--- title: "Library of models" output: rmarkdown::html_vignette: toc: true toc_depth: 4 vignette: > %\VignetteIndexEntry{Library of models} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{css, echo=FALSE} .boxModel { border: 1.5px solid black; } ``` # Pharmacokinetic models ## Compartmental models and parameters Six parameters are common to one, two or three compartment models: + $V$ or $V_1$, the volume of distribution in the central compartment + $k$, the elimination rate constant + $CL$, the clearance of elimination + $V_m$, the maximum elimination rate for Michaelis-Menten elimination + $K_m$, the Michaelis-Menten constant + $k_a$, the absorption rate constant for oral administration ## One-compartment models There are two parameterisations implemented in PFIM for one-compartment models, $\left(V\text{ and }k\right)$ or $\left(V\text{ and }CL\right)$. The equations are given for the first parameterisation $\left(V, k\right)$. For extra-vascular administration, $V$ and $CL$ are apparent volume and clearance. The equations for the second parameterisation $\left(V, CL\right)$ are derived using $k={\frac{CL}{V}}$. ## Models with linear elimination ### One-compartment models #### Intravenous bolus + single dose $$\begin {equation} \begin{aligned} C\left(t\right)=\frac{D}{V}e^{-k\left(t-t_{D}\right)} \end{aligned} \end {equation}$$ + multiple doses $$\begin {equation} \begin{aligned} & C\left(t\right)=\sum^{n}_{i=1}\frac{D_{i}}{V}e^{-k\left(t-t_{D_{i}}\right)}\\ & \end{aligned} \end {equation}$$ + Library of models ```{r class.source= ".boxModel", eval= FALSE} Linear1BolusSingleDose_kV Linear1BolusSingleDose_ClV ``` + steady state $$\begin {equation} C(t)=\frac{D}{V}\frac{e^{-k(t-t_D)}}{1-e^{-k\tau}}\\ \end {equation}$$ ```{r class.source= ".boxModel", eval= FALSE} Linear1BolusSteadyState_kVtau Linear1BolusSteadyState_ClVtau ``` #### Infusion + single dose $$\begin{equation} C\left(t\right)= \begin{cases} {\frac{D}{Tinf}\frac{1}{kV}\left(1-e^{-k\left(t-t_{D}\right)}\right)} & \text{if $t-t_{D}\leq Tinf$,}\\[0.5cm] {\frac{D}{Tinf}\frac{1}{kV}\left(1-e^{-kTinf}\right)e^{-k\left(t-t_{D}-Tinf\right)}} & \text{if not.}\\ \end{cases}\\ \end{equation}$$ + multiple doses $$\begin{equation} C\left(t\right)= \begin{cases} \begin{aligned} \sum^{n-1}_{i=1}\frac{D_{i}}{Tinf_{i}} \frac{1}{kV} &\left(1-e^{-kTinf_{i}}\right) e^{-k\left(t-t_{D_{i}}-Tinf_i\right)}\\ &+\frac{D_{n}}{Tinf_{n}} \frac{1}{kV} \left(1-e^{-k\left(t-t_{D_{n}}\right)}\right) \end{aligned} & \text{if $t-t_{D_{n}} \leq Tinf_{n}$,}\\[1cm] {\displaystyle\sum^{n}_{i=1}\frac{D_{i}}{Tinf_{i}} \frac{1}{kV}} \left(1-e^{-kTinf_{i}}\right) e^{-k\left(t-t_{D_{i}}-Tinf_i\right)} & \text{if not.}\\ \end{cases} \end{equation} $$ ```{r class.source= ".boxModel", eval= FALSE} Linear1InfusionSingleDose_kV Linear1InfusionSingleDose_ClV ``` + steady state $$\begin{equation} \begin{aligned} & C\left(t\right)= \begin{cases} {\frac{D}{Tinf} \frac{1}{kV}} \left[ \left(1-e^{-k(t-t_D)}\right) +e^{-k\tau} {\frac{\left(1-e^{-kTinf}\right)e^{-k\left(t-t_D-Tinf\right)}}{1-e^{-k\tau}}} \right] &\text{if $(t-t_D)\leq Tinf$,}\\[0.6cm] {\frac{D}{Tinf} \frac{1}{kV} \frac{\left(1-e^{-kTinf}\right)e^{-k\left(t-t_D-Tinf\right)}}{1-e^{-k\tau}}} &\text{if not.}\\ \end{cases}\\ & \end{aligned} \end{equation}$$ ```{r class.source= ".boxModel", eval= FALSE} Linear1InfusionSteadyState_kVtau Linear1InfusionSteadyState_ClVtau ``` #### First order absorption + single dose $$\begin {equation} C\left(t\right)=\frac{D}{V} \frac{k_{a}}{k_{a}-k} \left(e^{-k\left(t-t_{D}\right)}-e^{-k_{a}\left(t-t_{D}\right)}\right) \end {equation}$$ + multiple doses $$\begin {equation} C\left(t\right)=\sum^{n}_{i=1}\frac{D_{i}}{V} \frac{k_{a}}{k_{a}-k} \left(e^{-k\left(t-t_{D_{i}}\right)}-e^{-k_{a}\left(t-t_{D_{i}}\right)}\right) \end {equation} $$ ```{r class.source= ".boxModel", eval= FALSE} Linear1FirstOrderSingleDose_kakV Linear1FirstOrderSingleDose_kaClV ``` + steady state $$\begin {equation} C\left(t\right)=\frac{D}{V} \frac{k_{a}}{k_{a}-k} \left(\frac{e^{-k(t-t_D)}}{1-e^{-k\tau}}-\frac{e^{-k_{a}(t-t_D)}}{1-e^{-k_a\tau}}\right) \end {equation}$$ ```{r class.source= ".boxModel", eval= FALSE} Linear1FirstOrderSteadyState_kakVtau Linear1FirstOrderSteadyState_kaClVtau ``` ### Two-compartment models For two-compartment model equations, $C(t)=C_1(t)$ represent the drug concentration in the first compartment and $C_2(t)$ represents the drug concentration in the second compartment. As well as the previously described PK parameters, the following PK parameters are used for the two-compartment models: + $V_2$, the volume of distribution of second compartment + $k_{12}$, the distribution rate constant from compartment 1 to compartment 2 + $k_{21}$, the distribution rate constant from compartment 2 to compartment 1 + $Q$, the inter-compartmental clearance + $\alpha$, the first rate constant + $\beta$, the second rate constant + $A$, the first macro-constant + $B$, the second macro-constant There are two parameterisations implemented in PFIM for two-compartment models: $\left(V\text{, }k\text{, }k_{12}\text{ and }k_{21}\right)$, or $\left(CL\text{, }V_1\text{, }Q\text{ and }V_2\right)$. For extra-vascular administration, $V_1$ ($V$), $V_2$, $CL$, and $Q$ are apparent volumes and clearances. The second parameterisation terms are derived using: + $V_1=V$ + $CL=k \times V_1$ + $Q=k_{12} \times V_1$ + $V_2= {\frac{k_{12}}{k_{21}}}\times V_1$ For readability, the equations for two-compartment models with linear elimination are given using the variables $\alpha\text{, }\beta\text{, }A\text{ and }B$ defined by the following expressions: $$\alpha = {\frac{k_{21}k}{\beta}} = {\frac{{\frac{Q}{V_2}}{\frac{CL}{V_1}}}{\beta}}$$ $$\beta= \begin{cases} {\frac{1}{2}\left[k_{12}+k_{21}+k-\sqrt{\left(k_{12}+k_{21}+k\right)^2-4k_{21}k}\right]}\\[0.4cm] { \frac{1}{2} \left[ \frac{Q}{V_1}+\frac{Q}{V_2}+\frac{CL}{V_1}-\sqrt{\left(\frac{Q}{V_1}+\frac{Q}{V_2}+\frac{CL}{V_1}\right)^2-4\frac{Q}{V_2}\frac{CL}{V_1}} \right] } \end{cases}$$ The link between A and B, and the PK parameters of the first and second parameterisations depends on the input and are given in each subsection. #### Intravenous bolus For intravenous bolus, the link between $A$ and $B$, and the parameters ($V$, $k$, $k_{12}$ and $k_{21}$), or ($CL$, $V_1$, $Q$ and $V_2$) is defined as follows: $$A={\frac{1}{V}\frac{\alpha-k_{21}}{\alpha-\beta}} ={\frac{1}{V_1}\frac{\alpha-{\frac{Q}{V_2}}}{\alpha-\beta}}$$ $$B={\frac{1}{V}\frac{\beta-k_{21}}{\beta-\alpha}} ={\frac{1}{V_1}\frac{\beta-{\frac{Q}{V_2}}}{\beta-\alpha}}$$ + single dose $$\begin {equation} C\left(t\right)=D\left(Ae^{-\alpha \left(t-t_D\right)}+Be^{-\beta \left(t-t_D\right)}\right) \end {equation}$$ + multiples doses $$\begin {equation} C\left(t\right)=\sum^{n}_{i=1}D_{i}\left(Ae^{-\alpha \left(t-t_{D_{i}}\right)}+Be^{-\beta \left(t-t_{D_{i}}\right)}\right) \end {equation} $$ ```{r class.source= ".boxModel", eval= FALSE} Linear2BolusSingleDose_ClQV1V2 Linear2BolusSingleDose_kk12k21V ``` + steady state $$\begin {equation} C\left(t\right)=D\left(\frac{Ae^{-\alpha t}}{1-e^{-\alpha \tau}}+\frac{Be^{-\beta t}}{1-e^{-\beta \tau}}\right) \end{equation}$$ ```{r class.source= ".boxModel", eval= FALSE} Linear2BolusSteadyState_ClQV1V2tau Linear2BolusSteadyState_kk12k21Vtau ``` #### Infusion For infusion, the link between $A$ and $B$, and the parameters ($V$, $k$, $k_{12}$ and $k_{21}$), or ($CL$, $V_1$, $Q$ and $V_2$) is defined as follows: $$A={\frac{1}{V}\frac{\alpha-k_{21}}{\alpha-\beta}} ={\frac{1}{V_1}\frac{\alpha-{\frac{Q}{V_2}}}{\alpha-\beta}}$$ $$B={\frac{1}{V}\frac{\beta-k_{21}}{\beta-\alpha}} ={\frac{1}{V_1}\frac{\beta-{\frac{Q}{V_2}}}{\beta-\alpha}}$$ + single dose $$ \begin {equation} C\left(t\right)= \begin{cases} {\frac{D}{Tinf}}\left[ \begin{aligned} \frac{A}{\alpha}\left(1-e^{-\alpha \left(t-t_D\right)}\right)\\[0.1cm] + \frac{B}{\beta}\left(1-e^{-\beta \left(t-t_D\right)}\right) \end{aligned} \right] & \text{if $t-t_D\leq Tinf$,}\\[1cm] {\frac{D}{Tinf}}\left[ \begin{aligned} \frac{A}{\alpha}\left(1-e^{-\alpha Tinf}\right) e^{-\alpha \left(t-t_D-Tinf\right)}\\[0.1cm] + \frac{B}{\beta}\left(1-e^{-\beta Tinf}\right) e^{-\beta \left(t-t_D-Tinf\right)} \end{aligned} \right] & \text{if not.}\\ \end{cases} \end {equation} $$ + multiple doses $$\begin {equation} C\left(t\right)= \begin{cases} \begin{aligned} \sum^{n-1}_{i=1}&\frac{D_i}{Tinf_i} \left[ \begin{aligned} \frac{A}{\alpha}\left(1-e^{-\alpha Tinf_i}\right) e^{-\alpha \left(t-t_{D_{i}}-Tinf_i\right)}\\[0.1cm] + \frac{B}{\beta}\left(1-e^{-\beta Tinf_i}\right) e^{-\beta \left(t-t_{D_{i}}-Tinf_i\right)} \end{aligned} \right]\\[0.2cm] &+\frac{D}{Tinf_n} \left[ \begin{aligned} \frac{A}{\alpha}\left(1-e^{-\alpha \left(t-t_{D_{n}}\right)}\right)\\[0.1cm] + \frac{B}{\beta}\left(1-e^{-\beta \left(t-t_{D_{n}}\right)}\right) \end{aligned} \right] \end{aligned} & \text{if $t-t_{D_{n}}\leq Tinf$,}\\ {\displaystyle \sum^{n}_{i=1}\frac{D_i}{Tinf_i}} \left[ \begin{aligned} \frac{A}{\alpha}\left(1-e^{-\alpha Tinf_i}\right) e^{-\alpha \left(t-t_{D_{i}}-Tinf_i\right)}\\[0.1cm] + \frac{B}{\beta}\left(1-e^{-\beta Tinf_i}\right) e^{-\beta \left(t-t_{D_{i}}-Tinf_i\right)} \end{aligned} \right] & \text{if not.} \end{cases} \end {equation} $$ ```{r class.source= ".boxModel", eval= FALSE} Linear2InfusionSingleDose_kk12k21V, Linear2InfusionSingleDose_ClQV1V2, ``` + steady state $$\begin {equation} \hspace{-0.5cm} C\left(t\right)=\begin{cases} {\frac{D}{Tinf}} \left[ \begin{aligned} &\frac{A}{\alpha} \left( \begin{aligned} &\left(1-e^{-\alpha (t-t_D)}\right)\\ &+ e^{-\alpha \tau} \frac{ \left(1-e^{-\alpha Tinf}\right) e^{-\alpha \left(t-t_D - Tinf\right)}} {1-e^{-\alpha \tau}} \end{aligned} \right)\\[0.1cm] &+ \frac{B}{\beta} \left( \begin{aligned} &\left(1-e^{-\beta (t-t_D)}\right)\\ &+ e^{-\beta \tau} \frac{ \left(1-e^{-\beta Tinf}\right) e^{-\beta \left(t-t_D - Tinf\right)}} {1-e^{-\beta \tau}} \end{aligned} \right) \end{aligned} \right] &\!\!\!\!\!\text{if $t-t_D\leq Tinf$,}\vspace*{0.5cm}\\ {\frac{D}{Tinf}} \left[ \begin{aligned} &\frac{A}{\alpha} \left( \frac{ \left(1-e^{-\alpha Tinf}\right) e^{-\alpha \left(t-t_D - Tinf\right)}} {1-e^{-\alpha \tau}} \right)\\[0.1cm] &+ \frac{B}{\beta} \left( \frac{ \left(1-e^{-\beta Tinf}\right) e^{-\beta \left(t-t_D - Tinf\right)}} {1-e^{-\beta \tau}} \right) \end{aligned} \right] &\!\!\!\!\!\text{if not.} \end{cases} \label{infusion2lss} \end {equation}$$ ```{r class.source= ".boxModel", eval= FALSE} Linear2InfusionSteadyState_kk12k21Vtau Linear2InfusionSteadyState_ClQV1V2tau ``` #### First-order absorption For first order absorption, the link between $A$ and $B$, and the parameters ($k_a$, $V$, $k$, $k_{12}$ and $k_{21}$), or $\left(k_a\text{, } CL\text{, }V_1\text{, }Q\text{ and }V_2\right)$ is defined as follows: $$A={\frac{k_a}{V}\frac{k_{21}-\alpha}{\left(k_a-\alpha\right)\left(\beta-\alpha\right)}} ={\frac{k_a}{V_1}\frac{{\frac{Q}{V_2}}-\alpha}{\left(k_a-\alpha\right)\left(\beta-\alpha\right)}}$$ $$B={\frac{k_a}{V}\frac{k_{21}-\beta}{\left(k_a-\beta\right)\left(\alpha-\beta\right)}} ={\frac{k_a}{V_1}\frac{{\frac{Q}{V_2}}-\beta}{\left(k_a-\beta\right)\left(\alpha-\beta\right)}}$$ + single dose $$ \begin {equation} C\left(t\right)=D \left( Ae^{-\alpha \left(t-t_D\right)}+Be^{-\beta \left(t-t_D\right)}-(A+B)e^{-k_a \left(t-t_D\right)} \right) \end {equation}$$ + multiple doses $$\begin {equation} C\left(t\right)=\sum^{n}_{i=1}D_{i} \left( Ae^{-\alpha \left(t-t_{D_{i}}\right)}+Be^{-\beta \left(t-t_{D_{i}}\right)}-(A+B)e^{-k_a \left(t-t_{D_{i}}\right)} \right) \end {equation}$$ ```{r class.source= ".boxModel", eval= FALSE} Linear2FirstOrderSingleDose_kaClQV1V2 Linear2FirstOrderSingleDose_kakk12k21V ``` + steady state $$\begin {equation} C\left(t\right)=D \left( \frac{Ae^{-\alpha (t-t_D)}}{1-e^{-\alpha \tau}} +\frac{Be^{-\beta (t-t_D)}}{1-e^{-\beta \tau}} -\frac{(A+B)e^{-k_a (t-t_D)}}{1-e^{-k_a \tau}} \right) \end {equation}$$ ```{r class.source= ".boxModel", eval= FALSE} Linear2FirstOrderSteadyState_kaClQV1V2tau Linear2FirstOrderSteadyState_kakk12k21Vtau ``` ## Models with Michaelis-Menten elimination ### One-compartment models #### Intravenous bolus + single dose $$\begin{equation} \begin{aligned} \text{Initial }&\text{conditions: }\begin{cases} C\left(t\right)&= 0 \text{ for $t