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1 Implementation in Thresher

In this section, we describe how to calculate the number of clusters using the R package Thresher.
The latest stable version of Thresher is available form CRAN; the latest development version is
available from the R-Forge webpage (http://r-forge.r-project.org/R/?group_id=1900). We
illustrate this method by exploring two small simulated datasets: an unstructured dataset that only
contains random noise features, and a structured dataset with two groups of good features. First of
all, we load all R library packages that are needed for this analysis. Note that Thresher implements
our proposed clustering approach, while NbClust (developed by Charrad et al.) is used to run 30
existing indices including the gap statistics and the mean silhouette method.



1.1 Unstructured Dataset Example
1.1.1 Thresher Method

First we load the R library packages Thresher,
> library(Thresher)

Next, we load the packages MASS and NbClust, which are only used for the examples. Actually,
the main driver function in NbClust has a call to set.seed that complicates the simulations, so we
provide a version that removes that call.

> library(MASS)
> library(NbClust)
> source("NbClust.txt")

Now we simulate an unstructured dataset with 12 noise features and 100 samples. That is, there is
no pattern of groups or clusters for all the features in the data.

> set.seed(3928270)
> ranData <- matrix(rnorm(100%*12), ncol=12)

> colnames(ranData) <- paste("G", 1:12, sep='")

Next we apply the “Thresher” function to the unstructured data and obtain the results of clustering
in the saved “Thresher” and “Reaper” objects.

> threshl <- Thresher(ranData)
> reapl <- Reaper(threshl)

Notice that a filtering procedure is executed in the package, and the noise features that have
contributed variation proportion less than the default threshold are removed. The noise features

are

> colnames (ranData) [!reapl@keep]
[1] ||G2|| ||G3|| ||G4|| ||G6|| ||G7|| ||G8|| ||G9|| ||G12||

The remaining 4 features are treated as “good” ones, and their projections onto the Bayesian prin-
cipal components (PCs) space are plotted in the following figure:

> plot(reapl)

The optimal number of groups for the remaining 4 features is estimated to be



> reapl@nGroups
(11 1

Finally we use the heatmap function on the “Reaper” object to look at the heatmap of the unstruc-
tured dataset with only good features.

> heat (reapl)

To sum up, there are 12 features which are all noise in the unstructured dataset. The Thresher
method successfully identified 8 out of 12 noise features. For the remaining 4 “good” features, the
estimated optimal number of clusters is 1 which is reasonable, since the 4 features are isotropically
distributed which naturally form a large cluster.

1.1.2 NDbClust Indices

Notice that not all indices in the NbClust package work for this simulated dataset. We apply the
usable Tracew index in NbClust package to the unstructured dataset, and obtain the estimated
number of clusters to be 2, which is a little different from the true number 1 of clusters.

> nbclustl <- NbClust(t(ranData), distance="euclidean', min.nc=1,
+ max.nc=10, method="ward.D2'", index="trcovw'")

Error: division by zero!Error: division by zero!Error: division by zero!Error: division by zero!
> nbclust1$Best.nc

Number_clusters Value_Index
2.0000 214 .3595

1.2 Example Dataset with Specified Structure
1.2.1 Thresher Method

We use another example dataset with special correlation structures. In this dataset, 16 features are
generated and they are grouped into 2 clusters. Within each cluster, the features are moderately
correlated with strength p = 0.5. The between-cluster correlation is set to be 0; that is, the two
clusters of features are uncorrelated with each other.

> set.seed(3757871)
> rho <- 0.5
> nProtein <- 16



splinter <- sample((nProtein/2) + (-3:3), 1)

sigmal <- matrix(rho, ncol=nProtein, nrow=nProtein)
diag(sigmal) <- 1

sigma2 <- sigmal

sigma2[(1+splinter):nProtein, 1:splinter] <- 0
sigma2[1:splinter, (1+splinter):nProtein] <- 0
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The “SimThresher” function combines the example dataset generation and first step of Thresher
method. We again applied the Thresher method to this structured data and obtain the results of
clustering in the following “Thresher” and “Reaper” objects. The true clustering of the features is
also displayed.

> thresh2 <- SimThresher(sigma2, nSample=300)
> summary (thresh2@delta)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.7087 0.7326 0.7526 0.7527 0.7744 0.7912

> reap2 <- Reaper(thresh2)
> colnames(reap2@data)[1:splinter]

[1] I|Pr1|| IIPrQII I|Pr3|| IlPr4ll ||PI.5|| IlPr6|| IlPr7ll I|Pr8|| IlPrgll I|PI.10II
> colnames(reap2@data) [ (splinter+1) :nProtein]
[1] "Prii" "Pri2" "Pri13" "Pri4" "Prib" "Prie"

There are no noise features in the simulated dataset, and this is correctly inferred by the Thresher
method.

> colnames (reap2@data) [!reap2@keep]
character(0)

The number of PCs is estimated to be 2 which is the same as the known number of groups in the
structured dataset.

> reap2@pcdim
(1] 2

All features in the structured data are “good”. Their projections onto the principal components
(PCs) space are provided in Figure 3.



> plot(reap2)

And the number of groups is estimated to be

> reap2@nGroups
(1] 4

Finally we apply the heatmap function to the “Reaper” object to obtain the heatmap of the struc-
tured dataset with all good features in Figure 4. And it’s clear to see that the clustering of the
features is performing fairly well. That is, all features are correctly grouped together into the
clusters where they are supposed to be.

> heat (reap2)
To conclude, for this simulated dataset with special structure, the Thresher method correctly identify

the “good” features and the optimal number of groups for the features, which suggests that the
Thresher method is viable and useful.

1.2.2 NDbClust Indices

We apply the Tracew index in package NbClust to the structured dataset and obtain the estimated
number of clusters to be 2 which is the same as the known number of clusters.

> nbclust2 <- NbClust (t(thresh2@data), distance="euclidean'", min.nc=1,
+ max.nc=10, method="ward.D2'", index="tracew')

Error: division by zero!Error: division by zero!Error: division by zero!Error: division by zero!
> nbclust2$Best.nc

Number_clusters Value_Index
2.000 1023.019



