Package ‘RWNN’

January 20, 2025
Type Package
Title Random Weight Neural Networks
Version 0.4
Date 2024-08-29

Description Creation, estimation, and prediction of random weight neural net-
works (RWNN), Schmidt et al. (1992) <doi:10.1109/ICPR.1992.201708>, including popu-
lar variants like extreme learning ma-
chines, Huang et al. (2006) <doi:10.1016/j.neucom.2005.12.126>, sparse RWNN, Zhang et al. (2019) <doi:10.1016/j.neune
riquez et al. (2018) <doi:10.1109/IJCNN.2018.8489703>. It further allows for the creation of en-
semble RWNNSs like bag-
ging RWNN, Sui et al. (2021) <doi:10.1109/ECCE47101.2021.9595113>, boost-
ing RWNN, stacking RWNN, and ensem-
ble deep RWNN, Shi et al. (2021) <doi:10.1016/j.patcog.2021.107978>.

License MIT + file LICENSE

Imports methods, quadprog, randtoolbox, Rcpp (>= 1.0.4.6), stats,
utils

LinkingTo Rcpp, ReppArmadillo

Encoding UTF-8

RoxygenNote 7.3.1

Suggests tinytest

Depends R (>=4.1.0)

LazyData true

NeedsCompilation yes

Author Sgren B. Vilsen [aut, cre]
Maintainer Sgren B. Vilsen <svilsen@math.aau.dk>
Repository CRAN

Date/Publication 2024-09-03 14:50:06 UTC

https://doi.org/10.1109/ICPR.1992.201708
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1016/j.neunet.2019.01.007
https://doi.org/10.1109/IJCNN.2018.8489703
https://doi.org/10.1109/ECCE47101.2021.9595113
https://doi.org/10.1016/j.patcog.2021.107978

2 ae_rwnn

Contents
AC_IWIL . . . o v vt e e e e e e e e e e e e e e 2
bag_rwnn e e e e 3
DOOSL_ITWNN e e e e 5
classify L 7
CONrOL_IWNN o e e e e e e 7
ed_IWNN e e e 9
ERWNN-object e 11
example_data e 11
predictk ERWNN o .o 12
predict RWNN 0 oo 13
reduce_network e 13
07 o 16
RWNN-object 18
Stack IWIN e, 18

Index 21

ae_rwnn Auto-encoder pre-trained random weight neural networks
Description

Set-up and estimate weights of a random weight neural network using an auto-encoder for unsuper-
vised pre-training of the hidden weights.

Usage

ae_rwnn(

)

formula,

data = NULL,
n_hidden = c(),
lambda = NULL,
method = "11",
type = NULL,
control = list()

S3 method for class 'formula'
ae_rwnn(

formula,

data = NULL,
n_hidden = c(),
lambda = NULL,
method = "11",
type = NULL,
control = list()

bag_rwnn

Arguments

formula

data

n_hidden

lambda

method

type

control

Value

An RWNN-object.

References

A formula specifying features and targets used to estimate the parameters of the
output-layer.

A data-set (either a data.frame or a tibble) used to estimate the parameters of the
output-layer.

A vector of integers designating the number of neurons in each of the hidden-
layers (the length of the list is taken as the number of hidden-layers).

A vector of two penalisation constants used when encoding the hidden-weights
and training the output-weights, respectively.

The penalisation type used for the auto-encoder (either "11" or "12").
A string indicating whether this is a regression or classification problem.

A list of additional arguments passed to the control_rwnn function.

Zhang Y., Wu J., Cai Z., Du B., Yu P.S. (2019) "An unsupervised parameter learning model for
RVFL neural network." Neural Networks, 112, 85-97.

Examples

n_hidden <- c(20, 15, 10, 5)
lambda <- c(2, 0.01)

Using L1-norm in the auto-encoder (sparse solution)
m <- ae_rwnn(y ~ ., data = example_data, n_hidden = n_hidden, lambda = lambda, method = "11")

Using L2-norm in the auto-encoder (dense solution)
m <- ae_rwnn(y ~ ., data = example_data, n_hidden = n_hidden, lambda = lambda, method = "12")

bag_rwnn

Bagging random weight neural networks

Description

Use bootstrap aggregation to reduce the variance of random weight neural network models.

4 bag_rwnn

Usage

bag_rwnn(
formula,
data = NULL,
n_hidden = c(),
lambda = NULL,

B = 100,

method = NULL,

type = NULL,

control = list()
)
S3 method for class 'formula'
bag_rwnn(

formula,

data = NULL,

n_hidden = c(),
lambda = NULL,

B = 100,
method = NULL,
type = NULL,
control = list()
)
Arguments
formula A formula specifying features and targets used to estimate the parameters of the
output layer.
data A data-set (either a data.frame or a tibble) used to estimate the parameters of the
output layer.
n_hidden A vector of integers designating the number of neurons in each of the hidden
layers (the length of the list is taken as the number of hidden layers).
lambda The penalisation constant(s) passed to either rwnn or ae_rwnn (see method ar-
gument).
B The number of bootstrap samples.
method The penalisation type passed to ae_rwnn. Set to NULL (default), "11", or "12".
If NULL, rwnn is used as the base learner.
type A string indicating whether this is a regression or classification problem.
control A list of additional arguments passed to the control_rwnn function.
Value

An ERWNN:-object.

boost_rwnn 5

References
Breiman L. (1996) "Bagging Predictors." Machine Learning, 24, 123-140.
Breiman L. (2001) "Random Forests." Machine Learning, 45, 5-32.

Sui X, He S, Vilsen SB, Teodorescu R, Stroe DI (2021) "Fast and Robust Estimation of Lithium-ion
Batteries State of Health Using Ensemble Learning." In 2021 IEEE Energy Conversion Congress
and Exposition (ECCE), 1-8.

Examples
n_hidden <- 50

B <- 100
lambda <- 0.01

m <- bag_rwnn(y ~ ., data = example_data, n_hidden = n_hidden, lambda = lambda, B = B)
boost_rwnn Boosting random weight neural networks
Description

Use gradient boosting to create ensemble random weight neural network models.

Usage

boost_rwnn(
formula,
data = NULL,
n_hidden = c(),
lambda = NULL,

B = 100,

epsilon = 0.1,
method = NULL,
type = NULL,
control = list()

)

S3 method for class 'formula’
boost_rwnn(

formula,

data = NULL,

n_hidden = c(),

lambda = NULL,

B = 100,

epsilon = 0.1,

method = NULL,

6 boost_rwnn

type = NULL,
control = list()
)
Arguments
formula A formula specifying features and targets used to estimate the parameters of the
output layer.
data A data-set (either a data.frame or a tibble) used to estimate the parameters of the
output layer.
n_hidden A vector of integers designating the number of neurons in each of the hidden
layers (the length of the list is taken as the number of hidden layers).
lambda The penalisation constant(s) passed to either rwnn or ae_rwnn (see method ar-
gument).
B The number of levels used in the boosting tree.
epsilon The learning rate.
method The penalisation type passed to ae_rwnn. Set to NULL (default), "11", or "12".
If NULL, rwnn is used as the base learner.
type A string indicating whether this is a regression or classification problem.
control A list of additional arguments passed to the control_rwnn function.
Value

An ERWNN-object.

References

Friedman J.H. (2001) "Greedy function approximation: A gradrient boosting machine." The Annals
of Statistics, 29, 1189-1232.

Examples

n_hidden <- 10

B <- 100
epsilon <- 0.1
lambda <- 0.01

m <- boost_rwnn(y ~ ., data = example_data, n_hidden = n_hidden,
lambda = lambda, B = B, epsilon = epsilon)

classify 7

classify Classifier

Description

Function classifying an observation.

Usage
classify(y, C, t = NULL, b = NULL)

Arguments
y A matrix of predicted classes.
C A vector of class names corresponding to the columns of y.
t The decision threshold which the predictions have to exceed (defaults to *0’).
b A buffer which the largest prediction has to exceed when compared to the second
largest prediction (defaults to *0’).
Value

A vector of class predictions.

control_rwnn rwnn control function

Description

A function used to create a control-object for the rwnn function.

Usage

control_rwnn(
n_hidden = NULL,
n_features = NULL,
lnorm = NULL,
bias_hidden = TRUE,
bias_output = TRUE,
activation = NULL,
combine_input = FALSE,
combine_hidden = TRUE,
include_data = TRUE,
include_estimate = TRUE,
rng = runif,
rng_pars = list(min = -1, max = 1)

Arguments

n_hidden

n_features

lnorm

bias_hidden

bias_output

activation

combine_input
combine_hidden

include_data

control_rwnn

A vector of integers designating the number of neurons in each of the hidden
layers (the length of the list is taken as the number of hidden layers).

The number of randomly chosen features in the RWNN model. Note: This is
meant for use in bag_rwnn, and it is not recommended outside of that function.

A string indicating the type of regularisation used when estimating the weights
in the output layer, "11" or "12" (default).

A vector of TRUE/FALSE values. The vector should have length 1, or be equal
to the number of hidden layers.

TRUE/FALSE: Should a bias be added to the output layer?

A vector of strings corresponding to activation functions (see details). The vec-
tor should have length 1, or be equal to the number of hidden layers.

TRUE/FALSE: Should the input be included to predict the output?
TRUE/FALSE: Should all hidden layers be combined to predict the output?

TRUE/FALSE: Should the original data be included in the returned object?
Note: this should almost always be set to "TRUE’, but using 'FALSE’ is more
memory efficient in ERWNN-object’s.

include_estimate

rng

rng_pars

Details

TRUE/FALSE: Should the rwnn-function estimate the output parameters? Note:
this should almost always be set to "TRUE’, but using ’FALSE’is more memory
efficient in ERWNN-object’s.

A string indicating the sampling distribution used for generating the weights of
the hidden layer (defaults to runif).

A list of parameters passed to the rng function (defaults to 1ist(min = -1, max

=1).

The possible activation functions supplied to "activation’ are:

"identity”

"bentidentity”

"sigmoid”

”tanh”

n n

relu

fle) =2

() \/x2—21—1+
1

f) = 1+ exp(—x)

ed_rwnn 9

"silu” (default)

x
fl@) = 1+ exp(—z)
"softplus”
f(2) = In(1 + exp(a))
"softsign”
x
@)= 157
"sgnl”

2 2
flz) = —1ifz < —2, f(z) = x+%,if—2 <2<0, f(z) = x—%,ifo <2 <2and f(z) =2 ifz > 2

"gaussian”
f(x) = exp(—2?)

"sqrbf”

2 92— 2
%,ifl< |z| < 2,and f(zx) =0, if |z| > 2

fl@)=1=Fiflal < 1 f(2) =

The ’rng’ argument can also be set to "orthogonal”, "torus”, "halton"”, or "sobol” for added
stability. The "torus"”, "halton”, and "sobol"” methods relay on the torus, halton, and sobol
functions. NB: this is not recommended when creating ensembles.

Value

A list of control variables.

References

Wang W., Liu X. (2017) "The selection of input weights of extreme learning machine: A sample
structure preserving point of view." Neurocomputing, 261, 28-36.

ed_rwnn Ensemble deep random weight neural networks

Description

Use multiple layers to create deep ensemble random weight neural network models.

10

Usage

ed_rwnn(

formula,

data =

NULL,

n_hidden,

lambda
method

type =

:@’

ed _rwnn

= NULL,

NULL,

control = list()

)

S3 method for class 'formula’

ed_rwnn(

formula,

data =

NULL,

n_hidden,

lambda
method

type =

:@,

= NULL,

NULL,

control = list()

Arguments

formula

data

n_hidden

lambda

method

type

control

Value

A formula specifying features and targets used to estimate the parameters of the
output layer.

A data-set (either a data.frame or a tibble) used to estimate the parameters of the
output layer.

A vector of integers designating the number of neurons in each of the hidden
layers (the length of the list is taken as the number of hidden layers).

The penalisation constant(s) passed to either rwnn or ae_rwnn (see method ar-
gument).

The penalisation type passed to ae_rwnn. Set to NULL (default), "11", or "12".
If NULL, rwnn is used as the base learner.

A string indicating whether this is a regression or classification problem.

A list of additional arguments passed to the control_rwnn function.

An ERWNN:-object.

References

Shi Q., Katuwal R., Suganthan P., Tanveer M. (2021) "Random vector functional link neural net-
work based ensemble deep learning." Pattern Recognition, 117, 107978.

ERWNN-object 11

Examples

n_hidden <- c(20, 15, 10, 5)
lambda <- 0.01

#
m <- ed_rwnn(y ~ ., data = example_data, n_hidden = n_hidden, lambda = lambda)
ERWNN-object An ERWNN-object
Description

An ERWNN:-object is a list containing the following:

data The original data used to estimate the weights.
models A list with each element being an RWNN-object.
weights A vector of ensemble weights.

method A string indicating the method.

example_data Example data

Description
A data-set of 2000 observations were sampled independently according to the function:

1
 1+exp(—2TB+e,)’

Yn

where 1 is a vector containing an intercept and five input features, 3 is a vector containing the

parameters, (—1 2 1 2 0.5 3)T, and ¢,, is normally distributed noise with mean O and variance
0.1. Furthermore, the five features were generated as z1 ~ Unif(—5,5), 2 ~ Unif(0,2), x5 ~
N(2,4), 4 ~ Gamma(2,4), and x5 ~ Beta(10, 4), respectively.

Usage

example_data

Format

An object of class data. frame with 2000 rows and 6 columns.

12 predict. ERWNN

predict.ERWNN Predicting targets of an ERWNN-object

Description

Predicting targets of an ERWNN-object

Usage
S3 method for class 'ERWNN'
predict(object, ...)

Arguments
object An ERWNN-object.

Additional arguments.

Details

The additional arguments "newdata’, "type’, and "class’ can be specified as follows:

newdata Expects a matrix or data.frame with the same features (columns) as in the original data.
type A string taking the following values:

"mean” (default) Returns the average prediction across all ensemble models.

"std" Returns the standard deviation of the predictions across all ensemble models.

"all"” Returns all predictions for each ensemble models.
class A string taking the following values:

"classify"” Returns the predicted class of the ensemble. If used together with type = "mean”,
the average prediction across the ensemble models are used to create the classification.
However, if used with type = "all”, every ensemble is classified and returned.

"voting"” Returns the predicted class of the ensemble by classifying each ensemble and using
majority voting to make the final prediction. NB: the type argument is overruled.

Furthermore, if *class’ is set to either "classify” or "voting”, additional arguments ’t’ and ’b’
can be passed to the classify-function.

NB: if the ensemble is created using the boost_rwnn-function, then type should always be set to
"mean”.
Value

An list, matrix, or vector of predicted values depended on the arguments 'method’, *type’, and
’class’.

predict. RWNN 13

predict.RWNN Predicting targets of an RWNN-object

Description

Predicting targets of an RWNN-object

Usage
S3 method for class 'RWNN'
predict(object, ...)

Arguments
object An RWNN-object.

Additional arguments.

Details

The additional arguments used by the function are *'newdata’ and ’class’. The argument 'newdata’
expects a matrix or data.frame with the same features (columns) as in the original data. While the
’class’ argument can be set to "classify”. If class == "classify" additional arguments ’t’ and
’b’ can be passed to the classify-function.

Value

A vector of predicted values.

reduce_network Reduce the weights of a random weight neural network.

Description

Methods for weight and neuron pruning in random weight neural networks.

Usage
reduce_network(object, method, retrain = TRUE, ...)
S3 method for class 'RWNN'
reduce_network(object, method, retrain = TRUE, ...)
S3 method for class 'ERWNN'
reduce_network(object, method, retrain = TRUE, ...)

14 reduce_network

Arguments
object An RWNN-object or ERWNN-object.
method A string, or a function, setting the method used to reduce the network (see de-
tails).
retrain TRUE/FALSE: Should the output weights be retrained after reduction (defaults
to TRUE)?
Additional arguments passed to the reduction method (see details).
Details

The method’ and additional arguments required by the method are:

"global” (or "glbl"”) p: The proportion of weights to remove globally based on magnitude.

"uniform” (or "unif") p: The proportion of weights to remove uniformly layer-by-layer based on magnitude.

"lamp” p: The proportion of weights to remove based on LAMP scores.

"apoz" p: The proportion of neurons to remove based on proportion of zeroes produced.
tolerance: The tolerance used when identifying zeroes.
type: A string indicating whether weights should be removed globally (’ global’) or uniformly (’uniform’).

"correlation” (or "cor") type: The type of correlation (argument passed to cor function).
rho: The correlation threshold used to remove neurons.

"correlationtest” (or "cortest”) type: The type of correlation (argument passed to cor function).

rho: The correlation threshold used to remove neurons.
alpha: The significance levels used to test whether the observed correlation between two neurons is small than r

"relief” p: The proportion of neurons or weights to remove based on relief scores.
type: A string indicating whether neurons (’neuron’) or weights (’weight’) should be removed.

"output” tolerance: The tolerance used when removing zeroes from the output layer.

If the object is an ERWNN-object, the reduction is applied to all RWNN-object’s in the ERWNN-
object. Furthermore, when the ERWNN-object is created as a stack and the weights of the stack is
trained, then ‘method’ can be set to:

"stack” tolerance: The tolerance used when removing elements from the stack.

Lastly, 'method’ can also be passed as a function, with additional arguments passed through the . . .
argument. NB: features and target are passed using the names X and y, respectively.

Value

A reduced RWNN-object or ERWNN-object.

reduce_network 15

References

Han S., Mao H., Dally W.J. (2016) "Deep Compression: Compressing Deep Neural Networks with
Pruning, Trained Quantization and Huffman Coding." arXiv: 1510.00149.

Hu H., Peng R., Tai Y.W., Tang C.K. (2016) "Network Trimming: A Data-Driven Neuron Pruning
Approach towards Efficient Deep Architectures." arXiv: 1607.03250.

Morcos A.S., Yu H., Paganini M., Tian Y. (2019) "One ticket to win them all: generalizing lottery
ticket initializations across datasets and optimizers." arXiv: 1906.02773.

Lee J., Park S., Mo S., Ahn S., Shin J. (2021) "Layer-adaptive sparsity for the Magnitude-based
Pruning." arXiv: 2010.07611.

Dekhovich A., Tax D.M., Sluiter M.H., Bessa M.A. (2024) "Neural network relief: a pruning algo-
rithm based on neural activity." Machine Learning, 113, 2597-2618.

Examples

RWNN-object
n_hidden <- c(10, 15)
lambda <- 2

m <- rwnn(y ~ ., data = example_data, n_hidden = n_hidden,
lambda = lambda, control = list(lnorm = "12"))

m |>
reduce_network(method = "relief”, p = 0.2, type = "neuron") |>
(\(x) x$weights) ()

m |>
reduce_network(method = "relief”, p = 0.2, type = "neuron") |>
reduce_network(method = "correlationtest”, rho = 0.995, alpha = 0.05) |>
(\(x) x$weights) ()

reduce_network(method = "relief”, p = 0.2, type = "neuron") |>
reduce_network(method = "correlationtest”, rho = ©0.995, alpha = 0.05) |>
reduce_network(method = "lamp", p = 0.2) |>

(\(x) x$weights) ()

m |>
reduce_network(method = "relief”, p = 0.4, type = "neuron") |>
reduce_network(method = "relief”, p = 0.4, type = "weight") |>
reduce_network(method = "output”) |>

(\(x) x$weights) ()

ERWNN-object (reduction is performed element-wise on each RWNN)
n_hidden <- c(10, 15)

lambda <- 2

B <- 100

m <- bag_rwnn(y ~ ., data = example_data, n_hidden = n_hidden,

16 rwnn

lambda = lambda, B = B, control = list(lnorm = "12"))

m |>
reduce_network(method = "relief”, p = 0.2, type = "neuron") |>
reduce_network(method = "relief”, p = 0.2, type = "weight") [|>
reduce_network(method = "output”)

m <- stack_rwnn(y ~ ., data = example_data, n_hidden = n_hidden,
lambda = lambda, B = B, optimise = TRUE)

Number of models in stack

length(m$weights)

Number of models in stack with weights > .Machine$double.eps
length(m$weights[m$weights > .Machine$double.eps])

m |>
reduce_network(method = "stack”, tolerance = 1e-8) |>
(\(x) x$weights) ()

rwnn Random weight neural networks

Description

Set-up and estimate weights of a random weight neural network.

Usage

rwnn (
formula,
data = NULL,
n_hidden = c(),
lambda = 0,
type = NULL,
control = list()

S3 method for class 'formula’
rwnn (

formula,

data = NULL,

n_hidden = c(),

lambda = 0,

type = NULL,

control = list()

rwnn 17

Arguments
formula A formula specifying features and targets used to estimate the parameters of the
output layer.
data A data-set (either a data.frame or a tibble) used to estimate the parameters of the
output layer.
n_hidden A vector of integers designating the number of neurons in each of the hidden
layers (the length of the list is taken as the number of hidden layers).
lambda The penalisation constant used when training the output layer.
type A string indicating whether this is a regression or classification problem.
control A list of additional arguments passed to the control_rwnn function.
Details

A deep RWNN is constructed by increasing the number of elements in the vector n_hidden. Fur-
thermore, if type is null, then the function tries to deduce it from class of target.

Value

An RWNN-object.

References

Schmidt W., Kraaijveld M., Duin R. (1992) "Feedforward neural networks with random weights."
In Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference
B: Pattern Recognition Methodology and Systems, 1-4.

Pao Y., Park G., Sobajic D. (1992) "Learning and generalization characteristics of random vector
Functional-link net." Neurocomputing, 6, 163—180.

Huang G.B., Zhu Q.Y., Siew C.K. (2006) "Extreme learning machine: Theory and applications."
Neurocomputing, 70(1), 489-501.

Henriquez P.A., Ruz G.A. (2018) "Twitter Sentiment Classification Based on Deep Random Vector
Functional Link." In 2018 International Joint Conference on Neural Networks (IJCNN), 1-6.

Examples

Models with a single hidden layer
n_hidden <- 50
lambda <- 0.01

Regression
m <- rwnn(y ~ ., data = example_data, n_hidden = n_hidden, lambda = lambda)

Classification
m <- rwnn(I(y > median(y)) ~ ., data = example_data, n_hidden = n_hidden, lambda = lambda)

Model with multiple hidden layers
n_hidden <- c(20, 15, 10, 5)
lambda <- 0.01

18 stack_rwnn

Combining outputs from all hidden layers (default)
m <- rwnn(y ~ ., data = example_data, n_hidden = n_hidden, lambda = lambda)

Using only the output of the last hidden layer
m <- rwnn(y ~ ., data = example_data, n_hidden = n_hidden,
lambda = lambda, control = list(combine_hidden = FALSE))

RWNN-object An RWNN-object

Description

An RWNN-object is a list containing the following:

data The original data used to estimate the weights.

n_hidden The vector of neurons in each layer.

activation The vector of the activation functions used in each layer.
lnorm The norm used when estimating the output weights.

lambda The penalisation constant used when estimating the output weights.

bias The TRUE/FALSE bias vectors set by the control function for both hidden layers, and the output
layer.

weights The weigths of the neural network, split into random (stored in hidden) and estimated
(stored in output) weights.

sigma The standard deviation of the corresponding linear model.
type A string indicating the type of modelling problem.

combined A list of two TRUE/FALSE values stating whether the direct links were made to the input,
and whether the output of each hidden layer was combined to make the prediction.

stack_rwnn Stacking random weight neural networks

Description

Use stacking to create ensemble random weight neural networks.

stack_rwnn

Usage

stack_rwnn(

)

formula,

data = NULL,
n_hidden = c(),
lambda = NULL,

B = 100,

optimise = FALSE,
folds = 10,
method = NULL,
type = NULL,
control = list()

S3 method for class 'formula'
stack_rwnn(

formula,

data = NULL,
n_hidden = c(),
lambda = NULL,

19

B = 100,
optimise = FALSE,
folds = 10,
method = NULL,
type = NULL,
control = list()
)
Arguments
formula A formula specifying features and targets used to estimate the parameters of the
output layer.
data A data-set (either a data.frame or a tibble) used to estimate the parameters of the
output layer.
n_hidden A vector of integers designating the number of neurons in each of the hidden
layers (the length of the list is taken as the number of hidden layers).
lambda The penalisation constant(s) passed to either rwnn or ae_rwnn (see method ar-
gument).
B The number of models in the stack.
optimise TRUE/FALSE: Should the stacking weights be optimised (or should the stack
just predict the average)?
folds The number of folds used when optimising the stacking weights (see optimise
argument).
method The penalisation type passed to ae_rwnn. Set to NULL (default), "11", or "12".
If NULL, rwnn is used as the base learner.
type A string indicating whether this is a regression or classification problem.
control A list of additional arguments passed to the control_rwnn function.

20 stack_rwnn

Value

An ERWNN-object.

References

Wolpert D. (1992) "Stacked generalization." Neural Networks, 5, 241-259.
Breiman L. (1996) "Stacked regressions." Machine Learning, 24, 49-64.

Examples
n_hidden <- c(20, 15, 10, 5)
lambda <- 0.01
B <- 100
Using the average of the stack to predict new targets
m <- stack_rwnn(y ~ ., data = example_data, n_hidden = n_hidden,
lambda = lambda, B = B)

Using the optimised weighting of the stack to predict new targets

m <- stack_rwnn(y ~ ., data = example_data, n_hidden = n_hidden,
lambda = lambda, B = B, optimise = TRUE)

Index

x datasets
example_data, 11

ae_rwnn, 2,4, 6, 10, 19

bag_rwnn, 3, 8
boost_rwnn, 5, 12

classify, 7,12, 13
control_rwnn, 3,4, 6,7, 10, 17, 19
cor, 14

data.frame, 3, 4,6, 10,12, 13,17, 19

ed_rwnn, 9
ERWNN-object, 4, 6, 8, 10, 11, 12, 14, 20
example_data, 11

formula, 3, 4, 6, 10, 17, 19
halton, 9
matrix, 12, 13

predict.ERWNN, 12
predict.RWNN, 13

reduce_network, 13
rwnn, 4, 6, 7, 10, 16, 19
RWNN-object, 3, 11,13, 14,17, 18

sobol, 9
stack_rwnn, 18

tibble, 3, 4,6, 10,17, 19
torus, 9

21

	ae_rwnn
	bag_rwnn
	boost_rwnn
	classify
	control_rwnn
	ed_rwnn
	ERWNN-object
	example_data
	predict.ERWNN
	predict.RWNN
	reduce_network
	rwnn
	RWNN-object
	stack_rwnn
	Index

