-to-event.

Examples

param_fun_factory <- function(p0, p1, p2, p3) {
function(.time) p0 + p1*.time + p2*.time^2 + p3*(floor(.time) + 1)

}

set.seed(42)

1. Exponential Example
rate_exp <- param_fun_factory(0.1, 0, 0, 0)
qtimecov(

luck = runif(1),
a_fun = rate_exp,
dist = "exp"

)

2. Gamma Example
shape_gamma <- param_fun_factory(2, 0, 0, 0)
rate_gamma <- param_fun_factory(0.2, 0, 0, 0)
qtimecov(

luck = runif(1),
a_fun = shape_gamma,
b_fun = rate_gamma,
dist = "gamma"

)

3. Lognormal Example
meanlog_lnorm <- param_fun_factory(log(10) - 0.5*0.5^2, 0, 0, 0)
sdlog_lnorm <- param_fun_factory(0.5, 0, 0, 0)
qtimecov(

luck = runif(1),
a_fun = meanlog_lnorm,
b_fun = sdlog_lnorm,
dist = "lnorm"

)

4. Normal Example
mean_norm <- param_fun_factory(10, 0, 0, 0)
sd_norm <- param_fun_factory(2, 0, 0, 0)

qtimecov 41

qtimecov(
luck = runif(1),
a_fun = mean_norm,
b_fun = sd_norm,
dist = "norm"

)

5. Weibull Example
shape_weibull <- param_fun_factory(2, 0, 0, 0)
scale_weibull <- param_fun_factory(10, 0, 0, 0)
qtimecov(

luck = runif(1),
a_fun = shape_weibull,
b_fun = scale_weibull,
dist = "weibull"

)

6. Loglogistic Example
shape_llogis <- param_fun_factory(2.5, 0, 0, 0)
scale_llogis <- param_fun_factory(7.6, 0, 0, 0)
qtimecov(

luck = runif(1),
a_fun = shape_llogis,
b_fun = scale_llogis,
dist = "llogis"

)

7. Gompertz Example
shape_gomp <- param_fun_factory(0.01, 0, 0, 0)
rate_gomp <- param_fun_factory(0.091, 0, 0, 0)
qtimecov(

luck = runif(1),
a_fun = shape_gomp,
b_fun = rate_gomp,
dist = "gompertz"

)

#Time varying example, with change at time 8
rate_exp <- function(.time) 0.1 + 0.01*.time * 0.00001*.time^2
rate_exp2 <- function(.time) 0.2 + 0.02*.time
time_change <- 8
init_luck <- 0.95

a <- qtimecov(luck = init_luck,a_fun = rate_exp,dist = "exp", dt = 0.005,
max_time = time_change, return_luck = TRUE)

qtimecov(luck = a$luck,a_fun = rate_exp2,dist = "exp", dt = 0.005, start_time=a$tte)

#An example of how it would work in the model, this would also work with time varying covariates!
rate_exp <- function(.time) 0.1

42 random_stream

rate_exp2 <- function(.time) 0.2
rate_exp3 <- function(.time) 0.3
time_change <- 10 #evt 1
time_change2 <- 15 #evt2
init_luck <- 0.95
#at start, we would just draw TTE
qtimecov(luck = init_luck,a_fun = rate_exp,dist = "exp", dt = 0.005)

#at event in which rate changes (at time 10) we need to do this:
a <- qtimecov(luck = init_luck,a_fun = rate_exp,dist = "exp", dt = 0.005,

max_time = time_change, return_luck = TRUE)
new_luck <- a$luck
qtimecov(luck = new_luck,a_fun = rate_exp2,dist = "exp", dt = 0.005, start_time=a$tte)

#at second event in which rate changes again (at time 15) we need to do this:
a <- qtimecov(luck = new_luck,a_fun = rate_exp2,dist = "exp", dt = 0.005,

max_time = time_change2, return_luck = TRUE, start_time=a$tte)
new_luck <- a$luck
#final TTE is
qtimecov(luck = new_luck,a_fun = rate_exp3,dist = "exp", dt = 0.005, start_time=a$tte)

random_stream Creates an environment (similar to R6 class) of random uniform num-
bers to be drawn from

Description

Creates an environment (similar to R6 class) of random uniform numbers to be drawn from

Usage

random_stream(stream_size = 100)

Arguments

stream_size Length of the vector of random uniform values to initialize

Details

This function creates an environment object that behaves similar to an R6 class but offers more
speed vs. an R6 class.

The object is always initialized (see example below) to a specific vector of random uniform values.
The user can then call the object with obj$draw_number(n), where n is an integer, and will return
the first n elements of the created vector of uniform values. It will automatically remove those
indexes from the vector, so the next time the user calls obj$draw_n() it will already consider the
next index.

rbeta_mse 43

The user can also access the latest elements drawn by accessing obj$random_n (useful for when
performing a luck adjustment), the current stream still to be drawn using obj$stream and the
original size (when created) using obj$stream_size.

If performing luck adjustment, the user can always modify the random value by using obj$random_n
<- luck_adj(...) (only valid if used with the expression approach, not with modify_item)

Value

Self (environment) behaving similar to R6 class

Examples

stream_1 <- random_stream(1000)
number_1 <- stream_1$draw_n() #extract 1st index from the vector created
identical(number_1,stream_1$random_n) #same value
number_2 <- stream_1$draw_n() #gets 1st index (considers previous)
identical(number_2,stream_1$random_n) #same value

rbeta_mse Draw from a beta distribution based on mean and se

Description

Draw from a beta distribution based on mean and se

Usage

rbeta_mse(n = 1, mean_v, se, seed = NULL)

Arguments

n Number of draws (must be >= 1)

mean_v A vector of the mean values

se A vector of the standard errors of the means

seed An integer which will be used to set the seed for this draw.

Value

A single estimate from the beta distribution based on given parameters

Examples

rbeta_mse(n=1,mean_v=0.8,se=0.2)

44 rcond_gompertz_lu

rcond_gompertz Draw from a conditional Gompertz distribution (lower bound only)

Description

Draw from a conditional Gompertz distribution (lower bound only)

Usage

rcond_gompertz(n = 1, shape, rate, lower_bound = 0, seed = NULL)

Arguments

n The number of observations to be drawn
shape The shape parameter of the Gompertz distribution, defined as in the coef() output

on a flexsurvreg object
rate The rate parameter of the Gompertz distribution, defined as in the coef() output

on a flexsurvreg object
lower_bound The lower bound of the conditional distribution
seed An integer which will be used to set the seed for this draw.

Value

Estimate(s) from the conditional Gompertz distribution based on given parameters

Examples

rcond_gompertz(1,shape=0.05,rate=0.01,lower_bound = 50)

rcond_gompertz_lu Draw from a Conditional Gompertz distribution (lower and upper
bound)

Description

Draw from a Conditional Gompertz distribution (lower and upper bound)

Usage

rcond_gompertz_lu(
n,
shape,
rate,
lower_bound = 0,
upper_bound = Inf,
seed = NULL

)

rdirichlet 45

Arguments

n The number of observations to be drawn

shape The shape parameter of the Gompertz distribution, defined as in the coef() output
on a flexsurvreg object

rate The rate parameter of the Gompertz distribution, defined as in the coef() output
on a flexsurvreg object

lower_bound The lower bound of the conditional distribution

upper_bound The upper bound of the conditional distribution

seed An integer which will be used to set the seed for this draw.

Value

Estimate(s) from the Conditional Gompertz distribution based on given parameters

Examples

rcond_gompertz_lu(1,shape=0.05,rate=0.01,lower_bound = 50)

rdirichlet Draw from a dirichlet distribution based on number of counts in tran-
sition. Adapted from brms::rdirichlet

Description

Draw from a dirichlet distribution based on number of counts in transition. Adapted from brms::rdirichlet

Usage

rdirichlet(n = 1, alpha, seed = NULL)

Arguments

n Number of draws (must be >= 1). If n>1, it will return a list of matrices.

alpha A matrix of alphas (transition counts)

seed An integer which will be used to set the seed for this draw.

Value

A transition matrix. If n>1, it will return a list of matrices.

Examples

rdirichlet(n=1,alpha= matrix(c(1251, 0, 350, 731),2,2))
rdirichlet(n=2,alpha= matrix(c(1251, 0, 350, 731),2,2))

46 replicate_profiles

rdirichlet_prob Draw from a dirichlet distribution based on mean transition probabil-
ities and standard errors

Description

Draw from a dirichlet distribution based on mean transition probabilities and standard errors

Usage

rdirichlet_prob(n = 1, alpha, se, seed = NULL)

Arguments

n Number of draws (must be >= 1). If n>1, it will return a list of matrices.
alpha A matrix of transition probabilities
se A matrix of standard errors
seed An integer which will be used to set the seed for this draw.

Value

A transition matrix. If n>1, it will return a list of matrices.

Examples

rdirichlet_prob(n=1,alpha= matrix(c(0.7,0.3,0,0.1,0.7,0.2,0.1,0.2,0.7),3,3),
se=matrix(c(0.7,0.3,0,0.1,0.7,0.2,0.1,0.2,0.7)/10,3,3))

rdirichlet_prob(n=2,alpha= matrix(c(0.7,0.3,0,0.1,0.7,0.2,0.1,0.2,0.7),3,3),
se=matrix(c(0.7,0.3,0,0.1,0.7,0.2,0.1,0.2,0.7)/10,3,3))

replicate_profiles Replicate profiles data.frame

Description

Replicate profiles data.frame

Usage

replicate_profiles(
profiles,
replications,
probabilities = NULL,
replacement = TRUE,
seed_used = NULL

)

rgamma_mse 47

Arguments

profiles data.frame of profiles

replications integer, final number of observations

probabilities vector of probabilities with the same length as the number of rows of profiles.
Does not need to add up to 1 (are reweighted)

replacement Boolean whether replacement is used

seed_used Integer with the seed to be used for consistent results

Value

Resampled data.frame of profiles

Examples

replicate_profiles(profiles=data.frame(id=1:100,age=rnorm(100,60,5)),
replications=200,probabilities=rep(1,100))

rgamma_mse Draw from a gamma distribution based on mean and se

Description

Draw from a gamma distribution based on mean and se

Usage

rgamma_mse(n = 1, mean_v, se, seed = NULL)

Arguments

n Number of draws (must be >= 1)

mean_v A vector of the mean values

se A vector of the standard errors of the means

seed An integer which will be used to set the seed for this draw.

Value

A single estimate from the gamma distribution based on given parameters

Examples

rgamma_mse(n=1,mean_v=0.8,se=0.2)

48 rpoisgamma

rpoisgamma Draw time to event (tte) from a Poisson or Poisson-Gamma (PG) Mix-
ture/Negative Binomial (NB) Process

Description

Draw time to event (tte) from a Poisson or Poisson-Gamma (PG) Mixture/Negative Binomial (NB)
Process

Usage

rpoisgamma(
n,
rate,
theta = NULL,
obs_time = 1,
t_reps,
seed = NULL,
return_ind_rate = FALSE,
return_df = FALSE

)

Arguments

n The number of observations to be drawn

rate rate of the event (in terms of events per observation-time)

theta Optional. When omitted, the function simulates times for a Poisson process.
Represents the shape of the gamma mixture distribution. Estimated and reported
as theta in negative binomial regression analyses in r.

obs_time period over which events are observable

t_reps Optional. Number of TBEs to be generated to capture events within the obser-
vation window. When omitted, the function sets t_reps to the 99.99th quantile of
the Poisson (if no theta is provided) or negative binomial (if theta is provided).
Thus, the risk of missing possible events in the observation window is 0.01%.

seed An integer which will be used to set the seed for this draw.

return_ind_rate

A boolean that indicates whether an additional vector with the rate parameters
used per observation is used. It will alter the structure of the results to two lists,
one storing tte with name tte, and the other with name ind_rate

return_df A boolean that indicates whether a data.table object should be returned

run_sim 49

Details

Function to simulate event times from a Poisson or Poisson-Gamma (PG) Mixture/Negative Bino-
mial (NB) Process Event times are determined by sampling times between events (TBEs) from an
exponential distribution, and cumulating these to derive the event times. Events occurring within
the set observation time window are retained and returned. For times for a Poisson process, the
provided rate is assumed constant. For a PG or NB, the individual rates are sampled from a Gamma
distribution with shape = theta and scale = rate/theta.

Value

Estimate(s) from the time to event based on poisson/Poisson-Gamma (PG) Mixture/Negative Bino-
mial (NB) distribution based on given parameters

Examples

rpoisgamma(1,rate=1,obs_time=1,theta=1)

run_sim Run the simulation

Description

Run the simulation

Usage

run_sim(
arm_list = c("int", "noint"),
sensitivity_inputs = NULL,
common_all_inputs = NULL,
common_pt_inputs = NULL,
unique_pt_inputs = NULL,
init_event_list = NULL,
evt_react_list = evt_react_list,
util_ongoing_list = NULL,
util_instant_list = NULL,
util_cycle_list = NULL,
cost_ongoing_list = NULL,
cost_instant_list = NULL,
cost_cycle_list = NULL,
other_ongoing_list = NULL,
other_instant_list = NULL,
npats = 500,
n_sim = 1,
psa_bool = NULL,
sensitivity_bool = FALSE,
sensitivity_names = NULL,

50 run_sim

n_sensitivity = 1,
input_out = character(),
ipd = 1,
timed_freq = NULL,
debug = FALSE,
accum_backwards = FALSE,
continue_on_error = FALSE,
seed = NULL

)

Arguments

arm_list A vector of the names of the interventions evaluated in the simulation
sensitivity_inputs

A list of sensitivity inputs that do not change within a sensitivity in a similar
fashion to common_all_inputs, etc

common_all_inputs

A list of inputs common across patients that do not change within a simulation
common_pt_inputs

A list of inputs that change across patients but are not affected by the interven-
tion

unique_pt_inputs

A list of inputs that change across each intervention
init_event_list

A list of initial events and event times. If no initial events are given, a "Start"
event at time 0 is created automatically

evt_react_list A list of event reactions
util_ongoing_list

Vector of QALY named variables that are accrued at an ongoing basis (dis-
counted using drq)

util_instant_list

Vector of QALY named variables that are accrued instantaneously at an event
(discounted using drq)

util_cycle_list

Vector of QALY named variables that are accrued in cycles (discounted using
drq)

cost_ongoing_list

Vector of cost named variables that are accrued at an ongoing basis (discounted
using drc)

cost_instant_list

Vector of cost named variables that are accrued instantaneously at an event (dis-
counted using drc)

cost_cycle_list

Vector of cost named variables that are accrued in cycles (discounted using drc)
other_ongoing_list

Vector of other named variables that are accrued at an ongoing basis (discounted
using drq)

run_sim 51

other_instant_list

Vector of other named variables that are accrued instantaneously at an event
(discounted using drq)

npats The number of patients to be simulated (it will simulate npats * length(arm_list))

n_sim The number of simulations to run per sensitivity

psa_bool A boolean to determine if PSA should be conducted. If n_sim > 1 and psa_bool
= FALSE, the differences between simulations will be due to sampling

sensitivity_bool

A boolean to determine if Scenarios/DSA should be conducted.
sensitivity_names

A vector of scenario/DSA names that can be used to select the right sensitiv-
ity (e.g., c("Scenario_1", "Scenario_2")). The parameter "sens_name_used" is
created from it which corresponds to the one being used for each iteration.

n_sensitivity Number of sensitivity analysis (DSA or Scenarios) to run. It will be interacted
with sensitivity_names argument if not null (n_sensitivityitivity = n_sensitivity
* length(sensitivity_names)). For DSA, it should be as many parameters as there
are. For scenario, it should be 1.

input_out A vector of variables to be returned in the output data frame

ipd Integer taking value 1 for full IPD data returned, and 2 IPD data but aggregating
events (returning last value for numeric/character/factor variables. For other
objects (e.g., matrices), the IPD will still be returned as the aggregation rule is
not clear). Other values mean no IPD data returned (removes non-numerical or
length>1 items)

timed_freq If NULL, it does not produce any timed outputs. Otherwise should be a number
(e.g., every 1 year)

debug If TRUE, will generate a log file
accum_backwards

If TRUE, the ongoing accumulators will count backwards (i.e., the current value
is applied until the previous update). If FALSE, the current value is applied
between the current event and the next time it is updated. If TRUE, user must
use modify_item and modify_item_seq or results will be incorrect.

continue_on_error

If TRUE, on error it will attempt to continue by skipping the current simulation

seed Starting seed to be used for the whole analysis. If null, it’s set to 1 by default.

Details

This function is slightly different from run_sim_parallel. run_sim_parallel only runs multiple-
core at the simulation level. run_sim uses only-single core. run_sim can be more efficient if using
only one simulation (e.g., deterministic), while run_sim_parallel will be more efficient if the
number of simulations is >1 (e.g., PSA).

Event ties are processed in the order declared within the init_event_list argument (evts argu-
ment within the first sublist of that object). To do so, the program automatically adds a sequence
from to 0 to the (number of events - 1) times 1e-10 to add to the event times when selecting the
event with minimum time. This time has been selected as it’s relatively small yet not so small as to
be ignored by which.min (see .Machine for more details)

52 run_sim

A list of protected objects that should not be used by the user as input names or in the global environ-
ment to avoid the risk of overwriting them is as follows: c("arm", "arm_list", "categories_for_export",
"cur_evtlist", "curtime", "evt", "i", "prevtime", "sens", "simulation", "sens_name_used","list_env","uc_lists","npats","ipd").

The engine uses the L’Ecuyer-CMRG for the random number generator. Note that the random seeds
are set to be unique in their category (i.e., at patient level, patient-arm level, etc.)

If no drc or drq parameters are passed within sensitivity or common_all input lists, these are
assigned a default value 0.03 for discounting costs, QALYs and others.

Ongoing items will look backward to the last time updated when performing the discounting and
accumulation. This means that the user does not necessarily need to keep updating the value, but
only add it when the value changes looking forward (e.g., o_q = utility at event 1, at event 2 utility
does not change, but at event 3 it does, so we want to make sure to add o_q = utility at event
3 before updating utility. The program will automatically look back until event 1). Note that in
previous versions of the package backward was the default, and now this has switched to forward.

If using accum_backwards = TRUE, then it is mandatory for the user to use modify_item and
modify_item_seq in event reactions, as the standard assignment approach (e.g., a <- 5) will not
calculate the right results, particularly in the presence of conditional statements.

It is important to note that the QALYs and Costs (ongoing or instant or per cycle) used should be
of length 1. If they were of length > 1, the model would expand the data, so instead of having
each event as a row, the event would have N rows (equal to the length of the costs/qalys to discount
passed). This means more processing of the results data would be needed in order for it to provide
the correct results.

If the cycle lists are used, then it is expected the user will declare as well the name of the variable
pasted with cycle_l and cycle_starttime (e.g., c_default_cycle_l and c_default_cycle_starttime)
to ensure the discounting can be computed using cycles, with cycle_l being the cycle length, and cy-
cle_starttime being the starting time in which the variable started counting. Optionally, max_cycles
must also be added (if no maximum number of cycles, it should be set equal to NA).

debug = TRUE will export a log file with the timestamp up the error in the main working directory.
Note that using this mode without modify_item or modify_item_seq may lead to inaccuracies if
assignments are done in non-standard ways, as the AST may not catch all the relevant assignments
(e.g., an assigment like assign(paste("x_",i),5) in a loop will not be identified, unless using mod-
ify_item(_seq)).

continue_on_error will skip the current simulation (so it won’t continue for the rest of patient-
arms) if TRUE. Note that this will make the progress bar not correct, as a set of patients that were
expected to be run is not.

Value

A list of data frames with the simulation results

Examples

library(magrittr)
common_all_inputs <-add_item(
util.sick = 0.8,
util.sicker = 0.5,
cost.sick = 3000,
cost.sicker = 7000,

run_sim 53

cost.int = 1000,
coef_noint = log(0.2),
HR_int = 0.8,
drc = 0.035, #different values than what's assumed by default
drq = 0.035,
random_seed_sicker_i = sample.int(100000,5,replace = FALSE)
)

common_pt_inputs <- add_item(death= max(0.0000001,rnorm(n=1, mean=12, sd=3)))

unique_pt_inputs <- add_item(fl.sick = 1,
q_default = util.sick,
c_default = cost.sick + if(arm=="int"){cost.int}else{0})

init_event_list <-
add_tte(arm=c("noint","int"), evts = c("sick","sicker","death") ,input={

sick <- 0
sicker <- draw_tte(1,dist="exp",
coef1=coef_noint, beta_tx = ifelse(arm=="int",HR_int,1),
seed = random_seed_sicker_i[i])

})

evt_react_list <-
add_reactevt(name_evt = "sick",

input = {}) %>%
add_reactevt(name_evt = "sicker",

input = {
modify_item(list(q_default = util.sicker,

c_default = cost.sicker + if(arm=="int"){cost.int}else{0},
fl.sick = 0))

}) %>%
add_reactevt(name_evt = "death",

input = {
modify_item(list(q_default = 0,

c_default = 0,
curtime = Inf))

})

util_ongoing <- "q_default"
cost_ongoing <- "c_default"

run_sim(arm_list=c("int","noint"),
common_all_inputs = common_all_inputs,
common_pt_inputs = common_pt_inputs,
unique_pt_inputs = unique_pt_inputs,
init_event_list = init_event_list,
evt_react_list = evt_react_list,
util_ongoing_list = util_ongoing,
cost_ongoing_list = cost_ongoing,
npats = 2,
n_sim = 1,

54 run_sim_parallel

psa_bool = FALSE,
ipd = 1)

run_sim_parallel Run simulations in parallel mode (at the simulation level)

Description

Run simulations in parallel mode (at the simulation level)

Usage

run_sim_parallel(
arm_list = c("int", "noint"),
sensitivity_inputs = NULL,
common_all_inputs = NULL,
common_pt_inputs = NULL,
unique_pt_inputs = NULL,
init_event_list = NULL,
evt_react_list = evt_react_list,
util_ongoing_list = NULL,
util_instant_list = NULL,
util_cycle_list = NULL,
cost_ongoing_list = NULL,
cost_instant_list = NULL,
cost_cycle_list = NULL,
other_ongoing_list = NULL,
other_instant_list = NULL,
npats = 500,
n_sim = 1,
psa_bool = NULL,
sensitivity_bool = FALSE,
sensitivity_names = NULL,
n_sensitivity = 1,
ncores = 1,
input_out = character(),
ipd = 1,
timed_freq = NULL,
debug = FALSE,
accum_backwards = FALSE,
continue_on_error = FALSE,
seed = NULL

)

run_sim_parallel 55

Arguments

arm_list A vector of the names of the interventions evaluated in the simulation
sensitivity_inputs

A list of sensitivity inputs that do not change within a sensitivity in a similar
fashion to common_all_inputs, etc

common_all_inputs

A list of inputs common across patients that do not change within a simulation
common_pt_inputs

A list of inputs that change across patients but are not affected by the interven-
tion

unique_pt_inputs

A list of inputs that change across each intervention
init_event_list

A list of initial events and event times. If no initial events are given, a "Start"
event at time 0 is created automatically

evt_react_list A list of event reactions
util_ongoing_list

Vector of QALY named variables that are accrued at an ongoing basis (dis-
counted using drq)

util_instant_list

Vector of QALY named variables that are accrued instantaneously at an event
(discounted using drq)

util_cycle_list

Vector of QALY named variables that are accrued in cycles (discounted using
drq)

cost_ongoing_list

Vector of cost named variables that are accrued at an ongoing basis (discounted
using drc)

cost_instant_list

Vector of cost named variables that are accrued instantaneously at an event (dis-
counted using drc)

cost_cycle_list

Vector of cost named variables that are accrued in cycles (discounted using drc)
other_ongoing_list

Vector of other named variables that are accrued at an ongoing basis (discounted
using drq)

other_instant_list

Vector of other named variables that are accrued instantaneously at an event
(discounted using drq)

npats The number of patients to be simulated (it will simulate npats * length(arm_list))

n_sim The number of simulations to run per sensitivity

psa_bool A boolean to determine if PSA should be conducted. If n_sim > 1 and psa_bool
= FALSE, the differences between simulations will be due to sampling

sensitivity_bool

A boolean to determine if Scenarios/DSA should be conducted.

56 run_sim_parallel

sensitivity_names

A vector of scenario/DSA names that can be used to select the right sensitiv-
ity (e.g., c("Scenario_1", "Scenario_2")). The parameter "sens_name_used" is
created from it which corresponds to the one being used for each iteration.

n_sensitivity Number of sensitivity analysis (DSA or Scenarios) to run. It will be interacted
with sensitivity_names argument if not null (n_sensitivityitivity = n_sensitivity
* length(sensitivity_names)). For DSA, it should be as many parameters as there
are. For scenario, it should be 1.

ncores The number of cores to use for parallel computing

input_out A vector of variables to be returned in the output data frame

ipd Integer taking value 0 if no IPD data returned, 1 for full IPD data returned, and
2 IPD data but aggregating events

timed_freq If NULL, it does not produce any timed outputs. Otherwise should be a number
(e.g., every 1 year)

debug If TRUE, will generate a log file
accum_backwards

If TRUE, the ongoing accumulators will count backwards (i.e., the current value
is applied until the previous update). If FALSE, the current value is applied
between the current event and the next time it is updated. If TRUE, user must
use modify_item and modify_item_seq or results will be incorrect.

continue_on_error

If TRUE, on error at patient stage will attempt to continue to the next simulation
(only works if n_sim and/or n_sensitivity are > 1, not at the patient level)

seed Starting seed to be used for the whole analysis. If null, it’s set to 1 by default.

Details

This function is slightly different from run_sim. run_sim allows to run single-core. run_sim_parallel
allows to use multiple-core at the simulation level, making it more efficient for a large number of
simulations relative to run_sim (e.g., for PSA).

Event ties are processed in the order declared within the init_event_list argument (evts argu-
ment within the first sublist of that object). To do so, the program automatically adds a sequence
from to 0 to the (number of events - 1) times 1e-10 to add to the event times when selecting the
event with minimum time. This time has been selected as it’s relatively small yet not so small as to
be ignored by which.min (see .Machine for more details)

A list of protected objects that should not be used by the user as input names or in the global environ-
ment to avoid the risk of overwriting them is as follows: c("arm", "arm_list", "categories_for_export",
"cur_evtlist", "curtime", "evt", "i", "prevtime", "sens", "simulation", "sens_name_used","list_env","uc_lists","npats","ipd").

The engine uses the L’Ecuyer-CMRG for the random number generator. Note that if ncores > 1,
then results per simulation will only be exactly replicable if using run_sim_parallel (as seeds are
automatically transformed to be seven integer seeds -i.e, L’Ecuyer-CMRG seeds-) Note that the
random seeds are set to be unique in their category (i.e., at patient level, patient-arm level, etc.)

If no drc or drq parameters are passed within sensitivity or common_all input lists, these are
assigned a default value 0.03 for discounting costs, QALYs and others.

run_sim_parallel 57

Ongoing items will look backward to the last time updated when performing the discounting and
accumulation. This means that the user does not necessarily need to keep updating the value, but
only add it when the value changes looking forward (e.g., o_q = utility at event 1, at event 2 utility
does not change, but at event 3 it does, so we want to make sure to add o_q = utility at event
3 before updating utility. The program will automatically look back until event 1). Note that in
previous versions of the package backward was the default, and now this has switched to forward.

If using accum_backwards = TRUE, then it is mandatory for the user to use modify_item and
modify_item_seq in event reactions, as the standard assignment approach (e.g., a <- 5) will not
calculate the right results, particularly in the presence of conditional statements.

If the cycle lists are used, then it is expected the user will declare as well the name of the variable
pasted with cycle_l and cycle_starttime (e.g., c_default_cycle_l and c_default_cycle_starttime)
to ensure the discounting can be computed using cycles, with cycle_l being the cycle length, and cy-
cle_starttime being the starting time in which the variable started counting. Optionally, max_cycles
must also be added (if no maximum number of cycles, it should be set equal to NA).

debug = TRUE will export a log file with the timestamp up the error in the main working directory.
Note that using this mode without modify_item or modify_item_seq may lead to inaccuracies if
assignments are done in non-standard ways, as the AST may not catch all the relevant assignments
(e.g., an assigment like assign(paste("x_",i),5) in a loop will not be identified, unless using mod-
ify_item()).

If continue_on_error is set to FALSE, it will only export analysis level inputs due to the parallel
engine (use single-engine for those inputs) continue_on_error will skip the current simulation
(so it won’t continue for the rest of patient-arms) if TRUE. Note that this will make the progress bar
not correct, as a set of patients that were expected to be run is not.

Value

A list of lists with the analysis results

Examples

library(magrittr)
common_all_inputs <-add_item(
util.sick = 0.8,
util.sicker = 0.5,
cost.sick = 3000,
cost.sicker = 7000,
cost.int = 1000,
coef_noint = log(0.2),
HR_int = 0.8,
drc = 0.035, #different values than what's assumed by default
drq = 0.035,
random_seed_sicker_i = sample.int(100000,5,replace = FALSE)
)

common_pt_inputs <- add_item(death= max(0.0000001,rnorm(n=1, mean=12, sd=3)))

unique_pt_inputs <- add_item(fl.sick = 1,
q_default = util.sick,
c_default = cost.sick + if(arm=="int"){cost.int}else{0})

58 sens_iterator

init_event_list <-
add_tte(arm=c("noint","int"), evts = c("sick","sicker","death") ,input={

sick <- 0
sicker <- draw_tte(1,dist="exp",
coef1=coef_noint, beta_tx = ifelse(arm=="int",HR_int,1),
seed = random_seed_sicker_i[i])

})

evt_react_list <-
add_reactevt(name_evt = "sick",

input = {}) %>%
add_reactevt(name_evt = "sicker",

input = {
modify_item(list(q_default = util.sicker,

c_default = cost.sicker + if(arm=="int"){cost.int}else{0},
fl.sick = 0))

}) %>%
add_reactevt(name_evt = "death",

input = {
modify_item(list(q_default = 0,

c_default = 0,
curtime = Inf))

})

util_ongoing <- "q_default"
cost_ongoing <- "c_default"

run_sim_parallel(arm_list=c("int","noint"),
common_all_inputs = common_all_inputs,
common_pt_inputs = common_pt_inputs,
unique_pt_inputs = unique_pt_inputs,
init_event_list = init_event_list,
evt_react_list = evt_react_list,
util_ongoing_list = util_ongoing,
cost_ongoing_list = cost_ongoing,
npats = 2,
n_sim = 1,
psa_bool = FALSE,
ipd = 1,
ncores = 1)

sens_iterator Create an iterator based on sens of the current iteration within a sce-
nario (DSA)

summary_results_det 59

Description

Create an iterator based on sens of the current iteration within a scenario (DSA)

Usage

sens_iterator(sens, n_sensitivity)

Arguments

sens current analysis iterator

n_sensitivity total number of analyses to be run

Details

In a situation like a DSA, where two (low and high) scenarios are run, sens will go from 1 to
n_sensitivity*2. However, this is not ideal as the parameter selector may depend on knowing the
parameter order (i.e., 1, 2, 3...), which means resetting the counter back to 1 once sens reaches
n_sensitivity (or any multiple of n_sensitivity) is needed.

Value

Integer iterator based on the number of sensitivity analyses being run and the total iterator

Examples

sens_iterator(5,20)
sens_iterator(25,20)

summary_results_det Deterministic results for a specific treatment

Description

Deterministic results for a specific treatment

Usage

summary_results_det(out = results[[1]][[1]], arm = NULL, wtp = 50000)

Arguments

out The final_output data frame from the list object returned by run_sim()

arm The reference treatment for calculation of incremental outcomes

wtp Willingness to pay to have INMB

Value

A dataframe with absolute costs, LYs, QALYs, and ICER and ICUR for each intervention

60 summary_results_sens

Examples

res <- list(list(list(sensitivity_name = "", arm_list = c("int", "noint"
), total_lys = c(int = 9.04687362556945, noint = 9.04687362556945
), total_qalys = c(int = 6.20743830697466, noint = 6.18115138126336
), total_costs = c(int = 49921.6357486899, noint = 41225.2544659378
), total_lys_undisc = c(int = 10.8986618377039, noint = 10.8986618377039
), total_qalys_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), total_costs_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), c_default = c(int = 49921.6357486899, noint = 41225.2544659378
), c_default_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), q_default = c(int = 6.20743830697466, noint = 6.18115138126336
), q_default_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), merged_df = list(simulation = 1L, sensitivity = 1L))))

summary_results_det(res[[1]][[1]],arm="int")

summary_results_sens Summary of sensitivity outputs for a treatment

Description

Summary of sensitivity outputs for a treatment

Usage

summary_results_sens(out = results, arm = NULL, wtp = 50000)

Arguments

out The list object returned by run_sim()

arm The reference treatment for calculation of incremental outcomes

wtp Willingness to pay to have INMB

Value

A data frame with each sensitivity output per arm

Examples

res <- list(list(list(sensitivity_name = "", arm_list = c("int", "noint"
), total_lys = c(int = 9.04687362556945, noint = 9.04687362556945
), total_qalys = c(int = 6.20743830697466, noint = 6.18115138126336
), total_costs = c(int = 49921.6357486899, noint = 41225.2544659378
), total_lys_undisc = c(int = 10.8986618377039, noint = 10.8986618377039
), total_qalys_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), total_costs_undisc = c(int = 59831.3573929783, noint = 49293.1025437205

summary_results_sim 61

), c_default = c(int = 49921.6357486899, noint = 41225.2544659378
), c_default_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), q_default = c(int = 6.20743830697466, noint = 6.18115138126336
), q_default_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), merged_df = list(simulation = 1L, sensitivity = 1L))))

summary_results_sens(res,arm="int")

summary_results_sim Summary of PSA outputs for a treatment

Description

Summary of PSA outputs for a treatment

Usage

summary_results_sim(out = results[[1]], arm = NULL, wtp = 50000)

Arguments

out The output_sim data frame from the list object returned by run_sim()

arm The reference treatment for calculation of incremental outcomes

wtp Willingness to pay to have INMB

Value

A data frame with mean and 95% CI of absolute costs, LYs, QALYs, ICER and ICUR for each
intervention from the PSA samples

Examples

res <- list(list(list(sensitivity_name = "", arm_list = c("int", "noint"
), total_lys = c(int = 9.04687362556945, noint = 9.04687362556945
), total_qalys = c(int = 6.20743830697466, noint = 6.18115138126336
), total_costs = c(int = 49921.6357486899, noint = 41225.2544659378
), total_lys_undisc = c(int = 10.8986618377039, noint = 10.8986618377039
), total_qalys_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), total_costs_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), c_default = c(int = 49921.6357486899, noint = 41225.2544659378
), c_default_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), q_default = c(int = 6.20743830697466, noint = 6.18115138126336
), q_default_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), merged_df = list(simulation = 1L, sensitivity = 1L))))

summary_results_sim(res[[1]],arm="int")

62 tte.df

tte.df Example TTE IPD data

Description

An example of TTE IPD data for the example_ipd file

Usage

tte.df

Format

tte.df:
A data frame with 1000 rows and 8 columns:

USUBJID Patient ID
ARMCD, ARM Arm code and variables
PARAMCD, PARAM Parameter
AVAL, AVALCD Values of interest
CNSR Censored observation?

Source

Simulated through FlexsurvPlus package using sim_adtte(seed = 821, rho = 0, beta_1a = log(0.6),
beta_1b = log(0.6), beta_pd = log(0.2))

Index

∗ datasets
tte.df, 62

add_item, 3
add_item2, 4
add_reactevt, 5
add_tte, 6
adj_val, 7
ast_as_list, 8

ceac_des, 10
cond_dirichlet, 11
cond_mvn, 11
create_indicators, 12

disc_cycle, 13
disc_cycle_v, 14
disc_instant, 15
disc_instant_v, 16
disc_ongoing, 16
disc_ongoing_v, 17
draw_tte, 18

evpi_des, 19
extract_elements_from_list, 20
extract_from_reactions, 21
extract_psa_result, 22

luck_adj, 23

modify_event, 24
modify_item, 25
modify_item_seq, 26

new_event, 27

pcond_gompertz, 28
pick_psa, 29
pick_val_v, 30

qbeta_mse, 32

qcond_exp, 33
qcond_gamma, 33
qcond_gompertz, 34
qcond_llogis, 35
qcond_lnorm, 35
qcond_norm, 36
qcond_weibull, 37
qcond_weibullPH, 37
qgamma_mse, 38
qtimecov, 39

random_stream, 42
rbeta_mse, 43
rcond_gompertz, 44
rcond_gompertz_lu, 44
rdirichlet, 45
rdirichlet_prob, 46
replicate_profiles, 46
rgamma_mse, 47
rpoisgamma, 48
run_sim, 49
run_sim_parallel, 54

sens_iterator, 58
summary_results_det, 59
summary_results_sens, 60
summary_results_sim, 61

tte.df, 62

63

	add_item
	add_item2
	add_reactevt
	add_tte
	adj_val
	ast_as_list
	ceac_des
	cond_dirichlet
	cond_mvn
	create_indicators
	disc_cycle
	disc_cycle_v
	disc_instant
	disc_instant_v
	disc_ongoing
	disc_ongoing_v
	draw_tte
	evpi_des
	extract_elements_from_list
	extract_from_reactions
	extract_psa_result
	luck_adj
	modify_event
	modify_item
	modify_item_seq
	new_event
	pcond_gompertz
	pick_psa
	pick_val_v
	qbeta_mse
	qcond_exp
	qcond_gamma
	qcond_gompertz
	qcond_llogis
	qcond_lnorm
	qcond_norm
	qcond_weibull
	qcond_weibullPH
	qgamma_mse
	qtimecov
	random_stream
	rbeta_mse
	rcond_gompertz
	rcond_gompertz_lu
	rdirichlet
	rdirichlet_prob
	replicate_profiles
	rgamma_mse
	rpoisgamma
	run_sim
	run_sim_parallel
	sens_iterator
	summary_results_det
	summary_results_sens
	summary_results_sim
	tte.df
	Index

