## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 4, fig.align = "center" ) ## ----setup-------------------------------------------------------------------- library(MAPCtools) data("toy_data") ## ----plot-missing-data-------------------------------------------------------- plot_missing_data(toy_data, x = period, y = age) ## ----plot-missing-data-stratify----------------------------------------------- plot_missing_data( data = toy_data, x = period, y = age, stratify_by = education ) ## ----plot-missing-data-for-each----------------------------------------------- plot_missing_data( data = toy_data, x = period, y = age, stratify_by = education, for_each = sex ) ## ----plot-coints-1d----------------------------------------------------------- plot_counts_1D( toy_data, x = age, stratify_by = education, for_each = sex ) ## ----plot-counts-2d----------------------------------------------------------- plot_counts_2D( toy_data, x = age, y = period, stratify_by = education, for_each = sex ) ## ----plot-binnd-counts-------------------------------------------------------- plot_binned_counts( toy_data, x = period, bin_by = age, n_bins = 4, stratify_by = education, for_each = sex ) ## ----plot-mean-1d------------------------------------------------------------- plot_mean_response_1D( toy_data, response = count, x = age, stratify_by = education, for_each = sex ) ## ----plot-mean-2d------------------------------------------------------------- plot_mean_response_2D( toy_data, response = count, x = period, y = age, stratify_by = education ) ## ----plot-known-rate---------------------------------------------------------- require(ggplot2) # Over age ggplot(toy_data, aes(x = age, y = known_rate, color = education)) + stat_summary(fun=mean, geom="line") + facet_wrap(~ sex, ncol = 2) + labs( title = "Poisson rates by age and education level", x = "Age", y = "Rate", color = "Education" ) + scale_color_viridis_d() + theme_minimal() + theme(plot.title = element_text(hjust=0.5), legend.position = "bottom") # Over period ggplot(toy_data, aes(x = period, y = known_rate, color = education)) + stat_summary(fun=mean, geom="line") + facet_wrap(~ sex, ncol = 2) + labs( title = "Poisson rates by period and education level", x = "Period", y = "Rate", color = "Education" ) + scale_color_viridis_d() + theme_minimal() + theme(plot.title = element_text(hjust=0.5), legend.position = "bottom") # Over cohort ggplot(toy_data, aes(x = cohort, y = known_rate, color = education)) + stat_summary(fun=mean, geom="line") + facet_wrap(~ sex, ncol = 2) + labs( title = "Poisson rates by cohort and education level", x = "Cohort", y = "Rate", color = "Education" ) + scale_color_viridis_d() + theme_minimal() + theme(plot.title = element_text(hjust=0.5), legend.position = "bottom") ## ----filter-sex--------------------------------------------------------------- require(dplyr) toy_data.f <- toy_data %>% filter(sex == "female") %>% subset(cohort > 1931) toy_data.m <- toy_data %>% filter(sex == "male") %>% subset(cohort > 1931 & cohort < 1999) ## ----fit-apC, eval=FALSE, echo=TRUE------------------------------------------- # apC_fit.f <- fit_MAPC( # data = toy_data.f, # response = count, # family = "poisson", # apc_format = "apC", # stratify_by = education, # reference_strata = 1, # age = age, # period = period # ) # # apC_fit.m <- fit_MAPC( # data = toy_data.m, # response = count, # family = "poisson", # apc_format = "apC", # stratify_by = education, # reference_strata = 1, # age = age, # period = period # ) ## ----load-apC-fit, results = 'hide'------------------------------------------- apC_fit.f <- readRDS(system.file("extdata", "quickstart-apC_fit_f.rds", package = "MAPCtools")) apC_fit.m <- readRDS(system.file("extdata", "quickstart-apC_fit_m.rds", package = "MAPCtools")) ## ----print-apC-fit------------------------------------------------------------ print(apC_fit.f) # Concise summary the model that was fit # print(apC_fit.f) ## ----plot-apC-fit-f----------------------------------------------------------- plot(apC_fit.f) # Plots estimated cross-strata contrast trends ## ----plot-apC-fit-m----------------------------------------------------------- plot(apC_fit.m) # Plots estimated cross-strata contrast trends ## ----summary-apC-fit---------------------------------------------------------- # This doesn't print nice in a rmd/qmd file # summary(apC_fit) # Detailed posterior summaries ## ----fit-all-mapc, eval=FALSE, echo=TRUE-------------------------------------- # all_fits.f <- fit_all_MAPC( # data = toy_data.f, # response = count, # family = "poisson", # stratify_by = education, # reference_strata = 1, # age = age, # period = period, # include.random = TRUE # ) # # all_fits.m <- fit_all_MAPC( # data = toy_data.m, # response = count, # family = "poisson", # stratify_by = education, # reference_strata = 1, # age = age, # period = period, # include.random = TRUE # ) ## ----load-all-fits, results = 'hide'------------------------------------------ all_fits.f <- readRDS(system.file("extdata", "quickstart-all_fits_f.rds", package = "MAPCtools")) all_fits.m <- readRDS(system.file("extdata", "quickstart-all_fits_m.rds", package = "MAPCtools")) ## ----print-all_fits----------------------------------------------------------- print(all_fits.f) # concise summary of each model # print(all_fits.m) ## ----plot-all-fits-f---------------------------------------------------------- plot(all_fits.f) # model comparison plots (DIC/WAIC/log-score) ## ----plot-all-fits-m---------------------------------------------------------- plot(all_fits.m) # model comparison plots (DIC/WAIC/log-score) ## ----summary-all-fits--------------------------------------------------------- # summary(all_fits.f) # detailed posterior summaries for each fit # summary(all_fits.m)