
Package ‘DTSg’
January 21, 2025

Type Package

Title A Class for Working with Time Series Data Based on 'data.table'
and 'R6' with Largely Optional Reference Semantics

Version 2.0.0

Description Basic time series functionalities such as listing of missing
values, application of arbitrary aggregation as well as rolling (asymmetric)
window functions and automatic detection of periodicity. As it is mainly
based on 'data.table', it is fast and (in combination with the 'R6' package)
offers reference semantics. In addition to its native R6 interface, it
provides an S3 interface for those who prefer the latter. Finally yet
importantly, its functional approach allows for incorporating
functionalities from many other packages.

License MIT + file LICENSE

URL https://gisler.github.io/DTSg/

BugReports https://github.com/gisler/DTSg/issues

Language en-GB

Encoding UTF-8

LazyData true

ByteCompile true

Depends R (>= 3.2.0)

Imports checkmate, data.table, methods, R6, timechange

Suggests dygraphs, fasttime, knitr, RColorBrewer, RcppCCTZ, rmarkdown,
runner (>= 0.3.5), tinytest, units

RoxygenNote 7.3.2

VignetteBuilder knitr

NeedsCompilation no

Author Gerold Hepp [aut, cre]

Maintainer Gerold Hepp <gisler@hepp.cc>

Repository CRAN

Date/Publication 2025-01-20 23:50:14 UTC

1

https://gisler.github.io/DTSg/
https://github.com/gisler/DTSg/issues

2 aggregate.DTSg

Contents
aggregate.DTSg . 2
alter.DTSg . 6
clone.DTSg . 8
colapply.DTSg . 9
cols.DTSg . 14
DTSg . 15
flow . 19
getCol.DTSg . 19
interpolateLinear . 20
merge.DTSg . 21
nas.DTSg . 22
plot.DTSg . 23
print.DTSg . 25
refresh.DTSg . 26
rollapply.DTSg . 26
rollback . 29
rowaggregate.DTSg . 30
rowbind.DTSg . 31
S3WrapperGenerator . 32
setColNames.DTSg . 33
setCols.DTSg . 35
subset.DTSg . 36
summary.DTSg . 40
TALFs . 41
values.DTSg . 43

Index 45

aggregate.DTSg Aggregate values

Description

Applies a temporal aggregation level function to the .dateTime column of a DTSg object and ag-
gregates its values column-wise to the function’s temporal aggregation level utilising one or more
provided summary functions. Additionally, it sets the object’s aggregated field to TRUE.

Usage

S3 method for class 'DTSg'
aggregate(
x,
funby,
fun,
...,
cols = self$cols(class = "numeric"),

aggregate.DTSg 3

n = FALSE,
ignoreDST = FALSE,
multiplier = 1L,
funbyHelpers = NULL,
funbyApproach = self$funbyApproach,
clone = getOption("DTSgClone")

)

Arguments

x A DTSg object (S3 method only).

funby One of the temporal aggregation level functions described in TALFs or a user de-
fined temporal aggregation level function. See corresponding section for further
information.

fun A summary function, (named) list of summary functions or (named) character
vector specifying summary functions applied column-wise to all the values of
the same temporal aggregation level. The return value(s) must be of length one.
See corresponding section for further information.

... Further arguments passed on to fun.

cols A character vector specifying the columns to aggregate. Another possibility is a
character string containing either comma separated column names, for example,
"x,y,z", or the start and end column separated by a colon, for example, "x:z".

n A logical specifying if a column named .n giving the number of values per
temporal aggregation level shall be added. See corresponding section for further
information.

ignoreDST A logical specifying if day saving time shall be ignored by funby. See corre-
sponding section for further information.

multiplier A positive integerish value “multiplying” the temporal aggregation level of cer-
tain TALFs. See corresponding section for further information.

funbyHelpers An optional list with helper data passed on to funby. See corresponding sec-
tion for further information.

funbyApproach A character string specifying the flavour of the applied temporal aggregation
level function. Either "timechange", which utilises timechange::time_floor,
or "base", which utilises as.POSIXct, or "fasttime", which utilises fasttime::fastPOSIXct,
or "RcppCCTZ", which utilises RcppCCTZ::parseDatetime as the main function
for transforming timestamps.

clone A logical specifying if the object shall be modified in place or if a deep clone
(copy) shall be made beforehand.

Value

Returns an aggregated DTSg object.

4 aggregate.DTSg

User defined TALFs, TALFs helper data and multiplier

User defined temporal aggregation level functions have to return a POSIXct vector of the same
length as the time series and accept two arguments: a POSIXct vector as its first and a list with
helper data as its second. The default elements of this list are as follows:

• timezone: Same as the timezone field.

• ignoreDST: Same as the ignoreDST argument.

• periodicity: Same as the periodicity field.

• na.status: Same as the na.status field.

• multiplier: Same as the multiplier argument.

• funbyApproach: Same as the funbyApproach argument.

Any additional element specified in the funbyHelpers argument is appended to the end of the de-
fault list. In case funbyHelpers contains an ignoreDST, multiplier or funbyApproach element, it
takes precedence over the respective method argument. timezone, periodicity and na.status elements
are rejected, as they are always taken directly from the object.

The temporal aggregation level of certain TALFs can be adjusted with the help of the multiplier
argument. A multiplier of 10, for example, makes byY_____ aggregate to decades instead of
years. Another example is a multiplier of 6 provided to by_m____. The function then aggregates
all months of all first and all months of all second half years instead of all months of all years
separately. This feature is supported by the following TALFs of the package:

• byY_____

• byYm____

• byYmdH__ (UTC and equivalent as well as all Etc/GMT time zones only)

• byYmdHM_

• byYmdHMS

• by_m____

• by___H__ (UTC and equivalent as well as all Etc/GMT time zones only)

• by____M_

• by_____S

Summary functions

Some examples for fun are as follows:

• mean

• list(min = min, max = max)

• c(sd = "sd", var = "var")

A list or character vector must have names in case more than one summary function is provided.
The method can benefit from data.table’s GForce optimisation in case a character vector specifying
summary functions is provided.

aggregate.DTSg 5

Number of values per temporal aggregation level

Depending on the number of columns to aggregate, the .n column contains different counts:

• One column: The counts are calculated from the columns’ values disregarding any missing
values.

• More than one column: The counts are calculated from the .dateTime column including all
missing values.

Ignore day saving time

ignoreDST tells a temporal aggregation level function if it is supposed to ignore day saving time
while transforming the timestamps. This can be a desired feature for time series strictly following
the position of the sun such as hydrological time series. Doing so ensures that diurnal variations are
preserved by all means and all intervals are of the “correct” length, however, a possible limitation
might be that the day saving time shift is invariably assumed to be one hour long. This feature
requires that the periodicity of the time series has been recognised and is supported by the following
TALFs of the package:

• byY_____

• byYQ____

• byYm____

• byYmd___

• by_Q____

• by_m____

• by___H__

See Also

cols, getOption

Examples

new DTSg object
x <- DTSg$new(values = flow)

mean yearly river flows
R6 method
x$aggregate(

funby = byY_____,
fun = "mean",
na.rm = TRUE

)$print()

S3 method
print(aggregate(

x = x,
funby = byY_____,
fun = "mean",

6 alter.DTSg

na.rm = TRUE
))

variance and standard deviation of river flows per quarter
R6 method
x$aggregate(

funby = byYQ____,
fun = c(var = "var", sd = "sd"),
na.rm = TRUE

)$print()

S3 method
print(aggregate(

x = x,
funby = byYQ____,
fun = c(var = "var", sd = "sd"),
na.rm = TRUE

))

mean of river flows of all first and all second half years
R6 method
x$aggregate(

funby = by_m____,
fun = "mean",
na.rm = TRUE,
multiplier = 6

)$print()

S3 method
print(aggregate(

x = x,
funby = by_m____,
fun = "mean",
na.rm = TRUE,
multiplier = 6

))

alter.DTSg Alter time series

Description

Shortens, lengthens, filters for a consecutive range, changes the periodicity and/or the status of
missing values of a DTSg object.

Usage

S3 method for class 'DTSg'
alter(

alter.DTSg 7

x,
from = first(self$values(reference = TRUE)[[".dateTime"]]),
to = last(self$values(reference = TRUE)[[".dateTime"]]),
by = self$periodicity,
rollback = TRUE,
clone = getOption("DTSgClone"),
na.status = self$na.status,
...

)

Arguments

x A DTSg object (S3 method only).

from A POSIXct timestamp in the same time zone as the time series or a character
string coercible to one. Specifies the new start of the time series.

to A POSIXct timestamp in the same time zone as the time series or a character
string coercible to one. Specifies the new end of the time series.

by Specifies the new periodicity in one of the ways the by argument of seq.POSIXt
can be specified. Must be specified for time series with unrecognised periodicity.
Time steps out of sync with the new periodicity are dropped.

rollback A logical specifying if a call to rollback shall be made when appropriate.

clone A logical specifying if the object shall be modified in place or if a deep clone
(copy) shall be made beforehand.

na.status A character string. Either "explicit", which makes missing timestamps ex-
plicit according to the recognised periodicity, or "implicit", which removes
timestamps with missing values on all value columns. Please note that DTSg
objects work best with explicitly missing values.

... Not used (S3 method only).

Value

Returns a DTSg object.

See Also

getOption, subset, nas

Examples

new DTSg object
x <- DTSg$new(values = flow)

filter for the first two years
R6 method
x$alter(

from = "2007-01-01",
to = "2008-12-31"

)$print()

8 clone.DTSg

S3 method
print(alter(

x = x,
from = "2007-01-01",
to = "2008-12-31"

))

change periodicity to one month
R6 method
x$alter(by = "1 month")$print()

S3 method
print(alter(x = x, by = "1 month"))

clone.DTSg Clone object

Description

Clones (copies) a DTSg object. Merely assigning a variable representing a DTSg object to a new
variable does not result in a copy of the object. Instead, both variables will reference and access the
same data under the hood, i.e. changing one will also affect the other. This is not an issue when
calling methods with the DTSgClone option or clone argument set to TRUE, but has to be kept in
mind when setting fields, as they are always modified in place. See DTSg for further information.

Usage

S3 method for class 'DTSg'
clone(x, deep = FALSE, ...)

Arguments

x A DTSg object (S3 method only).

deep A logical specifying if a deep copy shall be made (for consistency with the
R6::R6Class the default is FALSE, but should generally be set to TRUE).

... Not used (S3 method only).

Value

Returns a cloned DTSg object.

See Also

options

colapply.DTSg 9

Examples

new DTSg object
x <- DTSg$new(values = flow)

make a deep copy
R6 method
x$clone(deep = TRUE)

S3 method
clone(x = x, deep = TRUE)

colapply.DTSg Apply function column-wise

Description

Applies an arbitrary function to selected columns of a DTSg object.

Usage

S3 method for class 'DTSg'
colapply(
x,
fun,
...,
cols = self$cols(class = "numeric")[1L],
resultCols = NULL,
suffix = NULL,
helpers = TRUE,
funby = NULL,
ignoreDST = FALSE,
multiplier = 1L,
funbyHelpers = NULL,
funbyApproach = self$funbyApproach,
clone = getOption("DTSgClone")

)

Arguments

x A DTSg object (S3 method only).

fun A function. Its return value must be of length one.

... Further arguments passed on to fun.

cols A character vector specifying the columns to apply fun to. Another possibility
is a character string containing either comma separated column names, for ex-
ample, "x,y,z", or the start and end column separated by a colon, for example,
"x:z".

10 colapply.DTSg

resultCols An optional character vector of the same length as cols specifying the column
names for the return values of fun. Another possibility is a character string con-
taining comma separated column names, for example, "x,y,z". Non-existing
columns are added and existing columns are overwritten. Columns are matched
element-wise between cols and resultCols.

suffix An optional character string. The return values of fun are added as new columns
with names consisting of the columns specified in cols and this suffix. Existing
columns are never overwritten. Only used when resultCols is not specified.

helpers A logical specifying if helper data shall be handed over to fun. See correspond-
ing section for further information.

funby One of the temporal aggregation level functions described in TALFs or a user
defined temporal aggregation level function. Can be used to apply functions like
cumsum to a certain temporal level. See corresponding section and examples for
further information.

ignoreDST A logical specifying if day saving time shall be ignored by funby. See corre-
sponding section for further information.

multiplier A positive integerish value “multiplying” the temporal aggregation level of cer-
tain TALFs. See corresponding section for further information.

funbyHelpers An optional list with helper data passed on to funby. See corresponding sec-
tion for further information.

funbyApproach A character string specifying the flavour of the applied temporal aggregation
level function. Either "timechange", which utilises timechange::time_floor,
or "base", which utilises as.POSIXct, or "fasttime", which utilises fasttime::fastPOSIXct,
or "RcppCCTZ", which utilises RcppCCTZ::parseDatetime as the main function
for transforming timestamps.

clone A logical specifying if the object shall be modified in place or if a deep clone
(copy) shall be made beforehand.

Value

Returns a DTSg object.

Helper data

In addition to the ... argument, this method optionally hands over a list argument with helper
data called .helpers to fun. This list contains the following elements:

• .dateTime: A POSIXct vector containing the .dateTime column.

• periodicity: Same as the periodicity field.

• minLag: A difftime object containing the minimum time difference between two subsequent
timestamps.

• maxLag: A difftime object containing the maximum time difference between two subse-
quent timestamps.

colapply.DTSg 11

User defined TALFs, TALFs helper data and multiplier

User defined temporal aggregation level functions have to return a POSIXct vector of the same
length as the time series and accept two arguments: a POSIXct vector as its first and a list with
helper data as its second. The default elements of this list are as follows:

• timezone: Same as the timezone field.

• ignoreDST: Same as the ignoreDST argument.

• periodicity: Same as the periodicity field.

• na.status: Same as the na.status field.

• multiplier: Same as the multiplier argument.

• funbyApproach: Same as the funbyApproach argument.

Any additional element specified in the funbyHelpers argument is appended to the end of the de-
fault list. In case funbyHelpers contains an ignoreDST, multiplier or funbyApproach element, it
takes precedence over the respective method argument. timezone, periodicity and na.status elements
are rejected, as they are always taken directly from the object.

The temporal aggregation level of certain TALFs can be adjusted with the help of the multiplier
argument. A multiplier of 10, for example, makes byY_____ aggregate to decades instead of
years. Another example is a multiplier of 6 provided to by_m____. The function then aggregates
all months of all first and all months of all second half years instead of all months of all years
separately. This feature is supported by the following TALFs of the package:

• byY_____

• byYm____

• byYmdH__ (UTC and equivalent as well as all Etc/GMT time zones only)

• byYmdHM_

• byYmdHMS

• by_m____

• by___H__ (UTC and equivalent as well as all Etc/GMT time zones only)

• by____M_

• by_____S

Ignore day saving time

ignoreDST tells a temporal aggregation level function if it is supposed to ignore day saving time
while transforming the timestamps. This can be a desired feature for time series strictly following
the position of the sun such as hydrological time series. Doing so ensures that diurnal variations are
preserved by all means and all intervals are of the “correct” length, however, a possible limitation
might be that the day saving time shift is invariably assumed to be one hour long. This feature
requires that the periodicity of the time series has been recognised and is supported by the following
TALFs of the package:

• byY_____

• byYQ____

• byYm____

12 colapply.DTSg

• byYmd___

• by_Q____

• by_m____

• by___H__

See Also

cols, getOption

Examples

new DTSg object
x <- DTSg$new(values = flow)

linear interpolation of missing values
R6 method
x$colapply(fun = interpolateLinear)$print()

S3 method
print(colapply(x = x, fun = interpolateLinear))

daily cumulative sums per month
R6 method
x$colapply(

fun = cumsum,
helpers = FALSE,
funby = byYm____

)$print()

S3 method
print(colapply(

x = x,
fun = cumsum,
helpers = FALSE,
funby = byYm____

))

calculate moving averages with the help of 'runner' (all four given
approaches provide the same result with explicitly missing timestamps)
if (requireNamespace("runner", quietly = TRUE) &&

packageVersion("runner") >= package_version("0.3.5")) {
wrapper <- function(..., .helpers) {

runner::runner(..., idx = .helpers[[".dateTime"]])
}

R6 method
x$colapply(

fun = runner::runner,
f = mean,
k = 5,
lag = -2

colapply.DTSg 13

)$print()
x$colapply(

fun = wrapper,
f = mean,
k = "5 days",
lag = "-2 days"

)$print()
x$colapply(

fun = runner::runner,
f = mean,
k = "5 days",
lag = "-2 days",
idx = x$getCol(col = ".dateTime")

)$print()
x$colapply(

fun = runner::runner,
f = mean,
k = "5 days",
lag = "-2 days",
idx = x[".dateTime"]

)$print()

S3 method
print(colapply(

x = x,
fun = runner::runner,
f = mean,
k = 5,
lag = -2

))
print(colapply(

x = x,
fun = wrapper,
f = mean,
k = "5 days",
lag = "-2 days"

))
print(colapply(

x = x,
fun = runner::runner,
f = mean,
k = "5 days",
lag = "-2 days",
idx = getCol(x = x, col = ".dateTime")

))
print(colapply(

x = x,
fun = runner::runner,
f = mean,
k = "5 days",
lag = "-2 days",
idx = x[".dateTime"]

))

14 cols.DTSg

}

calculate rolling correlations somewhat inefficiently with the help of
'runner'
if (requireNamespace("runner", quietly = TRUE) &&

packageVersion("runner") >= package_version("0.3.8")) {
wrapper <- function(x, y, f, k, lag, ...) {

runner::runner(
cbind(x, y),
f = function(x) f(x[, 1], x[, 2]),
k = k,
lag = lag

)
}

R6 method
x$colapply(

fun = wrapper,
y = x["flow"] + rnorm(length(x["flow"])),
f = cor,
k = 5,
lag = -2

)$print()

S3 method
print(colapply(

x = x,
fun = wrapper,
y = x["flow"] + rnorm(length(x["flow"])),
f = cor,
k = 5,
lag = -2

))
}

cols.DTSg Get column names

Description

Returns all column names of a DTSg object, those of certain classes, modes, typeofs and/or those
matching a certain pattern only.

Usage

S3 method for class 'DTSg'
cols(x, class = NULL, pattern = NULL, mode = NULL, typeof = NULL, ...)

DTSg 15

Arguments

x A DTSg object (S3 method only).

class An optional character vector matched to the most specific class (first element)
of each column’s class vector. The “special class” ".numerary" matches the
integer and numeric classes.

pattern An optional character string passed on to the pattern argument of grep.

mode An optional character vector matched to each column’s mode.

typeof An optional character vector matched to each column’s typeof.

... Further arguments passed on to grep. The value argument is rejected.

Value

Returns a character vector.

Examples

new DTSg object
x <- DTSg$new(values = flow)

get names of numeric columns
R6 method
x$cols(class = "numeric")

'names()' is a "hidden" R6 alias for 'cols()'
x$names(class = "numeric")

S3 method
cols(x = x, class = "numeric")

DTSg DTSg class

Description

The DTSg class is the working horse of the package. It is an R6::R6Class and offers an S3 interface
in addition to its native R6 interface. In the usage sections of the documentation, unfortunately,
only the usage of the S3 methods are displayed, however, the examples always show both ways
of calling the respective method. Generally, they are very similar anyway. While the R6 interface
always has the object first and the method is then selected with the help of the $ operator, for
instance, x$cols(), the S3 interface always has the method first and then the object as its first
argument, for instance, cols(x). An exception is the new method. It is not an S3 method, but
an abused S4 constructor with the character string "DTSg" as its first argument. Regarding the R6
interface, the DTSg class generator has to be used to access the new method with the help of the $
operator.

16 DTSg

Usage

new(Class, values, ID = "", parameter = "", unit = "", variant = "",
aggregated = FALSE, fast = getOption("DTSgFast"), swallow = FALSE,
na.status = getOption("DTSgNA.status"), funbyApproach =
getOption("DTSgFunbyApproach"))

Arguments

Class A character string. Must be "DTSg" in order to create a DTSg object. Otherwise
a different object may or may not be created (S4 constructor only).

values A data.frame or object inherited from class data.frame, e.g. data.table::data.table.
Its first column must be of class POSIXct or coercible to it. It serves as the ob-
ject’s time index and is renamed to .dateTime.

ID A character string specifying the ID (name) of the time series data object.
parameter A character string specifying the parameter name of the time series data.
unit A character string specifying the unit of the time series data.
variant A character string specifying further metadata of the time series, for instance,

"min" to point out that it is a time series of lower bound measurements.
aggregated A logical specifying how the timestamps of the series have to be interpreted: as

snap-shots (FALSE) or as periods between subsequent timestamps (TRUE).
fast A logical specifying if all rows (FALSE) or only the first 1000 rows (TRUE) shall

be used to check the object’s integrity and for the automatic detection of the time
series’ periodicity.

swallow A logical specifying if the object provided through the values argument shall
be “swallowed” by the DTSg object, i.e. no copy of the data shall be made.
This is generally more resource efficient, but only works when the provided
object is a data.table::data.table. Be warned, however, that when the cre-
ation of the DTSg object fails for some reason, the first column of the provided
data.table::data.table might have been coerced to POSIXct and keyed (see
data.table::setkey for further information). Furthermore, all references to
the “swallowed” data.table::data.table in the global (and only the global)
environment are removed upon the successful creation of the DTSg object.

na.status A character string. Either "explicit", which makes missing timestamps ex-
plicit according to the recognised periodicity, or "implicit", which removes
timestamps with missing values on all value columns, or "undecided" for no
such action. Please note that DTSg objects work best with explicitly missing
values.

funbyApproach A character string specifying the default flavour of TALFs used with the created
DTSg object. Either "timechange", which utilises timechange::time_floor,
or "base", which utilises as.POSIXct, or "fasttime", which utilises fasttime::fastPOSIXct,
or "RcppCCTZ", which utilises RcppCCTZ::parseDatetime as the main func-
tion for transforming timestamps. Custom approaches for user defined temporal
aggregation level functions are also possible.

Value

Returns a DTSg object.

DTSg 17

Methods

A DTSg object has the following methods:

• aggregate: See aggregate for further information.

• alter: See alter for further information.

• clone: See clone for further information.

• colapply: See colapply for further information.

• cols: See cols for further information.

• getCol: See getCol for further information.

• merge: See merge for further information.

• nas: See nas for further information.

• plot: See plot for further information.

• print: See print for further information.

• refresh: See refresh for further information.

• rollapply: See rollapply for further information.

• rowaggregate: See rowaggregate for further information.

• rowbind: See rowbind for further information.

• setColNames: See setColNames for further information.

• setCols: See setCols for further information.

• subset: See subset for further information.

• summary: See summary for further information.

• values: See values for further information.

Fields

A DTSg object has the following fields or properties as they are often called. They are implemented
through so called active bindings, which means that they can be accessed and actively set with the
help of the $ operator, for instance, x$ID gets the value of the ID field and x$ID <- "River Flow"
sets its value. Please note that fields are always modified in place, i.e. no deep clone (copy) of the
object is made beforehand. See clone for further information. Some of the fields are read-only
though:

• aggregated: Same as the aggregated argument.

• fast: Same as the fast argument.

• funbyApproach: Same as the funbyApproach argument.

• ID: Same as the ID argument. It is used as the title of plots.

• na.status: Same as the na.status argument. When set, the missing values of the object are
expanded or collapsed accordingly.

• parameter: Same as the parameter argument. It is used as the label of the primary axis of
plots.

18 DTSg

• periodicity: A difftime object for a regular and a character string for an irregular DTSg ob-
ject describing its periodicity or containing "unrecognised" in case it could not be detected.
When set, the periodicity of the time series is changed as specified. See the by argument of
alter for further information.

• regular: A logical signalling if all lags in seconds between subsequent timestamps are the
same (TRUE) or if some are different (FALSE). A, for instance, monthly time series is considered
irregular in this sense (read-only).

• timestamps: An integer showing the total number of timestamps of the time series (read-
only).

• timezone: A character string showing the time zone of the time series. When set, the series
is converted to the specified time zone. Only names from OlsonNames are accepted.

• unit: Same as the unit argument. It is added to the label of the primary axis of plots when
the parameter field is set.

• variant: Same as the variant argument. It is added to the label of the primary axis of plots
when the parameter field is set.

The parameter, unit and variant fields are especially useful for time series of a single variable.
For time series of multiple variables with differing units the functionality of the units package may
pose a viable alternative.

Options

The behaviour of DTSg objects can be customised with the help of the following option. See
options for further information:

• DTSgClone: A logical specifying if DTSg objects are, by default, modified in place (FALSE) or
if a deep clone (copy) shall be made beforehand (TRUE) (package’s default is TRUE).

• DTSgDeprecatedWarnings: A logical specifying if warnings are displayed when calling dep-
recated features (package’s default is TRUE).

• DTSgFast: Default value for the fast argument (package’s default is FALSE).

• DTSgFunbyApproach: Default value for the funbyApproach argument (package’s default is
"timechange").

• DTSgNA.status: Default value for the na.status argument (package’s default is "explicit").

Note

Due to the POSIXct nature of the .dateTime column, the same sub-second accuracy, issues and
limitations apply to DTSg objects. In order to prevent at least some of the possible precision issues,
the lags between subsequent timestamps are rounded to microseconds during integrity checks. This
corresponds to the maximum value allowed for options("digits.secs"). As a consequence,
time series with a sub-second accuracy higher than a microsecond will never work.

Examples

new DTSg object
R6 constructor
DTSg$new(

flow 19

values = flow,
ID = "River Flow"

)

abused S4 constructor
new(

Class = "DTSg",
values = flow,
ID = "River Flow"

)

flow Daily river flows

Description

A dataset containing a fictional time series of daily river flows with implicitly missing values.

Usage

flow

Format

A data.table::data.table with 2169 rows and two columns:

date A POSIXct vector ranging from the start of the year 2007 to the end of the year 2012.

flow A numeric vector with daily river flows in cubic metres per second.

getCol.DTSg Get column vector

Description

Returns the values of a column of a DTSg object.

The extract operator ([) acts as a shortcut for getCol.

Usage

S3 method for class 'DTSg'
getCol(x, col = self$cols(class = "numeric")[1L], ...)

S3 method for class 'DTSg'
x[...]

20 interpolateLinear

Arguments

x A DTSg object (getCol S3 method only).

col A character string specifying a column name.

... Arguments passed on to getCol (only used by the extract operator).

Value

Returns a vector or a list in case of a list column.

See Also

cols

Examples

new DTSg object
x <- DTSg$new(values = flow)

get the first ten values of the "flow" column
R6 methods
x$getCol(col = "flow")[1:10]
x$`[`("flow")[1:10]

S3 methods
getCol(x = x, col = "flow")[1:10]
x["flow"][1:10]

interpolateLinear Linear interpolation

Description

Linearly interpolates missing values of a numeric vector. For use with the colapply method of
DTSg objects. Other uses are possible, but not recommended.

This function mainly serves as an example for writing user defined functions utilising one of the
lists with helper data handed over by some of the methods of DTSg objects.

Usage

interpolateLinear(.col, roll = Inf, rollends = TRUE, .helpers)

merge.DTSg 21

Arguments

.col A numeric vector.

roll A positive numeric specifying the maximum size of gaps whose missing values
shall be interpolated. For time series with unrecognised periodicity it is inter-
preted in seconds and for time series with recognised periodicity it is multiplied
with the maximum time difference between two subsequent time steps in sec-
onds. Thus, for regular time series it is the number of time steps and for irregular
it is an approximation of it.

rollends A logical specifying if missing values at the start and end of the time series shall
be filled. See data.table::data.table for further information.

.helpers A list with helper data as handed over by colapply. See colapply for further
information.

Value

Returns a numeric vector.

Examples

new DTSg object
x <- DTSg$new(values = flow)

linear interpolation of missing values
R6 method
x$colapply(fun = interpolateLinear)$print()

S3 method
print(colapply(x = x, fun = interpolateLinear))

merge.DTSg Merge two objects

Description

Joins two DTSg objects based on their .dateTime column. Their time zones and aggregated fields
must match.

Usage

S3 method for class 'DTSg'
merge(x, y, ..., clone = getOption("DTSgClone"))

22 nas.DTSg

Arguments

x A DTSg object (S3 method only).

y A DTSg object or an object coercible to one. See new for further information.

... Further arguments passed on to data.table::merge. As the by, by.x and by.y
arguments can endanger the object’s integrity, they are rejected.

clone A logical specifying if the object shall be modified in place or if a deep clone
(copy) shall be made beforehand.

Value

Returns a DTSg object.

See Also

getOption

Examples

new DTSg object
x <- DTSg$new(values = flow)

merge with 'data.table'
R6 method
x$merge(

y = flow,
suffixes = c("_1", "_2")

)$print()

S3 method
print(merge(

x = x,
y = flow,
suffixes = c("_1", "_2")

))

nas.DTSg List missing values

Description

Lists the missing values of selected columns of a DTSg object with recognised periodicity.

Usage

S3 method for class 'DTSg'
nas(x, cols = self$cols(), ...)

plot.DTSg 23

Arguments

x A DTSg object (S3 method only).

cols A character vector specifying the columns whose missing values shall be listed.
Another possibility is a character string containing either comma separated col-
umn names, for example, "x,y,z", or the start and end column separated by a
colon, for example, "x:z".

... Not used (S3 method only).

Value

Returns a data.table::data.table with five columns:

• .col: the column name

• .group: the ID of the missing values group within each column

• .from: the first timestamp of the missing values group

• .to: the last timestamp of the missing values group

• .n: the number of missing values per group

See Also

cols

Examples

new DTSg object
x <- DTSg$new(values = flow)

list missing values
R6 method
x$nas()

S3 method
nas(x = x)

plot.DTSg Plot time series data

Description

Displays an interactive plot of a DTSg object. This method requires dygraphs and RColorBrewer
to be installed. Its main purpose is not to make pretty plots, but rather to offer a possibility to
interactively explore time series data. The title of the plot and the label of its primary axis are
automatically generated from the object’s metadata (fields). See DTSg for further information.

24 plot.DTSg

Usage

S3 method for class 'DTSg'
plot(
x,
from = first(self$values(reference = TRUE)[[".dateTime"]]),
to = last(self$values(reference = TRUE)[[".dateTime"]]),
cols = self$cols(class = "numeric"),
secAxisCols = NULL,
secAxisLabel = "",
...

)

Arguments

x A DTSg object (S3 method only).

from A POSIXct timestamp in the same time zone as the time series or a character
string coercible to one. The data is plotted from this timestamp on.

to A POSIXct timestamp in the same time zone as the time series or a character
string coercible to one. The data is plotted up to this timestamp.

cols A character vector specifying the columns whose values shall be plotted. An-
other possibility is a character string containing either comma separated column
names, for example, "x,y,z", or the start and end column separated by a colon,
for example, "x:z".

secAxisCols An optional character vector specifying the columns whose values shall be plot-
ted on a secondary axis. Another possibility is a character string containing
either comma separated column names, for example, "x,y,z", or the start and
end column separated by a colon, for example, "x:z". Must be a subset of cols.

secAxisLabel A character string specifying the label of the optional secondary axis.

... Not used (S3 method only).

Value

Returns a DTSg object.

See Also

cols

Examples

new DTSg object
x <- DTSg$new(values = flow)

plot data
if (requireNamespace("dygraphs", quietly = TRUE) &&

requireNamespace("RColorBrewer", quietly = TRUE)) {
R6 method
x$plot()

print.DTSg 25

S3 method
plot(x = x)

}

print.DTSg Print object

Description

Prints a DTSg object.

Usage

S3 method for class 'DTSg'
print(x, ...)

Arguments

x A DTSg object (S3 method only).

... Not used (S3 method only).

Value

Returns a DTSg object.

Examples

new DTSg object
x <- DTSg$new(values = flow)

print object
R6 method
x$print()

S3 method
print(x = x)

26 rollapply.DTSg

refresh.DTSg Object integrity

Description

Checks the integrity of a DTSg object and tries to automatically (re-)detect its periodicity. Normally,
there is no reason for a user to call this method. The only exception is stated in values.

Usage

S3 method for class 'DTSg'
refresh(x, ...)

Arguments

x A DTSg object (S3 method only).

... Not used (S3 method only).

Value

Returns a DTSg object.

Examples

new DTSg object
x <- DTSg$new(values = flow)

check the object's integrity
R6 method
x$refresh()

S3 method
refresh(x = x)

rollapply.DTSg Rolling window function

Description

Applies an arbitrary function to a rolling window of selected columns of a DTSg object with recog-
nised periodicity.

rollapply.DTSg 27

Usage

S3 method for class 'DTSg'
rollapply(
x,
fun,
...,
cols = self$cols(class = "numeric")[1L],
before = 1L,
after = before,
weights = "inverseDistance",
parameters = list(power = 1),
resultCols = NULL,
suffix = NULL,
helpers = TRUE,
memoryOverCPU = TRUE,
clone = getOption("DTSgClone")

)

Arguments

x A DTSg object (S3 method only).
fun A function. Its return value must be of length one.
... Further arguments passed on to fun.
cols A character vector specifying the columns whose rolling window fun shall be

applied to. Another possibility is a character string containing either comma
separated column names, for example, "x,y,z", or the start and end column
separated by a colon, for example, "x:z".

before An integerish value specifying the size of the window in time steps before the
“center” of the rolling window.

after An integerish value specifying the size of the window in time steps after the
“center” of the rolling window.

weights A character string specifying the method applied to calculate the weights handed
over to fun. These are useful for functions like weighted.mean. See corre-
sponding section for further information.

parameters A list specifying parameters for the weight calculation method. See corre-
sponding section for further information.

resultCols An optional character vector of the same length as cols specifying the column
names for the return values of fun. Another possibility is a character string con-
taining comma separated column names, for example, "x,y,z". Non-existing
columns are added and existing columns are overwritten. Columns are matched
element-wise between cols and resultCols.

suffix An optional character string. The return values of fun are added as new columns
with names consisting of the columns specified in cols and this suffix. Existing
columns are never overwritten. Only used when resultCols is not specified.

helpers A logical specifying if helper data shall be handed over to fun. See correspond-
ing section for further information.

28 rollapply.DTSg

memoryOverCPU A logical specifying if memory usage shall be preferred over CPU usage for
this method call. The former is generally faster for smaller windows and shorter
time series, the latter for bigger windows and longer time series or might even
be the only one which works depending on the available hardware.

clone A logical specifying if the object shall be modified in place or if a deep clone
(copy) shall be made beforehand.

Value

Returns a DTSg object.

Weights

Currently, only one method to calculate weights is supported: "inverseDistance". The distance
d of the “center” is one and each time step further away from the “center” adds one to it. So, for
example, the distance of a timestamp three steps away from the “center” is four. Additionally, the
calculation of the weights accepts a power parameter p as a named element of a list provided
through the parameters argument: 1

dp .

Helper data

In addition to the ... argument, this method optionally hands over the weights as a numeric vector
(w argument) and a list argument with helper data called .helpers to fun. This list contains the
following elements:

• before: Same as the before argument.

• after: Same as the after argument.

• windowSize: Size of the rolling window (before + 1L + after).

• centerIndex: Index of the “center” of the rolling window (before + 1L).

See Also

cols, getOption

Examples

new DTSg object
x <- DTSg$new(values = flow)

calculate a moving average
R6 method
x$rollapply(

fun = mean,
na.rm = TRUE,
before = 2,
after = 2

)$print()

S3 method
print(rollapply(

rollback 29

x = x,
fun = mean,
na.rm = TRUE,
before = 2,
after = 2

))

rollback Rollback of months

Description

Generating regular sequences of time with the help of seq.POSIXt can have undesirable effects.
This function “first advances the month without changing the day: if this results in an invalid day
of the month, it is counted forward into the next month”. Monthly or yearly sequences starting at
the end of a month with 30 or 31 days (or 29 in case of a leap year) therefore do not always fall on
the end of shorter months. rollback fixes this by counting the days of affected months backwards
again.

Usage

rollback(.dateTime, periodicity)

Arguments

.dateTime A POSIXct vector.

periodicity A character string specifying a multiple of month(s) or year(s). See seq.POSIXt
for further information.

Value

Returns a POSIXct vector.

Examples

rollback monthly time series
by <- "1 month"
rollback(

.dateTime = seq(
from = as.POSIXct("2000-01-31", tz = "UTC"),
to = as.POSIXct("2000-12-31", tz = "UTC"),
by = by

),
periodicity = by

)

30 rowaggregate.DTSg

rowaggregate.DTSg Aggregate values row-wise

Description

Applies one or more provided summary functions row-wise to selected columns of a DTSg object.

Usage

S3 method for class 'DTSg'
rowaggregate(
x,
resultCols,
fun,
...,
cols = self$cols(class = "numeric"),
clone = getOption("DTSgClone")

)

Arguments

x A DTSg object (S3 method only).

resultCols A character vector either of length one (names of fun are appended in the case
one or more functions are provided) or the same length as fun specifying the
column names for the return values of fun.

fun A summary function, (named) list of summary functions or (named) character
vector specifying summary functions applied row-wise to all the values of the
specified cols. The return value(s) must be of length one. See corresponding
section for further information.

... Further arguments passed on to fun.

cols A character vector specifying the columns to apply fun to. Another possibility
is a character string containing either comma separated column names, for ex-
ample, "x,y,z", or the start and end column separated by a colon, for example,
"x:z".

clone A logical specifying if the object shall be modified in place or if a deep clone
(copy) shall be made beforehand.

Value

Returns a DTSg object.

Summary functions

Some examples for fun are as follows:

• mean

rowbind.DTSg 31

• list(min = min, max = max)

• c(sd = "sd", var = "var")

See Also

cols, getOption

Examples

new DTSg object
DT <- data.table::data.table(

date = flow$date,
flow1 = flow$flow - abs(rnorm(nrow(flow))),
flow2 = flow$flow,
flow3 = flow$flow + abs(rnorm(nrow(flow)))

)
x <- DTSg$new(values = DT)

mean and standard deviation of multiple measurements per timestamp
R6 method
x$rowaggregate(

resultCols = "flow",
fun = list(mean = mean, sd = sd)

)$print()

'raggregate()' is a "hidden" R6 alias for 'rowaggregate()'
x$raggregate(

resultCols = "flow",
fun = list(mean = mean, sd = sd)

)$print()

S3 method
print(rowaggregate(

x = x,
resultCols = "flow",
fun = list(mean = mean, sd = sd)

))

rowbind.DTSg Combine rows

Description

Combines the rows of DTSg and other suitable objects.

Usage

S3 method for class 'DTSg'
rowbind(x, ..., clone = getOption("DTSgClone"))

32 S3WrapperGenerator

Arguments

x A DTSg object (S3 method only).

... Any number of DTSg objects or objects coercible to one (see new for further
information). lists of such objects or a mixture of lists and non-lists are also
accepted.

clone A logical specifying if the object shall be modified in place or if a deep clone
(copy) shall be made beforehand.

Value

Returns a DTSg object.

See Also

cols, getOption

Examples

new DTSg object
x <- DTSg$new(values = flow[1:500,])

combine rows
R6 method
x$rowbind(

list(flow[1001:1500,], DTSg$new(values = flow[501:1000,])),
flow[1501:.N,]

)$print()

'rbind()' is a "hidden" R6 alias for 'rowbind()'
x$rbind(

list(flow[1001:1500,], DTSg$new(values = flow[501:1000,])),
flow[1501:.N,]

)$print()

S3 method
print(rowbind(

x = x,
list(flow[1001:1500,], DTSg$new(values = flow[501:1000,])),
flow[1501:.N,]

))

S3WrapperGenerator S3 wrapper method generator

Description

Generates S3 wrapper methods for public methods of R6ClassGenerators, but can also be used to
generate “plain” function wrappers.

setColNames.DTSg 33

Usage

S3WrapperGenerator(R6Method, self = "x", dots = TRUE)

Arguments

R6Method An expression with or a public method (function) of an R6ClassGenerator.

self A character string specifying the name of the parameter, which will take the R6
object.

dots A logical specifying if a ... parameter shall be added as last parameter in case
none already exists. This might be required for S3 generic/method consistency.

Value

Returns an S3 method (function).

See Also

S3Methods, R6::R6Class

Examples

generate an S3 wrapper method for 'alter()' of 'DTSg'
alter.DTSg <- S3WrapperGenerator(

R6Method = DTSg$public_methods$alter
)

setColNames.DTSg Set column names

Description

Changes the column names of DTSg objects.

Usage

S3 method for class 'DTSg'
setColNames(
x,
cols = self$cols(class = "numeric")[1L],
values,
clone = getOption("DTSgClone"),
...

)

34 setColNames.DTSg

Arguments

x A DTSg object (S3 method only).

cols A character vector specifying the columns whose names shall be set. Another
possibility is a character string containing either comma separated column names,
for example, "x,y,z", or the start and end column separated by a colon, for ex-
ample, "x:z". The name of the .dateTime column cannot be changed.

values A character vector of the same length as cols specifying the desired column
names. Another possibility is a character string containing comma separated
column names, for example, "x,y,z".

clone A logical specifying if the object shall be modified in place or if a deep clone
(copy) shall be made beforehand.

... Not used (S3 method only).

Value

Returns a DTSg object.

See Also

cols, getOption

Examples

new DTSg object
x <- DTSg$new(values = flow)

rename column "flow" to "River Flow"
R6 method
x$setColNames(

cols = "flow",
values = "River Flow"

)$print()

'setnames()' is a "hidden" R6 alias for 'setColNames()'
x$setnames(

cols = "flow",
values = "River Flow"

)$print()

S3 method
print(setColNames(

x = x,
cols = "flow",
values = "River Flow"

))

setCols.DTSg 35

setCols.DTSg Set column values

Description

Changes the values of columns, adds columns to and/or removes columns from a DTSg object. The
values can optionally be set for certain rows only.

Usage

S3 method for class 'DTSg'
setCols(
x,
i,
cols = self$cols(class = "numeric")[1L],
values,
clone = getOption("DTSgClone"),
...

)

Arguments

x A DTSg object (S3 method only).

i An integerish vector indexing rows (positive numbers pick and negative numbers
omit rows) or a filter expression accepted by the i argument of data.table::data.table.
Filter expressions can contain the special symbol .N.

cols A character vector specifying the columns whose values shall be set. Another
possibility is a character string containing comma separated column names, for
example, "x,y,z". The values of the .dateTime column cannot be changed.

values A vector, list or list-like object (e.g. data.table::data.table) of replace-
ment and/or new values accepted by the value argument of data.table’s data.table::set
function. NULL as a value removes a column.

clone A logical specifying if the object shall be modified in place or if a deep clone
(copy) shall be made beforehand.

... Not used (S3 method only).

Value

Returns a DTSg object.

See Also

cols, getOption

36 subset.DTSg

Examples

new DTSg object
x <- DTSg$new(values = flow)

cap river flows to 100
R6 method
x$setCols(

i = flow > 100,
cols = "flow",
values = 100

)$print()

'set()' is a "hidden" R6 alias for 'setCols()'
x$set(

i = flow > 100,
cols = "flow",
values = 100

)$print()

S3 method
print(setCols(

x = x,
i = flow > 100,
cols = "flow",
values = 100

))

set measurement unit with the help of 'units'
if (requireNamespace("units", quietly = TRUE)) {

R6 method
x$setCols(
cols = "flow",
values = units::set_units(x["flow"], "m^3/s")

)$print()

S3 method
print(setCols(

x = x,
cols = "flow",
values = units::set_units(x["flow"], "m^3/s")

))
}

subset.DTSg Subset time series data

Description

Filters rows and/or selects columns of a DTSg object.

subset.DTSg 37

Usage

S3 method for class 'DTSg'
subset(
x,
i,
cols = self$cols(),
funby = NULL,
ignoreDST = FALSE,
na.status = "implicit",
clone = getOption("DTSgClone"),
multiplier = 1L,
funbyHelpers = NULL,
funbyApproach = self$funbyApproach,
...

)

Arguments

x A DTSg object (S3 method only).

i An integerish vector indexing rows (positive numbers pick and negative numbers
omit rows) or a filter expression accepted by the i argument of data.table::data.table.
Filter expressions can contain the special symbol .N.

cols A character vector specifying the columns to select. Another possibility is a
character string containing either comma separated column names, for example,
"x,y,z", or the start and end column separated by a colon, for example, "x:z".
The .dateTime column is always selected and cannot be part of it.

funby One of the temporal aggregation level functions described in TALFs or a user
defined temporal aggregation level function. Can be used to, for instance, select
the last two observations of a certain temporal level. See corresponding section
and examples for further information.

ignoreDST A logical specifying if day saving time shall be ignored by funby. See corre-
sponding section for further information.

na.status A character string. Either "explicit", which makes missing timestamps ex-
plicit according to the recognised periodicity, or "implicit", which removes
timestamps with missing values on all value columns. See corresponding sec-
tion for further information.

clone A logical specifying if the object shall be modified in place or if a deep clone
(copy) shall be made beforehand.

multiplier A positive integerish value “multiplying” the temporal aggregation level of cer-
tain TALFs. See corresponding section for further information.

funbyHelpers An optional list with helper data passed on to funby. See corresponding sec-
tion for further information.

funbyApproach A character string specifying the flavour of the applied temporal aggregation
level function. Either "timechange", which utilises timechange::time_floor,
or "base", which utilises as.POSIXct, or "fasttime", which utilises fasttime::fastPOSIXct,

38 subset.DTSg

or "RcppCCTZ", which utilises RcppCCTZ::parseDatetime as the main function
for transforming timestamps.

... Further arguments passed on to fun.

Value

Returns a DTSg object.

Status of missing values

Please note that filtering rows and having or making missing timestamps explicit equals to set-
ting the values of all other timestamps to missing. The default value of na.status is therefore
"implicit". To simply filter for a consecutive range of a DTSg object while leaving the na.status
untouched, alter is probably the better choice.

User defined TALFs, TALFs helper data and multiplier

User defined temporal aggregation level functions have to return a POSIXct vector of the same
length as the time series and accept two arguments: a POSIXct vector as its first and a list with
helper data as its second. The default elements of this list are as follows:

• timezone: Same as the timezone field.
• ignoreDST: Same as the ignoreDST argument.
• periodicity: Same as the periodicity field.
• na.status: Same as the na.status field.
• multiplier: Same as the multiplier argument.
• funbyApproach: Same as the funbyApproach argument.

Any additional element specified in the funbyHelpers argument is appended to the end of the de-
fault list. In case funbyHelpers contains an ignoreDST, multiplier or funbyApproach element, it
takes precedence over the respective method argument. timezone, periodicity and na.status elements
are rejected, as they are always taken directly from the object.

The temporal aggregation level of certain TALFs can be adjusted with the help of the multiplier
argument. A multiplier of 10, for example, makes byY_____ aggregate to decades instead of
years. Another example is a multiplier of 6 provided to by_m____. The function then aggregates
all months of all first and all months of all second half years instead of all months of all years
separately. This feature is supported by the following TALFs of the package:

• byY_____

• byYm____

• byYmdH__ (UTC and equivalent as well as all Etc/GMT time zones only)
• byYmdHM_

• byYmdHMS

• by_m____

• by___H__ (UTC and equivalent as well as all Etc/GMT time zones only)
• by____M_

• by_____S

subset.DTSg 39

Ignore day saving time

ignoreDST tells a temporal aggregation level function if it is supposed to ignore day saving time
while transforming the timestamps. This can be a desired feature for time series strictly following
the position of the sun such as hydrological time series. Doing so ensures that diurnal variations are
preserved by all means and all intervals are of the “correct” length, however, a possible limitation
might be that the day saving time shift is invariably assumed to be one hour long. This feature
requires that the periodicity of the time series has been recognised and is supported by the following
TALFs of the package:

• byY_____

• byYQ____

• byYm____

• byYmd___

• by_Q____

• by_m____

• by___H__

See Also

cols, getOption

Examples

new DTSg object
x <- DTSg$new(values = flow)

filter for the first six observations
R6 method
x$subset(i = 1:6)$print()

S3 method
print(subset(x = x, i = 1:6))

filter for the last two observations per year
R6 method
x$subset(

i = (.N - 1):.N,
funby = function(x, ...) {data.table::year(x)}

)$print()

S3 method
print(subset(

x = x,
i = (.N - 1):.N,
funby = function(x, ...) {data.table::year(x)}

))

40 summary.DTSg

summary.DTSg Summarise time series data

Description

Calculates summary statistics of selected columns of a DTSg object.

Usage

S3 method for class 'DTSg'
summary(object, cols = self$cols(), ...)

Arguments

object A DTSg object (S3 method only).

cols A character vector specifying the columns whose values shall be summarised.
Another possibility is a character string containing either comma separated col-
umn names, for example, "x,y,z", or the start and end column separated by a
colon, for example, "x:z".

... Further arguments passed on to summary.data.frame.

Value

Returns a table.

See Also

cols

Examples

new DTSg object
x <- DTSg$new(values = flow)

calculate summary statistics
R6 method
x$summary()

S3 method
summary(object = x)

TALFs 41

TALFs Temporal Aggregation Level Functions (TALFs)

Description

Simply hand over one of these functions to the funby argument of one of the methods of a DTSg
object, which supports it. The method then does the rest of the work. See respective calling method
for further information. Other uses are possible, but not recommended.

Usage

byY_____(.dateTime, .helpers)

byYQ____(.dateTime, .helpers)

byYm____(.dateTime, .helpers)

byYmd___(.dateTime, .helpers)

byYmdH__(.dateTime, .helpers)

byYmdHM_(.dateTime, .helpers)

byYmdHMS(.dateTime, .helpers)

by______(.dateTime, .helpers)

by_Q____(.dateTime, .helpers)

by_m____(.dateTime, .helpers)

by___H__(.dateTime, .helpers)

by____M_(.dateTime, .helpers)

by_____S(.dateTime, .helpers)

Arguments

.dateTime A POSIXct vector.

.helpers A list with helper data as handed over by methods of DTSg objects, which
support the funby argument.

Value

All functions return a POSIXct vector with timestamps corresponding to the function’s temporal
aggregation level.

42 TALFs

Families and flavours

There are two families of temporal aggregation level functions. The one family truncates times-
tamps (truncating family), the other extracts a certain part of them (extracting family). Each family
comes in four flavours: the first relies solely on base R, the second utilises fasttime::fastPOSIXct
of fasttime, the third RcppCCTZ::parseDatetime of RcppCCTZ and the fourth timechange::time_floor
of timechange.

The timechange flavour generally is the fastest for both families of functions and all time zones.
Second best option for the extracting family of functions generally is the fasttime flavour, which,
however, works with UTC and equivalent as well as all Etc/GMT time zones only (execute grep("^(Etc/)?(UCT|UTC)$|^(Etc/)?GMT(\\+|-)?0?$",
OlsonNames(), ignore.case = TRUE, value = TRUE) for a full list of supported time zones) and
is limited to timestamps between the years 1970 and 2199. For time zones other than UTC and
equivalent the RcppCCTZ flavour generally is the second best option.

Use the funbyApproach argument of the respective calling method in order to specify the utilised
flavour.

The truncating family sets timestamps to the lowest possible point in time of the corresponding
temporal aggregation level:

• byY_____ truncates to year, e.g. 2000-11-11 11:11:11.1 becomes 2000-01-01 00:00:00.0

• byYQ____ truncates to quarter, e.g. 2000-11-11 11:11:11.1 becomes 2000-10-01 00:00:00.0

• byYm____ truncates to month, e.g. 2000-11-11 11:11:11.1 becomes 2000-11-01 00:00:00.0

• byYmd___ truncates to day, e.g. 2000-11-11 11:11:11.1 becomes 2000-11-11 00:00:00.0

• byYmdH__ truncates to hour, e.g. 2000-11-11 11:11:11.1 becomes 2000-11-11 11:00:00.0

• byYmdHM_ truncates to minute, e.g. 2000-11-11 11:11:11.1 becomes 2000-11-11 11:11:00.0

• byYmdHMS truncates to second, e.g. 2000-11-11 11:11:11.1 becomes 2000-11-11 11:11:11.0

By convention, the extracting family sets the year to 2199 and extracts a certain part of timestamps:

• by______ extracts nothing, i.e. all timestamps become 2199-01-01 00:00:00.0

• by_Q____ extracts the quarters, e.g. 2000-11-11 11:11:11.1 becomes 2199-10-01 00:00:00.0

• by_m____ extracts the months, e.g. 2000-11-11 11:11:11.1 becomes 2199-11-01 00:00:00.0

• by___H__ extracts the hours, e.g. 2000-11-11 11:11:11.1 becomes 2199-01-01 11:00:00.0

• by____M_ extracts the minutes, e.g. 2000-11-11 11:11:11.1 becomes 2199-01-01 00:11:00.0

• by_____S extracts the seconds, e.g. 2000-11-11 11:11:11.1 becomes 2199-01-01 00:00:11.0

See Also

aggregate, colapply, subset

values.DTSg 43

values.DTSg Get values

Description

Returns the values of a DTSg object.

Usage

S3 method for class 'DTSg'
values(
x,
reference = FALSE,
drop = FALSE,
class = c("data.table", "data.frame"),
...

)

Arguments

x A DTSg object (S3 method only).

reference A logical specifying if a copy of the values or a reference to the values shall be
returned. See corresponding section for further information.

drop A logical specifying if the object and all references to it shall be removed from
the global (and only the global) environment after successfully returning its val-
ues. This feature allows for a resource efficient destruction of a DTSg object
while preserving its values.

class A character string specifying the class of the returned values. "data.frame"
only works when either a copy of the values is returned or the object is dropped.

... Not used (S3 method only).

Value

Returns a data.table::data.table, a reference to a data.table::data.table or a data.frame.

Reference to the values

A reference to the values of a DTSg object can be used to modify them in place. This includes
the .dateTime column, which serves as the object’s time index. Modifying this column can there-
fore endanger the object’s integrity. In case needs to do so ever arise, refresh should be called
immediately afterwards in order to check the object’s integrity.

Note

The original name of the .dateTime column is restored when not returned as a reference or when
dropped.

44 values.DTSg

Examples

new DTSg object
x <- DTSg$new(values = flow)

get values
R6 method
x$values()

S3 method
values(x = x)

Index

∗ datasets
flow, 19

.N, 35, 37
[.DTSg (getCol.DTSg), 19

aggregate, 17, 42
aggregate (aggregate.DTSg), 2
aggregate.DTSg, 2
aggregated, 2
alter, 17, 18, 38
alter (alter.DTSg), 6
alter.DTSg, 6
as.POSIXct, 3, 10, 16, 37

by______ (TALFs), 41
by_____S, 4, 11, 38
by_____S (TALFs), 41
by____M_, 4, 11, 38
by____M_ (TALFs), 41
by___H__, 4, 5, 11, 12, 38, 39
by___H__ (TALFs), 41
by_m____, 4, 5, 11, 12, 38, 39
by_m____ (TALFs), 41
by_Q____, 5, 12, 39
by_Q____ (TALFs), 41
byY_____, 4, 5, 11, 38, 39
byY_____ (TALFs), 41
byYm____, 4, 5, 11, 38, 39
byYm____ (TALFs), 41
byYmd___, 5, 12, 39
byYmd___ (TALFs), 41
byYmdH__, 4, 11, 38
byYmdH__ (TALFs), 41
byYmdHM_, 4, 11, 38
byYmdHM_ (TALFs), 41
byYmdHMS, 4, 11, 38
byYmdHMS (TALFs), 41
byYQ____, 5, 11, 39
byYQ____ (TALFs), 41

class, 14, 15
clone, 17
clone (clone.DTSg), 8
clone.DTSg, 8
colapply, 17, 20, 21, 42
colapply (colapply.DTSg), 9
colapply.DTSg, 9
cols, 5, 12, 17, 20, 23, 24, 28, 31, 32, 34, 35,

39, 40
cols (cols.DTSg), 14
cols.DTSg, 14
cumsum, 10

data.frame, 16, 43
data.table::data.table, 16, 19, 21, 23, 35,

37, 43
data.table::merge, 22
data.table::set, 35
data.table::setkey, 16
difftime, 10, 18
DTSg, 2, 3, 6–10, 14, 15, 15, 19–28, 30–38, 40,

41, 43

expression, 33

fasttime::fastPOSIXct, 3, 10, 16, 37, 42
flow, 19
function, 9, 20, 27, 33

getCol, 17
getCol (getCol.DTSg), 19
getCol.DTSg, 19
getOption, 5, 7, 12, 22, 28, 31, 32, 34, 35, 39
GForce, 4
grep, 15

integer, 15
interpolateLinear, 20

list, 3, 4, 10, 11, 20, 21, 27, 28, 30–32, 35,
37, 38, 41

45

46 INDEX

max, 4, 31
mean, 4, 30
merge, 17
merge (merge.DTSg), 21
merge.DTSg, 21
min, 4, 31
mode, 14, 15

na.status, 4, 11, 38
nas, 7, 17
nas (nas.DTSg), 22
nas.DTSg, 22
new, 22, 32
new (DTSg), 15
numeric, 15

OlsonNames, 18
options, 8, 18

periodicity, 4, 10, 11, 38
plot, 17
plot (plot.DTSg), 23
plot.DTSg, 23
POSIXct, 4, 7, 10, 11, 16, 18, 19, 24, 29, 38, 41
print, 17
print (print.DTSg), 25
print.DTSg, 25

R6::R6Class, 8, 15, 33
raggregate (rowaggregate.DTSg), 30
rbind (rowbind.DTSg), 31
RcppCCTZ::parseDatetime, 3, 10, 16, 38, 42
refresh, 17, 43
refresh (refresh.DTSg), 26
refresh.DTSg, 26
rollapply, 17
rollapply (rollapply.DTSg), 26
rollapply.DTSg, 26
rollback, 7, 29
rowaggregate, 17
rowaggregate (rowaggregate.DTSg), 30
rowaggregate.DTSg, 30
rowbind, 17
rowbind (rowbind.DTSg), 31
rowbind.DTSg, 31

S3Methods, 33
S3WrapperGenerator, 32
seq.POSIXt, 7, 29

set (setCols.DTSg), 35
setColNames, 17
setColNames (setColNames.DTSg), 33
setColNames.DTSg, 33
setCols, 17
setCols (setCols.DTSg), 35
setCols.DTSg, 35
setnames (setColNames.DTSg), 33
subset, 7, 17, 42
subset (subset.DTSg), 36
subset.DTSg, 36
summary, 17
summary (summary.DTSg), 40
summary.data.frame, 40
summary.DTSg, 40

table, 40
TALFs, 3–5, 10, 11, 16, 37–39, 41
timechange::time_floor, 3, 10, 16, 37, 42
timezone, 4, 11, 38
typeof, 14, 15

values, 17, 26
values (values.DTSg), 43
values.DTSg, 43

weighted.mean, 27

	aggregate.DTSg
	alter.DTSg
	clone.DTSg
	colapply.DTSg
	cols.DTSg
	DTSg
	flow
	getCol.DTSg
	interpolateLinear
	merge.DTSg
	nas.DTSg
	plot.DTSg
	print.DTSg
	refresh.DTSg
	rollapply.DTSg
	rollback
	rowaggregate.DTSg
	rowbind.DTSg
	S3WrapperGenerator
	setColNames.DTSg
	setCols.DTSg
	subset.DTSg
	summary.DTSg
	TALFs
	values.DTSg
	Index

