Package 'NetworkChange'

January 20, 2025

Title Bayesian Package for Network Changepoint Analysis

Version 0.8

Date 2022-03-03 14:17:31 UTC

Author Jong Hee Park [aut,cre], Yunkyu Sohn [aut]

Maintainer Jong Hee Park <jongheepark@snu.ac.kr>

Depends R (>= 2.10.0), MCMCpack, ggplot2

Imports grid, Rmpfr, abind, mvtnorm, tidyr, igraph, qgraph, network, stats, MASS, methods, RColorBrewer, reshape, ggrepel, gridExtra, rlang, GGally, ggvis

Description

Network changepoint analysis for undirected network data. The package implements a hidden Markov network change point model (Park and Sohn (2020)). Functions for break number detection using the approximate marginal likelihood and WAIC are also provided.

License GPL-3

URL https://github.com/jongheepark/NetworkChange

NeedsCompilation no RoxygenNote 7.1.1 Repository CRAN Encoding UTF-8 Date/Publication 2022-03-04 07:30:02 UTC Suggests knitr, rmarkdown

Contents

BreakDiagnostic	2
BreakPointLoss	4
drawPostAnalysis	5
drawRegimeRaw	6
kmeansU	7
MajorAlly	8

MakeBlockNetworkChange	8
MarginalCompare	9
	10
NetworkChange	11
NetworkChangeRobust	14
NetworkStatic	16
plotContour	19
plotnetarray	20
plotU	21
plotV	22
PostwarAlly	22
startS	23
startUV	23
ULUstateSample	24
ULUstateSample.mpfr	25
updateb	25
updatebm	26
-F	26
updateS	27
-F	28
-F	28
-F	29
updateV	30
updateVm	30
WaicCompare	31
	~~
	33

Index

BreakDiagnostic Detect a break number using different metrics

Description

Detect a break number using different metrics

Usage

```
BreakDiagnostic(
Y,
R = 2,
mcmc = 100,
burnin = 100,
verbose = 100,
thin = 1,
UL.Normal = "Orthonormal",
v0 = NULL,
v1 = NULL,
break.upper = 3,
```

BreakDiagnostic

a = 1, b = 1)

Arguments

Υ	Reponse tensor
R	Dimension of latent space. The default is 2.
mcmc	The number of MCMC iterations after burnin.
burnin	The number of burn-in iterations for the sampler.
verbose	A switch which determines whether or not the progress of the sampler is printed to the screen. If verbose is greater than 0 the iteration number, the β vector, and the error variance are printed to the screen every verboseth iteration.
thin	The thinning interval used in the simulation. The number of MCMC iterations must be divisible by this value.
UL.Normal	Transformation of sampled U. Users can choose "NULL", "Normal" or "Or- thonormal." "NULL" is no normalization. "Normal" is the standard normaliza- tion. "Orthonormal" is the Gram-Schmidt orthgonalization. Default is "NULL."
v0	$v_0/2$ is the shape parameter for the inverse Gamma prior on variance parameters for V. If v0 = NULL, a value is computed from a test run of NetworkStatic.
v1	$v_1/2$ is the scale parameter for the inverse Gamma prior on variance parameters for V. If v1 = NULL, a value is computed from a test run of NetworkStatic.
break.upper	Upper threshold for break number detection. The default is break.upper = 3.
а	a is the shape1 beta prior for transition probabilities. By default, the expected duration is computed and corresponding a and b values are assigned. The expected duration is the sample period divided by the number of states.
b	b is the shape2 beta prior for transition probabilities. By default, the expected duration is computed and corresponding a and b values are assigned. The expected duration is the sample period divided by the number of states.

References

Jong Hee Park and Yunkyun Sohn. 2020. "Detecting Structural Change in Longitudinal Network Data." *Bayesian Analysis*. Vol.15, No.1, pp.133-157.

Examples

```
## Not run:
set.seed(19333)
## Generate an array (15 by 15 by 20) with a block merging transition
Y <- MakeBlockNetworkChange(n=5, T=20, type ="merge")
## Fit 3 models (no break, one break, and two break) for break number detection
detect <- BreakDiagnostic(Y, R=2, break.upper = 2)
## Look at the graph
detect[[1]]; print(detect[[2]])
```

End(Not run)

BreakPointLoss Compute the Average Loss of Hidden State Changes from Expected Break Points

Description

Compute the Average Loss of Hidden State Changes from Expected Break Points

Usage

```
BreakPointLoss(model.list, waic = FALSE, display = TRUE)
```

Arguments

model.list	MCMC output objects. These have to be of class mcmc and have a logmarglike attribute. In what follows, we let M denote the total number of models to be compared.
waic	If waic is TRUE, waic(Watanabe information criterion) will be reported.
display	If display is TRUE, a plot of ave.loss will be produced.
	BreakPointLoss. ave.loss, logmarglike, State, Tau, Tau.samp

Value

BreakPointLoss returns five objects. They are: ave.loss the expected loss for each model computed by the mean squared distance of hidden state changes from the expected break points. logmarglike the natural log of the marginal likelihood for each model; State sampled state vectors; Tau expected break points for each model; and Tau.samp sampled break points from hidden state draws.

References

Jong Hee Park and Yunkyun Sohn. 2020. "Detecting Structural Change in Longitudinal Network Data." *Bayesian Analysis*. Vol.15, No.1, pp.133-157.

Examples

```
## Not run:
set.seed(1973)
## Generate an array (30 by 30 by 40) with block transitions
from 2 blocks to 3 blocks
Y <- MakeBlockNetworkChange(n=10, T=40, type ="split")</pre>
```

drawPostAnalysis

```
G <- 100 ## Small mcmc scans to save time
## Fit multiple models for break number detection using Bayesian model comparison
out0 <- NetworkStatic(Y, R=2, mcmc=G, burnin=G, verbose=G, Waic=TRUE)
out1 <- NetworkChange(Y, R=2, m=1, mcmc=G, burnin=G, verbose=G, Waic=TRUE)
out2 <- NetworkChange(Y, R=2, m=2, mcmc=G, burnin=G, verbose=G, Waic=TRUE)
out3 <- NetworkChange(Y, R=2, m=3, mcmc=G, burnin=G, verbose=G, Waic=TRUE)
## The most probable model given break number 0 to 3 and data is out1 according to WAIC
out <- BreakPointLoss(out0, out1, out2, out3, waic=TRUE)
print(out[["ave.loss"]])
```

End(Not run)

drawPostAnalysis Plot of latent node cluster

Description

Plot latent node cluster

Usage

```
drawPostAnalysis(
  mcmcout,
  Y,
  point.cex = 3,
  text.cex = 3,
  segment.size = 0.1,
  n.cluster = NULL,
  start = 1,
  frequency = 1
)
```

Arguments

mcmcout	NetworkChange output
Υ	Input raw data
point.cex	node point size. Default is 3.
text.cex	node label size. Default is 3.
segment.size	segment size. Default is 0.1.
n.cluster	number of cluster. Default is 3.
start	start of ts object
frequency	frequency of ts object

Value

A plot object

References

Jong Hee Park and Yunkyun Sohn. 2020. "Detecting Structural Change in Longitudinal Network Data." *Bayesian Analysis*. Vol.15, No.1, pp.133-157.

Examples

```
## End(Not run)
```

drawRegimeRaw Plot of network by hidden regime

Description

Plot latent node cluster

Usage

```
drawRegimeRaw(mcmcout, Y)
```

Arguments

mcmcout	NetworkChange output
Υ	Input raw data

Value

A plot object

References

Jong Hee Park and Yunkyun Sohn. 2020. "Detecting Structural Change in Longitudinal Network Data." *Bayesian Analysis*. Vol.15, No.1, pp.133-157.

kmeansU

Examples

End(Not run)

kmeansU

K-mean clustering of latent node positions

Description

K-mean clustering of latent node positions

Usage

kmeansU(out, R = 2, n.cluster = 3, layer = 1, main = "")

Arguments

out	Output of networkchange objects.
R	Number of latent space dimensions
n.cluster	Number of latent cluster
layer	Layer id for the cluster analysis
main	Title

Value

A plot object

Examples

```
## Not run: set.seed(1973)
## generate an array with two constant blocks
Y <- MakeBlockNetworkChange(n=10, shape=10, T=10, type ="constant")
out0 <- NetworkStatic(Y, R=2, mcmc=10, burnin=10,
verbose=10, UL.Normal = "Orthonormal")
## latent node positions
kmeansU(out0)</pre>
```

End(Not run)

MajorAlly

Description

This dataframe contains major power alliance network data from 1816 to 2012 (2 year interval).

Format

The dataframe has contains data for major power alliance network data from 1816 to 2012. Major power definition is the COW data set, which incldues USA, UK, France, Germany (West Germany during 1954-1989), Austria, Italy, Russia, China, and Japan. In this data set, a defense pact (Type I), which is the highest level of military commitment, is coded as 1, and 0 otherwise.

Source

Correlates of War Project. 2017. "State System Membership List, v2016." Online, https://correlatesofwar.org/. Gibler, Douglas M. 2009. *International military alliances, 1648-2008.* CQ Press.

MakeBlockNetworkChange

Build a synthetic block-structured temporal data with breaks

Description

MakeBlockNetworkChange generates a block-structured temporal data with breaks.

Usage

```
MakeBlockNetworkChange(
    n = 10,
    break.point = 0.5,
    base.prob = 0.05,
    block.prob = 0.5,
    shape = 1,
    T = 40,
    break.point1 = 0.25,
    break.point2 = 0.75,
    type = "merge"
)
```

MarginalCompare

Arguments

n	The number of nodes within a block. The total number of nodes is n*block.number.
break.point	The point of break. 0 indicates the beginning, 0.5 indicates the middle, and 1 indicates the end.
base.prob	The probability of link among non-block members.
block.prob	The probability of link among within-block members.
shape	The speed of breaks. The larger shape is, the faster the transition is. shape > 0 and shape < 8 .
Т	The length of time.
break.point1	The point of the first break in "merge-split" or "split-merge". Any number be- tween 0 and 0.5 can be chosen. For example, 0 indicates #' the beginning, 0.25 indicates the 1/4th point, and 0.5 indicates the half point.
break.point2	The point of the second breakin "merge-split" or "split-merge". Any number between 0.5 and 1 can be chosen. For example, 0.5 indicates the beginning, 0.75 indicates the 3/4th point, and 1 indicates the end point.
type	The type of network changes. Options are "constant", "merge", "split", "merge- split", "split-merge." If "constant" is chosen, the number of breaks is zero. If "merge" or "split" is chosen, the number of breaks is one. If either "merge-split" or "split-merge" is chosen, the number of breaks is two.

Value

output An output of MakeBlockNetworkChange contains a symmetric block-structured temporal network data set with breaks.

MarginalCompare Compare Log Marginal Likelihood

Description

Compare Log Marginal Likelihood

Usage

```
MarginalCompare(outlist)
```

Arguments

outlist List of NetworkChange objects

Value

A matrix of log marginal likelihoods.

References

Siddhartha Chib. 1995. "Marginal Likelihood from the Gibbs Output." *Journal of the American Statistical Association*. 90: 1313-1321.

Jong Hee Park and Yunkyun Sohn. 2020. "Detecting Structural Change in Longitudinal Network Data." *Bayesian Analysis*. Vol.15, No.1, pp.133-157.

Sumio Watanabe. 2010. "Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory." *Journal of Machine Learning Research*. 11: 3571-3594.

See Also

WaicCompare

multiplot

Printing multiple ggplots in oone file

Description

Print multiple ggplots in one file. Slightly modified for packaging from the original version in the web.

Usage

```
multiplot(..., plotlist = NULL, cols = 1, layout = NULL)
```

Arguments

	A list of ggplot objects separated by commas.
plotlist	A list of ggplot objects
cols	The number of columns.
layout	A matrix specifying the layout. If present, 'cols' is ignored.

Value

A plot object

Author(s)

http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/

NetworkChange

Description

NetworkChange implements Bayesian multiple changepoint models to network time series data using a degree-corrected multilinear tensor decomposition method

Usage

```
NetworkChange(
 Υ,
 R = 2,
 m = 1,
  initial.s = NULL,
 mcmc = 100,
 burnin = 100,
  verbose = 0,
  thin = 1,
  reduce.mcmc = NULL,
  degree.normal = "eigen",
 UL.Normal = "Orthonormal",
 DIC = FALSE,
 Waic = FALSE,
 marginal = FALSE,
 plotUU = FALSE,
  plotZ = FALSE,
  constant = FALSE,
  b0 = 0,
 B0 = 1,
  c0 = NULL,
  d0 = NULL,
  u0 = NULL,
  u1 = NULL,
  v0 = NULL,
  v1 = NULL,
 a = NULL,
 b = NULL
)
```

Arguments

Υ	Reponse tensor
R	Dimension of latent space. The default is 2.
m	Number of change point. If $m = 0$ is specified, the result should be the same as NetworkStatic.

initial.s	The starting value of latent state vector. The default is sampling from equal probabilities for all states.
mcmc	The number of MCMC iterations after burnin.
burnin	The number of burn-in iterations for the sampler.
verbose	A switch which determines whether or not the progress of the sampler is printed to the screen. If verbose is greater than 0 the iteration number, the β vector, and the error variance are printed to the screen every verboseth iteration.
thin	The thinning interval used in the simulation. The number of MCMC iterations must be divisible by this value.
reduce.mcmc	The number of reduced MCMC iterations for marginal likelihood computations. If reduce.mcmc = NULL, mcmc/thin is used.
degree.normal	A null model for degree correction. Users can choose "NULL", "eigen" or "Lsym." "NULL" is no degree correction. "eigen" is a principal eigen-matrix consisting of the first eigenvalue and the corresponding eigenvector. " Lsym" is a modularity matrix. Default is "eigen."
UL.Normal	Transformation of sampled U. Users can choose "NULL", "Normal" or "Or- thonormal." "NULL" is no normalization. "Normal" is the standard normaliza- tion. "Orthonormal" is the Gram-Schmidt orthgonalization. Default is "NULL."
DIC	If DIC = TRUE, the deviation information criterion is computed.
Waic	If Waic = TRUE, the Watanabe information criterion is computed.
marginal	If marginal = TRUE, the log marignal likelihood is computed using the method of Chib (1995).
plotUU	If $plotUU = TRUE$ and $verbose > 0$, then the plot of the latent space will be printed to the screen at every verboseth iteration. The default is $plotUU = FALSE$.
plotZ	If $plotZ = TRUE$ and $verbose > 0$, then the plot of the degree-corrected input matrix will be printed to the screen with the sampled mean values at every verboseth iteration. The default is $plotUU = FALSE$.
constant	If constant = TRUE, constant parameter is sampled and saved in the output as attribute bmat. Default is constant = FALSE.
b0	The prior mean of β . This must be a scalar. The default value is 0.
B0	The prior variance of β . This must be a scalar. The default value is 1.
c0	= 0.1
dØ	= 0.1
uØ	$u_0/2$ is the shape parameter for the inverse Gamma prior on variance parameters for U. The default is 10.
u1	$u_1/2$ is the scale parameter for the inverse Gamma prior on variance parameters for U. The default is 1.
v0	$v_0/2$ is the shape parameter for the inverse Gamma prior on variance parameters for V. The default is 10.
v1	$v_1/2$ is the scale parameter for the inverse Gamma prior on variance parameters for V. The default is the time length of Y.

а	a is the shape1 beta prior for transition probabilities. By default, the expected
	duration is computed and corresponding a and b values are assigned. The ex-
	pected duration is the sample period divided by the number of states.
b	b is the shape2 beta prior for transition probabilities. By default, the expected
	duration is computed and corresponding a and b values are assigned. The ex-
	pected duration is the sample period divided by the number of states.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions provided by the coda package. The object contains an attribute Waic.out that contains results of WAIC and the log-marginal likelihood of the model (logmarglike). The object also contains an attribute prob.state storage matrix that contains the probability of $state_i$ for each period

References

Jong Hee Park and Yunkyun Sohn. 2020. "Detecting Structural Change in Longitudinal Network Data." *Bayesian Analysis*. Vol.15, No.1, pp.133-157.

Peter D. Hoff 2011. "Hierarchical Multilinear Models for Multiway Data." *Computational Statistics* & *Data Analysis.* 55: 530-543.

Siddhartha Chib. 1998. "Estimation and comparison of multiple change-point models." *Journal of Econometrics*. 86: 221-241.

See Also

NetworkStatic

Examples

```
## Not run:
set.seed(1973)
\## Generate an array (30 by 30 by 40) with block transitions
from 2 blocks to 3 blocks
Y <- MakeBlockNetworkChange(n=10, T=40, type ="split")
G <- 100 ## Small mcmc scans to save time
\## Fit multiple models for break number detection using Bayesian model comparison
out0 <- NetworkStatic(Y, R=2, mcmc=G, burnin=G, verbose=G, Waic=TRUE)
out1 <- NetworkChange(Y, R=2, m=1, mcmc=G, burnin=G, verbose=G, Waic=TRUE)
out2 <- NetworkChange(Y, R=2, m=2, mcmc=G, burnin=G, verbose=G, Waic=TRUE)
out3 <- NetworkChange(Y, R=2, m=3, mcmc=G, burnin=G, verbose=G, Waic=TRUE)
out3 <- NetworkChange(Y, R=2, m=3, mcmc=G, burnin=G, verbose=G, Waic=TRUE)
out1 st <- list(out0, out1, out2, out3)
\## The most probable model given break number 0 to 3 and data is out1 according to WAIC
WaicCompare(outlist)
```

```
plotU(out1)
```

plotV(out1)

End(Not run)

NetworkChangeRobust

Description

NetworkChangeRobust implements Bayesian multiple changepoint models to network time series data using a degree-corrected multilinear tensor decomposition method with t-distributed error

Usage

```
NetworkChangeRobust(
  Υ,
 R = 2,
 m = 1,
  initial.s = NULL,
 mcmc = 100,
 burnin = 100,
  verbose = 0,
  thin = 1,
  degree.normal = "eigen",
 UL.Normal = "Orthonormal",
  plotUU = FALSE,
 plotZ = FALSE,
 b0 = 0,
 B0 = 1,
  c0 = NULL,
  d0 = NULL,
  n0 = 2,
 m0 = 2,
```

)

u0 = NULL, u1 = NULL, v0 = NULL, v1 = NULL, a = NULL, b = NULL

Arguments

Υ	Reponse tensor	
R	Dimension of latent space. The default is 2.	
m	Number of change point. If $m = 0$ is specified, the result should be the same as NetworkStatic.	
initial.s	The starting value of latent state vector. The default is sampling from equal probabilities for all states.	

mcmc	The number of MCMC iterations after burnin.
burnin	The number of burn-in iterations for the sampler.
verbose	A switch which determines whether or not the progress of the sampler is printed to the screen. If verbose is greater than 0 the iteration number, the β vector, and the error variance are printed to the screen every verboseth iteration.
thin	The thinning interval used in the simulation. The number of MCMC iterations must be divisible by this value.
degree.normal	A null model for degree correction. Users can choose "NULL", "eigen" or "Lsym." "NULL" is no degree correction. "eigen" is a principal eigen-matrix consisting of the first eigenvalue and the corresponding eigenvector. "Lsym" is a modularity matrix. Default is "eigen."
UL.Normal	Transformation of sampled U. Users can choose "NULL", "Normal" or "Or- thonormal." "NULL" is no normalization. "Normal" is the standard normaliza- tion. "Orthonormal" is the Gram-Schmidt orthgonalization. Default is "NULL."
plotUU	If $plotUU = TRUE$ and verbose > 0, then the plot of the latent space will be printed to the screen at every verboseth iteration. The default is $plotUU = FALSE$.
plotZ	If $plotZ = TRUE$ and $verbose > 0$, then the plot of the degree-corrected input matrix will be printed to the screen with the sampled mean values at every verboseth iteration. The default is $plotUU = FALSE$.
b0	The prior mean of β . This must be a scalar. The default value is 0.
B0	The prior variance of β . This must be a scalar. The default value is 1.
c0	= 0.1 The shape parameter of inverse gamma prior for σ^2 .
dØ	= 0.1 The rate parameter of inverse gamma prior for σ^2 .
nØ	= 0.1 The shape parameter of inverse gamma prior for γ of Student-t distribution.
mØ	= 0.1 The rate parameter of inverse gamma prior for γ of Student-t distribution.
uØ	$u_0/2$ is the shape parameter for the inverse Gamma prior on variance parameters for U. The default is 10.
u1	$u_1/2$ is the scale parameter for the inverse Gamma prior on variance parameters for U. The default is 1.
v0	$v_0/2$ is the shape parameter for the inverse Gamma prior on variance parameters for V. The default is 10.
v1	$v_1/2$ is the scale parameter for the inverse Gamma prior on variance parameters for V. The default is the time length of Y.
a	a is the shape1 beta prior for transition probabilities. By default, the expected duration is computed and corresponding a and b values are assigned. The expected duration is the sample period divided by the number of states.
b	b is the shape2 beta prior for transition probabilities. By default, the expected duration is computed and corresponding a and b values are assigned. The expected duration is the sample period divided by the number of states.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions provided by the coda package. The object contains an attribute Waic.out that contains results of WAIC and the log-marginal likelihood of the model (logmarglike). The object also contains an attribute prob.state storage matrix that contains the probability of $state_i$ for each period

References

Jong Hee Park and Yunkyun Sohn. 2020. "Detecting Structural Change in Longitudinal Network Data." *Bayesian Analysis*. Vol.15, No.1, pp.133-157.

Peter D. Hoff 2011. "Hierarchical Multilinear Models for Multiway Data." *Computational Statistics* & *Data Analysis.* 55: 530-543.

Siddhartha Chib. 1998. "Estimation and comparison of multiple change-point models." *Journal of Econometrics*. 86: 221-241.

Sumio Watanabe. 2010. "Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory." *Journal of Machine Learning Research*. 11: 3571-3594. Siddhartha Chib. 1995. "Marginal Likelihood from the Gibbs Output." *Journal of the American Statistical Association*. 90: 1313-1321.

See Also

NetworkStatic

Examples

```
## Not run:
set.seed(1973)
## Generate an array (30 by 30 by 40) with block transitions
from 2 blocks to 3 blocks
Y <- MakeBlockNetworkChange(n=10, T=40, type ="split")
G <- 100 ## only 100 mcmc scans to save time
## Fit models
out1 <- NetworkChangeRobust(Y, R=2, m=1, mcmc=G, burnin=G, verbose=G)
## plot latent node positions
plotU(out1)
## plot layer-specific network generation rules
plotV(out1)
```

End(Not run)

NetworkStatic Degree-corrected multilinear tensor model

Description

NetworkStatic implements a degree-corrected Bayesian multilinear tensor decomposition method

NetworkStatic

Usage

```
NetworkStatic(
 Υ,
 R = 2,
 mcmc = 100,
 burnin = 100,
 verbose = 0,
  thin = 1,
  reduce.mcmc = NULL,
  degree.normal = "eigen",
 UL.Normal = "Orthonormal",
  plotUU = FALSE,
 plotZ = FALSE,
  constant = FALSE,
 b0 = 0,
 B0 = 1,
  c0 = NULL,
 d0 = NULL,
 u0 = NULL,
 u1 = NULL,
 v0 = NULL,
 v1 = NULL,
 marginal = FALSE,
 DIC = FALSE,
 Waic = FALSE
```

)

Arguments

Υ	Reponse tensor
R	Dimension of latent space. The default is 2.
mcmc	The number of MCMC iterations after burnin.
burnin	The number of burn-in iterations for the sampler.
verbose	A switch which determines whether or not the progress of the sampler is printed to the screen. If verbose is greater than 0 the iteration number, the β vector, and the error variance are printed to the screen every verboseth iteration.
thin	The thinning interval used in the simulation. The number of MCMC iterations must be divisible by this value.
reduce.mcmc	The number of reduced MCMC iterations for marginal likelihood computations. If reduce.mcmc = NULL, mcmc/thin is used.
degree.normal	A null model for degree correction. Users can choose "NULL", "eigen" or "Lsym." "NULL" is no degree correction. "eigen" is a principal eigen-matrix consisting of the first eigenvalue and the corresponding eigenvector. "Lsym" is a modularity matrix. Default is "eigen."
UL.Normal	Transformation of sampled U. Users can choose "NULL", "Normal" or "Or- thonormal." "NULL" is no normalization. "Normal" is the standard normaliza- tion. "Orthonormal" is the Gram-Schmidt orthgonalization. Default is "NULL."

plotUU	If $plotUU = TRUE$ and verbose > 0, then the plot of the latent space will be printed to the screen at every verboseth iteration. The default is $plotUU = FALSE$.
plotZ	If $plotZ = TRUE$ and $verbose > 0$, then the plot of the degree-corrected input matrix will be printed to the screen with the sampled mean values at every verboseth iteration. The default is $plotUU = FALSE$.
constant	If constant = TRUE, constant parameter is sampled and saved in the output as attribute bmat. Default is constant = FALSE.
b0	The prior mean of β . This must be a scalar. The default value is 0.
BØ	The prior variance of β . This must be a scalar. The default value is 1.
c0	= 0.1
dØ	= 0.1
uØ	$u_0/2$ is the shape parameter for the inverse Gamma prior on variance parameters for U. The default is 10.
u1	$u_1/2$ is the scale parameter for the inverse Gamma prior on variance parameters for U. The default is 1.
vØ	$v_0/2$ is the shape parameter for the inverse Gamma prior on variance parameters for V. The default is 10.
v1	$v_1/2$ is the scale parameter for the inverse Gamma prior on variance parameters for V. The default is the time length of Y.
marginal	If marginal = TRUE, the log marignal likelihood is computed using the method of Chib (1995).
DIC	If DIC = TRUE, the deviation information criterion is computed.
Waic	If Waic = TRUE, the Watanabe information criterion is computed.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions provided by the coda package. The object contains an attribute Waic.out that contains results of WAIC and the log-marginal likelihood of the model (logmarglike).

References

Jong Hee Park and Yunkyun Sohn. 2020. "Detecting Structural Change in Longitudinal Network Data." *Bayesian Analysis*. Vol.15, No.1, pp.133-157.

Peter D. Hoff 2011. "Hierarchical Multilinear Models for Multiway Data." *Computational Statistics* & *Data Analysis.* 55: 530-543.

Sumio Watanabe. 2010. "Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory." *Journal of Machine Learning Research*. 11: 3571-3594. Siddhartha Chib. 1995. "Marginal Likelihood from the Gibbs Output." *Journal of the American Statistical Association*. 90: 1313-1321.

See Also

NetworkChange

plotContour

Examples

```
## Not run:
set.seed(1973)
\## generate an array with three constant blocks
Y <- MakeBlockNetworkChange(n=10, shape=10, T=10, type ="constant")
G <- 100 ## Small mcmc scans to save time
out0 <- NetworkStatic(Y, R=2, mcmc=G, burnin=G, verbose=G)
\## recovered latent blocks
Kmeans(out0, n.cluster=3, main="Recovered Blocks")
\## contour plot of latent node positions
plotContour(out0)
\## plot latent node positions
plotU(out0)
\## plot layer-specific network connection rules
plotV(out0)
## End(Not run)
```

plotContour Contour plot of latent node positions

Description

Draw a contour plot of latent node positions

Usage

```
plotContour(OUT, main = "", k = 8, my.cols = brewer.pal(k, "Spectral"))
```

Arguments

OUT	Output of networkchange objects.	
main	The title of plot	
k	The number of levels (nlevels in contour ()).	
my.cols	Color scale. Use brewer.pal() from RColorBrewer.	

Value

A plot object

Examples

```
## Not run: set.seed(1973)
\## generate an array with two constant blocks
Y <- MakeBlockNetworkChange(n=10, shape=10, T=40, type ="constant")
out0 <- NetworkStatic(Y, R=2, mcmc=10, burnin=10,
verbose=10, UL.Normal = "Orthonormal")
\## contour plot of latent node positions
plotContour(out0)</pre>
```

```
## End(Not run)
```

plotnetarray Plot of network array data

Description

Plot network array data

Usage

```
plotnetarray(
 Y,
 n.graph = 4,
 node.size = 2,
 node.color = "brown",
 edge.alpha = 0.5,
 edge.size = 0.2,
 edge.color = "grey"
)
```

Arguments

Υ	network array data
n.graph	number of subgraphs. Default is 4.
node.size	node size. Default is 2.
node.color	node color. Default is "brown."
edge.alpha	transparency of edge. Default is 0.5.
edge.size	edge size. Default is 0.2.
edge.color	edge color. Default is "grey."

Value

A plot object

20

plotU

References

Jong Hee Park and Yunkyun Sohn. 2020. "Detecting Structural Change in Longitudinal Network Data." *Bayesian Analysis*. Vol.15, No.1, pp.133-157.

Examples

```
## Not run:
set.seed(1973)
## generate an array with two constant blocks
Y <- MakeBlockNetworkChange(n=10, shape=1, T=20, type ="split")
plotnetarray(Y)
```

End(Not run)

plotU

Plot of latent node positions

Description

Plot latent node positions

Usage

plotU(OUT, Time = NULL, names = NULL, main = NULL, label.prob = 0.9)

Arguments

OUT	Output of networkchange objects.	
Time	Starting of the time period. If NULL, 1.	
names	Node names. If NULL, use natural numbers.	
main	The title of plot	
label.prob	Label print threshold. 0.9 is the default.	

Value

A plot object

Examples

```
## Not run:
set.seed(1973)
\## generate an array with two constant blocks
Y <- MakeBlockNetworkChange(n=10, shape=10, T=40, type ="constant")
out0 <- NetworkStatic(Y, R=2, mcmc=10, burnin=10,
verbose=10, UL.Normal = "Orthonormal")
\## latent node positions
plotU(out0)
```

End(Not run)

plotV

Description

Plot layer-specific network generation rules.

Usage

plotV(OUT, main = "", cex = 2)

Arguments

OUT	Output of networkchange objects.	
main	The title of plot	
cex	point size	

Value

A plot object

Examples

```
## Not run: set.seed(1973)
\## generate an array with two constant blocks
Y <- MakeBlockNetworkChange(n=10, shape=10, T=40, type ="constant")
out0 <- NetworkStatic(Y, R=2, mcmc=10, burnin=10,
verbose=10, UL.Normal = "Orthonormal")
\## latent node positions
plotV(out0)</pre>
```

End(Not run)

PostwarAlly

Postwar Alliance Network (1846 - 2012)

Description

This dataframe contains postwar alliance network data from 1946 to 2012 (2 year interval).

Format

The dataframe has contains data for postwar alliance network data from 1946 to 2012 with 2 year interval. After removing disconnected components, 104 countries are included. In this data set, a defense pact (Type I), which is the highest level of military commitment, is coded as 1, and 0 otherwise.

startS

Source

Correlates of War Project. 2017. "State System Membership List, v2016." Online, https://correlatesofwar.org/. Gibler, Douglas M. 2009. *International military alliances, 1648-2008.* CQ Press.

startS

Sample a starting value of hidden states

Description

Sample a starting value of hidden states

Usage

```
startS(Z, Time, m, initial.U, V, s2, R)
```

Arguments

Z	Degree-corrected network array data	
Time	The length of time.	
m	The number of breaks	
initial.U	Initialized U matrix.	
V	Initialized V matrix.	
s2	Initialized error variance	
R	The dimensionality of latent space	

Value

A state vector

startUV	Starting values of U and V	

Description

Initialize starting values of U and V

Usage

startUV(Z, R, K)

Arguments

Z	Degree-corrected network array data.
R	The dimensionality of latent space.
К	The dimensionality of Z.

Value

A list of U and V

ULUstateSample	Hidden State Sampler	
----------------	----------------------	--

Description

Sample hidden states from hidden Markov multilinear model

Usage

ULUstateSample(m, s, ZMUt, s2, P, SOS.random)

Arguments

m	The number of break
S	Latent state vector
ZMUt	Z - MU
s2	error variance
Р	Transition matrix
SOS.random	single observation state random perturbation

Value

A list of a state vector, state probabilities, and SOS.random.

ULUstateSample.mpfr Hidden State Sampler with precision

Description

Sample hidden states from hidden Markov multilinear model with precision using Rmpfr package

Usage

ULUstateSample.mpfr(m, s, ZMUt, s2, P, SOS.random)

Arguments

m	The number of break
S	Latent state vector
ZMUt	Z - MU
s2	error variance
Р	Transition matrix
SOS.random	single observation state random perturbation

Value

A list of a state vector, state probabilities, and SOS.random.

updateb	Update time-constant regression parameters
---------	--

Description

Update time-constant regression parameters

Usage

updateb(Z, MU, s2, XtX, b0, B0)

Arguments

Z	Degree corrected response tensor
MU	Mean array
s2	Error variance
XtX	X'X
b0	Prior mean of beta
B0	Prior variance of beta

Value

A vector of regression parameters

updatebm

Update regime-changing regression parameters

Description

Update regime-changing beta

Usage

updatebm(ns, K, s, s2, B0, p, ZU)

Arguments

ns	The number of hidden states
К	The dimensionality of Z
S	Latent state vector
s2	The variance of error
B0	The prior variance of beta
р	The rank of X
ZU	Z - ULU

Value

A vector of regime-changing regression parameters

updateP

Update transition matrix

Description

Update transition matrix

Usage

updateP(s, ns, P, A0)

Arguments

S	Latent state vector
ns	The number of hidden states
Р	Transition matrix
A0	Prior of transition matrix

26

updateS

Value

A transtion matrix

updateS

Update latent states

Description

Update latent states

Usage

updateS(iter, s, ۷, m, Zb, Zt, Time, MU.state, Ρ, s2, N.upper.tri, random.perturb

Arguments

)

iter	iteration number
S	the most recent latent states
V	Network generation rules
m	The number of breaks
Zb	Z - b
Zt	Z stacked by time
Time	The length of time
MU.state	UVU for each state
Р	Transition matrix
s2	error variance
N.upper.tri	The number of upper triangular elements
random.perturb	If random.perturb = TRUE and a single state observation is found, the latent state is randomly selected by equal weights.

Value

A list of vectors containing latent states and their probabilities

updates2m

Description

Update regime-specific variance parameter

Usage

updates2m(ns, Zm, MU, c0, d0, Km)

Arguments

The number of hidden states
The regime-specific holder of Z - beta
The mean array.
Scalar shape parameter
Scalar scale parameter
Regime-specific dimensions

Value

A scalar for a regime-specific variance

updateU	Update time-constant latent node positions	
---------	--	--

Description

Update time-constant latent node positions

Usage

updateU(K, U, V, R, Zb, s2, eU, iVU)

Arguments

К	The dimensionality of Z
U	The most recent draw of latent node positions
V	Layer-specific network generation rule
R	The dimensionality of latent space
Zb	Z - beta
s2	error variance
eU	The mean of U
iVU	The variance of U

updateUm

Value

A matrix of time-constant latent node positions

updateUm

Regime-specific latent node positions

Description

Update regime-specific latent node positions.

Usage

updateUm(ns, U, V, R, Zm, Km, ej, s2, eU, iVU, UL.Normal)

Arguments

ns	The number of latent states
U	THe latent node positions
V	Layer-specific network generation rule.
R	The dimensionality of latent space
Zm	Regim-specific Z - beta
Km	The dimension of regime-specific Z.
ej	Regime indicator.
s2	The variance of error.
eU	The regim-specific mean of U.
iVU	The regim-specific variance of U.
UL.Normal	Normalization method for U. "Normal" or "Orthonormal" are supported.

Value

A matrix of regime-specific latent node positions

updateV

Description

Update layer specific network generation rules

Usage

updateV(Zb, U, R, K, s2, eV, iVV, UTA)

Arguments

Zb	Z - beta.
U	The latent node positions.
R	The dimension of latent space.
К	The dimension of Z.
s2	The variance of error.
eV	The mean of V.
iVV	The variance of V.
UTA	Indicator of upper triangular array

Value

A matrix of layer specific network generation rules

updateVm

Update V from a change-point network process

Description

Update layer specific network generation rules from a change-point network process

Usage

```
updateVm(ns, U, V, Zm, Km, R, s2, eV, iVV, UTA)
```

WaicCompare

Arguments

ns	The number of hidden regimes.
U	The latent node positions.
V	The layer-specific network generation rule.
Zm	The holder of Z - beta.
Km	The dimension of regime-specific Z.
R	The dimension of latent space.
s2	The variance of error.
eV	The mean of V
iVV	The variance of V
UTA	Indicator of upper triangular array

Value

A matrix of regime-specific layer specific network generation rules

WaicCompare	Compare WAIC	

Description

Compare Widely Applicable Information Criterion

Usage

```
WaicCompare(outlist)
```

Arguments

outlist List of NetworkChange objects

Value

Results of WAIC computation

A matrix of log marginal likelihoods.

References

Sumio Watanabe. 2010. "Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory." *Journal of Machine Learning Research*. 11: 3571-3594.

Andrew Gelman, Jessica Hwang, and Aki Vehtari. 2014. "Understanding predictive information criteria for Bayesian models." *Statistics and Computing*. 24(6):997-1016.

Jong Hee Park and Yunkyun Sohn. 2020. "Detecting Structural Change in Longitudinal Network Data." *Bayesian Analysis*. Vol.15, No.1, pp.133-157.

WaicCompare

See Also

MarginalCompare

Index

* datasets MajorAlly, 8 PostwarAlly, 22 BreakDiagnostic, 2 BreakPointLoss, 4 drawPostAnalysis, 5 drawRegimeRaw, 6 kmeansU, 7 MajorAlly, 8 MakeBlockNetworkChange, 8 MarginalCompare, 9, 32 multiplot, 10NetworkChange, 11, 18 $\verb|NetworkChangeRobust, 14|$ NetworkStatic, 13, 16, 16 plotContour, 19 plotnetarray, 20 plotU, 21 plotV, 22PostwarAlly, 22 startS, 23 startUV, 23 ULUstateSample, 24 ULUstateSample.mpfr, 25 updateb, 25 updatebm, 26 updateP, 26updateS, 27 updates2m, 28 updateU, 28updateUm, 29 updateV, 30updateVm, 30 WaicCompare, 10, 31