
Package ‘RRphylo’
July 12, 2025

Type Package

Title Phylogenetic Ridge Regression Methods for Comparative Studies

Date 2025-07-11

Version 3.0.1

Maintainer Silvia Castiglione <silvia.castiglione@unina.it>

Description Functions for phylogenetic analysis (Castiglione et al., 2018 <doi:10.1111/2041-
210X.12954>). The functions perform the estimation of phenotypic evolutionary rates, identifi-
cation of phenotypic evolutionary rate shifts, quantification of direction and size of evolution-
ary change in multivariate traits, the computation of ontogenetic shape vectors and test for mor-
phological convergence.

License GPL-2

Encoding UTF-8

LazyData true

Depends R (>= 3.6.0), emmeans(>= 1.4.3)

Imports ape, phytools, foreach, doParallel, parallel

Suggests phangorn, rlist, scales, R.utils, cluster, RColorBrewer,
nlme, car, smatr, picante, vegan, ddpcr, geomorph, rmarkdown,
knitr, kableExtra, plotrix, pdftools, rgl, mvMORPH, ggplot2,
qpdf, inflection, Rvcg, Morpho, evolqg, manipulate, markdown,
Rphylopars, phylolm, webshot2, testthat (>= 3.0.0)

VignetteBuilder knitr

RoxygenNote 7.3.2

NeedsCompilation no

Author Pasquale Raia [aut],
Silvia Castiglione [aut, cre],
Carmela Serio [aut],
Giorgia Girardi [aut],
Alessandro Mondanaro [aut],
Marina Melchionna [aut],
Mirko Di Febbraro [aut],
Antonio Profico [aut],
Francesco Carotenuto [aut]

1

https://doi.org/10.1111/2041-210X.12954
https://doi.org/10.1111/2041-210X.12954

2 Contents

Repository CRAN

Date/Publication 2025-07-12 09:30:02 UTC

Contents
RRphylo-package . 3
angle.matrix . 4
colorbar . 6
compRates . 8
conv.map . 9
cutPhylo . 11
DataApes . 12
DataCetaceans . 13
DataFelids . 14
DataOrnithodirans . 15
DataSimians . 15
DataUng . 16
distNodes . 16
evo.dir . 17
fix.poly . 20
getGenus . 22
getMommy . 23
getSis . 24
lollipoPlot . 24
makeFossil . 25
makeL . 26
makeL1 . 27
move.lineage . 28
namesCompare . 29
node.paths . 31
overfitPGLS . 31
overfitRR . 33
overfitSC . 36
overfitSS . 39
overfitST . 41
PGLS_fossil . 43
phyloclust . 46
plotConv . 47
plotRates . 49
plotRR . 51
plotShift . 52
plotTrend . 54
random.evolvability.test . 56
rate.map . 58
rateHistory . 59
resampleTree . 60
rescaleRR . 62

RRphylo-package 3

retrieve.angles . 64
RRphylo . 67
RRphylo-defunct . 70
RRphylo-deprecated . 71
scaleTree . 71
search.conv . 73
search.shift . 76
search.trend . 79
setBM . 83
sig2BM . 84
sizedsubtree . 85
StableTraitsR . 86
swapONE . 88
tips . 89
tree.merger . 90
treeCompare . 94
treedataMatch . 95

Index 97

RRphylo-package Phylogenetic Ridge Regression Methods for Comparative Studies

Description

RRphylo provides tools for phylogenetic comparative analysis. The main functions allow esti-
mation of phenotypic evolutionary rates, identification of shifts in rate of evolution, quantification
of direction and size of evolutionary change of multivariate traits, and computation of species on-
togenetic vectors. Additionally, there are functions for simulating phenotypic data, manipulating
phylogenetic trees, and retrieving information from phylogenies. Finally, there are functions to plot
and test rate shifts at particular nodes.

The complete list of functions can be displayed with library(help = RRphylo). Citations to indi-
vidual functions are available by typing citation("RRphylo").

Author(s)

Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

4 angle.matrix

angle.matrix Ontogenetic shape vectors analysis

Description

This function computes and compares ontogenetic vectors among species in a tree.

Usage

angle.matrix(RR,node,Y=NULL,select.axes=c("no","yes"),
type=c("phenotypes","rates"),cova=NULL,clus=0.5)

Arguments

RR an object produced by RRphylo.

node the number identifying the most recent common ancestor to all the species the
user wants ontogenetic vectors be computed.

Y multivariate trait values at tips.

select.axes if "yes", Y variables are individually regressed against developmental stages
and only significant variables are retained to compute ontogenetic vectors. All
variables are retained otherwise.

type specifies weather to perform the analysis on phenotypic ("phenotypes") or rate
("rates") vectors.

cova the covariate to be indicated if its effect on rate values must be accounted for.
Contrary to RRphylo, cova needs to be as long as the number of tips in the tree.
As the covariate only affects rates computation, there is no covariate to provide
when type = "phenotypes".

clus the proportion of clusters to be used in parallel computing. To run the single-
threaded version of angle.matrix set clus = 0.

Details

The angle.matrix function takes as objects a phylogenetic tree (retrieved directly from an RRphylo
object), including the different ontogenetic stages of each species as polytomies. Names at tips
must be written as species ID and stage number separated by the underscore. The RR object
angle.matrix is fed with is just used to extract the dichotomized version of the phylogeny. This
is necessary because node numbers change randomly at dichotomizing non-binary trees. How-
ever, when performing angle.matrix with the covariate the RR object must be produced without
accounting for the covariate. Furthermore, as the covariate only affects the rates computation, it
makes no sense to use it when computing vectors for phenotypic variables. Once angles and vectors
are computed, angle.matrix performs two tests by means of standard major axis (SMA) regres-
sion. For each species pair, the "biogenetic test" verifies whether the angle between species grows
during development, meaning that the two species becomes less similar to each other during growth.
The "paedomorphosis test" tells whether there is heterochronic shape change in the data. Under pae-
domorphosis, the adult stages of one (paedomorphic) species will resemble the juvenile stages of

angle.matrix 5

the other (peramorphic) species. The test regresses the angles formed by the shapes at different on-
togenetic stages of a species to the shape at the youngest stage of the other in the pair, against age.
Then, it tests whether the two regression lines (one per species) have different slopes, and whether
they have different signs. If the regression lines point to different directions, it means that one of the
two species in the pair resembles, with age, the juveniles of the other, indicating paedomorphosis.
Ontogenetic vectors of individual species are further computed, in reference to the MRCA of the
pair, and to the first stage of each species (i.e. intraspecifically). Importantly, the size of the onto-
genetic vectors of rates tell whether the two species differ in terms of developmental rate, which is
crucial to understand which process is behind paedomorphosis, where it applies.While performing
the analysis, the function prints messages on-screen informing about tests results. If select.axes =
"yes", informs the user about which phenotypic variables are used. Secondly, it specifies whether
ontogenetic vectors to MRCA, and intraspecific ontogenetic vectors significantly differ in angle
or size between species pairs. Then, for each species pair, it indicates if the biogenetic law and
paedomorphosis apply.

Value

A list containing 4 objects:

1. $regression.matrix a ’list’ including ’angles between species’ and ’angles between species to
MRCA’ matrices for all possible combinations of species pairs from the two sides descending
from the MRCA. For each matrix, corresponding biogenetic and paedomorphosis tests are
reported.

2. $angles.2.MRCA.and.vector.size a ’data.frame’ including angles between the resultant vec-
tor of species and the MRCA and the size of the resultant vector computed from species to
MRCA, per stage per species.

3. $ontogenetic.vectors2MRCA a ’data.frame’ including angle, size, and corresponding x and
y components, of ontogenetic vectors computed between each species and the MRCA. For
both angle and size, the p-value for the difference between species pairs is reported.

4. $ontogenetic.vectors.to.1st.stage a ’list’ containing:

• $matrices: for all possible combinations of species pairs from the two sides descending
form the MRCA, the upper triangle of the matrix contains the angles between different
ontogenetic stages for the first species. The same applies to the lower triangle, but for the
second species.

• $vectors: for all possible combinations of species pairs from the two sides descending
form the MRCA, angles and sizes of ontogenetic vectors computed to the first stage of
each species. For both, the p-value for the difference between the species pair is reported.

Author(s)

Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

Examples

Not run:
data("DataApes")
DataApes$PCstage->PCstage

6 colorbar

DataApes$Tstage->Tstage
DataApes$CentroidSize->CS
cc<- 2/parallel::detectCores()

RRphylo(tree=Tstage,y=PCstage,clus=cc)->RRstage
Case 1. without accounting for the effect of a covariate

Case 1.1 selecting shape variables that show significant relationship with age
on phenotypic vectors
angle.matrix(RRstage,node=72,Y=PCstage,select.axes="yes",type="phenotypes",clus=cc)->am1
on rates vectors

angle.matrix(RRstage,node=72,Y=PCstage,select.axes="yes",type="rates",clus=cc)->am2

Case 1.2 using all shape variables
on phenotypic vectors
angle.matrix(RRstage,node=72,Y=PCstage,select.axes="no",type="phenotypes",clus=cc)->am3
on rates vectors

angle.matrix(RRstage,node=72,Y=PCstage,select.axes="no",type="rates",clus=cc)->am4

Case 2. accounting for the effect of a covariate (on rates vectors only)

Case 2.1 selecting shape variables that show significant relationship with age
angle.matrix(RRstage,node=72,Y=PCstage,select.axes="yes",type="rates", cova=CS,clus=cc)->am5

Case 2.2 using all shape variables
angle.matrix(RRstage,node=72,Y=PCstage,select.axes="no",type="rates",cova=CS,clus=cc)->am6

End(Not run)

colorbar Draw colorbar on a plot

Description

The function adds a color bar to the current plot.

Usage

colorbar(colors,x,y=NULL,direction="vertical",
height=1,width=1,border="black",lwd=2,lty=1,
labs=NULL,labs.pos=NULL,title=NULL,title.pos=NULL,
ticks=TRUE,tck.pos=NULL,tck.length=1,xpd=FALSE,...)

Arguments

colors vector of colors.

x, y the x and y coordinates where the bottom left corner of the bar is positioned.
Keywords as in legend are allowed.

colorbar 7

direction either "vertical" or "horizontal".

height a number indicating the amount by which the height of the bar should be scaled
relative to the default.

width a number indicating the amount by which the width of the bar should be scaled
relative to the default.

border color of the border around the bar. Set NA to suppress border drawing.

lwd border line width.

lty border line type.

labs the vector of labels to place next to the bar.

labs.pos either "left"/"right" for direction="vertical" or "top"/"bottom" for direction="horizontal".
Default settings are "right" and "bottom".

title the title to be placed next to the bar.

title.pos either on the "top" or at the "bottom" of the bar. Default setting is "top".

ticks logical indicating whether ticks should be drawn next to each label.

tck.pos indicates whether ticks should be plotter "in"side or "out"side the bar border.

tck.length tick lengths

xpd a value of the par xpd.

... further arguments passed to the functions text (for labels and title) and segments.
All these arguments must be hooked to the element they refer to by indicating:
labs.* for labels, title.* for title, and tck.* for ticks. See example for
further details.

Author(s)

Silvia Castiglione

Examples

rainbow(30)->cols
replicate(4,paste(sample(letters,4),collapse=""))->labs

plot(rnorm(20),rnorm(20))
colorbar(cols,"topleft")

plot(rnorm(20),rnorm(20))
colorbar(cols,"topright",

height=1.2,width=1.2,lwd=2,
labs=labs,labs.pos="left",labs.cex=1.3,labs.adj=1,
title="Colorbar!",title.cex=1.4,title.font=2,title.adj=c(0,0),
tck.pos="out",tck.lwd=2,xpd=TRUE)

8 compRates

compRates Comparing average absolute rates between clades

Description

The function compRates is an adaptation of search.shift which performs pairwise comparison
of average absolute rates between clades via bootstrap.

Usage

compRates(RR,node, nrep = 1000, cov = NULL)

Arguments

RR an object fitted by the function RRphylo.

node the most recent common ancestors of clades to be tested. The nodes must be
identified on the dicothomized version of the original tree returned by RRphylo.
Pairwise comparison between all clades is performed.

nrep the number of simulations to be performed for the rate shift test, by default nrep
is set at 1000.

cov the covariate vector to be indicated if its effect on rate values must be accounted
for. Contrary to RRphylo, cov needs to be as long as the number of tips of the
tree.

Value

For each node pair, the function returns the average absolute rate difference (computed as the dif-
ference between the average absolute rate over all branches subtended by the nodes) and related
significance level. Probabilities are derived by contrasting the rate differences to simulated ones
derived by shuffling the rates across the tree branches for a number of replicates specified by the
argument nrep. Note that the p-values refer to the number of times the real differences are larger
(p-value>=0.975) or smaller (p-value<=0.025) than the simulated ones, divided by the number of
simulations, hence the test should be considered as two-tailed. The output always has an attribute
"Call" which returns an unevaluated call to the function.

Author(s)

Silvia Castiglione, Giorgia Girardi

See Also

search.shift vignette

../doc/search.shift.html

conv.map 9

Examples

Not run:
data("DataOrnithodirans")
DataOrnithodirans$treedino->treedino
DataOrnithodirans$massdino->massdino
DataOrnithodirans$statedino->statedino
cc<- 2/parallel::detectCores()

RRphylo(tree=treedino,y=massdino,clus=cc)->dinoRates
compRates(RR=dinoRates,node=c(696,746))->cr1
compRates(RR=dinoRates,node=c(696,746),cov=massdino)->cr2

End(Not run)

conv.map Mapping morphological convergence on 3D surfaces

Description

The function is deprecated, please check the new version of conv.map in package RRmorph.

Given vectors of RW (or PC) scores, the function selects the RW(PC) axes which best account for
convergence and maps convergent areas on the corresponding 3D surfaces.

Usage

conv.map(dataset,pcs,mshape,conv=NULL, exclude=NULL,out.rem=TRUE,
show.consensus=FALSE, plot=TRUE,col="blue",names = TRUE)

Arguments

dataset data frame (or matrix) with the RW (or PC) scores of the group or species to be
compared.

pcs RW (or PC) vectors (eigenvectors of the covariance matrix) of all the samples.

mshape the Consensus configuration.

conv a named character vector indicating convergent species as (indicated as "conv"
in dataset) and not convergent species (indicated as "noconv").

exclude integer: the index number of the RW (or PC) to be excluded from the compari-
son.

out.rem logical: if TRUE triangles with outlying area difference are removed.

show.consensus logical: if TRUE, the Consensus configuration is included in the comparison.

plot logical: if TRUE, the pairwise comparisons are be plotted. For more than 5 pair-
wise comparisons, the plot is not shown.

col character: the colour for the plot.

names logical: if TRUE, the names of the groups or species are displayed in the 3d plot.

10 conv.map

Details

conv.map automatically builds a 3D mesh on the mean shape calculated from the Relative Warp
Analysis (RWA) or Principal Component Analysis (PCA) (Schlager 2017) by applying the function
vcgBallPivoting (Rvcg). conv.map further gives the opportunity to exclude some RW (or PC)
axes from the analysis because, for example, in most cases the first axes are mainly related to
high-order morphological differences driven by phylogeny and size variations. conv.map finds and
plots the strength of convergence on 3D surfaces. An output of conv.map (if the dataset contains
a number equal or lower then 5 items) is an interactive plot mapping the convergence on the 3D
models. In the upper triangle of the 3D multiple layouts the rows representing the reference models
and the columns the target models. On the contrary, on the lower triangle the rows correspond to
the target models and the columns the reference models. In the calculation of the differences of
areas we supply the possibility to find and remove outliers from the vectors of areas calculated on
the reference and target surfaces. We suggest considering this possibility if the mesh may contain
degenerate facets.

Value

The function returns a list including:

• $angle.compare data frame including the real angles between the given shape vectors, the
angles conv computed between vectors of the selected RWs (or PCs), the angles between
vectors of the non-selected RWs (or PCs), the difference conv, and its p values.

• $selected.pcs RWs (or PCs) axes selected for convergence.

• $average.dist symmetric matrix of pairwise distances between 3D surfaces.

• $suface1 list of coloured surfaces, if two meshes are given, it represents convergence between
mesh A and B charted on mesh A.

• $suface2 list of coloured surfaces, if two meshes are given, it represents convergence between
mesh A and B charted on mesh B.

• $scale the value used to set the colour gradient, computed as the maximum of all differences
between each surface and the mean shape.

Author(s)

Marina Melchionna, Antonio Profico, Silvia Castiglione, Carmela Serio, Gabriele Sansalone, Pasquale
Raia

References

Schlager, S. (2017). Morpho and Rvcg–Shape Analysis in R: R-Packages for geometric morpho-
metrics, shape analysis and surface manipulations. In: Statistical shape and deformation analysis.
Academic Press.

Melchionna, M., Profico, A., Castiglione, S., Serio, C., Mondanaro, A., Modafferi, M., Tamagnini,
D., Maiorano, L. , Raia, P., Witmer, L.M., Wroe, S., & Sansalone, G. (2021). A method for mapping
morphological convergence on three-dimensional digital models: the case of the mammalian sabre-
tooth. Palaeontology, 64, 573–584. doi:10.1111/pala.12542

cutPhylo 11

See Also

search.conv vignette ; relWarps ; procSym

Examples

Not run:
data(DataSimians)
DataSimians$pca->pcasim

Case 1. Convergent species only
dato1<-pcasim$PCscores[c(1,4),]

CM1<-conv.map(dataset = dato1,
pcs = pcasim$PCs,
mshape = pcasim$mshape,
show.consensus = TRUE)

Case 2. Convergent and non-convergent species
dato2<-pcasim$PCscores[c(1,4,7),]
conv<-c("conv","conv","noconv")
names(conv)<-rownames(dato2)

CM2<-conv.map(dataset = dato2,
pcs = pcasim$PCs,
mshape = pcasim$mshape,
conv = conv,
show.consensus = TRUE,
col = "orange")

End(Not run)

cutPhylo Cut the phylogeny at a given age or node

Description

The function cuts all the branches of the phylogeny which are younger than a specific age or node
(i.e. the age of the node).

Usage

cutPhylo(tree,age=NULL,node=NULL,keep.lineage=TRUE)

Arguments

tree a phylogenetic tree. The tree needs not to be ultrametric and fully dichotomous.
age the age (in terms of time distance from the recent) at which the tree must be cut
node the node whose age must be used as cutting limit.
keep.lineage logical specifying whether lineages with no descendant tip must be retained (see

example below). Default is TRUE.

../doc/search.conv.html

12 DataApes

Details

When an entire lineage is cut (i.e. one or more nodes along a path) and keep.lineages = TRUE, the
leaves left are labeled as "l" followed by a number.

Value

The function returns the cut phylogeny and plots it into the graphic device. The time axis keeps the
root age of the original tree. Note, tip labels are ordered according to their position in the tree.

Author(s)

Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

See Also

cutPhylo vignette

Examples

Not run:
library(ape)

set.seed(22)
rtree(100)->tree
3->age

cutPhylo(tree,age=age)->t1
cutPhylo(tree,age=age,keep.lineage=FALSE)->t1a
cutPhylo(tree,node=151)->t2
cutPhylo(tree,node=151,keep.lineage=FALSE)->t2a

End(Not run)

DataApes Example dataset

Description

Geometric morphometrics shape data regarding Apes’ facial skeleton and Apes phylogentic trees
(Profico et al. 2017).

Usage

data(DataApes)

../doc/Tree-Manipulation.html#cutPhylo

DataCetaceans 13

Format

A list containing:

$PCstage A data frame containing 38 shape variables for Apes’ facial skull at different ontogenetic
stages.

$PCadult A data frame containing 3 shape variables for Apes’ facial skull.

$Tstage Phylogenetic tree of Apes including the different ontogenetic stages of each species as
polytomies.

$Tadult Phylogenetic tree of Apes.

$CentroidSize numeric vector of Centroid Size values of ‘PCstage’.

Author(s)

Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

References

Profico, A., Piras, P., Buzi, C., Di Vincenzo, F., Lattarini, F., Melchionna, M., Veneziano, A., Raia,
P. & Manzi, G. (2017). The evolution of cranial base and face in Cercopithecoidea and Hominoidea:
Modularity and morphological integration. American journal of primatology,79: e22721.

DataCetaceans Example dataset

Description

Cetaceans’ body and brain mass, and phylogenetic tree (Serio et al. 2019).

Usage

data(DataCetaceans)

Format

A list containing:

treecet Cetaceans phylogenetic tree.

masscet numeric vector of cetaceans body masses (ln g).

brainmasscet numeric vector of cetaceans brain masses (ln g).

aceMyst body mass (ln g) for Mystacodon selenensis, used as node prior at the ancestor of the
Mysticeti.

Author(s)

Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

14 DataFelids

References

Serio, C., Castiglione, S., Tesone, G., Piccolo, M., Melchionna, M., Mondanaro, A., Di Febbraro,
M., & Raia, P. (2019). Macroevolution of Toothed Whales Exceptional Relative Brain Size. Evolu-
tionary Biology, 46: 332-342. doi:10.1007/s11692-019-09485-7

DataFelids Example dataset

Description

Geometric morphometrics shape data regarding felids’ mandible and phylogentic tree (Piras et al.,
2018).

Usage

data(DataFelids)

Format

A list containing:

$treefel Phylogenetic tree of felids.

$landfel list of 2D landmark configuration for each species of the tree.

$PCscoresfel A data.frame containing 83 shape variables for felids’ mandible.

$statefel sabertooth - not sabertooth ecomorph categorization for each species.

Author(s)

Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

References

Piras, P., Silvestro, D., Carotenuto, F., Castiglione, S., Kotsakis, A., Maiorino, L., Melchionna,
M.,Mondanaro, A., Sansalone, G., Serio, C., Vero, V. A., & Raia, P. (2018). Evolution of the saber-
tooth mandible: A deadly ecomorphological specialization. Palaeogeography, Palaeoclimatology,
Palaeoecology, 496, 166-174.

DataOrnithodirans 15

DataOrnithodirans Example dataset

Description

Ornithodirans’ body mass, phylogenetic tree and locomotory type (Castiglione et al 2018).

Usage

data(DataOrnithodirans)

Format

A list containing:

treedino Ornithodirans phylogenetic tree.

massdino numeric vector of ornithodirans body masses.

statedino vector of ornithodirans locomotory type.

Author(s)

Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

References

Castiglione, S., Tesone, G., Piccolo, M., Melchionna, M., Mondanaro, A., Serio, C., Di Febbraro,
M., & Raia, P.(2018). A new method for testing evolutionary rate variation and shifts in phenotypic
evolution. Methods in Ecology and Evolution, 9: 974-983.doi:10.1111/2041-210X.12954

DataSimians Example dataset

Description

The output of Procrustes superimposition as performed by the function procSym on 9 simians faces
and the phylogenetic tree for such species.

Usage

data(DataSimians)

Author(s)

Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

16 distNodes

DataUng Example dataset

Description

Geometric morphometrics shape data regarding mandible and phylogentic tree of ’Ungulatomor-
pha’ (Raia et al., 2010).

Usage

data(DataUng)

Format

A list containing:

$PCscoresung A data frame containing 205 shape variables for mandible of ’Ungulatomorpha’.

$treeung Phylogenetic tree of ’Ungulatomorpha’.

$stateung vector of ’Ungulatomorpha’ feeding type.

Author(s)

Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

References

Raia, P., Carotenuto, F., Meloro, C., Piras, P., & Pushkina, D. (2010). The shape of contention:
adaptation, history, and contingency in ungulate mandibles. Evolution, 64: 1489-1503.

distNodes Finding distance between nodes and tips

Description

The function computes the distance between pairs of nodes, pairs of tips, or between nodes and tips.
The distance is meant as both patristic distance and the number of nodes intervening between the
pair.

Usage

distNodes(tree,node=NULL,clus=0.5)

evo.dir 17

Arguments

tree a phylogenetic tree. The tree needs not to be ultrametric and fully dichotomous.

node either a single node/tip or a pair of nodes/tips.

clus the proportion of clusters to be used in parallel computing. To run the single-
threaded version of distNodes set clus = 0.

Value

If node is specified, the function returns a data frame with distances between the focal node/tip and
the other nodes/tips on the tree (or for the selected pair only). Otherwise, the function returns a
matrix containing the number of nodes intervening between each pair of nodes and tips.

Author(s)

Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

Examples

data("DataApes")
DataApes$Tstage->Tstage

cc<- 2/parallel::detectCores()
distNodes(tree=Tstage,clus=cc)->dn1
distNodes(tree=Tstage,node=64,clus=cc)->dn2
distNodes(tree=Tstage,node="Tro_2",clus=cc)->dn3
distNodes(tree=Tstage,node=c(64,48),clus=cc)->dn4
distNodes(tree=Tstage,node=c(64,"Tro_2"),clus=cc)->dn5

evo.dir Phylogenetic vector analysis of phenotypic change

Description

This function quantifies direction, size and rate of evolutionary change of multivariate traits along
node-to-tip paths and between species.

Usage

evo.dir(RR,angle.dimension=c("rates","phenotypes"),
y.type=c("original","RR"),y=NULL,pair.type=c("node","tips"),pair=NULL,
node=NULL,random=c("yes","no"),nrep=100)

18 evo.dir

Arguments

RR an object produced by RRphylo.
angle.dimension

specifies whether vectors of "rates" or "phenotypes" are used.

y.type must be indicated when angle.dimension = "phenotypes". If "original", it
uses the phenotypes as provided by the user, if "RR" it uses RR$predicted.phenotypes.

y specifies the phenotypes to be provided if y.type = "original".

pair.type either "node" or "tips". Angles are computed between each possible couple of
species descending from a specified node ("node"), or between a given couple
of species ("tips").

pair species pair to be specified if pair.type = "tips". It needs to be written as in
the example below.

node node number to be specified if pair.type = "node". Notice the node num-
ber must refer to the dichotomic version of the original tree, as produced by
RRphylo.

random whether to perform randomization test ("yes"/"no").

nrep number of replications must be indicated if random = "yes". It is set at 100 by
default.

Details

The way evo.dir computes vectors depends on whether phenotypes or rates are used as variables.
RRphylo rates along a path are aligned along a chain of ancestor/descendant relationships. As such,
each rate vector origin coincides to the tip of its ancestor, and the resultant of the path is given
by vector addition. In contrast, phenotypic vectors are computed with reference to a common ori-
gin (i.e. the consensus shape in a geometric morphometrics). In this latter case, vector subtraction
(rather than addition) will define the resultant of the evolutionary direction. It is important to realize
that resultants could be at any angle even if the species (the terminal vectors) have similar pheno-
types, because path resultants, rather than individual phenotypes, are being contrasted. However,
the function also provides the angle between individual phenotypes as ’angle.between.species’. To
perform randomization test (random = "yes"), the evolutionary directions of the two species are col-
lapsed together. Then, for each variable, the median is found, and random paths of the same size as
the original paths are produced sampling at random from the 47.5th to the 52.5th percentile around
the medians. This way, a random distribution of angles is obtained under the hypothesis that the
two directions are actually parallel. The ’angle.direction’ represents the angle formed by the species
phenotype and a vector of 1s (as long as the number of variables representing the phenotype). This
way, each species phenotype is contrasted to the same vector. The ’angle.direction’ values could be
inspected to test whether individual species phenotypes evolve towards similar directions.

Value

Under all specs, evo.dir returns a ’list’ object. The length of the list is one if pair.type = "tips".
If pair.type = "node", the list is as long as the number of all possible species pairs descending
from the node. Each element of the list contains:

angle.path.A angle of the resultant vector of species A to MRCA

evo.dir 19

vector.size.species.A size of the resultant vector of species A to MRCA

angle.path.B angle of the resultant vector of species B to MRCA

vector.size.species.B size of the resultant vector of species B to MRCA

angle.between.species.to.mrca angle between the species paths resultant vectors to the MRCA

angle.between.species angle between species vectors (as they are, without computing the path)

MRCA the node identifying the most recent common ancestor of A and B

angle.direction.A angle of the vector of species A (as it is, without computing the path) to a fixed
reference vector (the same for all species)

vec.size.direction.A size of the vector of species A

angle.direction.B angle of the vector of species B (as it is, without computing the path) to a fixed
reference vector (the same for all species)

vec.size.direction.B size of the vector of species B

If random = "yes", results also include p-values for the angles.

Author(s)

Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

Examples

Not run:
data("DataApes")
DataApes$PCstage->PCstage
DataApes$Tstage->Tstage
cc<- 2/parallel::detectCores()

RRphylo(tree=Tstage,y=PCstage, clus=cc)->RRstage

Case 1. Without performing randomization test

Case 1.1 Computing angles between rate vectors
for each possible couple of species descending from node 57

evo.dir(RRstage,angle.dimension="rates",pair.type="node",node=57 ,
random="no")->ed1

for a given couple of species
evo.dir(RRstage,angle.dimension="rates",pair.type="tips",
pair= c("Sap_1","Tro_2"),random="no")->ed2

Case 1.2 computing angles between phenotypic vectors provided by the user
for each possible couple of species descending from node 57
evo.dir(RRstage,angle.dimension="phenotypes",y.type="original",
y=PCstage,pair.type="node",node=57,random="no")->ed3

for a given couple of species
evo.dir(RRstage,angle.dimension="phenotypes",y.type="original",
y=PCstage,pair.type="tips",pair=c("Sap_1","Tro_2"),random="no")->ed4

Case 1.3 computing angles between phenotypic vectors produced by "RRphylo"

20 fix.poly

for each possible couple of species descending from node 57
evo.dir(RRstage,angle.dimension="phenotypes",y.type="RR",
pair.type="node",node=57,random="no")->ed5

for a given couple of species
evo.dir(RRstage,angle.dimension="phenotypes",y.type="RR",
pair.type="tips",pair=c("Sap_1","Tro_2"),random="no")->ed6

Case 2. Performing randomization test

Case 2.1 Computing angles between rate vectors
for each possible couple of species descending from node 57
evo.dir(RRstage,angle.dimension="rates",pair.type="node",node=57 ,
random="yes",nrep=10)->ed7

for a given couple of species
evo.dir(RRstage,angle.dimension="rates",pair.type="tips",
pair= c("Sap_1","Tro_2"),random="yes",nrep=10)->ed8

Case 2.2 computing angles between phenotypic vectors provided by the user
for each possible couple of species descending from node 57
evo.dir(RRstage,angle.dimension="phenotypes",y.type="original",
y=PCstage,pair.type="node",node=57,random="yes",nrep=10)->ed9

for a given couple of species
evo.dir(RRstage,angle.dimension="phenotypes",y.type="original",
y=PCstage,pair.type="tips",pair=c("Sap_1","Tro_2"),random="yes",nrep=10)->ed10

Case 2.3 computing angles between phenotypic vectors produced by "RRphylo"
for each possible couple of species descending from node 57
evo.dir(RRstage,angle.dimension="phenotypes",y.type="RR",
pair.type="node",node=57,random="yes",nrep=10)->ed11

for a given couple of species
evo.dir(RRstage,angle.dimension="phenotypes",y.type="RR",
pair.type="tips",pair=c("Sap_1","Tro_2"),random="yes",nrep=10)->ed12

End(Not run)

fix.poly Resolving polytomies to non-zero length branches

Description

The function either collapses clades under a polytomy or resolves polytomous clades to non-zero
length branches, dichotomous clades.

Usage

fix.poly(tree,type=c("collapse","resolve"),node=NULL,tol=1e-10,random=TRUE)

fix.poly 21

Arguments

tree a phylogenetic tree.

type either ’collapse’ to create polytomies to one or more specific nodes or ’resolve’
to resolve (fix) all the polytomies within the tree or to one or more specific
nodes.

node the node in the tree where a polytomy should be created or fixed, either. If
type='resolve' and node=NULL all the polytomies present in the tree are re-
solved.

tol the tolerance to consider a branch length significantly greater than zero, set at
1e-10 by default. If type='resolve', all the branch lengths smaller than tol
are treated as polytomies.

random a logical value specifying whether to resolve the polytomies randomly (the de-
fault) or in the order they appear in the tree (if random = FALSE).

Details

Under type='resolve' polytomous clades are resolved adding non-zero length branches to each
new node. The evolutionary time attached to the new nodes is partitioned equally below the di-
chotomized clade.

Value

A phylogenetic tree with randomly fixed (i.e. type='resolve') polytomies or created polytomies
(i.e. type='collapse').Note, tip labels are ordered according to their position in the tree.

Author(s)

Silvia Castiglione, Pasquale Raia, Carmela Serio

References

Castiglione, S., Serio, C., Piccolo, M., Mondanaro, A., Melchionna, M., Di Febbraro, M., Sansa-
lone, G., Wroe, S., & Raia, P. (2020). The influence of domestication, insularity and sociality
on the tempo and mode of brain size evolution in mammals. Biological Journal of the Linnean
Society,132: 221-231. doi:10.1093/biolinnean/blaa186

See Also

fix.poly vignette;

Examples

Not run:
require(ape)

data("DataCetaceans")
DataCetaceans$treecet->treecet

Resolve all the polytomies within Cetaceans phylogeny

../doc/Tree-Manipulation.html#fix.poly

22 getGenus

fix.poly(treecet,type="resolve")->treecet.fixed
par(mfrow=c(1,2))
plot(treecet,no.margin=TRUE,show.tip.label=FALSE)
plot(treecet.fixed,no.margin=TRUE,show.tip.label=FALSE)

Resolve the polytomies pertaining the genus Kentriodon
fix.poly(treecet,type="resolve",node=221)->treecet.fixed2
par(mfrow=c(1,2))
plot(treecet,no.margin=TRUE,show.tip.label=FALSE)
plot(treecet.fixed2,no.margin=TRUE,show.tip.label=FALSE)

Collapse Delphinidae into a polytomous clade
fix.poly(treecet,type="collapse",node=179)->treecet.collapsed
par(mfrow=c(1,2))
plot(treecet,no.margin=TRUE,show.tip.label=FALSE)
plot(treecet.collapsed,no.margin=TRUE,show.tip.label=FALSE)

End(Not run)

getGenus Taxonomic inspection of the tree at the genus level

Description

The function returns the most recent common ancestor and the number of species belonging to each
or some user-specified genera within the phylogenetic tree.

Usage

getGenus(tree,genera=NULL)

Arguments

tree a phylogenetic tree. The tree needs not to be ultrametric and fully dichotomous.
Generic name and specific epithet must be separated by ’_’.

genera a character vector including one or more genera to focus on. Please notice the
function is case sensitive.

Value

The function returns a data-frame including the number of species, the most recent common ances-
tor of each genera (if a genus includes one species this is the species tip number), and whether the
genera form monophyletic or paraphyletic clades.

Author(s)

Silvia Castiglione, Pasquale Raia, Carmela Serio

getMommy 23

Examples

DataCetaceans$treecet->treecet

getGenus(treecet)->gg1
getGenus(treecet,c("Mesoplodon","Balaenoptera"))->gg2

getMommy Upward tip or node to root path

Description

This function is a wrapper around phytools getDescendants (Revell 2012). It returns the node
path from a given node or species to the root of the phylogeny.

Usage

getMommy(tree,N)

Arguments

tree a phylogenetic tree. The tree needs not to be ultrametric and fully dichotomous.

N the number of node or tip to perform the function on. The function also works
with tip/node labels.

Value

The function produces a vector of node numbers as integers, collated from a node or a tip towards
the tree root.

Author(s)

Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

References

Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other
things). Methods in Ecology and Evolution, 3: 217-223.doi:10.1111/j.2041-210X.2011.00169.x

Examples

data("DataApes")
DataApes$Tstage->Tstage

getMommy(tree=Tstage,N=12)->gm

24 lollipoPlot

getSis Get sister clade

Description

The function identifies and returns the sister clade of a given node/tip.

Usage

getSis(tree,n,printZoom=TRUE)

Arguments

tree a phylogenetic tree. The tree needs not to be ultrametric and fully dichotomous.

n number of focal node or name of focal tip.

printZoom if TRUE the function plots the tree section of interest.

Value

The sister node number or sister tip name. In case of polytomies, the function returns a vector.

Author(s)

Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

Examples

data(DataOrnithodirans)
DataOrnithodirans$treedino->treedino
getSis(tree=treedino,n=677,printZoom=FALSE)->gs1
getSis(tree=treedino,n="Shenzhoupterus_chaoyangensis",printZoom=FALSE)->gs2

lollipoPlot Lollipop charts

Description

The function generates lollipop or dumbbell dots charts.

Usage

lollipoPlot(values, type = "v", pt.lwd = NULL, pt.col = NULL, ...)

makeFossil 25

Arguments

values either a vector, matrix, or data.frame of data. If matrix or data.frame including
two columns, a dumbbell dots chart is plotted.

type plot direction, either vertical ("v", the default) or horizontal ("h").

pt.lwd points lwd

pt.col points color

... other arguments passed to the functions plot, points, and segments.

Details

If a dumbbell dots chart is plotted, different parameters (i.e. col/cex/pch/bg/lwd) for starting and
ending points can be supplied. See example for further details.

Author(s)

Silvia Castiglione, Carmela Serio, Pasquale Raia

Examples

require(emmeans)

lollipoPlot(values=feedlot[,4],pt.col="green",pt.lwd=2,lwd=0.8,col="gray20",
ylab="swt",xlab="samples")

line.col<-sample(colors()[-1],length(levels(feedlot[,1])))
line.col<-rep(line.col,times=table(feedlot[,1]))

lollipoPlot(values=feedlot[order(feedlot[,1]),3],ylab="ewt",xlab="samples",
bg=as.numeric(as.factor(feedlot[order(feedlot[,1]),2])),
cex=1.2,pch=21,col=line.col)

lollipoPlot(values=feedlot[order(feedlot[,1]),3:4],type="h",ylab="ewt",xlab="samples",
pt.col=c("blue","cyan"),cex=1.2,pch=c(3,4),col=line.col)

lollipoPlot(values=feedlot[order(feedlot[,1]),3:4],type="h",ylab="ewt",xlab="samples",
bg=cbind(line.col,line.col),cex=c(1.2,1),pch=c(21,22))

makeFossil Make fossil species on a phylogeny

Description

This function takes an object of class 'phylo' and randomly changes the lengths of the leaves.

26 makeL

Usage

makeFossil(tree,p=0.5,ex=0.5)

Arguments

tree a phylogenetic tree. The tree needs not to be ultrametric and fully dichotomous.

p the proportion of tips involved. By default it is half of the number of tips.

ex the multiplying parameter to change the leaf lengths. It is set at 0.5 by default.

Value

The function produces a phylogeny having the same backbone of the original one.

Author(s)

Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

Examples

data("DataApes")
DataApes$Tstage->Tstage

makeFossil(tree=Tstage)->mf

makeL Matrix of branch lengths along root-to-tip paths

Description

This function produces a n ∗m matrix, where n=number of tips and m=number of branches (i.e. n
+ number of nodes). Each row represents the branch lengths aligned along a root-to-tip path.

Usage

makeL(tree)

Arguments

tree a phylogenetic tree. The tree needs not to be ultrametric and fully dichotomous.

Value

The function returns a n ∗ m matrix of branch lengths for all root-to-tip paths in the tree (one per
species).

makeL1 27

Author(s)

Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

Examples

data("DataApes")
DataApes$Tstage->Tstage

makeL(tree=Tstage)->ml

makeL1 Matrix of branch lengths along a root-to-node path

Description

This function produces a n ∗ n matrix, where n=number of internal branches. Each row represents
the branch lengths aligned along a root-to-node path.

Usage

makeL1(tree)

Arguments

tree a phylogenetic tree. The tree needs not to be ultrametric and fully dichotomous.

Value

The function returns a n ∗ n matrix of branch lengths for all root-to-node paths (one per each node
of the tree).

Author(s)

Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

Examples

data("DataApes")
DataApes$Tstage->Tstage

makeL1(tree=Tstage)->ml1

28 move.lineage

move.lineage Move tips or clades

Description

Move a single tip or an entire clade to a different position within the tree.

Usage

move.lineage(tree,focal,sister,poly=FALSE,rescale=TRUE,rootage=NULL)

Arguments

tree a phylogenetic tree. The tree needs not to be ultrametric and fully dichotomous.

focal the lineage to be moved. It can be either a tip name/number or a node num-
ber. If tree$node.label is not NULL, a focal clade can be indicated as "Clade
NAMEOFTHECLADE" when appropriate. Similarly, an entire genus can be
indicated as "Genus NAMEOFTHEGENUS" (see examples below).

sister the sister tip/node where the focal must be attached. It can be tip name/number
or node number. If tree$node.label is not NULL, a focal clade can be indi-
cated as "Clade NAMEOFTHECLADE" when appropriate. Similarly, an entire
genus can be indicated as "Genus NAMEOFTHEGENUS" (see examples be-
low).

poly logical indicating whether the focal and the sister should form a polytomous
clade.

rescale logical. If the most recent common ancestor of the focal clade is older than its
new ancestor (i.e. the node right above sister), the user can choose whether
the height of the focal clade must be rescaled on the height of the new ancestor
(rescale=TRUE), or the topology of the tree must be modified to accommodate
the height of focal as it is (rescale=FALSE, in this case scaleTree is applied).
This is ignored under poly = TRUE.

rootage the age of the tree root to be supplied if focal must be attached to it (and
poly=FALSE). If rootage=NULL the total height of the tree increases by 10%.

Value

The phylogenetic tree with required topological changes.

Author(s)

Silvia Castiglione, Pasquale Raia

namesCompare 29

Examples

require(phytools)
DataCetaceans$tree->treecet

Case 1. Moving a single tip
sister to a tip
move.lineage(treecet,focal="Orcinus_orca",sister="Balaenoptera_musculus")->mol1
sister to a clade
move.lineage(treecet,focal="Orcinus_orca",sister=131)->mol2
sister to a clade by using treecet$node.label
move.lineage(treecet,focal="Balaenoptera_musculus",sister="Clade Delphinida")->mol3
sister to a specific genus
move.lineage(treecet,focal="Orcinus_orca",sister="Genus Balaenoptera")->mol4
sister to the tree root with and without rootage
move.lineage(treecet,focal="Balaenoptera_musculus",sister=117)->mol5
move.lineage(treecet,focal="Balaenoptera_musculus",sister=117,rootage=max(diag(vcv(treecet))))->mol6

Case 2. Moving a clade
sister to a tip
move.lineage(treecet,focal="Genus Mesoplodon",sister="Balaenoptera_musculus")->mol7
move.lineage(treecet,focal="Clade Delphinida",sister="Balaenoptera_musculus")->mol8
move.lineage(treecet,focal=159,sister="Balaenoptera_musculus")->mol9
sister to a clade
move.lineage(treecet,focal="Genus Mesoplodon",sister=131)->mol10
move.lineage(treecet,focal="Clade Delphinida",sister=131)->mol11
move.lineage(treecet,focal=159,sister=131)->mol12
sister to a clade by using treecet$node.label
move.lineage(treecet,focal="Genus Mesoplodon",sister="Clade Plicogulae")->mol13
move.lineage(treecet,focal="Clade Delphinida",sister="Clade Plicogulae")->mol14
move.lineage(treecet,focal=159,sister="Clade Plicogulae")->mol15
sister to a specific genus
move.lineage(treecet,focal="Genus Mesoplodon",sister="Genus Balaenoptera")->mol16
move.lineage(treecet,focal="Clade Delphinida",sister="Genus Balaenoptera")->mol17
move.lineage(treecet,focal=159,sister="Genus Balaenoptera")->mol18
sister to the tree root with and without rootage
move.lineage(treecet,focal="Genus Mesoplodon",sister=117)->mol19
move.lineage(treecet,focal="Clade Delphinida",sister=117)->mol20
move.lineage(treecet,focal=159,sister=117)->mol21
move.lineage(treecet,focal="Genus Mesoplodon",

sister=117,rootage=max(diag(vcv(treecet))))->mol22
move.lineage(treecet,focal="Clade Delphinida",

sister=117,rootage=max(diag(vcv(treecet))))->mol23
move.lineage(treecet,focal=159,sister=117,rootage=max(diag(vcv(treecet))))->mol24

namesCompare Checking species names for misspelling and synonyms

Description

The function cross-references two vectors of species names checking for possible synonyms, mis-
spelled names, and genus-species or species-subspecies correspondence.

30 namesCompare

Usage

namesCompare(vec1,vec2,proportion=0.15,
focus=c("genus","subspecies","epithet","misspelling"))

Arguments

vec1, vec2 a vector of species names. Genus names only are also allowed. Generic name
and specific epithet must be separated by ’_’. Note that vec2 is used as the ref-
erence. Incomplete or suspicious names are better placed in vec1 (see example
below).

proportion the maximum proportion of different characters between any vec1-vec2 names
pair to consider it a possible misspelling.

focus one or more of "genus", "subspecies", "epithet", "misspelling". See Val-
ues for details.

Value

The function returns a list including (according to focus):

$genus if vec1 includes genera names which miss specific epithet, this object lists all the species in
vec2 belonging to each of the genera.

$subspecies if vec1 includes subspecies (i.e. two epithets after genus name), this object lists species
in vec2 possibly corresponding to each of the subspecies.

$epithet lists species with matching epithets as possible synonyms.

$misspelling lists possible misspelled names. For each proposed mismatched names pair the pro-
portion of characters in the vec1 differing from the string in vec2 is returned.

Author(s)

Silvia Castiglione, Carmela Serio, Antonella Esposito

Examples

Not run:
names(DataFelids$statefel)->nams.fel
nams.fel[c(19,12,37,80,43)]<-c("Puma_yagouaroundi","Felis_manul","Catopuma",

"Pseudaelurus","Panthera_zdansky")
nams<-nams.fel[-81]

namesCompare(nams,names(DataFelids$statefel))->nc1
namesCompare(names(DataFelids$statefel),nams)->nc2

End(Not run)

node.paths 31

node.paths Tracing nodes along paths

Description

Given a vector of nodes, the function collates nodes along individual lineages from the youngest
(i.e. furthest from the tree root) to the oldest.

Usage

node.paths(tree, vec)

Arguments

tree a phylogenetic tree. The tree needs not to be ultrametric and fully dichotomous.

vec a vector of node numbers

Value

A list of node paths, each starting from the youngest node (i.e. furthest from the tree root) and
ending to the oldest along the path.

Author(s)

Silvia Castiglione, Pasquale Raia

Examples

require(ape)

rtree(100)->tree
sample(seq(Ntip(tree)+1,Ntip(tree)+Nnode(tree)),20)->nods
plot(tree,show.tip.label=FALSE)
nodelabels(node=nods,frame="n",col="red")
node.paths(tree=tree, vec=nods)->np

overfitPGLS Testing PGLS_fossil overfit

Description

Testing the robustness of PGLS_fossil results to sampling effects and phylogenetic uncertainty.

Usage

overfitPGLS(modform,oveRR=NULL,phylo.list=NULL,data=NULL,...)

32 overfitPGLS

Arguments

modform data as passed to PGLS_fossil.

oveRR an object produced by applying overfitRR to be provided if PGLS_fossil
rescaled according to RRphylo rates should be performed.

phylo.list a list of phylogenetic trees to be provided if PGLS_fossil on unscaled trees
should be performed.

data a data.frame or list including response and predictor variables as named in modform.
If not found in data, the variables are taken from current environment.

... further argument passed to PGLS_fossil.

Value

The function returns a list containing two ’RRphyloList’ objects including results of PGLS_fossil
performed by using the phylogeny as it is ($tree) and/or rescaled according to RRphylo rates ($RR).
The output always has an attribute "Call" which returns an unevaluated call to the function.

Author(s)

Silvia Castiglione, Carmela Serio, Giorgia Girardi, Pasquale Raia

References

Castiglione, S., Tesone, G., Piccolo, M., Melchionna, M., Mondanaro, A., Serio, C., Di Febbraro,
M., & Raia, P. (2018). A new method for testing evolutionary rate variation and shifts in phenotypic
evolution. Methods in Ecology and Evolution, 9: 974-983.doi:10.1111/2041-210X.12954

See Also

overfitPGLS vignette ; Alternative-trees vignette

Examples

Not run:
cc<- 2/parallel::detectCores()
library(phytools)
library(ape)

generate fictional data to test the function
rtree(100)->tree
fastBM(tree)->resp
fastBM(tree,nsim=3)->resp.multi
fastBM(tree)->pred1
fastBM(tree)->pred2
data.frame(y1=resp,x2=pred1,x1=pred2)->dat

perform RRphylo and PGLS_fossil with univariate/multivariate phenotypic data
PGLS_fossil(modform=y1~x1+x2,data=dat,tree=tree)->pgls_noRR
RRphylo(tree,resp,clus=cc)->RR
PGLS_fossil(modform=resp~pred1+pred2,RR=RR)->pgls_RR

../doc/overfitRR.html
../doc/Alternative-trees.html

overfitRR 33

PGLS_fossil(modform=y1~x1+x2,data=list(y1=resp.multi,x2=pred1,x1=pred2),tree=tree)->pgls2_noRR
RRphylo(tree,resp.multi,clus=cc)->RR2
PGLS_fossil(modform=resp.multi~pred1+pred2,tree=tree,RR=RR2)->pgls2_RR

overfitPGLS routine
generate a list of subsampled and swapped phylogenies to test
tree.list<-resampleTree(RR$tree,s = 0.25,swap.si=0.1,swap.si2=0.1,nsim=10)

test the robustnes of PGLS_fossil with univariate/multivariate phenotypic data
ofRR<-overfitRR(RR = RR,y=resp,phylo.list=tree.list,clus=cc)
ofPGLS<-overfitPGLS(oveRR = ofRR,phylo.list=tree.list,modform = y1~x1+x2,data=dat)

ofRR2<-overfitRR(RR = RR2,y=resp.multi,phylo.list=tree.list,clus=cc)
ofPGLS2<-overfitPGLS(oveRR = ofRR2,phylo.list=tree.list,modform = y1~x1+x2,

data=list(y1=resp.multi,x2=pred1,x1=pred2))

End(Not run)

overfitRR Testing RRphylo overfit

Description

Testing the robustness of RRphylo results to sampling effects and phylogenetic uncertainty.

Usage

overfitRR(RR,y, phylo.list, aces=NULL,x1=NULL, aces.x1=NULL, cov=NULL,
rootV=NULL, clus=0.5, s = NULL, swap.args = NULL, nsim=NULL , trend.args =
NULL, shift.args = NULL, conv.args = NULL, pgls.args = NULL)

Arguments

RR an object produced by RRphylo.

y a named vector of phenotypes.

phylo.list a list (or multiPhylo) of alternative topologies (i.e. having the same species as
the original tree arranged differently) to be tested.

aces if used to produce the RR object, the vector of those ancestral character values at
nodes known in advance must be specified. Names correspond to the nodes in
the tree.

x1 the additional predictor to be specified if the RR object has been created using
an additional predictor (i.e. multiple version of RRphylo). 'x1' vector must be
as long as the number of nodes plus the number of tips of the tree, which can be
obtained by running RRphylo on the predictor as well, and taking the vector of
ancestral states and tip values to form the x1.

34 overfitRR

aces.x1 a named vector of ancestral character values at nodes for x1. It must be indicated
if the RR object has been created using both aces and x1. Names correspond to
the nodes in the tree.

cov if used to produce the RR object, the covariate must be specified. As in RRphylo,
the covariate vector must be as long as the number of nodes plus the number of
tips of the tree, which can be obtained by running RRphylo on the covariate as
well, and taking the vector of ancestral states and tip values to form the covariate.

rootV if used to produce the RR object, the phenotypic value at the tree root must be
specified.

clus the proportion of clusters to be used in parallel computing. To run the single-
threaded version of overfitRR set clus = 0.

s, swap.args, nsim
are deprecated. Check the function resampleTree to generate alterative phylo-
genies.

trend.args is deprecated. Check the function overfitST to test search.trend robustness.

shift.args is deprecated. Check the function overfitSS to test search.shift robustness.

conv.args is deprecated. Check the function overfitSC to test search.conv robustness.

pgls.args is deprecated. Check the function overfitPGLS to test PGLS_fossil robustness.

Details

Methods using a large number of parameters risk being overfit. This usually translates in poor
fitting with data and trees other than the those originally used. With RRphylo methods this risk is
usually very low. However, the user can assess how robust the results of RRphylo are by running
resampleTree and overfitRR. The former is used to subsample the tree according to a s parameter
(that is the proportion of tips to be removed from the tree) and to alter tree topology by means of
swapONE. The list of altered topologies is fed to overfitRR, which cross-references each tree with
the phenotypic data and performs RRphylo on them. Thereby, both the potential for overfit and
phylogenetic uncertainty are accounted for straight away.

Otherwise, a list of alternative phylogenies can be supplied to overfitRR. In this case subsam-
pling and swapping arguments are ignored, and robustness testing is performed on the alternative
topologies as they are.

Value

The function returns a ’RRphyloList’ object containing:

$RR.list a ’RRphyloList’ including the results of each RRphylo performed within overfitRR.

$root.est the estimated root value per simulation.

$rootCI the 95% confidence interval around the root value.

$ace.regressions a ’RRphyloList’ including the results of linear regression between ancestral state
estimates before and after the subsampling.

The output always has an attribute "Call" which returns an unevaluated call to the function.

Author(s)

Silvia Castiglione, Carmela Serio, Giorgia Girardi, Pasquale Raia

overfitRR 35

References

Castiglione, S., Tesone, G., Piccolo, M., Melchionna, M., Mondanaro, A., Serio, C., Di Febbraro,
M., & Raia, P. (2018). A new method for testing evolutionary rate variation and shifts in phenotypic
evolution. Methods in Ecology and Evolution, 9: 974-983.doi:10.1111/2041-210X.12954

Castiglione, S., Serio, C., Mondanaro, A., Di Febbraro, M., Profico, A., Girardi, G., & Raia, P.
(2019a) Simultaneous detection of macroevolutionary patterns in phenotypic means and rate of
change with and within phylogenetic trees including extinct species. PLoS ONE, 14: e0210101.
https://doi.org/10.1371/journal.pone.0210101

See Also

overfitRR vignette ;

Examples

Not run:
cc<- 2/parallel::detectCores()
library(ape)

overfitRR routine
load the RRphylo example dataset including Ornithodirans tree and data
data("DataOrnithodirans")
DataOrnithodirans$treedino->treedino
DataOrnithodirans$massdino->massdino
DataOrnithodirans$statedino->statedino

extract Pterosaurs tree and data
extract.clade(treedino,746)->treeptero
massdino[match(treeptero$tip.label,names(massdino))]->massptero
massptero[match(treeptero$tip.label,names(massptero))]->massptero

peform RRphylo on body mass
RRphylo(tree=treeptero,y=log(massptero),clus=cc)->RRptero

generate a list of subsampled and swapped phylogenies to test
treeptero.list<-resampleTree(RRptero$tree,s = 0.25,swap.si = 0.1,swap.si2 = 0.1,nsim=10)

test the robustness of RRphylo
ofRRptero<-overfitRR(RR = RRptero,y=log(massptero),phylo.list=treeptero.list,clus=cc)

overfitRR routine on multiple RRphylo
load the RRphylo example dataset including Cetaceans tree and data
data("DataCetaceans")
DataCetaceans$treecet->treecet
DataCetaceans$masscet->masscet
DataCetaceans$brainmasscet->brainmasscet
DataCetaceans$aceMyst->aceMyst

cross-reference the phylogenetic tree and body and brain mass data. Remove from
both the tree and vector of body sizes the species whose brain size is missing

../doc/overfitRR.html

36 overfitSC

drop.tip(treecet,treecet$tip.label[-match(names(brainmasscet),treecet$tip.label)])->treecet.multi
masscet[match(treecet.multi$tip.label,names(masscet))]->masscet.multi

peform RRphylo on the variable (body mass) to be used as additional predictor
RRphylo(tree=treecet.multi,y=masscet.multi,clus=cc)->RRmass.multi
RRmass.multi$aces[,1]->acemass.multi

create the predictor vector: retrieve the ancestral character estimates
of body size at internal nodes from the RR object ($aces) and collate them
to the vector of species' body sizes to create
c(acemass.multi,masscet.multi)->x1.mass

peform RRphylo on brain mass by using body mass as additional predictor
RRphylo(tree=treecet.multi,y=brainmasscet,x1=x1.mass,clus=cc)->RRmulti

generate a list of subsampled and swapped phylogenies to test
treecet.list<-resampleTree(RRmulti$tree,s = 0.25,swap.si=0.1,swap.si2=0.1,nsim=10)

test the robustness of multiple RRphylo
ofRRcet<-overfitRR(RR = RRmulti,y=brainmasscet,phylo.list=treecet.list,clus=cc,x1 =x1.mass)

End(Not run)

overfitSC Testing search.conv overfit

Description

Testing the robustness of search.conv (Castiglione et al. 2019b) results to sampling effects and
phylogenetic uncertainty.

Usage

overfitSC(RR,y.list,phylo.list,s=0.25,
nodes=NULL,state=NULL,declust=FALSE,
aces=NULL,x1=NULL,aces.x1=NULL,cov=NULL,rootV=NULL, clus=0.5)

Arguments

RR an object produced by RRphylo.

y.list a list of multivariate phenotype related to the phylogenetic trees provided as
phylo.list (see Details).

phylo.list a list of phylogenetic trees. The phylogenies in phylo.list can either be gen-
erated by resampleTree or provided by the user. In this latter case, the function
is meant to test the robustness of results on alternative topologies, thus the phy-
logenies must have the same species arranged differently.

s the percentage of tips to be cut off. It is set at 25% by default. If phylo.list is
provided, this argument is ignored.

overfitSC 37

nodes the argument nodes as passed to search.conv. Please notice, the arguments
nodes and state can be indicated at the same time.

state the argument state as passed to search.conv. Please notice, the arguments
nodes and state can be indicated at the same time.

declust the argument declust as passed to search.conv.

aces if used to produce the RR object, the vector of those ancestral character values at
nodes known in advance must be specified. Names correspond to the nodes in
the tree.

x1 the additional predictor to be specified if the RR object has been created using
an additional predictor (i.e. multiple version of RRphylo). 'x1' vector must be
as long as the number of nodes plus the number of tips of the tree, which can be
obtained by running RRphylo on the predictor as well, and taking the vector of
ancestral states and tip values to form the x1.

aces.x1 a named vector of ancestral character values at nodes for x1. It must be indicated
if the RR object has been created using both aces and x1. Names correspond to
the nodes in the tree.

cov if used to produce the RR object, the covariate must be specified. As in RRphylo,
the covariate vector must be as long as the number of nodes plus the number of
tips of the tree, which can be obtained by running RRphylo on the covariate as
well, and taking the vector of ancestral states and tip values to form the covariate.

rootV if used to produce the RR object, the phenotypic value at the tree root must be
specified.

clus the proportion of clusters to be used in parallel computing. To run the single-
threaded version of overfitSC set clus = 0.

Details

Methods using a large number of parameters risk being overfit. This usually translates in poor
fitting with data and trees other than the those originally used. With RRphylo methods this risk
is usually very low. However, the user can assess how robust the results of search.conv are by
running resampleTree and overfitSC. The former is used to subsample the tree according to a
s parameter (that is the proportion of tips to be removed from the tree) and to alter tree topology
by means of swapONE. Once a list of new phylogenetic trees (phylo.list) is generated, in case
the shape data to feed to search.conv are reduced (e.g. via SVD), it is necessary to recompute
data reduction, thus obtaining a list of multivariate phenotypes related to the phylogenetic trees
(y.list). Finally, overfitSC performs RRphylo and search.conv on each new set of tree and
data. Thereby, both the potential for overfit and phylogenetic uncertainty are accounted for straight
away.

Otherwise, a list of alternative phylogenies can be supplied to overfitSC. In this case subsampling
and swapping arguments are ignored, and robustness testing is performed on the alternative topolo-
gies as they are. If a clade has to be tested in search.conv, the function scans each alternative
topology searching for the corresponding clade. If the species within such clade on the alternative
topology differ more than 10% from the species within the clade in the original tree, the identity of
the clade is considered disrupted and the test is not performed.

38 overfitSC

Value

The function returns a ’RRphyloList’ object containing:

$RR.list a ’RRphyloList’ including the results of each RRphylo performed within overfitSC

$SCnode.list a ’RRphyloList’ including the results of each search.conv - clade condition per-
formed within overfitSC

$SCstate.list a ’RRphyloList’ including the results of each search.conv - state condition per-
formed within overfitSC

$conv.results a list including results for search.conv performed under clade and state condi-
tions. If a node pair is specified within conv.args, the $clade object contains the percentage of
simulations producing significant p-values for convergence between the clades, and the proportion
of tested trees (i.e. where the clades identity was preserved; always 1 if no phylo.list is sup-
plied). If a state vector is supplied within conv.args, the object $state contains the percentage of
simulations producing significant p-values for convergence within (single state) or between states
(multiple states).

The output always has an attribute "Call" which returns an unevaluated call to the function.

Author(s)

Silvia Castiglione, Giorgia Girardi, Carmela Serio

References

Castiglione, S., Serio, C., Tamagnini, D., Melchionna, M., Mondanaro, A., Di Febbraro, M.,
Profico, A., Piras, P.,Barattolo, F., & Raia, P. (2019b). A new, fast method to search for morphologi-
cal convergence with shape data. PLoS ONE, 14, e0226949. https://doi.org/10.1371/journal.pone.0226949

See Also

search.conv vignette; overfit vignette; Alternative-trees vignette

Examples

Not run:
require(phytools)
require(Morpho)
require(ape)

cc<- 2/parallel::detectCores()

DataFelids$treefel->treefel
DataFelids$statefel->statefel
DataFelids$landfel->feldata

perform data reduction via Procrustes superimposition (in this case) and RRphylo
procSym(feldata)->pcafel
pcafel$PCscores->PCscoresfel

RRphylo(treefel,PCscoresfel,clus=cc)->RRfelids

../doc/search.conv.html
../doc/overfit.html
../doc/Alternative-trees.html

overfitSS 39

apply search.conv under nodes and state condition
search.conv(RR=RRfelids, y=PCscoresfel, min.dim=5, min.dist="time38", clus=cc)->sc.clade.time

search.conv(tree=treefel, y=PCscoresfel, state=statefel, declust=TRUE, clus=cc)->sc.state

select converging clades returned in sc.clade.time
felnods<-rbind(c(85,155),c(85,145))

overfitSC routine

generate a list of subsampled and swapped phylogenies to test for search.conv
robustness. Use as reference tree the phylogeny returned by RRphylo.
Set the nodes and the categories under testing as arguments of
resampleTree so that it maintains no less than 5 species at least in each
clade/state.
treefel.list<-resampleTree(RRfelids$tree,s=0.15,nodes=unique(c(felnods)),categories=statefel,

nsim=15,swap.si=0.1,swap.si2=0.1)

match the original data with each subsampled-swapped phylogeny in treefel.list
and repeat data reduction
y.list<-lapply(treefel.list,function(k){

treedataMatch(k,feldata)[[1]]->ynew
procSym(ynew)$PCscores

})

test for robustness of search.conv results by overfitSC
oSC<-overfitSC(RR=RRfelids,phylo.list=treefel.list,y.list=y.list,

nodes = felnods,state=statefel,clus=cc)

End(Not run)

overfitSS Testing search.shift overfit

Description

Testing the robustness of search.shift (Castiglione et al. 2018) results to sampling effects and
phylogenetic uncertainty.

Usage

overfitSS(RR,oveRR,node=NULL,state=NULL)

Arguments

RR an object produced by RRphylo.
oveRR an object produced by applying overfitRR on the object provided to the func-

tion as RR.
node, state arguments passed to search.shift. Arguments node and state can be speci-

fied at the same time.

40 overfitSS

Value

The function returns a ’RRphyloList’ object containing:

$SSclade.list a ’RRphyloList’ including the results of each search.shift - clade condition per-
formed within overfitSS.

$SSsparse.list a ’RRphyloList’ including the results of each search.shift - sparse condition
performed within overfitSS.

$shift.results a list including results for search.shift performed under clade and sparse con-
ditions. If one or more nodes are specified, the $clade$single.clades object contains the pro-
portion of simulations producing significant and positive or significant and negative rate shifts for
each single node, either compared to the rest of the tree ($singles) or to the rest of the tree af-
ter removing other shifting clades ($no.others). The object $clade$all.clades.together in-
cludes the same proportions obtained by testing all the specified clades as a whole (i.e. considering
them as evolving under a single rate regime). For each node the proportion of tested trees (i.e.
where the clade identity was preserved) is also indicated. If a state vector is supplied, the object
$sparse contains the percentage of simulations producing significant p-value separated by shift
sign ($p.states).

The output always has an attribute "Call" which returns an unevaluated call to the function.

Author(s)

Silvia Castiglione, Carmela Serio, Giorgia Girardi, Pasquale Raia

References

Castiglione, S., Tesone, G., Piccolo, M., Melchionna, M., Mondanaro, A., Serio, C., Di Febbraro,
M., & Raia, P. (2018). A new method for testing evolutionary rate variation and shifts in phenotypic
evolution. Methods in Ecology and Evolution, 9: 974-983.doi:10.1111/2041-210X.12954

See Also

overfitSS vignette ; search.shift vignette ; Alternative-trees vignette

Examples

Not run:
cc<- 2/parallel::detectCores()
load the RRphylo example dataset including Ornithodirans tree and data
data("DataOrnithodirans")
DataOrnithodirans$treedino->treedino
log(DataOrnithodirans$massdino)->massdino
DataOrnithodirans$statedino->statedino

peform RRphylo on Ornithodirans tree and data
RRphylo(tree=treedino,y=massdino,clus=cc)->dinoRates

perform search.shift under both "clade" and "sparse" condition
search.shift(RR=dinoRates, status.type= "clade")->SSauto
search.shift(RR=dinoRates, status.type= "sparse", state=statedino)->SSstate

../doc/overfitRR.html
../doc/search.shift.html
../doc/Alternative-trees.html

overfitST 41

overfitSS routine
generate a list of subsampled and swapped phylogenies, setting as categories/node
the state/node under testing
treedino.list<-resampleTree(dinoRates$tree,s = 0.25,categories=statedino,

node=rownames(SSauto$single.clades),swap.si = 0.1,swap.si2 = 0.1,nsim=10)

test the robustness of search.shift
ofRRdino<-overfitRR(RR = dinoRates,y=massdino,phylo.list=treedino.list,clus=cc)
ofSS<-overfitSS(RR = dinoRates,oveRR = ofRRdino,state=statedino,node=rownames(SSauto$single.clades))

End(Not run)

overfitST Testing search.trend overfit

Description

Testing the robustness of search.trend (Castiglione et al. 2019a) results to sampling effects and
phylogenetic uncertainty.

Usage

overfitST(RR,y,oveRR,x1=NULL,x1.residuals=FALSE,node=NULL,cov=NULL,clus=0.5)

Arguments

RR an object produced by RRphylo.

y a named vector of phenotypes.

oveRR an object produced by applying overfitRR on the object provided to the func-
tion as RR.

x1, node, cov arguments as passed to overfitRR.

x1.residuals as passed to search.trend. Default is FALSE.

clus the proportion of clusters to be used in parallel computing. To run the single-
threaded version of overfitST set clus = 0.

Value

The function returns a ’RRphyloList’ object containing:

$ST.list a ’RRphyloList’ including the results of each search.trend performed within overfitST.

$trend.results a list including the percentage of simulations showing significant p-values for phe-
notypes versus age and absolute rates versus age regressions for the entire tree separated by slope
sign ($tree). If one or more nodes are specified within trend.args, the list also includes the same
results at nodes ($node) and the results for comparison between nodes ($comparison). For each
node the proportion of tested trees (i.e. where the clade identity was preserved; always 1 if no
phylo.list is supplied) is also indicated.

The output always has an attribute "Call" which returns an unevaluated call to the function.

42 overfitST

Author(s)

Silvia Castiglione, Carmela Serio, Giorgia Girardi, Pasquale Raia

References

Castiglione, S., Tesone, G., Piccolo, M., Melchionna, M., Mondanaro, A., Serio, C., Di Febbraro,
M., & Raia, P. (2018). A new method for testing evolutionary rate variation and shifts in phenotypic
evolution. Methods in Ecology and Evolution, 9: 974-983.doi:10.1111/2041-210X.12954

Castiglione, S., Serio, C., Mondanaro, A., Di Febbraro, M., Profico, A., Girardi, G., & Raia, P.
(2019a) Simultaneous detection of macroevolutionary patterns in phenotypic means and rate of
change with and within phylogenetic trees including extinct species. PLoS ONE, 14: e0210101.
https://doi.org/10.1371/journal.pone.0210101

See Also

overfitST vignette ; search.trend vignette ; Alternative-trees vignette

Examples

Not run:
cc<- 2/parallel::detectCores()
library(ape)

Case 1
load the RRphylo example dataset including Ornithodirans tree and data
data("DataOrnithodirans")
DataOrnithodirans$treedino->treedino
DataOrnithodirans$massdino->massdino
DataOrnithodirans$statedino->statedino

extract Pterosaurs tree and data
extract.clade(treedino,746)->treeptero
massdino[match(treeptero$tip.label,names(massdino))]->massptero
massptero[match(treeptero$tip.label,names(massptero))]->massptero

perform RRphylo and search.trend on body mass data
RRphylo(tree=treeptero,y=log(massptero),clus=cc)->RRptero
search.trend(RR=RRptero, y=log(massptero),node=143,clus=cc)->st2

overfitST routine
generate a list of subsampled and swapped phylogenies setting as node
the clade under testing
treeptero.list<-resampleTree(RRptero$tree,s = 0.25,node=143,

swap.si = 0.1,swap.si2 = 0.1,nsim=10)

test the robustness of search.trend
ofRRptero<-overfitRR(RR = RRptero,y=log(massptero),phylo.list=treeptero.list,clus=cc)
ofSTptero<-overfitST(RR=RRptero,y=log(massptero),oveRR=ofRRptero,node=143,clus=cc)

Case 2

../doc/overfitRR.html
../doc/search.trend.html
../doc/Alternative-trees.html

PGLS_fossil 43

load the RRphylo example dataset including Cetaceans tree and data
data("DataCetaceans")
DataCetaceans$treecet->treecet
DataCetaceans$masscet->masscet
DataCetaceans$brainmasscet->brainmasscet

cross-reference the phylogenetic tree and body and brain mass data. Remove from
both the tree and vector of body sizes the species whose brain size is missing
drop.tip(treecet,treecet$tip.label[-match(names(brainmasscet),

treecet$tip.label)])->treecet.multi
masscet[match(treecet.multi$tip.label,names(masscet))]->masscet.multi

peform RRphylo on the variable (body mass) to be used as additional predictor
RRphylo(tree=treecet.multi,y=masscet.multi,clus=cc)->RRmass.multi
RRmass.multi$aces[,1]->acemass.multi

create the predictor vector: retrieve the ancestral character estimates
of body size at internal nodes from the RR object ($aces) and collate them
to the vector of species' body sizes to create
c(acemass.multi,masscet.multi)->x1.mass

peform RRphylo and search.trend on brain mass by using body mass as additional predictor
RRphylo(tree=treecet.multi,y=brainmasscet,x1=x1.mass,clus=cc)->RRmulti
search.trend(RR=RRmulti, y=brainmasscet,x1=x1.mass,clus=cc)->STcet

overfitST routine
generate a list of subsampled and swapped phylogenies to test
treecet.list<-resampleTree(RRmulti$tree,s = 0.25,swap.si=0.1,swap.si2=0.1,nsim=10)

test the robustness of search.trend with and without x1.residuals
ofRRcet<-overfitRR(RR = RRmulti,y=brainmasscet,phylo.list=treecet.list,clus=cc,x1 =x1.mass)
ofSTcet1<-overfitST(RR=RRmulti,y=brainmasscet,oveRR=ofRRcet,x1 =x1.mass,clus=cc)
ofSTcet2<-overfitST(RR=RRmulti,y=brainmasscet,oveRR=ofRRcet,x1 =x1.mass,x1.residuals = TRUE,clus=cc)

End(Not run)

PGLS_fossil Phylogenetic Generalized Least Square with phylogenies including
fossils

Description

The function performs pgls for non-ultrametric trees using a variety of evolutionary models or
RRphylo rates to change the tree correlation structure.

Usage

PGLS_fossil(modform,data=NULL,tree=NULL,RR=NULL,GItransform=FALSE,
intercept=FALSE,model="BM",method=NULL,permutation="none",...)

44 PGLS_fossil

Arguments

modform the formula for the regression model.

data a data.frame or list including response and predictor variables as named in modform.
If not found in data, the variables are taken from current environment.

tree a phylogenetic tree to be indicated for any model except if RRphylo is used to
rescale tree branches. The tree needs not to be ultrametric and fully dichoto-
mous.

RR the result of RRphylo performed on the response variable. If RR is specified,
tree branches are rescaled to the absolute branch-wise rate values calculated by
RRphylo to transform the variance-covariance matrix.

GItransform logical indicating whether the PGLS approach as in Garland and Ives (2000)
must be applied.

intercept under GItransform = TRUE, indicates whether the intercept should be included
in the model.

model an evolutionary model as indicated in phylolm (for univariate response variable)
or mvgls (for multivariate response variable).

method optional argument to be passed to phylolm (for univariate response variable) or
mvgls (for multivariate response variable). See individual functions for further
details.

permutation passed to manova.gls

... further argument passed to phylolm, mvgls, manova.gls, or lm.

Details

The function is meant to work with both univariate or multivariate data, both low- or high-dimensional.
In the first case, PGLS_fossil uses phylolm, returning an object of class "phylolm". In the latter,
regression coefficients are estimated by mvgls, and statistical significance is obtained by means
of permutations within manova.gls. In this case, PGLS_fossil returns a list including the output
of both analyses. In all cases, for both univariate or multivariate data, if GItransform = TRUE the
functions returns a standard lm output. In the latter case, the output additionally includes the result
of manova applied on the multivariate linear model.

Value

Fitted pgls parameters and significance. The class of the output object depends on input data (see
details). The output always has an attribute "Call" which returns an unevaluated call to the function.

Author(s)

Silvia Castiglione, Pasquale Raia, Carmela Serio, Gabriele Sansalone, Giorgia Girardi

References

Garland, Jr, T., & Ives, A. R. (2000). Using the past to predict the present: confidence intervals
for regression equations in phylogenetic comparative methods. The American Naturalist, 155: 346-
364. doi:10.1086/303327

PGLS_fossil 45

See Also

RRphylo vignette;

overfitPGLS; overfitPGLS vignette

mvgls ; manova.gls

phylolm

Examples

Not run:
library(ape)
library(phytools)
cc<- 2/parallel::detectCores()

rtree(100)->tree
fastBM(tree)->resp
fastBM(tree,nsim=3)->resp.multi
fastBM(tree)->pred1
fastBM(tree)->pred2

PGLS_fossil(modform=resp~pred1+pred2,tree=tree)->pgls_noRR
PGLS_fossil(modform=resp~pred1+pred2,tree=tree,GItransform=TRUE)->GIpgls_noRR

RRphylo(tree,resp,clus=cc)->RR
PGLS_fossil(modform=resp~pred1+pred2,RR=RR)->pgls_RR
PGLS_fossil(modform=resp~pred1+pred2,tree=tree,RR=RR,GItransform=TRUE)->GIpgls_RR

To derive log-likelihood and AIC for outputs of PGLS_fossil applied on univariate
response variables the function AIC can be applied
AIC(pgls_noRR)
AIC(pgls_RR)
AIC(GIpgls_noRR)
AIC(GIpgls_RR)

PGLS_fossil(modform=resp.multi~pred1+pred2,tree=tree)->pgls2_noRR
PGLS_fossil(modform=resp.multi~pred1+pred2,tree=tree,GItransform=TRUE)->GIpgls2_noRR

To evaluate statistical significance of multivariate models, the '$manova'
object must be inspected
pgls2_noRR$manova
summary(GIpgls2_noRR$manova)

RRphylo(tree,resp.multi,clus=cc)->RR2
PGLS_fossil(modform=resp.multi~pred1+pred2,RR=RR2)->pgls2_RR
PGLS_fossil(modform=resp.multi~pred1+pred2,tree=tree,RR=RR2,GItransform=TRUE)->GIpgls2_RR

To evaluate statistical significance of multivariate models, the '$manova'
object must be inspected
pgls2_noRR$manova
summary(GIpgls2_noRR$manova)
pgls2_RR$manova

../doc/RRphylo.html
../doc/overfit.html#overfitPGLS

46 phyloclust

summary(GIpgls2_RR$manova)

logLik(pgls2_noRR$pgls)
logLik(pgls2_RR$pgls)

End(Not run)

phyloclust Test for phylogenetic clustering

Description

The function tests the presence of phylogenetic clustering for species within a focal state.

Usage

phyloclust(tree,state,focal,nsim=100)

Arguments

tree a phylogenetic tree. The tree needs not to be ultrametric or fully dichotomous.

state the named vector of tip states.

focal the focal state to be tested for phylogenetic clustering.

nsim number of simulations to perform the phylogenetic clustering test.

Details

To test for phylogenetic clustering, the function computes the mean cophenetic (i.e. evolutionary
time) distance between all the species under the focal state. Such value is compared to a random
distribution of time distances obtained by sampling nsim times as many random tips as those under
the focal state. In the presence of significant phylogenetic clustering, tips under the focal state
are randomly removed until the p becomes >0.05 or only 3 tips are left.

Value

The function returns a list including the p-value ($p) for the test of phylogenetic clustering and a
$declusterized object containing the declusterized versions of the original tree and state vector
(i.e. tips are removed as to make p>0.05) and the vector of removed species.

Author(s)

Silvia Castiglione, Pasquale Raia

plotConv 47

Examples

data("DataFelids")
DataFelids$treefel->treefel
DataFelids$statefel->statefel

phyloclust(tree=treefel,state=statefel,focal="saber")->pcl

plotConv Graphical representation of search.conv results

Description

This function generates customized functions to produce plots out of search.conv results.

Usage

plotConv(SC,y,variable,RR=NULL,state=NULL,aceV=NULL)

Arguments

SC an object produced by search.conv.

y the multivariate phenotype used to perform search.conv.

variable the index of result to plot. If convergence between clades is inspected, this is
the position within the SC$'average distance from group centroids' vector
of the clade pair to be plotted. In the case of convergence between states, this
is the number of the line of SC$state.res where results for the state pair are
returned.

RR the object produced by RRphylo used to perform search.conv. This is not
indicated if convergence between states is tested.

state the named vector of tip states used to perform search.conv. This is not indi-
cated if convergence between clades is tested.

aceV phenotypic values at internal nodes to be provided if used to perform search.conv.

Value

If convergence between clades was tested, plotConv returns a list of four functions:

$plotHistTips shows the mean Euclidean distance computed between phenotypic vectors of all
the tips belonging to the converging clades as compared to the distribution of distances between all
possible pair of tips across the rest of the tree. The usage is: ...$plotHistTips(hist.args=NULL,line.args=NULL),
where hist.args is a list of further arguments passed to the function hist, and line.args is a list
of further arguments passed to the function lines.

$plotHistAces shows the Euclidean distance computed between phenotypic vectors of the MR-
CAs of the converging clades as compared to the distribution of distances between all possible pairs
of nodes across the rest of the tree. The usage is identical to $plotHistTips.

48 plotConv

$plotPChull generates a PC1/PC2 plot obtained by performing a PCA of the species phenotypes.
Convergent clades are indicated by colored convex hulls. Large dots represent the mean phenotypes
per clade (i.e. their group centroids) and asterisks (customizable) represent the ancestral phenotypes
of the individual clades. The usage is: ...$plotPChull(plot.args=NULL,chull.args=NULL,means.args=NULL,
ace.args=NULL,legend.args=list(),where plot.args is a list of further arguments passed to
the function plot, chull.args is a list of further arguments passed to the function polygon,
means.args and ace.args are lists of further argument passed to the function points to customize
the dots representing the centroids and the ancestral phenotypes respectively, and legend.args is
a list of additional arguments passed to the function legend (if = NULL the legend is not plotted).

$plotTraitgram produces a modified traitgram plot (see package picante) highlighting the branches
of the clades found to converge. The usage is: plotTraitgram(colTree=NULL,colNodes=NULL,...),
where colTree is the color to represent the traitgram lines not pertaining the converging clades,
colNodes is the color (or the vector of colors) to represent the traitgram lines pertaining the con-
verging clades, and ... are further arguments passed to the function plot to plot lines.

If convergence between states was tested, plotConv returns a list of two functions:

$plotPChull generates a PC1/PC2 plot obtained by performing a PCA of the species pheno-
types, with colored convex hulls enclosing species belonging to different states. The usage is:
...$plotPChull(plot.args=NULL,chull.args=NULL,points.args=NULL, legend.args=list(),
where plot.args is a list of further arguments passed to the function plot, chull.args is a list of
further arguments passed to the function polygon, points.args is a list of further argument passed
to the function points, and legend.args is a list of additional arguments passed to the function
legend (if = NULL the legend is not plotted).

$plotPolar produces a polar plot of the mean angle within/between state/s as compared to the 95
angles. The usage is: ...$plotPolar(polar.args=NULL,polygon.args=NULL,line.args=NULL),
where polar.args is a list of further arguments passed to the function polar.plot to set the plot
basics (i.e. radial.lim, start, and so on), polygon.args is a list of further arguments passed
to the function polar.plot under the condition rp.type="p" (see plotrix::polar.plot for de-
tails) to set the angles distribution graphics, and line.args is a list of further arguments passed to
the function polar.plot under the condition rp.type="r" to set the mean angle graphics.

Author(s)

Silvia Castiglione

References

Castiglione, S., Serio, C., Tamagnini, D., Melchionna, M., Mondanaro, A., Di Febbraro, M.,
Profico, A., Piras, P.,Barattolo, F., & Raia, P. (2019). A new, fast method to search for morphological
convergence with shape data. PLoS ONE, 14, e0226949. https://doi.org/10.1371/journal.pone.0226949

See Also

search.conv vignette

plotConv vignette

../doc/search.conv.html
../doc/Plotting-tools.html#plotConv

plotRates 49

Examples

Not run:
data("DataFelids")
DataFelids$PCscoresfel->PCscoresfel
DataFelids$treefel->treefel
DataFelids$statefel->statefel->state2
state2[sample(which(statefel=="nostate"),20)]<-"st2"
cc<- 2/parallel::detectCores()

RRphylo(treefel,PCscoresfel,clus=cc)->RRfel

search.conv(RR=RRfel, y=PCscoresfel, min.dim=5, min.dist="node9",clus=cc)->sc.clade
plotConv(sc.clade,PCscoresfel,variable=2,RR=RRfel)->pc.clade

pc.clade$plotHistTips(hist.args = list(col="gray80",yaxt="n",cex.axis=0.8,cex.main=1.5),
line.args = list(lwd=3,lty=4,col="purple"))

pc.clade$plotHistAces(hist.args = list(col="gray80",cex.axis=0.8,cex.main=1.5),
line.args = list(lwd=3,lty=4,col="gold"))

pc.clade$plotPChull(chull.args = list(border=c("cyan","magenta"),lty=1),
means.args = list(pch=c(23,22),cex=3,bg=c("cyan2","magenta2")),
ace.args=list(pch=9),legend.args = NULL)

pc.clade$plotTraitgram(colTree = "gray70",colNodes = c("cyan","magenta"))

search.conv(tree=treefel, y=PCscoresfel, state=statefel,declust=TRUE,clus=cc)->sc.state
plotConv(sc.state,PCscoresfel,variable=1,state=statefel)->pc.state
pc.state$plotPChull(chull.args = list(border=c("gray70","blue"),lty=1),

points.args = list(pch=c(23,22),bg="gray"),
legend.args = list(pch=c(23,22),x="top"))

pc.state$plotPolar(polar.args = list(clockwise=TRUE,start=0,rad.col="black",grid.col="black"),
polygon.args = list(line.col="green",poly.col=NA,lwd=2),
line.args = list(line.col="deeppink",lty=2,lwd=3))

End(Not run)

plotRates Plot RRphylo rates at a specified node

Description

This function generates customized functions to produce histograms and lollipop charts of the
RRphylo rates computed for a given clade as compared to the rates computed for the rest of the
tree.

Usage

plotRates(RR,node)

50 plotRates

Arguments

RR an object produced by RRphylo.

node the node subtending the clade of interest.

Value

The function returns a list of functions:

$plotHist returns the histograms of rates (in ln absolute values) computed for the focal clade against
rates computed the rest of the tree. The usage is: ...$plotHist(hist.args=list(col1,col2),legend.args=list()),
where legend.args is a list of additional arguments passed to the function legend (if = NULL
the legend is not plotted) and hist.args is a list of further arguments passed to the function
plot.histogram. hist.args default arguments include histogram colors for background rates
(col1) and rates of the clade under inspection (col2).

$plotLollipop returns the lollipop chart of the rates of individual branches of the focal clade col-
lated in increasing rate value, and contrasted to the average rate computed over the rest of the tree
branches (the vertical line). The usage is: ...$plotLollipop(lollipop.args=NULL,line.args=NULL),
where lollipop.args is a list of further arguments passed to the function lollipoPlot and
line.args is a list of additional arguments passed to the function line. This function additionally
returns the vector of rates for the focal clade, collated in increasing order.

Author(s)

Silvia Castiglione, Pasquale Raia

See Also

RRphylo vignette

plotRates vignette

RRphylo vignette

plotRates vignette

Examples

data("DataApes")
DataApes$PCstage->PCstage
DataApes$Tstage->Tstage
cc<- 2/parallel::detectCores()

RRphylo(tree=Tstage,y=PCstage,clus=cc)->RRstage

plotRates(RRstage,node=72)->pR
pR$plotHist(hist.args=list(col1="cyan1",col2="blue"),legend.args=list(x="topright"))
pR$plotLollipop(lollipop.args=list(col="chartreuse",bg="chartreuse"),

line.args=list(col="deeppink",lwd=2))

../doc/RRphylo.html
../doc/Plotting-tools.html
../doc/RRphylo.html
../doc/Plotting-tools.html#plotRates

plotRR 51

plotRR Plot the RRphylo output onto the phylogenetic tree

Description

This function generates customized functions to plot the phylogenetic tree (as returned by RRphylo)
with branches colored according to phenotypic values or phenotypic evolutionary rates.

Usage

plotRR(RR,y,multivariate=NULL)

Arguments

RR an object produced by RRphylo.

y the vector/matrix of phenotypic values used to perform RRphylo.

multivariate if RRphylo was performed on multivariate data, this argument indicates whether
individual rates for each variables (= "multiple.rates") or the norm2 vector
of multivariate rates (= "rates") should be plotted.

Value

The function returns a list of functions:

$plotRRphen charts phenotypic values along the tree branches. Phenotypes at tips are taken as they
are from the y object. Phenotypic values for internal branches are derived from the RR$aces object.
The usage is: ...$plotRRphen(variable=NULL,tree.args=NULL,color.pal=NULL,colorbar.args=list()),
where variable is the index or name of the variable to be plotted in case of multivariate data,
tree.args is a list of further arguments passed to the function plot.phylo plus a logical indicat-
ing whether the tree should be ladderized before plotting (see examples below), color.pal is a
function to generate the color palette, and colorbar.args is a list of further arguments passed to
the function colorbar (if = NULL the bar is not plotted).

$plotRRrates charts evolutionary rate values along the tree branches. The usage is identical to
$plotRRphen. In case of multivariate data and multivariate = "rates", the argument variable
can be left unspecified.

Author(s)

Silvia Castiglione, Pasquale Raia

See Also

RRphylo vignette

plotRR vignette

RRphylo vignette

plotRR vignette

../doc/RRphylo.html
../doc/Plotting-tools.html#plotRR
../doc/RRphylo.html
../doc/Plotting-tools.html

52 plotShift

Examples

Not run:
data("DataApes")
DataApes$PCstage->PCstage
DataApes$Tstage->Tstage
cc<- 2/parallel::detectCores()

RRphylo(tree=Tstage,y=PCstage,clus=cc)->RRstage

plotRR(RRstage,y=PCstage,multivariate="multiple.rates")->pRR1
pRR1$plotRRphen(variable=1,tree.args=list(edge.width=2),color.pal=rainbow,

colorbar.args = list(x="bottomleft",labs.adj=0.7,xpd=TRUE))
pRR1$plotRRrates(variable=2,tree.args=list(edge.width=2,direction="leftwards",ladderize=TRUE),

color.pal=rainbow,colorbar.args = list(x="topright",labs.adj=0.7,xpd=TRUE))

plotRR(RRstage,y=PCstage,multivariate="rates")->pRR2
pRR2$plotRRrates(tree.args=list(edge.width=2),

color.pal=hcl.colors,
colorbar.args = list(x="topleft",labs.adj=0.7,xpd=TRUE,title.pos="bottom"))

End(Not run)

plotShift Graphical representation of search.shift results

Description

plotShift generates customized functions to produce plots out of search.shift results. addShift
adds circles to highlight shifting clades onto the currently plotted tree.

Usage

plotShift(RR,SS,mode,state=NULL)

addShift(SS,symbols.args=NULL)

Arguments

RR the object produced by RRphylo used to perform search.shift.

SS an object produced by search.shift.

mode if search.shift was performed under status.type = "clade" by setting the
node argument, mode is a numeric indicating whether the output number 1, that
is ...$single.clades$singles or the output number 2 ...$single.clades$no.others
should be plotted.

state if search.shift was performed under status.type = "sparse", this is the
same state vector provided to the function.

symbols.args as described for $plotClades below.

plotShift 53

Details

Using ...$plotClades() or plotting the tree and applying addShift() returns the same plot. The
latter function might be useful in combination with plotRR to add the shifts information to the
branch-wise plot of evolutionary rate values.

Value

The function returns a function to generate a customizable plot of search.shift results.

If search.shift was performed under status.type = "clade", plotShift returns a $plotClades
function which highlights the shifting clades onto the phylogenetic tree. The usage is: ...$plotClades(tree.args=NULL,symbols.args=NULL),
where tree.args is a list of further arguments passed to the function plot.phylo, and symbols.args
is a list of further arguments passed to the function symbols (n.b. the shape of the symbol is
not customizable). The function automatically plots red circles for negative shifts and blue cir-
cles for positive shifts, in each cases with the radium proportional to the absolute value of rate
difference. The user can choose different color options for positive/negative shifts by setting
symbols.args=list(fg=c(pos="color for positive shift",neg="color for negative shift")),
or provide a vector of as many colors as the number of shifting clades. The same applies to the ar-
gument "bg".

If search.shift was performed under status.type = "sparse", plotShift returns a $plotStates
function which plots the comparison between the real difference and the distributions of random dif-
ferences (see search.shift vignette#sparse). The usage is: ...$plotStates(plot.args=NULL,points.args=NULL,legend.args=list()),
where plot.args is a list of further arguments passed to the function plot (used in the form:
plot(y~x)), points.args is a list of further arguments passed to the function points, and legend.args
is a list of additional arguments passed to the function legend (if = NULL the legend is not plotted).
If as many colors/pch values as the number of different states are provided in points.args, each
of them is assigned to each states taken in the same alphabetical order.

Author(s)

Silvia Castiglione, Giorgia Girardi

References

Castiglione, S., Tesone, G., Piccolo, M., Melchionna, M., Mondanaro, A., Serio, C., Di Febbraro,
M., & Raia, P.(2018). A new method for testing evolutionary rate variation and shifts in phenotypic
evolution. Methods in Ecology and Evolution, 9: 974-983.doi:10.1111/2041-210X.12954

See Also

search.shift vignette

plotShift vignette

Examples

Not run:
data("DataOrnithodirans")
DataOrnithodirans$treedino->treedino
DataOrnithodirans$massdino->massdino

../doc/search.shift.html
../doc/search.shift.html
../doc/Plotting-tools.html#plotShift

54 plotTrend

DataOrnithodirans$statedino->statedino
cc<- 2/parallel::detectCores()

RRphylo(tree=treedino,y=massdino,clus=cc)->dinoRates

search.shift(RR=dinoRates,status.type="clade")->SSauto
plotShift(RR=dinoRates,SS=SSauto)->plotSSauto
plotSSauto$plotClades()

plot(dinoRates$tree)
addShift(SS=SSauto)

search.shift(RR=dinoRates,status.type="clade",node=c(696,746))->SSnode
plotShift(RR=dinoRates,SS=SSnode,mode=2)->plotSSnode
plotSSnode$plotClades(tree.args=list(no.margin=TRUE),

symbols.args=list(fg=NA,bg=c(pos="cyan",neg="magenta")))

search.shift(RR=dinoRates,status.type= "sparse",state=statedino)->SSstate
plotShift(RR=dinoRates,SS=SSstate,state=statedino)->plotSSstate
plotSSstate$plotStates(points.args=list(bg=c("gold","forestgreen","royalblue","white"),

col=c("black","black","black","orangered"),
pch=c(21,22,24,11)),legend.args=list())

End(Not run)

plotTrend Graphical representation of search.trend results

Description

This function generates customized functions to produce plots of phenotype versus time and abso-
lute evolutionary rates versus time regressions for the entire phylogeny and individual clades. Each
custom function takes as first argument the index or name of the variable (as in the search.trend
output in $trends.data$phenotypeVStime) to be plotted.

Usage

plotTrend(ST)

Arguments

ST an object produced by search.trend.

Value

The function returns a list of functions:

$plotSTphen returns the plot of rescaled phenotype versus age regression. The 95% confidence in-
tervals of slopes produced by regressing phenotypes simulated under the Brownian motion are plot-
ted as a polygon. The usage is ...$plotSTphen(variable,plot.args=NULL,polygon.args=NULL,line.args=NULL),

plotTrend 55

where variable is the index or name of the variable to be plotted, plot.args is a list of further
arguments passed to the function plot, polygon.args is a list of further arguments passed to the
function polygon, and line.args is a list of further arguments passed to the function lines. The
functions automatically plots white points for internal nodes, red points for tips, a blue regression
line, and a gray shaded polygon to represent the 95% confidence intervals of Brownian motion
slopes.

$plotSTrates returns the plot of log rescaled rates versus age regression. The 95% confidence in-
tervals of slopes produced by regressing rates simulated under the Brownian motion are plotted as a
shaded area. The arguments are the same as described for $plotSTphen. In the case of multivariate
y, the 2-norm vector of multiple rates (see RRphylo for details) can be plotted by setting variable
= "rate" or variable = the number of actual variables + 1.

$plotSTphenNode returns plots of rescaled phenotype versus age regression for individual clades.
The usage is ...$plotSTphenNode(variable,node,plot.args=NULL,lineTree.args=NULL, lineNode.args=NULL,node.palette=NULL),
where variable is the same as plotSTphen and node is the vector of indices or numbers (as in-
putted to search.trend, to be indicated as character) of nodes to be plotted. The function allows
up to nine nodes at the same time. plot.args is a list of further arguments passed to the function
plot, including pch.node, a custom argument to set individual pch at nodes (its length can be one
or as long as the number of nodes). lineTree.args is a list of further arguments passed to the
function lines used to plot the regression line for the entire tree lineNode.args is a list of fur-
ther arguments passed to the function lines used to plot the regression line for individual nodes.
node.palette is the vector of colors specific to nodes points and lines. Its length can be one or as
long as the number of nodes.

$plotSTratesNode returns plots of absolute rates versus age regression for individual clades. The
arguments are the same as described for $plotSTphenNode. In the case of multivariate y, the 2-
norm vector of multiple rates (see RRphylo for details) can be plotted by setting variable = "rate"
or variable = the number of actual variables + 1.

Author(s)

Silvia Castiglione, Carmela Serio

References

Castiglione, S., Serio, C., Mondanaro, A., Di Febbraro, M., Profico, A., Girardi, G., & Raia,
P. (2019) Simultaneous detection of macroevolutionary patterns in phenotypic means and rate of
change with and within phylogenetic trees including extinct species. PLoS ONE, 14: e0210101.
https://doi.org/10.1371/journal.pone.0210101

See Also

search.trend vignette

plotTrend vignette

Examples

Not run:
data("DataOrnithodirans")
DataOrnithodirans$treedino->treedino

../doc/search.trend.html
../doc/Plotting-tools.html#plotTrend

56 random.evolvability.test

DataOrnithodirans$massdino->massdino
cc<- 2/parallel::detectCores()

Extract Pterosaurs tree and data
library(ape)
extract.clade(treedino,746)->treeptero
massdino[match(treeptero$tip.label,names(massdino))]->massptero
massptero[match(treeptero$tip.label,names(massptero))]->massptero

RRphylo(tree=treeptero,y=log(massptero),clus=cc)->RRptero

search.trend(RR=RRptero, y=log(massptero), nsim=100, node=143, clus=cc,cov=NULL)->st2

plotTrend(st2)->plotST

plotST$plotSTphen(1) # to plot phenotypic trend through time for entire tree
plotST$plotSTphen("log(massptero)",plot.args=list(cex=1.2,col="blue")) # equivalent to above

plotST$plotSTrates(1) # to plot rates trend through time for entire tree

to plot phenotypic trend through time for the clade
plotST$plotSTphenNode("log(massptero)",plot.args=list(xlab="Age",main="Phenotypic trend"),

lineTree.args=list(lty=1,col="pink"),lineNode.args=list(lwd=3),
node.palette=c("chartreuse"))

to plot rates trend through time for the clade
plotST$plotSTratesNode("rate")

End(Not run)

random.evolvability.test

Randomization test for phylogenetic structuring in evolvability

Description

The function is a wrapper around the function MeanMatrixStatistics from the package evolqg
(Melo et al. 2015). It estimates ancestral character at internal nodes either according to Brownian
Motion or by means of RRphylo (see the argument node.estimation), then performs MeanMatrixStatistics
to calculate: Mean Squared Correlation, ICV, Autonomy, ConditionalEvolvability, Constraints,
Evolvability, Flexibility, Pc1Percent, and Respondability. To assess the importance of phyloge-
netic structuring (signal) on Respondability Evolvability, and Flexibility. The function performs
a randomization test by randomly shuffling the species on tree and replicating the analyses nsim
times. A p-value is computed by contrasting the real metrics to the ones derived by randomization.

Usage

random.evolvability.test(tree,data,node.estimation=c("RR","BM"),
aces=NULL,iterations=1000,nsim=100,clus=0.5)

random.evolvability.test 57

Arguments

tree a phylogenetic tree. The tree needs not to be ultrametric or fully dichotomous.

data a matrix or data.frame of phenotypic data having species as rownames
node.estimation

specify the method to compute ancestral character at nodes. It can be one of
"RR", to compute ancestral states by mean of RRphylo, or "BM", to use phytools’
function fastAnc (Paradis & Schliep 2019) to estimate ancestral characters at
nodes according to Brownian Motion.

aces a named matrix of known ancestral character values at nodes. Names correspond
to the nodes in the tree.

iterations the iterations argument to be indicated in MeanMatrixStatistics

nsim the number of simulations to be performed for the randomization test, by default
nrep is set at 100.

clus the proportion of clusters to be used in parallel computing. To run the single-
threaded version of random.evolvability.test set clus = 0.

Value

The function returns a list object including ($means) the mean values for all statistics as produced
by MeanMatrixStatistics and ($means) the significance levels for Respondability, Evolvability,
and Flexibility. The output always has an attribute "Call" which returns an unevaluated call to the
function.

Author(s)

Silvia Castiglione, Gabriele Sansalone, Pasquale Raia

References

Melo, D., Garcia, G., Hubbe, A., Assis, A. P., & Marroig, G. (2015). EvolQG-An R package for
evolutionary quantitative genetics. F1000Research, 4.

Revell, L. J. (2012) phytools: An R package for phylogenetic comparative biology (and other
things). Methods in Ecology and Evolution, 3, 217-223.

See Also

RRphylo vignette

Examples

Not run:
library(ape)
library(phytools)

rtree(30)->phy
fastBM(phy,nsim=4)->phen

random.evolvability.test(tree=phy,data=phen,node.estimation="RR")->rEvTest

../doc/RRphylo.html

58 rate.map

End(Not run)

rate.map Mapping rate and direction of phenotypic change on 3D surfaces.

Description

The function is deprecated, please check the new version of rate.map in package RRmorph.

Given vectors of RW (or PC) scores, the function selects the RW(PC) axes linked to highest (and
lowest) evolutionary rate values and reconstructs the morphology weighted on them. In this way,
rate.map shows where and how the phenotype changed the most between any pair of taxa.

Usage

rate.map(x, RR, PCscores, pcs, mshape, out.rem = TRUE,
shape.diff=FALSE, show.names=TRUE)

Arguments

x the species/nodes to be compared; it can be a single species, or a vector contain-
ing two species or a species and any of its parental nodes.

RR an object generated by using the RRphylo function

PCscores PC scores.

pcs RW (or PC) vectors (eigenvectors of the covariance matrix) of all the samples.

mshape the Consensus configuration.

out.rem logical: if TRUE mesh triangles with outlying area difference are removed.

shape.diff logical: if TRUE, the mesh area differences are displayed in an additional 3d plot.

show.names logical: if TRUE, the names of the species are displayed in the 3d plot.

Details

After selecting the PC axes, rate.map automatically builds a 3D mesh on the mean shape calculated
from the Relative Warp Analysis (RWA) or Principal Component Analysis (PCA) (Schlager 2017)
by applying the function vcgBallPivoting (Rvcg). Then, it compares the area differences between
corresponding triangles of the 3D surfaces reconstructed for the species and surface of the mrca.
Finally, rate.map returns a 3D plot showing such comparisons displayed on shape of the mrca used
as the reference.The colour gradient goes from blue to red, where blue areas represent expansion
of the mesh, while the red areas represent contractions of the mesh triangles. In the calculation
of the differences of areas we supply the possibility to find and remove outliers from the vectors
of areas calculated on the reference and target surfaces. We suggest considering this possibility
if the mesh may contain degenerate facets. Additionally, rate.map allows to investigate the pure
morphological comparison of shapes by excluding the evolutionary rate component by setting the
argument show.diff = TRUE. In this case, a second 3D plot will be displayed highlighting area
differences in terms of expansion (green) and contraction (yellow).

rateHistory 59

Value

The function returns a list including:

• $selected a list of PCs axes selected for higher evolutionary rates for each species.

• $surfaces a list of reconstructed coloured surfaces of the given species and of the most recent
common ancestor.

Author(s)

Marina Melchionna, Antonio Profico, Silvia Castiglione, Gabriele Sansalone, Pasquale Raia

References

Schlager, S. (2017). Morpho and Rvcg-Shape Analysis in R: R-Packages for geometric morpho-
metrics, shape analysis and surface manipulations. In: Statistical shape and deformation analysis.
Academic Press. Castiglione, S., Melchionna, M., Profico, A., Sansalone, G., Modafferi, M., Mon-
danaro, A., Wroe, S., Piras, P., & Raia, P. (2021). Human face-off: a new method for mapping
evolutionary rates on three-dimensional digital models. Palaeontology. doi:10.1111/pala.12582

See Also

RRphylo vignette ; relWarps ; procSym

Examples

Not run:
data(DataSimians)
DataSimians$pca->pcasim
DataSimians$tree->treesim
cc<- 2/parallel::detectCores()

RRphylo(treesim,pcasim$PCscores,clus=cc)->RRsim

Rmap<-rate.map(x=c("Pan_troglodytes","Gorilla_gorilla"),RR=RRsim, PCscores=pcasim$PCscores,
pcs=pcasim$PCs, mshape=pcasim$mshape, shape.diff = TRUE)

End(Not run)

rateHistory Computing historical rates

Description

The function calculates historical rates for each tip of the tree. Historical rates represent the sum of
rates along subsequent branches of a lineage. The product of these rates multiplied by the relative
branch lengths represents the phenotypic transformation from one node to the next one along the
path. The function also provides the sum of rate modulus along lineages. This represents the total
amount of evolutionary change per lineage.

../doc/RRphylo.html

60 resampleTree

Usage

rateHistory(RR)

Arguments

RR an object fitted by the function RRphylo.

Value

The function returns the vector of net historical rates ($rateHistory$net.rate) and the sum of
rate modulus for each tip ($rateHistory$norm.rate), and the matrix of phenotypic changes from
one node to the next along each lineage (phen.path).

Author(s)

Pasquale Raia, Silvia Castiglione

Examples

Not run:
data("DataCetaceans")
DataCetaceans$treecet->treecet
DataCetaceans$masscet->masscet
cc<- 2/parallel::detectCores()

RRphylo(tree=treecet,y=masscet,clus=cc)->RRcet

rateHistory(RR=RRcet)->rh

End(Not run)

resampleTree Altering phylogenetic trees

Description

The function alters the topology and randomly removes a user-specified proportion of species from
a phylogenetic tree.

Usage

resampleTree(tree,s=0.25,sdata=NULL,nodes=NULL,categories=NULL,
swap.si=0.1,swap.si2=0.1,swap.node=NULL,nsim=1)

resampleTree 61

Arguments

tree a phylogenetic tree. The tree needs not to be ultrametric or fully dichotomous.

s the percentage of tips to be cut off. It is set at 25% by default.

sdata to be supplied to condition the species sampling. It can be either a named vector
or a data.frame/matrix having the species names as first column. In case of
stratified random sampling, sdata should contain the strata. Otherwise, the user
can provide a sampling probability (meant as the probability to be removed from
the tree) for each species.

nodes the clades to be preserved. In this case the function maintains no less than 5
species at least in each of them.

categories the categories to be preserved. In this case the function maintains no less than 5
species at least in each of them.

swap.si, swap.si2, swap.node
arguments si, si2, node as passed to swapONE. The default for both si and
si2 is 0.1.

nsim number of phylogenies to return. It is set at 1 by default.

Value

The function returns phylo or multiPhylo object. The output always has an attribute "Call" which
returns an unevaluated call to the function.

Author(s)

Silvia Castiglione, Giorgia Girardi

See Also

search.conv vignette; overfitRR vignette; Alternative-trees vignette

Examples

Not run:
DataCetaceans$treecet->treecet
plot(treecet,show.tip.label = FALSE,no.margin = TRUE)
nodelabels(frame="n",col="red")

Select two clades for stratified random sampling
clanods=c("crown_Odo"=150,"crown_Mysti"=131)
sdata1<-do.call(rbind,lapply(1:length(clanods),function(w)

data.frame(species=tips(treecet,clanods[w]),group=names(clanods)[w])))

generate a vector of probabilities based on body mass
prdata<-max(DataCetaceans$masscet)-DataCetaceans$masscet

select two nodes to be preserved
nn=c(180,159)

../doc/search.conv.html
../doc/overfitRR.html
../doc/Alternative-trees.html

62 rescaleRR

generate two fictional categorical vectors to be preserved
cat1<-sample(rep(c("a","b","c"),each=39),Ntip(treecet))
names(cat1)<-treecet$tip.label
cat2<-rep(c("d","e"),each=100)
names(cat2)<-sample(treecet$tip.label,100)

1. Random sampling
resampleTree(treecet,s=0.25,swap.si=0.3)->treecet1

1.1 Random sampling preserving clades
resampleTree(treecet,s=0.25,nodes=nn)->treecet2

2. Stratified random sampling
resampleTree(treecet,sdata = sdata1,s=0.25)->treecet3

2.1 Stratified random sampling preserving clades and categories
resampleTree(treecet,sdata = sdata1,s=0.25,nodes=nn,categories = list(cat1,cat2))->treecet4

3. Sampling conditioned on probability
resampleTree(treecet,sdata = prdata,s=0.25,nsim=5)->treecet5

End(Not run)

rescaleRR Rescaling phylogenetic trees

Description

The function rescales all branches and leaves of the phylogenetic tree.

Usage

rescaleRR(tree,RR=NULL,height=NULL,trend=NULL,delta=NULL,kappa=NULL,lambda=NULL)

Arguments

tree the phylogenetic tree to be rescaled.
RR is the output of RRphylo performed on tree. If this parameter is indicated, the

tree branches are rescaled according to branch-wise phenotypic evolutionary
rates fitted by RRphylo. When a multivariate phenotype is used, rescaling is
operated on the norm-2 vector of rates.

height is the desired height of the tree. If this parameter is indicated, the tree branches
are rescaled to match the total height.

trend is a diffusion model with linear trend in rates through time. The trend scaling
is largely based on package geiger’s rescale.phylo function.

delta if this parameter is indicated, the tree is rescaled according to Pagel’s delta trans-
form (Pagel 1999). Nodes are pushed toward the present for values of delta
ranging between 0 and 1. The converse applies for delta larger than 1. Nega-
tive delta values are not allowed.

rescaleRR 63

kappa if this parameter is indicated, the tree is rescaled according to Pagel’s kappa
transform (Pagel 1999). At kappa = 1 the tree is left unmodified. Branches
become increasingly closer to 1 as kappa approaches 0, making evolution inde-
pendent from branch lengths. Negative kappa values are not allowed.

lambda if this parameter is indicated, the tree is rescaled according to Pagel’s lambda
transform (Pagel 1999). At lambda = 1 the tree is left unmodified. The tree
approaches a star phylogeny as lambda approaches zero. lambda values larger
than one are undefined Negative lambda values are not allowed.

Value

Rescaled phylogenetic tree.

Author(s)

Silvia Castiglione, Pasquale Raia

References

Castiglione, S., Serio, C., Piccolo, M., Mondanaro, A., Melchionna, M., Di Febbraro, M., Sansa-
lone, G., Wroe, S., & Raia, P. (2020). The influence of domestication, insularity and sociality
on the tempo and mode of brain size evolution in mammals. Biological Journal of the Linnean
Society,132: 221-231. doi:10.1093/biolinnean/blaa186

Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401:877-884.

Examples

Not run:
ape::rtree(100)->tree
phytools::fastBM(tree)->y
max(diag(vcv(tree)))->Hmax

RRphylo(tree,y,clus=0)->RRy
rescaleRR(tree,RR=RRy)->treeRR

rescaleRR(tree,height=Hmax/3)->tree_height

rescaleRR(tree,trend=5)->tree_trend

rescaleRR(tree,delta=0.5)->tree_delta05
rescaleRR(tree,delta=2)->tree_delta2

rescaleRR(tree,kappa=0.5)->tree_kappa

rescaleRR(tree,lambda=0.5)->tree_lambda

End(Not run)

64 retrieve.angles

retrieve.angles Extracting a user-specified subset of the evo.dir results

Description

This function takes the result list produced by evo.dir as the input, and extracts a specific subset
of it. The user may specify whether to extract the set of angles between species resultant vectors
and the MRCA, the size of resultant vectors, or the set of angles between species.

Usage

retrieve.angles(angles.res,wishlist=c("anglesMRCA","angleDir","angles.between.species"),
random=c("yes","no"),focus=c("node","species","both","none"),
node=NULL,species=NULL,csvfile=NULL)

Arguments

angles.res the object resulting from evo.dir function.

wishlist specifies whether to extract angles and sizes ("anglesMRCA") of resultant vec-
tors between individual species and the MRCA, angles and sizes ("angleDir")
of vectors between individual species and a fixed reference vector (the same for
all species), or angles between species resultant vectors ("angles.between.species").

random it needs to be "yes" if 'angles.res' object contains randomization results.

focus it can be "node", "species", "both", or "none", whether the user wants the
results for a focal node, or for a given species, for both, or just wants to visualize
everything.

node must be indicated if focus = "node" or "both". As for evo.dir, the node num-
ber must refer to the dichotomic version of the original tree, as produced by
RRphylo.

species must be indicated if focus = "species" or "both".

csvfile if results should be saved to a .csv file, a character indicating the name of the csv
file and the path where it is to be saved. If no path is indicated the file is stored
in the working directory. If left unspecified, no file will be saved.

Details

retrieve.angles allows to focalize the extraction to a particular node, species, or both. Otherwise
it returns the whole dataset.

Value

retrieve.angles outputs an object of class 'data.frame'.

If wishlist = "anglesMRCA", the data frame includes:

• MRCA the most recent common ancestor the angle is computed to

retrieve.angles 65

• species species ID

• angle the angle between the resultant vector of species and the MRCA

• vector.size the size of the resultant vector computed from species to MRCA

If wishlist = "angleDir", the data frame includes:

• MRCA the most recent common ancestor the vector is computed to

• species species ID

• angle.direction the angle between the vector of species and a fixed reference

• vector.size the size of the vector of species

If wishlist = "angles.between.species", the data frame includes:

• MRCA the most recent common ancestor the vector is computed from

• species pair IDs of the species pair the "angle between species" is computed for

• angleBTWspecies2MRCA angle between species resultant vectors to MRCA

• anglesBTWspecies angle between species resultant vectors

Author(s)

Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

Examples

Not run:
data("DataApes")
DataApes$PCstage->PCstage
DataApes$Tstage->Tstage

cc<- 2/parallel::detectCores()
RRphylo(tree=Tstage,y=PCstage,clus=cc)->RRstage

Case 1. "evo.dir" without performing randomization
evo.dir(RRstage,angle.dimension="rates",pair.type="node",
node= 57,random="no")->ed1

Case 1.1 angles and sizes of resultant vectors between individual species and the MRCA:
for a focal node
retrieve.angles(ed1,wishlist="anglesMRCA",random="no",focus="node",
node=68)->ra1

for a focal species
retrieve.angles(ed1,wishlist="anglesMRCA",random="no",focus="species",
species="Sap")->ra2

for both focal node and species
retrieve.angles(ed1,wishlist="anglesMRCA",random="no",focus="both",
node=68,species="Sap")->ra3

without any specific requirement
retrieve.angles(ed1,wishlist="anglesMRCA",random="no",focus="none")->ra4

66 retrieve.angles

Case 1.2 angles and sizes of vectors between individual species
#and a fixed reference vector:
for a focal node

retrieve.angles(ed1,wishlist="angleDir",random="no",focus="node",
node=68)->ra5

for a focal species
retrieve.angles(ed1,wishlist="angleDir",random="no",focus="species",
species="Sap")->ra6

for both focal node and species
retrieve.angles(ed1,wishlist="angleDir",random="no",focus="both",
node=68,species="Sap")->ra7

without any specific requirement
retrieve.angles(ed1,wishlist="angleDir",random="no",focus="none")->ra8

Case 1.3 angles between species resultant vectors:
for a focal node
retrieve.angles(ed1,wishlist="angles.between.species",random="no",
focus="node", node=68)->ra9

for a focal species
retrieve.angles(ed1,wishlist="angles.between.species",random="no",
focus="species", species="Sap")->ra10

for both focal node and species
retrieve.angles(ed1,wishlist="angles.between.species",random="no",
focus="both",node=68,species="Sap")->ra11

without any specific requirement
retrieve.angles(ed1,wishlist="angles.between.species",random="no",
focus="none")->ra12

Case 2. "evo.dir" with performing randomization
evo.dir(RRstage,angle.dimension="rates",pair.type="node",node=57,
random="yes",nrep=10)->ed7

Case 2.1 angles and sizes of resultant vectors between individual species and the MRCA:
for a focal node
retrieve.angles(ed7,wishlist="anglesMRCA",random="yes",focus="node",
node=68)->ra13

for a focal species
retrieve.angles(ed7,wishlist="anglesMRCA",random="yes", focus="species",
species="Sap")->ra14

for both focal node and species
retrieve.angles(ed7,wishlist="anglesMRCA",random="yes",focus="both",
node=68,species="Sap")->ra15

without any specific requirement
retrieve.angles(ed7,wishlist="anglesMRCA",random="yes",focus="none")->ra16

Case 2.2 angles and sizes of vectors between individual species and a fixed reference vector:
for a focal node
retrieve.angles(ed7,wishlist="angleDir",random="yes",focus="node",
node=68)->ra17

for a focal species
retrieve.angles(ed7,wishlist="angleDir",random="yes",focus="species",
species="Sap")->ra18

RRphylo 67

for both focal node and species
retrieve.angles(ed7,wishlist="angleDir",random="yes",focus="both",
node=68, species="Sap")->ra19

without any specific requirement
retrieve.angles(ed7,wishlist="angleDir",random="yes",focus="none")->ra20

Case 2.3 retrieve angles between species resultant vectors:
for a focal node
retrieve.angles(ed7,wishlist="angles.between.species",random="yes",
focus="node", node=68)->ra21

for a focal species
retrieve.angles(ed7,wishlist="angles.between.species",random="yes",
focus="species", species="Sap")->ra22

for both focal node and species
retrieve.angles(ed7,wishlist="angles.between.species",random="yes",
focus="both",node=68,species="Sap")->ra23

without any specific requirement
retrieve.angles(ed7,wishlist="angles.between.species",random="yes",
focus="none")->ra24

End(Not run)

RRphylo Evolutionary rates computation along phylogenies

Description

The function RRphylo (Castiglione et al. 2018) performs the phylogenetic ridge regression. It takes
a tree and a vector of tip data (phenotypes) as entries, calculates the regularization factor, produces
the matrices of tip to root (makeL), and node to root distances (makeL1), the vector of ancestral state
estimates, the vector of predicted phenotypes, and the rates vector for all the branches of the tree.
For multivariate data, rates are given as both one vector per variable, and as a multivariate vector
obtained by computing the Euclidean Norm of individual rate vectors.

Usage

RRphylo(tree,y,cov=NULL,rootV=NULL,aces=NULL,x1=NULL,
aces.x1=NULL,clus=0.5,verbose=FALSE)

Arguments

tree a phylogenetic tree. The tree needs not to be ultrametric or fully dichotomous.

y either a single vector variable or a multivariate dataset. In any case, y must be
named. In case of categorical variable, this should be supplied to the function as
a numeric vector.

cov the covariate to be indicated if its effect on the rates must be accounted for. In
this case residuals of the covariate versus the rates are used as rates. 'cov' must
be as long as the number of nodes plus the number of tips of the tree, which can

68 RRphylo

be obtained by running RRphylo on the covariate as well, and taking the vector
of ancestral states and tip values to form the covariate, as in the example below.
See RRphylo vignette - covariate for details.

rootV phenotypic value (values if multivariate) at the tree root. If rootV=NULL the
function ’learns’ about the root value from the 10% tips being closest in time to
the tree root, weighted by their temporal distance from the root itself (close tips
phenotypes weigh more than more distant tips).

aces a named vector (or matrix if y is multivariate) of ancestral character values at
nodes. Names correspond to the nodes in the tree. See RRphylo vignette - aces
for details.

x1 the additional predictor(s) to be indicated to perform the multiple version of
RRphylo. 'x1' vector/matrix must be as long as the number of nodes plus the
number of tips of the tree, which can be obtained by running RRphylo on the
predictors (separately for each predictor) as well, and taking the vector of an-
cestral states and tip values to form the x1. See RRphylo vignette - predictor for
details.

aces.x1 a named vector/matrix of ancestral character values at nodes for x1. It must be
indicated if both aces and x1 are specified. Names/rownames correspond to the
nodes in the tree.

clus the proportion of clusters to be used in parallel computing. Default is 0.5. To
run the single-threaded version of RRphylo set clus = 0.

verbose logical indicating whether a "RRlog.txt" printing progresses should be stored
into the working directory.

Value

tree the tree used by RRphylo. The fully dichotomous version of the tree argument. For trees with
polytomies, the tree is resolved by using multi2di function in the package ape. Note, tip labels are
ordered according to their position in the tree.

tip.path a n∗m matrix, where n=number of tips and m=number of branches (i.e. 2*n-1). Each row
represents the branch lengths along a root-to-tip path.

node.path a n ∗ n matrix, where n=number of internal branches. Each row represents the branch
lengths along a root-to-node path.

rates single rate values computed for each branch of the tree. If y is a single vector variable, rates
are equal to multiple.rates. If y is a multivariate dataset, rates are computed as the square root of
the sum of squares of each row of $multiple.rates.

aces the phenotypes reconstructed at nodes.

predicted.phenotypes the vector of estimated tip values. It is a matrix in the case of multivariate
data.

multiple.rates a n ∗ m matrix, where n= number of branches (i.e. n*2-1) and m = number of
variables. For each branch, the column entries represent the evolutionary rate.

lambda a list of mle-class objects for each element of y. These are the results of lambda optimiza-
tion within the function.

ace.values if aces are specified, the function returns a dataframe containing the corresponding node
number on the RRphylo tree for each node , along with estimated values.

../doc/RRphylo.html#covariate
../doc/RRphylo.html#aces
../doc/RRphylo.html#predictor

RRphylo 69

x1.rate if x1 is specified, the function returns the partial regression coefficient for x1.

The output always has an attribute "Call" which returns an unevaluated call to the function.

Author(s)

Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

References

Castiglione, S., Tesone, G., Piccolo, M., Melchionna, M., Mondanaro, A., Serio, C., Di Febbraro,
M., & Raia, P.(2018). A new method for testing evolutionary rate variation and shifts in phenotypic
evolution. Methods in Ecology and Evolution, 9: 974-983.doi:10.1111/2041-210X.12954

Serio, C., Castiglione, S., Tesone, G., Piccolo, M., Melchionna, M., Mondanaro, A., Di Febbraro,
M., & Raia, P.(2019). Macroevolution of toothed whales exceptional relative brain size. Evolution-
ary Biology, 46: 332-342. doi:10.1007/s11692-019-09485-7

Melchionna, M., Mondanaro, A., Serio, C., Castiglione, S., Di Febbraro, M., Rook, L.,Diniz-
Filho,J.A.F., Manzi, G., Profico, A., Sansalone, G., & Raia, P.(2020).Macroevolutionary trends of
brain mass in Primates. Biological Journal of the Linnean Society, 129: 14-25. doi:10.1093/biolinnean/blz161

Castiglione, S., Serio, C., Mondanaro, A., Melchionna, M., Carotenuto, F., Di Febbraro, M.,
Profico, A., Tamagnini, D., & Raia, P. (2020). Ancestral State Estimation with Phylogenetic Ridge
Regression. Evolutionary Biology, 47: 220-232. doi:10.1007/s11692-020-09505-x

Castiglione, S., Serio, C., Piccolo, M., Mondanaro, A., Melchionna, M., Di Febbraro, M., Sansa-
lone, G., Wroe, S., & Raia, P. (2020). The influence of domestication, insularity and sociality
on the tempo and mode of brain size evolution in mammals. Biological Journal of the Linnean
Society,132: 221-231. doi:10.1093/biolinnean/blaa186

See Also

RRphylo vignette

overfitRR; overfitRR vignette

plotRates; plotRates vignette

plotRR; plotRR vignette

Examples

Not run:
data("DataOrnithodirans")
DataOrnithodirans$treedino->treedino
DataOrnithodirans$massdino->massdino
cc<- 2/parallel::detectCores()

Case 1. "RRphylo" without accounting for the effect of a covariate
RRphylo(tree=treedino,y=massdino,clus=cc)->dinoRates

Case 2. "RRphylo" accounting for the effect of a covariate
"RRphylo" on the covariate in order to retrieve ancestral state values
c(dinoRates$aces,massdino)->cov.val

../doc/RRphylo.html
../doc/overfit.html#overfitRR
../doc/Plotting-tools.html#plotRates
../doc/Plotting-tools.html#plotRR

70 RRphylo-defunct

c(rownames(dinoRates$aces),names(massdino))->names(cov.val)

RRphylo(tree=treedino,y=massdino,cov=cov.val,clus=cc)->RRcova

Case 3. "RRphylo" specifying the ancestral states
data("DataCetaceans")
DataCetaceans$treecet->treecet
DataCetaceans$masscet->masscet
DataCetaceans$brainmasscet->brainmasscet
DataCetaceans$aceMyst->aceMyst

RRphylo(tree=treecet,y=masscet,aces=aceMyst,clus=cc)->RRace

Case 4. Multiple "RRphylo"
library(ape)
drop.tip(treecet,treecet$tip.label[-match(names(brainmasscet),treecet$tip.label)])->treecet.multi
masscet[match(treecet.multi$tip.label,names(masscet))]->masscet.multi

RRphylo(tree=treecet.multi, y=masscet.multi,clus=cc)->RRmass.multi
RRmass.multi$aces[,1]->acemass.multi
c(acemass.multi,masscet.multi)->x1.mass

RRphylo(tree=treecet.multi,y=brainmasscet,x1=x1.mass,clus=cc)->RRmulti

Case 5. Categorical and multiple "RRphylo" with 2 additional predictors
library(phytools)

set.seed(1458)
rtree(100)->tree
fastBM(tree)->y
jitter(y)*10->y1
rep(1,length(y))->y2
y2[sample(1:50,20)]<-2
names(y2)<-names(y)

c(RRphylo(tree,y1,clus=cc)$aces[,1],y1)->x1

RRphylo(tree,y2,clus=cc)->RRcat ### this is the RRphylo on the categorical variable
c(RRcat$aces[,1],y2)->x2

rbind(c(jitter(mean(y1[tips(tree,183)])),1),
c(jitter(mean(y1[tips(tree,153)])),2))->acex

c(jitter(mean(y[tips(tree,183)])),jitter(mean(y[tips(tree,153)])))->acesy
names(acesy)<-rownames(acex)<-c(183,153)

RRphylo(tree,y,aces=acesy,x1=cbind(x1,x2),aces.x1 = acex,clus=cc)->RRcat2

End(Not run)

RRphylo-deprecated 71

RRphylo-defunct Defunct functions in Package RRphylo

Description

These functions are no longer available.

• swap.phylo: This function is defunct. Please check overfitRR, instead.

Usage

swap.phylo()

RRphylo-deprecated Deprecated functions in Package RRphylo

Description

These functions still work but will be removed (defunct) in the next version.

scaleTree Phylogenetic tree calibration

Description

The function is a wrapper around the functions "scalePhylo", "assign.ages", and "assign.brlen"
written by Gene Hunt (http://paleobiology.si.edu/staff/individuals/hunt.cfm). It rescales tree branch
lengths according to given calibration dates.

Usage

scaleTree(tree, tip.ages=NULL, node.ages=NULL)

Arguments

tree a phylogenetic tree. The tree needs not to be ultrametric and fully dichotomous.

tip.ages a named vector including the ages (i.e. distance from the youngest tip within the
tree) of the tips to be changed. If unspecified, the function assumes all the tips
are correctly placed with respect to the root. Names can be either tip labels or
numbers.

node.ages a named vector including the ages (i.e. distance from the youngest tip within the
tree) of the nodes to be changed. If no calibration date for nodes is supplied, the
tree root is fixed and the function shifts node position only where needed to fit
tip ages.

72 scaleTree

Value

Rescaled phylogentic tree with tip labels ordered according to their position in the tree.

Author(s)

Silvia Castiglione, Pasquale Raia, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

See Also

scaleTree vignette

Examples

library(ape)
library(phytools)

data("DataFelids")
DataFelids$treefel->treefel

max(nodeHeights(treefel))->H

Example 1
rep(0,4)->tipAges
names(tipAges)<-tips(treefel,146)
scaleTree(treefel,tipAges)->treeS1

edge.col<-rep("black",nrow(treefel$edge))
edge.col[which(treeS1$edge[,2]%in%getDescendants(treeS1,146))]<-"red"

layout(2:1)
plot(treefel,edge.color = edge.col,show.tip.label=FALSE)
plot(treeS1,edge.color = edge.col,show.tip.label=FALSE)

Example 2
nodeAges<-c(23.5,15.6)
names(nodeAges)<-c(85,139)
scaleTree(treefel,node.ages=nodeAges)->treeS2

edge.col<-rep("black",nrow(treefel$edge))
edge.col[which(treeS1$edge[,2]%in%c(getDescendants(treeS1,85),

getDescendants(treeS1,139)))]<-"red"

layout(2:1)
plot(treefel,edge.color = edge.col,show.tip.label=FALSE)
nodelabels(bg="w",frame="n",node=c(85,139),col="green")
plot(treeS2,edge.color = edge.col,show.tip.label=FALSE)
nodelabels(bg="w",frame="n",node=c(85,139),col="green")

Example 3
16->nodeAges
names(nodeAges)<-"145"

../doc/Tree-Manipulation.html#scaleTree

search.conv 73

tipAges<-19
names(tipAges)<-treefel$tip.label[1]
scaleTree(treefel,tip.ages = tipAges,node.ages=nodeAges)->treeS3

edge.col<-rep("black",nrow(treefel$edge))
edge.col[which(treeS3$edge[,2]%in%c(1,getMommy(treefel,1),

getDescendants(treeS3,145)))]<-"red"

layout(2:1)
plot(treefel,edge.color = edge.col,show.tip.label=FALSE)
nodelabels(bg="w",frame="n",node=145,col="green")
plot(treeS3,edge.color = edge.col,show.tip.label=FALSE)
nodelabels(bg="w",frame="n",node=145,col="green")

search.conv Searching for morphological convergence among species and clades

Description

The function scans a phylogenetic tree looking for morphological convergence between entire
clades or species evolving under specific states.

Usage

search.conv(RR=NULL,tree=NULL,y,nodes=NULL,state=NULL,aceV=NULL,
min.dim=NULL,max.dim=NULL,min.dist=NULL,declust=FALSE,nsim=1000,rsim=1000,
clus=0.5)

Arguments

RR an object produced by RRphylo. This is not indicated if convergence among
states is tested.

tree a phylogenetic tree. The tree needs not to be ultrametric or fully dichotomous.
This is not indicated if convergence among clades is tested.

y a multivariate phenotype. The object y should be either a matrix or dataframe
with species names as rownames.

nodes node pair to be tested. It can be either a vector of two, or a two-columns ma-
trix/data.frame of node pairs to be tested. Notice the node number must refer to
the dichotomic version of the original tree, as produced by RRphylo. If unspec-
ified, the function automatically searches for convergence among clades.

state the named vector of tip states. The function tests for convergence within a single
state or among different states (this latter case is especially meant to test for
iterative evolution as for example the appearance of repeated morphotypes into
different clades). In both cases, the state for non-focal species (i.e. not belonging
to any convergent group) must be indicated as "nostate".

74 search.conv

aceV phenotypic values at internal nodes. The object aceV should be either a matrix
or dataframe with nodes (referred to the dichotomic version of the original tree,
as produced by RRphylo) as rownames. If aceV are not indicated, ancestral
phenotypes are estimated via RRphylo.

min.dim the minimum size of the clades to be compared. When nodes is indicated, it is
the minimum size of the smallest clades in nodes, otherwise it is set at one tenth
of the tree size.

max.dim the maximum size of the clades to be compared. When nodes is indicated, it is
min.dim*2 if the largest clade in nodes is smaller than this value, otherwise it
corresponds to the size of the largest clade. Without nodes it is set at one third
of the tree size.

min.dist the minimum distance between the clades to be compared. When nodes is in-
dicated, it is the distance between the pair. Under the automatic mode, the user
can choose whether time distance or node distance (i.e. the number of nodes
intervening between the pair) should be used. If time distance has to be con-
sidered, min.dist should be a character argument containing the word "time"
and then the actual time distance to be used. The same is true for node distance,
but the word "node" must precede the node distance to be used. For example, if
the user want to test only clades more distant than 10 time units, the argument
should be "time10". If clades separated by more than 8 nodes have to be tested,
the argument min.dist should be "node8". If left unspecified, it automatically
searches for convergence between clades separated by a number of nodes larger
than one tenth of the tree size.

declust if species under a given state (or a pair of states) to be tested for convergence are
phylogenetically closer than expected by chance, trait similarity might depend
on proximity rather than true convergence. In this case, by setting declust =
TRUE, tips under the focal state (or states) are removed randomly until clustering
disappears. A minimum of 3 species per state is enforced to remain anyway.

nsim number of simulations to perform sampling within the theta random distribution.
It is set at 1000 by default.

rsim number of simulations to be performed to produce the random distribution of
theta values. It is set at 1000 by default.

clus the proportion of clusters to be used in parallel computing. To run the single-
threaded version of search.conv set clus = 0.

Value

If convergence between clades is tested, the function returns a list including:

• $node pairs: a dataframe containing for each pair of nodes:

– ang.bydist.tip: the mean theta angle between clades divided by the time distance.
– ang.conv: the mean theta angle between clades plus the angle between aces, divided by

the time distance.
– ang.ace: the angle between aces.
– ang.tip: the mean theta angle between clades.
– nod.dist: the distance intervening between clades in terms of number of nodes.

search.conv 75

– time.dist: the time distance intervening between the clades.

– p.ang.bydist: the p-value computed for ang.bydist.tip.

– p.ang.conv: the p-value computed for ang.conv.

– clade.size: the size of clades.

• $node pairs comparison: pairwise comparison between significantly convergent pairs (all
pairs if no instance of significance was found) performed on the distance from group centroids
(the mean phenotype per clade).

• $average distance from group centroids: smaller average distances mean less variable phe-
notypes within the pair.

If convergence between (or within a single state) states is tested, the function returns a list including:

• state.res a dataframe including for each pair of states (or single state):

– ang.state: the mean theta angle between species belonging to different states (or within a
single state).

– ang.state.time: the mean of theta angle between species belonging to different states (or
within a single state) divided by time distance.

– p.ang.state: the p-value computed for ang.state.

– p.ang.state.time: the p-value computed for ang.state.time.

• plotData a dataframe including data to plot the results via plotConv

.

The output always has an attribute "Call" which returns an unevaluated call to the function.

Author(s)

Silvia Castiglione, Carmela Serio, Pasquale Raia, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto, Paolo Piras, Davide Tamagnini

References

Castiglione, S., Serio, C., Tamagnini, D., Melchionna, M., Mondanaro, A., Di Febbraro, M.,
Profico, A., Piras, P.,Barattolo, F., & Raia, P. (2019). A new, fast method to search for morphological
convergence with shape data. PLoS ONE, 14, e0226949. https://doi.org/10.1371/journal.pone.0226949

See Also

search.conv vignette

overfitSC; overfitSC vignette

plotConv; plotConv vignette

../doc/search.conv.html
../doc/overfit.html#overfitSC
../doc/Plotting-tools.html#plotConv

76 search.shift

Examples

Not run:
data("DataFelids")
DataFelids$PCscoresfel->PCscoresfel
DataFelids$treefel->treefel
DataFelids$statefel->statefel
cc<- 2/parallel::detectCores()

RRphylo(treefel,PCscoresfel,clus=cc)->RRfel

Case 1. searching convergence between clades
by setting min.dist as node distance
search.conv(RR=RRfel, y=PCscoresfel, min.dim=5, min.dist="node9",clus=cc)->sc.clade
by setting min.dist as time distance
search.conv(RR=RRfel, y=PCscoresfel, min.dim=5, min.dist="time38",clus=cc)->sc.clade.time
by setting node pairs to be tested
nodpairs<-rbind(c(85,145),c(85,155))
search.conv(RR=RRfel, y=PCscoresfel, nodes=nodpairs ,clus=cc)->sc.node

Case 2. searching convergence within a single state
search.conv(tree=treefel, y=PCscoresfel, state=statefel,declust=TRUE,clus=cc)->sc.state

End(Not run)

search.shift Locating shifts in phenotypic evolutionary rates

Description

The function search.shift (Castiglione et al. 2018) tests whether individual clades or group of
tips dispersed through the phylogeny evolve at different RRphylo rates as compared to the rest of
the tree.

Usage

search.shift(RR, status.type = c("clade", "sparse"),node = NULL, state
= NULL, cov = NULL, nrep = 1000, f = NULL)

Arguments

RR an object fitted by the function RRphylo.

status.type whether the "clade" or "sparse" condition must be tested.

node under the "clade" condition, the node/s (clades) to be tested for the rate shift.
If node is left unspecified, the function performs under the ’auto-recognize’ fea-
ture, meaning it will automatically test individual clades for deviation of their
rates from the background rate of the rest of the tree (see details).

search.shift 77

state the named vector of states for each tip, to be provided under the "sparse" con-
dition.

cov the covariate vector to be indicated if its effect on rate values must be accounted
for. Contrary to RRphylo, cov needs to be as long as the number of tips of the
tree.

nrep the number of simulations to be performed for the rate shift test, by default nrep
is set at 1000.

f the size of the smallest clade to be tested. By default, nodes subtending to one
tenth of the tree tips are tested.

Details

Under the ’auto-recognize’ mode, search.shift automatically tests individual clades (ranging in
size from one half of the tree down to f tips) for deviation of their rates from the background rate of
the rest of the tree. An inclusive clade with significantly high rates is likely to include descending
clades with similarly significantly high rates. Hence, under ’auto-recognize’ search.shift scans
clades individually and selects only the node subtending to the highest difference in mean absolute
rates as compared to the rest of the tree. If the argument node ("clade" condition) is provided,
the function computes the difference between mean rate values of each clade and the rest of the
tree, and compares it to a random distribution of differences generated by shuffling rates across
tree branches. Additionally, if more than one node is indicated, the rate difference for one clade is
additionally computed by excluding the rate values of the others from the rate vector of the rest of
the tree. Also, all the clades are considered as to be under a common rate regime and compared as
a single group to the rest of the tree.

Value

Under "clade" case without specifying nodes (i.e. ’auto-recognize’) a list including:

$all.clades for each detected node, the data-frame includes the average rate difference (computed
as the mean rate over all branches subtended by the node minus the average rate for the rest of the
tree) and the probability that it do represent a real shift. Probabilities are contrasted to simulations
shuffling the rates across the tree branches for a number of replicates specified by the argument
nrep. Note that the p-values refer to the number of times the real average rates are larger (or smaller)
than the rates averaged over the rest of the tree, divided by the number of simulations. Hence, large
rates are significantly larger than the rest of the tree (at alpha = 0.05), when the probability is >
0.975; and small rates are significantly small for p < 0.025.

$single.clades the same as with ’all.clades’ but restricted to the largest/smallest rate values along a
single lineage (i.e. nested clades with smaller rate shifts are excluded).

Under "clade" condition by specifying the node argument:

$all.clades.together if more than one node is tested, this specifies the average rate difference and
the significance of the rate shift, by considering all the specified nodes as evolving under a single
rate. As with the ’auto-recognize’ feature, large rates are significantly larger than the rest of the tree
(at alpha = 0.05), when the probability is > 0.975; and small rates are significantly small for p <
0.025.

$single.clades gives the significance for individual clades tested individually against the rest of the
tree ($singles) and by excluding the rate values of other shifting clades from the rate vector of the
rest of the tree ($no.others)

78 search.shift

Under the "sparse" condition:

$state.results for each state, the data-frame includes the average rate difference (computed as the
mean rate over all leaves evolving under a given state, minus the average rate for each other state or
the rest of the tree) and the probability that the shift is real. Large rates are significantly larger (at
alpha = 0.05), when the probability is > 0.975; and small rates are significantly small for p < 0.025.
States are compared pairwise.

Under all circumstances, if 'cov' values are provided to the function, search.shift returns as
$rates object the vector of residuals of RRphylo rates versus cov regression.

The output always has an attribute "Call" which returns an unevaluated call to the function.

Author(s)

Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

References

Castiglione, S., Tesone, G., Piccolo, M., Melchionna, M., Mondanaro, A., Serio, C., Di Febbraro,
M., & Raia, P.(2018). A new method for testing evolutionary rate variation and shifts in phenotypic
evolution. Methods in Ecology and Evolution, 9: 974-983.doi:10.1111/2041-210X.12954

See Also

search.shift vignette

overfitSS; overfitSS vignette

plotShift; plotShift vignette

Examples

Not run:
data("DataOrnithodirans")
DataOrnithodirans$treedino->treedino
DataOrnithodirans$massdino->massdino
DataOrnithodirans$statedino->statedino
cc<- 2/parallel::detectCores()

RRphylo(tree=treedino,y=massdino,clus=cc)->dinoRates

Case 1. Without accounting for the effect of a covariate

Case 1.1 "clade" condition
with auto-recognize
search.shift(RR=dinoRates,status.type="clade")->SSauto
testing two hypothetical clades
search.shift(RR=dinoRates,status.type="clade",node=c(696,746))->SSnode

Case 1.2 "sparse" condition
testing the sparse condition.
search.shift(RR=dinoRates,status.type= "sparse",state=statedino)->SSstate

../doc/search.shift.html
../doc/overfit.html#overfitSS
../doc/Plotting-tools.html#plotShift

search.trend 79

Case 2. Accounting for the effect of a covariate

Case 2.1 "clade" condition
search.shift(RR=dinoRates,status.type= "clade",cov=massdino)->SSauto.cov

Case 2.2 "sparse" condition
search.shift(RR=dinoRates,status.type="sparse",state=statedino,cov=massdino)->SSstate.cov

End(Not run)

search.trend Searching for evolutionary trends in phenotypes and rates

Description

This function searches for evolutionary trends in the phenotypic mean and the evolutionary rates
for the entire tree and individual clades.

Usage

search.trend(RR,y,x1=NULL,x1.residuals = FALSE,
node=NULL,cov=NULL,nsim=100,clus=0.5)

Arguments

RR an object produced by RRphylo.

y the named vector (or matrix if multivariate) of phenotypes.

x1 the additional predictor to be specified if the RR object has been created using
an additional predictor (i.e. multiple version of RRphylo). 'x1' vector must be
as long as the number of nodes plus the number of tips of the tree, which can be
obtained by running RRphylo on the predictor as well, and taking the vector of
ancestral states and tip values to form the x1. Note: only one predictor at once
can be specified.

x1.residuals logical specifying whether the residuals of regression between y and x1 should
be inspected for a phenotypic trend (see details and examples below). Default is
FALSE.

node the node number of individual clades to be specifically tested and contrasted to
each other. It is NULL by default. Notice the node number must refer to the
dichotomic version of the original tree, as produced by RRphylo.

cov the covariate values to be specified if the RR object has been created using a
covariate for rates calculation. As for RRphylo, 'cov' must be as long as the
number of nodes plus the number of tips of the tree, which can be obtained by
running RRphylo on the covariate as well, and taking the vector of ancestral
states and tip values to form the covariate (see the example below).

80 search.trend

nsim number of simulations to be performed. It is set at 100 by default.

clus the proportion of clusters to be used in parallel computing. To run the single-
threaded version of search.trend set clus = 0.

Details

The function simultaneously returns the regression of phenotypes and phenotypic evolutionary rates
against age tested against Brownian motion simulations to assess significance. To this aim rates
are rescaled in the 0-1 range and then logged. To assess significance, slopes are compared to a
family of simulated slopes (BMslopes, where the number of simulations is equal to nsim), generated
under the Brownian motion, using the fastBM function in the package phytools. Individual nodes
are compared to the rest of the tree in different ways depending on whether phenotypes or rates
(always unscaled in this case) versus age regressions are tested. With the former, the regression
slopes for individual clades and the slope difference between clades is contrasted to slopes obtained
through Brownian motion simulations. For the latter, regression models are tested and contrasted
to each other referring to estimated marginal means, by using the emmeans function in the package
emmeans.

The multiple regression version of RRphylo allows to incorporate the effect of an additional pre-
dictor in the computation of evolutionary rates without altering the ancestral character estimation.
Thus, when a multiple RRphylo output is fed to search.trend, the predictor effect is accounted for
on the absolute evolutionary rates, but not on the phenotype. However, in some situations the user
might want to factor out the predictor effect on phenotypes as well. Under the latter circumstance,
by setting the argument x1.residuals = TRUE, the residuals of the response to predictor regression
are used as to represent the phenotype.

Value

The function returns a list object containing:

$trends.data a ’RRphyloList’ object including:

1. $phenotypeVStime: a data frame of phenotypic values (or y versus x1 regression residuals if
x1.residuals=TRUE) and their distance from the tree root for each node (i.e. ancestral states)
and tip of the tree.

2. $absrateVStime: a data frame of RRphylo rates and the distance from the tree root (age). If
y is multivariate, it also includes the multiple rates for each y vector. If node is specified, each
branch is classified as belonging to an indicated clade.

3. $rescaledrateVStime: a data frame of rescaled RRphylo rates and the distance from the tree
root (age). If y is multivariate, it also includes the multiple rates for each y vector. If node is
specified, each branch is classified as belonging to an indicated clade. NAs correspond either
to very small values or to outliers which are excluded from the analysis.

$phenotypic.regression results of phenotype (y versus x1 regression residuals) versus age regres-
sion. It reports a p-value for the regression slope between the variables (p.real), a p-value computed
contrasting the real slope to Brownian motion simulations (p.random), and a parameter indicating
the deviation of the phenotypic mean from the root value in terms of the number of standard devi-
ations of the trait distribution (dev). dev is 0 under Brownian Motion. Only p.random should be
inspected to assess significance.

../doc/RRphylo.html#predictor

search.trend 81

$rate.regression results of the rates (rescaled absolute values) versus age regression. It reports a
p-value for the regression between the variables (p.real), a p-value computed contrasting the real
slope to Brownian motion simulations (p.random), and a parameter indicating the ratio between the
range of phenotypic values and the range of such values halfway along the tree height, divided to the
same figure under Brownian motion (spread). spread is 1 under Brownian Motion. Only p.random
should be inspected to assess significance.

$ConfInts a ’RRphyloList’ object including the 95% confidence intervals around regression slopes
of phenotypes and rates (both rescaled and unscaled absolute rates) produced according to the Brow-
nian motion model of evolution.

If specified, individual nodes are tested as the whole tree, the results are summarized in the objects:

$node.phenotypic.regression results of phenotype (or y versus x1 regression residuals) versus age
regression through node. It reports the slope for the regression between the variables at node (slope),
a p-value computed contrasting the real slope to Brownian motion simulations (p.random), the
difference between estimated marginal means predictions for the group and for the rest of the tree
(emm.difference), and a p-value for the emm.difference (p.emm).

$node.rate.regression results of the rates (absolute values) versus age regression through node. It
reports the difference between estimated marginal means predictions for the group and for the rest
of the tree (emm.difference), a p-value for the emm.difference (p.emm), the regression slopes for
the group (slope.node) and for the rest of the tree (slope.others), and a p-value for the difference
between such slopes (p.slope).

If more than one node is specified, the object $group.comparison reports the same results as
$node.phenotypic.regression and $node.rate.regression obtained by comparing individual clades to
each other.

The output always has an attribute "Call" which returns an unevaluated call to the function.

Author(s)

Silvia Castiglione, Carmela Serio, Pasquale Raia, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

References

Castiglione, S., Serio, C., Mondanaro, A., Di Febbraro, M., Profico, A., Girardi, G., & Raia,
P. (2019) Simultaneous detection of macroevolutionary patterns in phenotypic means and rate of
change with and within phylogenetic trees including extinct species. PLoS ONE, 14: e0210101.
https://doi.org/10.1371/journal.pone.0210101

See Also

search.trend vignette

overfitST; overfitST vignette

plotTrend; plotTrend vignette

Examples

Not run:
data("DataOrnithodirans")

../doc/search.trend.html
../doc/overfit.html#overfitST
../doc/Plotting-tools.html#plotTrend

82 search.trend

DataOrnithodirans$treedino->treedino
DataOrnithodirans$massdino->massdino
cc<- 2/parallel::detectCores()

Extract Pterosaurs tree and data
library(ape)
extract.clade(treedino,746)->treeptero
massdino[match(treeptero$tip.label,names(massdino))]->massptero
massptero[match(treeptero$tip.label,names(massptero))]->massptero

Case 1. "RRphylo" whitout accounting for the effect of a covariate
RRphylo(tree=treeptero,y=log(massptero),clus=cc)->RRptero

Case 1.1. "search.trend" whitout indicating nodes to be tested for trends
search.trend(RR=RRptero, y=log(massptero), nsim=100, clus=cc,cov=NULL,node=NULL)->st1

Case 1.2. "search.trend" indicating nodes to be specifically tested for trends
search.trend(RR=RRptero, y=log(massptero), nsim=100, node=143, clus=cc,cov=NULL)->st2

Case 2. "RRphylo" accounting for the effect of a covariate
"RRphylo" on the covariate in order to retrieve ancestral state values
c(RRptero$aces,log(massptero))->cov.values
names(cov.values)<-c(rownames(RRptero$aces),names(massptero))
RRphylo(tree=treeptero,y=log(massptero),cov=cov.values,clus=cc)->RRpteroCov

Case 2.1. "search.trend" whitout indicating nodes to be tested for trends
search.trend(RR=RRpteroCov, y=log(massptero), nsim=100, clus=cc,cov=cov.values)->st3

Case 2.2. "search.trend" indicating nodes to be specifically tested for trends
search.trend(RR=RRpteroCov, y=log(massptero), nsim=100, node=143, clus=cc,cov=cov.values)->st4

Case 3. "search.trend" on multiple "RRphylo"
data("DataCetaceans")
DataCetaceans$treecet->treecet
DataCetaceans$masscet->masscet
DataCetaceans$brainmasscet->brainmasscet
DataCetaceans$aceMyst->aceMyst

drop.tip(treecet,treecet$tip.label[-match(names(brainmasscet),treecet$tip.label)])->treecet.multi
masscet[match(treecet.multi$tip.label,names(masscet))]->masscet.multi

RRphylo(tree=treecet.multi,y=masscet.multi,clus=cc)->RRmass.multi
RRmass.multi$aces[,1]->acemass.multi
c(acemass.multi,masscet.multi)->x1.mass

RRphylo(tree=treecet.multi,y=brainmasscet,x1=x1.mass,clus=cc)->RRmulti

incorporating the effect of body size at inspecting trends in absolute evolutionary rates
search.trend(RR=RRmulti, y=brainmasscet,x1=x1.mass,clus=cc)->STcet

incorporating the effect of body size at inspecting trends in both absolute evolutionary

setBM 83

rates and phenotypic values (by using brain versus body mass regression residuals)
search.trend(RR=RRmulti, y=brainmasscet,x1=x1.mass,x1.residuals=TRUE,clus=cc)->st5

End(Not run)

setBM Producing simulated phenotypes with trends

Description

The function setBM is wrapper around phytools fastBM function, which generates BM simulated
phenotypes with or without a trend.

Usage

setBM(tree, nY = 1, s2 = 1, a = 0, type = c("", "brown","trend",
"drift"), trend.type = c("linear", "stepwise"),tr = 10, t.shift = 0.5,
es=2, ds=1)

Arguments

tree a phylogenetic tree.

nY the number of phenotypes to simulate.

s2 value of the Brownian rate to use in the simulations.

a the phenotype at the tree root.

type the type of phenotype to simulate. With the option "brown" the phenotype will
have no trend in the phenotypic mean or in the rate of evolution. A variation in
the phenotypic mean over time (a phenotypic trend) is obtained by selecting the
option "drift". A trend in the rate of evolution produces an increased variance
in the residuals over time. This is obtained by specifying the option "trend".

trend.type two kinds of heteroscedastic residuals are generated under the "trend" type.
The option "linear" produces an exponential linear increase (or decrease) in
heteroscedasticity, whereas the "stepwise" option produces an increase (or de-
crease) after a specified point in time.

tr the intensity of the trend with the "stepwise" option is controlled by the tr
argument. The scalar tr is the multiplier of the branches extending after the
shift point as indicated by t.shift.

t.shift the relative time distance from the tree root where the stepwise change in the
rate of evolution is indicated to apply.

es when trend.type="linear", es is a scalar representing the exponent at which
the evolutionary time (i.e. distance from the root) scales to change to phenotypic
variance. With es = 1 the phenotypic rate will be trendless, with es < 1 the
variance of the phenotypes will decrease exponentially towards the present and
the other way around with es > 1.

84 sig2BM

ds a scalar indicating the change in phenotypic mean in the unit time, in type="drift"
case. With ds = 0 the phenotype will be trendless, with ds < 0 the phenotypic
mean will decrease exponentially towards the present and the other way around
with ds > 0.

Details

Note that setBM differs from fastBM in that the produced phenotypes are checked for the existence
of a temporal trend in the phenotype. The user may specify whether she wants trendless data
(option "brown"), phenotypes trending in time (option "drift"), or phenotypes whose variance
increases/decreases exponentially over time, consistently with the existence of a trend in the rate of
evolution (option "trend"). In the latter case, the user may indicate the intensity of the trend (by
applying different values of es), and whether it should occur after a given proportion of the tree
height (hence a given point back in time, specified by the argument t.shift). Trees in setBM are
treated as non ultrametric. If an ultrametric tree is fed to the function, setBM alters slightly the leaf
lengths multiplying randomly half of the leaves by 1 * 10e-3,in order to make it non-ultrametric.

Value

Either an object of class 'array' containing a single phenotype or an object of class 'matrix' of
n phenotypes as columns, where n is indicated as nY = n.

Author(s)

Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

Examples

data("DataOrnithodirans")
DataOrnithodirans$treedino->treedino

setBM(tree=treedino, nY= 1, type="brown")->sb1
setBM(tree=treedino, nY= 1, type="drift", ds=2)->sb2
setBM(tree=treedino, nY= 1, type="trend", trend.type="linear", es=2)->sb3

sig2BM Brownian Motion rate computation

Description

The function computes rate of phenotypic evolution along a phylogeny assuming Brownian Motion
model of evolution.

Usage

sig2BM(tree,y)

sizedsubtree 85

Arguments

tree a phylogenetic tree. The tree needs not to be ultrametric and fully dichotomous.

y either a single vector variable or a multivariate dataset. In any case, y must be
named.

Value

The Brownian Motion rate of phenotypic evolution for each variable in y.

Author(s)

Pasquale Raia, Silvia Castiglione

Examples

Univariate data
data(DataCetaceans)
DataCetaceans$treecet->treecet
DataCetaceans$masscet->masscet
sig2BM(tree=treecet,y=masscet)

Multivariate data
data(DataUng)
DataUng$treeung->treeung
DataUng$PCscoresung->PCung
sig2BM(tree=treeung,y=PCung)

sizedsubtree Find a node subtending to a clade of desired size

Description

The function sizedsubtree scans a phylogentic tree to randomly find nodes subtending to a subtree
of desired minimum size, up to one half of the tree size (number of tips).

Usage

sizedsubtree(tree,Size=NULL,time.limit=10)

Arguments

tree a phylogenetic tree.

Size the desired size of the tree subtending to the extracted node. By default, the
minimum tree size is set at one tenth of the tree size (i.e. number of tips).

time.limit specifies a limit to the searching time, a warning message is thrown if the limit
is reached.

86 StableTraitsR

Details

The argument time.limit sets the searching time. The algorithm stops if that limit is reached,
avoiding recursive search when no solution is in fact possible.

Value

A node subtending to a subtree of desired minimum size.

Author(s)

Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

Examples

Not run:
data("DataOrnithodirans")
DataOrnithodirans$treedino->treedino
sizedsubtree(tree=treedino,Size=40)->sst

End(Not run)

StableTraitsR Run StableTraits from within R

Description

This function runs StableTraits and StableTraitsSum (Elliot and Mooers 2014) from within the R
environment and returns its output into the workspace.

Usage

StableTraitsR(tree,y,path,output=NULL,aces=NULL,argST=NULL,argSTS=NULL)

Arguments

tree a phylogenetic tree. The tree needs not to be either ultrametric or fully dichoto-
mous.

y a named vector of phenotypic trait.

path the folder path where the StableTraits output will be stored. Notice that the input
tree and data (modified automatically if the original tree is not fully dichotomous
or if aces are specified) will be stored in this folder as well.

output name of the output to be returned, if unspecified it will be named "output".

aces a named vector of ancestral character values at nodes specified in advance.
Names correspond to the nodes in the tree.

argST a list of further arguments passed to StableTraits. If the argument has no value
(for example "brownian") it must be specified as TRUE.

StableTraitsR 87

argSTS list of further arguments passed to StableTraitsSum. If the argument has no
value (for example "brownian") it must be specified as TRUE.

Details

The StableTraits software is available at https://mickelliot.com/, along with instructions for compi-
lation. Once it is installed, the user must set as R working directory the folder where the StableTraits
software are installed. Further information about the arguments and outputs of StableTraits and
StableTraitsSum can be found at https://mickelliot.com/. StableTraitsR automatically recognizes
which Operating System is running on the computer (it has been tested successfully on MacOS and
Windows machines).

Value

The function returns a ’list’ containing the output of StableTraits and StableTraitsSum.

$progress a table reporting the DIC and PRSF diagnostics.

$rates_tree a copy of the original tree with branch lengths set to the evolutionary rate imputed by
the stable reconstruction. Specifically, each branch length is equal to the absolute difference in the
stable reconstruction occurring on that branch divided by the square root of the input branch length.

$rates the original branch lengths, evolutionary rates, node height and (optionally) scaled branch
lengths.

$aces the median estimates of ancestral states and stable parameters along with the 95% credible
interval.

$brownian_tree if "brownian" is TRUE in argSTS, a copy of the original tree with branch lengths
set such that the Brownian motion reconstruction of the character on this tree is approximately the
same as the stable ancestral reconstruction.

$ace.prior.values if aces is specified, the function returns a dataframe containing the corresponding
node number on the RRphylo tree for each node, the original (preset) and the estimated values, and
the 95% credible interval.

Author(s)

Silvia Castiglione, Carmela Serio, Pasquale Raia

References

Elliot, M. G., & Mooers, A. Ø. (2014). Inferring ancestral states without assuming neutrality or
gradualism using a stable model of continuous character evolution. BMC evolutionary biology, 14:
226. doi.org/10.1186/s12862-014-0226-8

Examples

Not run:
library(ape)
library(phytools)

Set as working directory the folder where StableTraits software are stored
setwd("~/StableTraits")

88 swapONE

dir.create("Analyses")
rtree(100)->tree
fastBM(tree)->y
c(1,2,3)->acev
sample(Ntip(tree)+seq(1:Nnode(tree)),3)->names(acev)
StableTraitsR(tree,y,path="Analyses/",output="my_output",aces=acev,
argST=list(iterations=500000,chains=4),argSTS=list(brownian=TRUE))->STr

End(Not run)

swapONE Create alternative phylogenies from a given tree

Description

The function produces an alternative phylogeny with altered topology and branch length, and com-
putes the Kuhner-Felsenstein (Kuhner & Felsenstein 1994) distance between original and ’swapped’
tree.

Usage

swapONE(tree,node=NULL,si=0.5,si2=0.5,plot.swap=FALSE)

Arguments

tree a phylogenetic tree. The tree needs not to be ultrametric or fully dichotomous.

node if specified, the clades subtended by such node(s) are imposed to be mono-
phyletic. In this case, the function can still swap tips within the clade.

si the proportion of tips whose topologic arrangement will be swapped.

si2 the proportion of nodes whose age will be changed.

plot.swap if TRUE, the function plots the swapped tree. Swapped positions appear in red.
Nodes with altered ages appear in green.

Details

swapONE changes the tree topology and branch lengths. Up to half of the tips, and half of the branch
lengths can be changed randomly. Each randomly selected node is allowed to move up to 2 nodes
apart from its original position.

Value

The function returns a list containing the ’swapped’ version of the original tree, and the Kuhner-
Felsenstein distance between the trees. Note, tip labels are ordered according to their position in
the tree.

tips 89

Author(s)

Silvia Castiglione, Pasquale Raia, Carmela Serio, Alessandro Mondanaro, Marina Melchionna,
Mirko Di Febbraro, Antonio Profico, Francesco Carotenuto

References

Kuhner, M. K. & Felsenstein, J. (1994). A simulation comparison of phylogeny algorithms under
equal and unequal evolutionary rates, Molecular Biology and Evolution, 11: 459-468.

Examples

Not run:
data("DataOrnithodirans")
DataOrnithodirans$treedino->treedino

Case 1. change the topology and the branch lengths for the entire tree
swapONE(tree=treedino,si=0.5,si2=0.5,plot.swap=FALSE)->sw1

Case 2. change the topology and the branch lengths of the
tree by keeping the monophyly of a specific clade
swapONE(tree=treedino,node=422,si=0.5,si2=0.5,plot.swap=FALSE)->sw2

End(Not run)

tips Get descending tips

Description

The function returns the numbers or labels of tips descending from a given node.

Usage

tips(tree,node,labels=TRUE)

Arguments

tree a phylogenetic tree. The tree needs not to be ultrametric and fully dichotomous.

node the number of focal node

labels if TRUE (default) the function returns the labels of descending tips.

Value

The tips, either labels or numbers depending on the argument labels, descending from the node.

Author(s)

Silvia Castiglione, Pasquale Raia, Carmela Serio

90 tree.merger

Examples

data(DataOrnithodirans)
DataOrnithodirans$treedino->treedino
tips(tree=treedino,node=677,labels=FALSE)
tips(tree=treedino,node=677,labels=TRUE)

tree.merger Fast construction of phylogenetic trees

Description

The function can either attaches new tips and/or clades derived from a source phylogeny to a pre-
existing backbone tree, or build a new phylogenetic tree from scratch.

Usage

tree.merger(backbone=NULL,data,source.tree=NULL,age.offset=NULL,tip.ages =
NULL, node.ages = NULL,plot=TRUE,filename=NULL)

Arguments

backbone the backbone tree to attach tips/clades on. This is NULL when constructing the
tree from scratch.

data a dataset including as columns:

1. bind = the tips/clades to be attached;
2. reference = the reference tip or clade where ’bind’ must be attached;
3. poly = logical specifying if ’bind’ and ’reference’ should form a polyto-

mous clade.

See details for further explanations.

source.tree the tree where ’bind’ clades are to be extracted from. If no clade has to be
attached, it can be left unspecified.

age.offset if the most recent age (i.e. the maximum distance from the tree root) differs
between the source and the backbone trees, the “age.offset” is the difference
between them in this exact order (source minus backbone). It is positive when
the backbone tree attains younger age than the source tree, and vice-versa.

tip.ages as in scaleTree, a named vector including the ages (i.e. the time distance from
the youngest tip within the tree) of the tips. If unspecified when merging, the
function assumes all the tips on the backbone tree are correctly placed and places
all the new tips at the maximum distance from the tree root (i.e. the present if the
tips are extant). If unspecified when building a new tree, all the tips are placed
at the maximum distance from the tree root.

tree.merger 91

node.ages as in scaleTree, a named vector including the ages (i.e. the time distance from
the youngest tip within the tree) of the nodes. The nodes must be defined by
collating the names of the two phylogenetically furthest tips it subtends to, sep-
arated by the "-" symbol (see examples). If no calibration date for nodes is
supplied when merging, the function may shift the node position back in time
as to place new tips/clades and to fit tip ages. If no node.ages is supplied when
building a new tree, all the nodes, including the tree root, are arbitrarly placed ei-
ther to accommodate tip.ages or to have 1 unit time distance with one another
along a lineage (when tip.ages = NULL).

plot if TRUE, the function produces an interactive plotting device to check the placing
of each bind.

filename if plot=TRUE and provided a filename (with or without the path), the function
stores a pdf file showing the plot of the entire phylogeny.

Details

The following description of the data argument applies both when merging the tree and when
building it from zero. In the latter case, the first row of data must include as ’bind’ and ’ref-
erence’ the first pair of tips to set the tree up (meaning, the ’reference’ tip is not also listed as
’bind’). The function attaches tips and/or clades from the source tree to the backbone tree accord-
ing to the data object. Within the latter, a clade, either to be bound or to be the reference, must
be indicated by collating the names of the two phylogenetically furthest tips belonging to it, sepa-
rated by the "-" symbol. Alternatively, if backbone$node.label/source.tree$node.label is not
NULL, a bind/reference clade can be indicated as "Clade NAMEOFTHECLADE" when appropriate.
Similarly, an entire genus on the backbone or the source.tree can be indicated as "Genus NAME-
OFTHEGENUS" (see examples below). If the "Genus NAMEOFTHEGENUS" mode is used for a
species/clade belonging to one or more different genera, the function automatically sets as reference
the clade including all the species belonging to the reference genus, regardless of they are already
on the backbone or binded.

Duplicated ’bind’ produce error. Tips/clades set to be attached to the same ’reference’ with ’poly=FALSE’
are considered to represent a polytomy. Tips set as ’bind’ which are already on the backbone tree
are removed from the latter and placed according to the ’reference’. See examples and vignette for
clarifications.

Value

New/merged phylogenetic tree.

Author(s)

Silvia Castiglione, Carmela Serio, Giorgia Girardi, Pasquale Raia

References

Castiglione, S., Serio, C., Mondanaro, A., Melchionna, M., & Raia, P. (2022). Fast production of
large, time-calibrated, informal supertrees with tree.merger. Palaeontology, 65: e12588.https://doi.org/10.1111/pala.12588

Pandolfi, L., Martino, R., Rook, L., & Piras, P. (2020). Investigating ecological and phylogenetic
constraints in Hippopotaminae skull shape. Rivista Italiana di Paleontologia e Stratigrafia, 126:
37-49.

../doc/Tree-Manipulation.html#tree.merger.html

92 tree.merger

See Also

tree.merger vignette; scaleTree vignette;

Examples

Not run:

Merging phylogenetic information
require(ape)
DataCetaceans$treecet->treecet
treecet$node.label[131-Ntip(treecet)]<-"Crown_Mysticeti"

data.frame(bind=c("Clade Crown_Mysticeti",
"Aetiocetus_weltoni",
"Saghacetus_osiris",
"Zygorhiza_kochii",
"Ambulocetus_natans",
"Genus Kentriodon",
"Tursiops_truncatus-Delphinus_delphis",
"Kogia_sima",
"Eurhinodelphis_cristatus",
"Grampus_griseus",
"Eurhinodelphis_bossi"),

reference=c("Fucaia_buelli-Aetiocetus_weltoni",
"Aetiocetus_cotylalveus",
"Fucaia_buelli-Tursiops_truncatus",
"Saghacetus_osiris-Fucaia_buelli",
"Dalanistes_ahmedi-Fucaia_buelli",
"Clade Delphinida",
"Stenella_attenuata-Stenella_longirostris",
"Kogia_breviceps",
"Eurhinodelphis_longirostris",
"Globicephala_melas-Pseudorca_crassidens",
"Eurhinodelphis_longirostris"),

poly=c(FALSE,
FALSE,
FALSE,
FALSE,
FALSE,
FALSE,
FALSE,
FALSE,
FALSE,
FALSE,
FALSE))->dato

c("Aetiocetus_weltoni"=28.0,
"Saghacetus_osiris"=33.9,
"Zygorhiza_kochii"=34.0,
"Ambulocetus_natans"=40.4,
"Kentriodon_pernix"=15.9,
"Kentriodon_schneideri"=11.61,

../doc/Tree-Manipulation.html#tree.merger.html
../doc/Tree-Manipulation.html#scaleTree

tree.merger 93

"Kentriodon_obscurus"=13.65,
"Eurhinodelphis_bossi"=13.65,
"Eurhinodelphis_cristatus"=5.33)->tip.ages

c("Ambulocetus_natans-Fucaia_buelli"=52.6,
"Balaena_mysticetus-Caperea_marginata"=21.5)->node.ages

remove some tips from the original tree and create a source tree
drop.tip(treecet,c(names(tip.ages),

tips(treecet,131)[-which(tips(treecet,131)%in%
c("Caperea_marginata","Eubalaena_australis"))],

tips(treecet,195)[-which(tips(treecet,195)=="Tursiops_aduncus")]))->backtree
drop.tip(treecet,which(!treecet$tip.label%in%c(names(tip.ages),

tips(treecet,131),
tips(treecet,195))))->sourcetree

plot(backtree,cex=.6)
plot(sourcetree,cex=.6)

tree.merger(backbone=backtree,data=dato,source.tree=sourcetree,
tip.ages=tip.ages,node.ages = node.ages, plot=TRUE)->treeM

Building a new phylogenetic tree
Build the phylogenetic tree shown in
Pandolfi et al. 2020 - Figure 2 (see reference)
data.frame(bind=c("Hippopotamus_lemerlei",

"Hippopotamus_pentlandi",
"Hippopotamus_amphibius",
"Hippopotamus_antiquus",
"Hippopotamus_gorgops",
"Hippopotamus_afarensis",
"Hexaprotodon_sivalensis",
"Hexaprotodon_palaeindicus",
"Archaeopotamus_harvardi",
"Saotherium_mingoz",
"Choeropsis_liberiensis"),

reference=c("Hippopotamus_madagascariensis",
"Hippopotamus_madagascariensis-Hippopotamus_lemerlei",
"Hippopotamus_pentlandi-Hippopotamus_madagascariensis",
"Hippopotamus_amphibius-Hippopotamus_madagascariensis",
"Hippopotamus_antiquus-Hippopotamus_madagascariensis",
"Hippopotamus_gorgops-Hippopotamus_madagascariensis",
"Genus Hippopotamus",
"Hexaprotodon_sivalensis",
"Hexaprotodon_sivalensis-Hippopotamus_madagascariensis",
"Archaeopotamus_harvardi-Hippopotamus_madagascariensis",
"Saotherium_mingoz-Hippopotamus_madagascariensis"),

poly=c(FALSE,
TRUE,
FALSE,
FALSE,
TRUE,
FALSE,

94 treeCompare

FALSE,
FALSE,
FALSE,
FALSE,
FALSE))->dato.new

tree.merger(data=dato.new)->tree.new # uncalibrated tree

Please note: the following ages are only used to show how to use the function
they are not assumed to be correct.
c("Hippopotamus_lemerlei"=0.001,
"Hippopotamus_pentlandi"=0.45,
"Hippopotamus_amphibius"=0,
"Hippopotamus_antiquus"=0.5,
"Hippopotamus_gorgops"=0.4,
"Hippopotamus_afarensis"=0.75,
"Hexaprotodon_sivalensis"=1,
"Hexaprotodon_palaeindicus"=0.4,
"Archaeopotamus_harvardi"=5.2,
"Saotherium_mingoz"=4,
"Choeropsis_liberiensis"=0)->tip.ages1

c("Choeropsis_liberiensis-Hippopotamus_amphibius"=13,
"Archaeopotamus_harvardi-Hippopotamus_amphibius"=8.5,
"Hexaprotodon_sivalensis-Hexaprotodon_palaeindicus"=6)->node.ages1

tree.merger(data=dato.new,tip.ages=tip.ages1)->tree.new1 # calibrating tips only

calibrating tips and nodes
tree.merger(data=dato.new,tip.ages=tip.ages1,node.ages=node.ages1)->tree.new2

End(Not run)

treeCompare Visualize the difference between phylogenetic trees

Description

The function scans a pair of phylogenetic trees to find topological differences.

Usage

treeCompare(tree,tree1,focal=NULL,plot=TRUE)

Arguments

tree, tree1 a phylogenetic tree. The tree needs not to be ultrametric and fully dichotomous.
Generic name and specific epithet must be separated by ’_’.

focal a vector of focal species to search on both tree and tree1.

treedataMatch 95

plot if TRUE, the function produces an interactive plotting device to check differences
in species placement at the genus level.

Value

The function returns a data-frame indicating for each un-matching/focal species its sister species/clades
on both trees.

Author(s)

Giorgia Girardi, Silvia Castiglione, Carmela Serio, Antonella Esposito

Examples

Not run:
DataFelids$tree->treefel

set.seed(22)
drop.tip(treefel,sample(treefel$tip.label,20))->tree.red
swapONE(tree.red,si=0.5)[[1]]->tree.red

sample(tree.red$tip.label,10)->focal.species

treeCompare(treefel,tree.red)->comp
treeCompare(treefel,tree.red,focal=focal.species)->comp1

End(Not run)

treedataMatch Cross-reference tree and data

Description

The function matches data names with tree tips. If either there is no data for a tip or it is not present
on the tree, the function removes the entry from both.

Usage

treedataMatch(tree,y)

Arguments

tree a phylogenetic tree. The tree needs not to be ultrametric and fully dichotomous.

y named variable. It can be a vector or a multivariate dataset or a 3D array. Alter-
natively, y can also be a vector of species names.

96 treedataMatch

Value

The function returns a list object. If no mismatch between tree and y is detected, the list only
includes the matrix of y ordered according to the order of tips on the tree ($y). If some tips on
the tree are missing from y, they are removed from the phylogeny. Thus, the list also includes
the pruned tree ($tree) and the vector of dropped tips ($removed.from.tree). Similarly, if some
entries in y are missing from the tree, the list also includes the vector of mismatching entry names
($removed.from.y). In this latter case, the first element of the list ($y) does not include the entries
$removed.from.y, so that it perfectly matches the phylogeny.

Author(s)

Silvia Castiglione, Pasquale Raia, Carmela Serio

Examples

data(DataCetaceans)
DataCetaceans$treecet->treecet
DataCetaceans$masscet->masscet
DataCetaceans$brainmasscet->brainmasscet

treedataMatch(tree=treecet,y=masscet)
treedataMatch(tree=treecet,y=brainmasscet)
treedataMatch(tree=treecet,y=names(brainmasscet))

Index

∗ RRphylo
DataApes, 12
DataCetaceans, 13
DataFelids, 14
DataOrnithodirans, 15
DataSimians, 15
DataUng, 16

addShift (plotShift), 52
angle.matrix, 4

colorbar, 6, 51
compRates, 8
conv.map, 9
cutPhylo, 11

DataApes, 12
DataCetaceans, 13
DataFelids, 14
DataOrnithodirans, 15
DataSimians, 15
DataUng, 16
distNodes, 16

evo.dir, 17, 64

fastAnc, 57
fix.poly, 20

getGenus, 22
getMommy, 23
getSis, 24

legend, 6
lm, 44
lollipoPlot, 24, 50

makeFossil, 25
makeL, 26, 67
makeL1, 27, 67
manova.gls, 44, 45

MeanMatrixStatistics, 56
move.lineage, 28
mvgls, 44, 45

namesCompare, 29
node.paths, 31

overfitPGLS, 31, 34, 45
overfitRR, 32, 33, 39, 41, 69, 71
overfitSC, 34, 36, 75
overfitSS, 34, 39, 78
overfitST, 34, 41, 81

par, 7
PGLS_fossil, 31, 32, 34, 43
phyloclust, 46
phylolm, 44, 45
plotConv, 47, 75
plotRates, 49, 69
plotRR, 51, 53, 69
plotShift, 52, 78
plotTrend, 54, 81
polar.plot, 48
procSym, 11, 15, 59

random.evolvability.test, 56
rate.map, 58
rateHistory, 59
relWarps, 11, 59
resampleTree, 34, 36, 37, 60
rescaleRR, 62
retrieve.angles, 64
RRphylo, 4, 8, 18, 32–34, 36–39, 41, 43, 44,

47, 49–52, 55, 56, 58, 60, 62, 64, 67,
67, 73, 74, 76–80, 87

RRphylo-defunct, 70
RRphylo-deprecated, 71
RRphylo-package, 3

scaleTree, 28, 71, 90, 91
search.conv, 34, 36–38, 47, 73

97

98 INDEX

search.shift, 8, 34, 39, 40, 52, 53, 76
search.trend, 34, 41, 54, 55, 79
setBM, 83
sig2BM, 84
sizedsubtree, 85
StableTraitsR, 86
swap.phylo (RRphylo-defunct), 71
swapONE, 34, 37, 61, 88

tips, 89
tree.merger, 90
treeCompare, 94
treedataMatch, 95

vcgBallPivoting, 10, 58

	RRphylo-package
	angle.matrix
	colorbar
	compRates
	conv.map
	cutPhylo
	DataApes
	DataCetaceans
	DataFelids
	DataOrnithodirans
	DataSimians
	DataUng
	distNodes
	evo.dir
	fix.poly
	getGenus
	getMommy
	getSis
	lollipoPlot
	makeFossil
	makeL
	makeL1
	move.lineage
	namesCompare
	node.paths
	overfitPGLS
	overfitRR
	overfitSC
	overfitSS
	overfitST
	PGLS_fossil
	phyloclust
	plotConv
	plotRates
	plotRR
	plotShift
	plotTrend
	random.evolvability.test
	rate.map
	rateHistory
	resampleTree
	rescaleRR
	retrieve.angles
	RRphylo
	RRphylo-defunct
	RRphylo-deprecated
	scaleTree
	search.conv
	search.shift
	search.trend
	setBM
	sig2BM
	sizedsubtree
	StableTraitsR
	swapONE
	tips
	tree.merger
	treeCompare
	treedataMatch
	Index

