
Introduction to the Cascade package

and application to the GSE39411 dataset

Nicolas Jung, Frédéric Bertrand,
Seiamak Bahram, Laurent Vallat and Myriam Maumy-Bertrand

March 24, 2014

The Cascade package has two vignettes and a manual:

� Introduction to the Cascade package with application to the GSE39411 dataset, available
thanks to the R-command: vignette("Cascade")

� Additional application of the Cascade package to E-MTAB-1475 dataset, available thanks
to the R-command: vignette("E-MTAB-1475_re-analysis")

� The manual for the Cascade package is available thanks to the R-command:
vignette("Cascade-manual")

Contents

1 Introduction 2

2 Installation requirements 3

3 Data pre-processing 3

4 Gene selection 5

5 Gene regulatory network reverse-engineering 10
5.1 Theoretical background . 10

5.1.1 The Lasso estimate . 10
5.1.2 Model for network reverse-engineering . 11

5.2 Performing the reverse-engineering algorithm . 12
5.3 Choosing the best cutoff for edge minimal strength . 15
5.4 Analyzing the network . 17

6 Prediction of gene expression modulations after a knock-out experiment 18

7 Simulation 18

1

1 Introduction

In a cell, after a specific activation, a gene contained in the DNA can be expressed as RNA molecules
that are later traduced in proteins that will sustain the cell response (Crick et al., 1970). Cells are
in continuous contact with their environment within the organism and display an adapted response
to its modifications (Barabási and Oltvai, 2004). For this, each transient environmental modification
activates cell’ surface receptors (and co-receptors) that induce multiple integrated signaling cascades
whose ultimate events are expression of specific transcriptional factors (TF). These first TF induce the
expression of other genes within the cell. Some of these genes code themselves for TF or transcriptional
regulators (TR) that induce sequential activation of other genes. At the end, concerted expression of
these multiple genes induces protein expressions that are the substratum of the adapted cellular reaction
to the initial stimulus.

One Common tool to analyze such complex systems is regulatory networks (RN). When studying
transcriptional data, this RN is called a gene regulatory network (GRN) in which the vertex represent
genes and edges represent potential (orientated) interactions between these genes.

Since the emergence of high-throughput technologies that allow simultaneously measuring mRNA
expression of thousands of genes, many tools have been developed to analyze and reverse engineer their
underlying GRN (Bansal et al., 2007; Hecker et al., 2009; Bar-Joseph et al., 2012). These methods should
be splitted between static and time dependent methods. While the former relies on the assumption
than co-expressed genes share some biological characteristics, the latter infers a directed network. In
this last case, another important distinction should be made between temporal phenomenom induced
by exogenous stimulus (e.g, stress response) or endogenous stimulus (e.g., cell cycle) (Zhu et al., 2007;
Luscombe et al., 2004; Yosef and Regev, 2011). These two stimulii result in different network topologies.
Indeed, after an exogenous stimulus, networks topologies seem to have larger hubs and shorter paths
leading to a quick response to external conditions (Luscombe et al., 2004) and resulting in a cascade
topology (Figure 1).

Time t1
genes

Time t2
genes

Time tT
genes

...

Figure 1: Cascade networks are temporal nested networks

The Cascade package is a tool dedicated to the analysis of microarray data and to the inference
cascade networks. The statistical tools provided in this library are based on the methodology described
by Vallat et al. (Vallat et al., 2013) and contained several major improvements described here.

2

2 Installation requirements

Following software is required to run the Cascade package:

� R (> 2.14.2). For installation of R, refer to http://www.r-project.org.

� R-packages: abind ; animation ; cluster ; datasets ; graphics ; grDevices ; igraph ; lars
; lattice ; limma* ; magic ; methods ; nnls ; splines ; stats ; stats4 ; survival* ; tnet ;
utils ; VGAM.

To install them :

� without stars:

> install.packages("name_of_the_package")

� with one star:

> source("http://bioconductor.org/biocLite.R")

> biocLite("name_of_the_package")

Once the Cascade package is installed, you can load the package by:

> library(Cascade)

3 Data pre-processing

To illustrate our approach we will analyze a microarray dataset of the transcriptional response of
healthy B-cells after B-cell receptor stimulation (Vallat et al., 2007). Our dataset (part of GSE39411,
(Vallat et al., 2007)) is separated in two files: the first, micro_S, corresponds to the stimulated gene
expressions while the second, micro_US, corresponds to the unstimulated gene expressions. In other
words, micro_US is the control dataset. You can load these data by:

> data(micro_S)

> data(micro_US)

Each of the these dataset corresponds to 54613 genes measured through 4 time points and 6 subjects
(we have repeated longitudinal data).
These data need to be coerced into a micro_array class. The matrix with the microarray measurements
has to be of size N ×K where N is the number of genes and K = T ×P where T stands for the number
of time points and P for the number of subjects. The first T columns are the gene expressions for
subject 1, the following T are the gene expressions for subject 2... In our case:

> colnames(micro_S)

[1] "N1_S_T60" "N1_S_T90" "N1_S_T210" "N1_S_T390"

[5] "N2_S_T60" "N2_S_T90" "N2_S_T210" "N2_S_T390"

[9] "N3_S_T60" "N3_S_T90" "N3_S_T210" "N3_S_T390"

[13] "N4_S_T60" "N4_S_T90" "N4_S_T210" "N4_S_T390"

[17] "N5_S_T60" "N5_S_T90" "N5_S_T210" "N5_S_T390"

[21] "N6_S_T60" "N6_S_T90" "N6_S_T210" "N6_S_T390"

To coerce the data toward a micro_array class, you may just use the as.micro_array function:

3

> micro_S<-as.micro_array(micro_S,time=c(60,90,210,390),subject=6)

> micro_US<-as.micro_array(micro_US,time=c(60,90,210,390),subject=6)

In addition of the matrix of microarray measurements, this class also contains the name of genes,
their group, the first time at which they are expressed, the time points at which they are measured,
and the number of subjects. Primarily, method print summarizes these informations:

> print(micro_S)

This is a micro_array S4 class. It contains :

- (@microarray) a matrix of dimension 54613 * 24

.... [gene expressions]

- (@name) a vector of length 54613 [gene names]

- (@group) a vector of length 1 [groups for genes]

- (@start_time) a vector of length 1

.... [first differential expression for genes]

- (@time)a vector of length 4 [time points]

- (@subject) an integer [number of subject]

While method print gives the structure of the object, method head gives an overview of the data:

> head(micro_S)

The matrix :

N1_S_T60 N1_S_T90 N1_S_T210

1007_s_at 136.1 116.6 127.6

1053_at 32.0 43.3 31.3

117_at 78.0 63.5 57.9

121_at 201.8 209.2 208.8

1255_g_at 16.3 8.0 15.8

1294_at 196.8 198.7 163.9

...

Vector of names :

[1] "1007_s_at" "1053_at" "117_at" "121_at"

[5] "1255_g_at" "1294_at"

...

Vector of group :

[1] 0

...

Vector of starting time :

[1] 0

...

Vector of time :

[1] 60 90 210 390

Number of subject :

[1] 6

Entries Vector of group and Vector of starting time are set to 0 because they are no yet
defined. They will be completed automatically when using gene selection functions of this package.
Otherwise, it should be completed by the user.

Once the data are coerced into the micro_array class, this package allows doing gene selection and
reverse-engineering of the network.

4

4 Gene selection

The selection step requires at least two sets of data. The selection function will select genes differentially
expressed in one condition compared with the other. If only one experimental condition is provided
(e.g., unstimulated control data omitted), it will be compared to a flat and null pattern.

In this package gene selection mainly relies on the R-bioconductor limma package (Smyth, 2005).
The limma package allows selecting genes that are differentially expressed between two conditions. In
our case, these two conditions are “stimulated” and “unstimulated”. The method relies on linear models
and on improved bayesian t-tests (Smyth, 2005). Basically, to find the 50 more significant expressed
genes you will use:

> Selection<-geneSelection(x=micro_S,y=micro_US,

tot.number=50,data_log=TRUE)

The data_log option (default to TRUE) indicates that the data are logged before analysis. This
function returns an object of class micro_array, with the difference “stimulated” (S) minus “unstimu-
lated” (US) of the 50 more significant expressed genes ; as the data_log option is here activated, we
get:

log(S)− log(US) = log

(
S

US

)
.

Notice that the group and start_time are filled out automatically.

Applying the summary method prints the structure of Pearson linear correlation for subjects (see
Figure 2) and the structure of Pearson linear correlation for genes (see Figure 3):

> summary(Selection)

5

Le
ve

l o
f c

or
re

la
tio

n

T 60 subject 1
T 90 subject 2
T 60 subject 6
T 90 subject 1
T 60 subject 3
T 90 subject 4
T 90 subject 5
T 90 subject 6
T 90 subject 3
T 60 subject 2
T 60 subject 4
T 60 subject 5

T 210 subject 1
T 210 subject 6
T 210 subject 2
T 210 subject 5
T 210 subject 3
T 390 subject 1
T 390 subject 3
T 390 subject 2
T 390 subject 6
T 390 subject 4
T 390 subject 5
T 210 subject 4

T
 6

0
su

bj
ec

t 1
T

 9
0

su
bj

ec
t 2

T
 6

0
su

bj
ec

t 6
T

 9
0

su
bj

ec
t 1

T
 6

0
su

bj
ec

t 3
T

 9
0

su
bj

ec
t 4

T
 9

0
su

bj
ec

t 5
T

 9
0

su
bj

ec
t 6

T
 9

0
su

bj
ec

t 3
T

 6
0

su
bj

ec
t 2

T
 6

0
su

bj
ec

t 4
T

 6
0

su
bj

ec
t 5

T
 2

10
 s

ub
je

ct
 1

T
 2

10
 s

ub
je

ct
 6

T
 2

10
 s

ub
je

ct
 2

T
 2

10
 s

ub
je

ct
 5

T
 2

10
 s

ub
je

ct
 3

T
 3

90
 s

ub
je

ct
 1

T
 3

90
 s

ub
je

ct
 3

T
 3

90
 s

ub
je

ct
 2

T
 3

90
 s

ub
je

ct
 6

T
 3

90
 s

ub
je

ct
 4

T
 3

90
 s

ub
je

ct
 5

T
 2

10
 s

ub
je

ct
 4

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Correlation between subjects

Le
ve

l o
f c

or
re

la
tio

n

227404_s_at
201694_s_at
201693_s_at

205249_at
206115_at

206237_s_at
227458_at
203072_at
217809_at

201013_s_at
211949_s_at
220688_s_at
202138_x_at
218882_s_at

211951_at
209971_x_at
230656_s_at

203119_at
212383_at
224603_at
222875_at

200768_s_at
209104_s_at

236506_at
227920_at

35974_at
204674_at
225921_at

224304_x_at
232291_at
232210_at
232614_at
201536_at
204032_at
212290_at

214011_s_at
207351_s_at
220042_x_at

235122_at
232471_at

215925_s_at
237753_at

221658_s_at
206181_at
239427_at

202431_s_at
237136_at

234643_x_at
229597_s_at

201802_at

22
74

04
_s

_a
t

20
16

94
_s

_a
t

20
16

93
_s

_a
t

20
52

49
_a

t
20

61
15

_a
t

20
62

37
_s

_a
t

22
74

58
_a

t
20

30
72

_a
t

21
78

09
_a

t
20

10
13

_s
_a

t
21

19
49

_s
_a

t
22

06
88

_s
_a

t
20

21
38

_x
_a

t
21

88
82

_s
_a

t
21

19
51

_a
t

20
99

71
_x

_a
t

23
06

56
_s

_a
t

20
31

19
_a

t
21

23
83

_a
t

22
46

03
_a

t
22

28
75

_a
t

20
07

68
_s

_a
t

20
91

04
_s

_a
t

23
65

06
_a

t
22

79
20

_a
t

35
97

4_
at

20
46

74
_a

t
22

59
21

_a
t

22
43

04
_x

_a
t

23
22

91
_a

t
23

22
10

_a
t

23
26

14
_a

t
20

15
36

_a
t

20
40

32
_a

t
21

22
90

_a
t

21
40

11
_s

_a
t

20
73

51
_s

_a
t

22
00

42
_x

_a
t

23
51

22
_a

t
23

24
71

_a
t

21
59

25
_s

_a
t

23
77

53
_a

t
22

16
58

_s
_a

t
20

61
81

_a
t

23
94

27
_a

t
20

24
31

_s
_a

t
23

71
36

_a
t

23
46

43
_x

_a
t

22
95

97
_s

_a
t

20
18

02
_a

t

−1.0

−0.5

0.0

0.5

1.0

Figure 3: Correlation between genes

6

Note that a hierarchical clustering (function agnes of package cluster) is performed before plot-
ting the result. This allows pointing out some structures, as correlated objects will be close in the graph.

If we want to select genes that are differentially expressed at specific time points we use the option
wanted.patterns:

> #If we want to select genes that are differentially

> #at time t60 or t90 :

> Selection<-geneSelection(x=micro_S,y=micro_US,tot.number=30,

wanted.patterns=

rbind(c(0,1,0,0),c(1,0,0,0),c(1,1,0,0)))

You may want forbid some patterns thanks to the forbidden.patterns option.

If we wish select genes that have a differential maximum of expression at a specific time point, we
may use the genePeakSelection method. Basically, this function selects genes that are differentially
expressed at desired time point, and which differential expression is significantly higher at this time
point:

> Selection<-genePeakSelection(x=micro_S,y=micro_US,1,

abs_val=FALSE,alpha_diff=0.01)

If there are more than two microarrays of interest, geneSelection may be used with a list of microar-
rays as first argument, and a list specifying the contrast as a second argument:

First element: “condition”, “condition&time” or “pattern”. The “condition” specification is used when the overall
goal is to compare two conditions. The “condition&time” specification is used when comparing
two conditions at two precise time points. The “pattern” specification allows to choose at which
time points selected a gene should be expressed or not.

Second element: a vector of length 2, corresponding to the two conditions that should be compared. If a non-
temporal dataset is used as control, it should be the first element of the micro array list and the
option “cont=TRUE” should be used.

Third element: depends on the first element. This element is not needed if “condition” has been specified. If
“condition&time” has been specified, then this is a vector containing the time point at which the
comparison should be done. If “pattern” has been specified, then this is a vector of 0 and 1 of
length T, where T is the number of time points. Time points where differential expression is
wanted are provided with 1.

We can now compute an effective selection. As shown in Figure 4, the early time points (t1 =60 and
t2 =90) are correlated together and the later time points (t3 =210 and t4 =390) are correlated together;
this is a fact that is well known in the literature (Yosef and Regev, 2011).

As an illustrating example, the following selection will be used for reverse-engineering:

> #Genes with differential expression at t1

> Selection1<-geneSelection(x=micro_S,y=micro_US,20,wanted.patterns= rbind(c(1,0,0,0)))

> #Genes with differential expression at t2

> Selection2<-geneSelection(x=micro_S,y=micro_US,20,wanted.patterns= rbind(c(0,1,0,0)))

> #Genes with differential expression at t3

> Selection3<-geneSelection(x=micro_S,y=micro_US,20,wanted.patterns= rbind(c(0,0,1,0)))

> #Genes with differential expression at t4

> Selection4<-geneSelection(x=micro_S,y=micro_US,20,wanted.patterns= rbind(c(0,0,0,1)))

> #Genes with global differential expression

> Selection5<-geneSelection(x=micro_S,y=micro_US,20)

7

We then make the union between these different selections:

> Selection<-unionMicro(list(Selection1,Selection2,Selection3,Selection4,Selection5))

> print(Selection)

This is a micro_array S4 class. It contains :

- (@microarray) a matrix of dimension 74 * 24

.... [gene expressions]

- (@name) a vector of length 74 [gene names]

- (@group) a vector of length 74 [groups for genes]

- (@start_time) a vector of length 74

.... [first differential expression for genes]

- (@time)a vector of length 4 [time points]

- (@subject) an integer [number of subject]

We use the org.Hs.eg.db Bioconductor database to match probesets with gene ID:

> library(org.Hs.eg.db)

> ff<-function(x){substr(x, 1, nchar(x)-3)}

> ff<-Vectorize(ff)

> #Here is the function to transform the probeset names to gene ID.

>

> library("hgu133plus2.db")

> probe_to_id<-function(n){

x <- hgu133plus2SYMBOL

mp<-mappedkeys(x)

xx <- unlist(as.list(x[mp]))

genes_all = xx[(n)]

genes_all[is.na(genes_all)]<-"unknown"

return(genes_all)

}

> Selection@name<-probe_to_id(Selection@name)

> #Prints the correlation graphics Figure 4:

> summary(Selection,3)

8

Le
ve

l o
f c

or
re

la
tio

n

236719_at
1556161_a_at

229665_at
206853_s_at

220391_at
228990_at
203010_at
201746_at
226923_at
212186_at
204604_at

212680_x_at
214484_s_at

65585_at
209200_at

209199_s_at
207968_s_at

212468_at
226130_at

220483_s_at
223085_at
236539_at
226507_at

203344_s_at
210951_x_at
235766_x_at
221510_s_at
231870_s_at
200765_x_at

225797_at
201765_s_at
207945_s_at
224964_s_at

224965_at
212470_at
242644_at
225626_at
225339_at
205988_at
244352_at
236969_at
203508_at

209582_s_at
209664_x_at

235022_at
218880_at
228188_at
215725_at
212665_at
226716_at

202760_s_at
226694_at

207992_s_at
241577_at
222357_at

216080_s_at
219396_s_at
214084_x_at

220246_at
204588_s_at
217731_s_at

205859_at
221479_s_at

227261_at
217591_at

228831_s_at
203523_at
213034_at
242560_at
202660_at
224968_at

202226_s_at
243473_at
243757_at
227198_at

205734_s_at
1561378_at

226364_at
204476_s_at

202005_at
218523_at
222571_at

1563563_at
235220_at
241059_at
211786_at
207612_at

234036_x_at
233516_s_at

243967_at
1562989_at

232691_at
209670_at
227589_at

23
67

19
_a

t
15

56
16

1_
a_

at
22

96
65

_a
t

20
68

53
_s

_a
t

22
03

91
_a

t
22

89
90

_a
t

20
30

10
_a

t
20

17
46

_a
t

22
69

23
_a

t
21

21
86

_a
t

20
46

04
_a

t
21

26
80

_x
_a

t
21

44
84

_s
_a

t
65

58
5_

at
20

92
00

_a
t

20
91

99
_s

_a
t

20
79

68
_s

_a
t

21
24

68
_a

t
22

61
30

_a
t

22
04

83
_s

_a
t

22
30

85
_a

t
23

65
39

_a
t

22
65

07
_a

t
20

33
44

_s
_a

t
21

09
51

_x
_a

t
23

57
66

_x
_a

t
22

15
10

_s
_a

t
23

18
70

_s
_a

t
20

07
65

_x
_a

t
22

57
97

_a
t

20
17

65
_s

_a
t

20
79

45
_s

_a
t

22
49

64
_s

_a
t

22
49

65
_a

t
21

24
70

_a
t

24
26

44
_a

t
22

56
26

_a
t

22
53

39
_a

t
20

59
88

_a
t

24
43

52
_a

t
23

69
69

_a
t

20
35

08
_a

t
20

95
82

_s
_a

t
20

96
64

_x
_a

t
23

50
22

_a
t

21
88

80
_a

t
22

81
88

_a
t

21
57

25
_a

t
21

26
65

_a
t

22
67

16
_a

t
20

27
60

_s
_a

t
22

66
94

_a
t

20
79

92
_s

_a
t

24
15

77
_a

t
22

23
57

_a
t

21
60

80
_s

_a
t

21
93

96
_s

_a
t

21
40

84
_x

_a
t

22
02

46
_a

t
20

45
88

_s
_a

t
21

77
31

_s
_a

t
20

58
59

_a
t

22
14

79
_s

_a
t

22
72

61
_a

t
21

75
91

_a
t

22
88

31
_s

_a
t

20
35

23
_a

t
21

30
34

_a
t

24
25

60
_a

t
20

26
60

_a
t

22
49

68
_a

t
20

22
26

_s
_a

t
24

34
73

_a
t

24
37

57
_a

t
22

71
98

_a
t

20
57

34
_s

_a
t

15
61

37
8_

at
22

63
64

_a
t

20
44

76
_s

_a
t

20
20

05
_a

t
21

85
23

_a
t

22
25

71
_a

t
15

63
56

3_
at

23
52

20
_a

t
24

10
59

_a
t

21
17

86
_a

t
20

76
12

_a
t

23
40

36
_x

_a
t

23
35

16
_s

_a
t

24
39

67
_a

t
15

62
98

9_
at

23
26

91
_a

t
20

96
70

_a
t

22
75

89
_a

t

−1.0

−0.5

0.0

0.5

1.0

Figure 4: Correlation structure of the final selection

9

5 Gene regulatory network reverse-engineering

5.1 Theoretical background

Our gene regulatory network reverse-engineering method relies on a Lasso penalized estimation of
a linear regression model (Tibshirani, 1996). Before describing our model, we make some general
reminders of the Lasso estimator.

5.1.1 The Lasso estimate

Suppose that we have data (xi., yi)i=1,··· ,N where the xi. = (xi1, · · · , xip)T are the predictors while the
yi are the response. The linear regression model is:

yi =

p∑
j=1

βjxij + ηi, (1)

where ηi is a noise following some probabilistic distribution.

Assume that the predictors are standardized and that the response is centered. The Lasso estimate
is then given by:

β̂
L

(λ) = argmin
β∈Rp

 N∑
i=1

yi − p∑
j=1

βjxij

2

+ λ‖β‖1

 , (2)

with λ a non-negative scalar that determines the level of the constraints which is user-provided. We
remark that:

� When λ = 0, β̂
L

is an ordinary least square estimation.

� When λ = +∞, we get β̂
L

= 0p.

The Lasso estimate for linear regression has two main advantages:

1. it allows dealing with ill-posed problems where the number of observations is inferior to the number
of variables,

2. it allows performing variable selection: for a proper choice of λ, β̂
L

(λ) will be parsimonious.

The Lasso estimate for linear regression can also be written in the following form:

β̂
L

(λ) = argmin
β∈Rp ‖β‖16λ̃

 N∑
i=1

yi − p∑
j=1

βjxij

2
 . (3)

These two formulations (equation (2) which is the penalized formulation and equation (3) which is
the constrained formulation) are equivalent in the sense that for each non negative λ there is a non-
negative λ̃ leading to the same solution.

10

5.1.2 Model for network reverse-engineering

Suppose that we have selected N genes across T time points and for P individuals; we note xnpt the
expression of gene n for individual p at time-point t. Since each gene will be considered exactly once as
a response variable, our model is composed of N linear regression models. As the action of a gene of
another is not instantaneous, we define:

x̃np. =

xnpt2...
xnptT

 and x̌np. =

 xnpt1
...

xnptT−1

 ,

x̃n.. =

x̃n1....
x̃nP.

 and x̌n.. =

x̌n1....
x̌nP.

 .

We note that x̃np. begins at time point t2 and ends at time point tT , while x̌np. begins at time point
t1 and ends at time point tT−1. In the following, when gene n is the response variable we will use x̃np.,
and x̌np. when gene n is a predictor variable.

We further assume that each gene has been assigned to one and only one of the T time-cluster (one
cluster for each time).

We have previously proposed (Vallat et al., 2013) the follwing linear regression model:

x̃n.. =

N∑
n′=1

Fm(n′)m(n)ωn′nx̌n′.. + εn,

where:

� m(•) is the function that maps a gene to its time-cluster,

� Fm(n′)m(n) is a T − 1 square matrix that describes the action of genes,

� ωn′n is the strength of the connection from gene i toward gene j,

� ε is a noise vector of length T − 1 with E(ε) = 0 and var(ε) = σ2

We choose to use a Lasso estimate for our linear regression model:

(ω̂, F̂) = argmin
ωn′n∈R, 16n′,n6N

F ab∈MT−1(R),16a,b6T

 N∑
n=1

(
x̃n.. −

N∑
n′=1

Fm(n′)m(n)ωn′nx̌n′..

)2
 ,

with the constraint:

∀n = 1, ..., N,

N∑
n′=1

ωn′n 6 λn.

So, x̃n.. is the regulated gene and xn′.., n
′ = 1, · · · , N are the regulators. Notice that matrix

Fm(n′)m(n) permits to the link between genes n′ and n to evolve across time. To enforce temporal
causality we need the two following time constraints:

1. m(n′) > m(n)⇒ Fm(n′)m(n) = 0: this ensures that a gene with temporal cluster tk can influence
a gene with temporal cluster tk′ if and only if k < k′,

11

2. the matrices F are lower triangular matrices: this ensures that the expression of a gene at time
tk can influence another gene at time tk′ if and only if k < k′.

Sub-diagonals and the diagonal of matrices F are supposed to be invariant (Vallat et al., 2013).
Consequently, interactions depend only on time index differences rather than absolute time index.

We solve this problem with a coordinate ascent approach, by iteratively supposing the F matrices
or the ωn′n matrices known. The result of the optimization is a connectivity network described by the
nonzero elements of ω̂n′n(obs) combined with a set of cluster-dependent interaction models described

by the set F̂m(n′)m(n)(obs).

However, if clusters are sufficiently homogeneous, inference of matrices Fm(n′)m(n) doesn’t depend
on which genes are active (i.e. which ωn′n 6= 0). That’s why a non iterative algorithm is proposed in
which estimation of of matrices Fm(i)m(j) precedes estimation of matrix Ω.

To get a more robust result, at each step, the estimation of matrices Fm(n′)m(n) is done several times
throughout cross-validation. Furthermore, to avoid computational issues, the new solution is chosen by
a linear combination between the old and the new solution.

5.2 Performing the reverse-engineering algorithm

To perform this algorithm on our data:

> network<-inference(Selection)

We are at step : 1

The convergence of the network is (L1 norm) : 0.01096

We are at step : 2

The convergence of the network is (L1 norm) : 0.00302

We are at step : 3

The convergence of the network is (L1 norm) : 0.00217

We are at step : 4

The convergence of the network is (L1 norm) : 0.00177

We are at step : 5

The convergence of the network is (L1 norm) : 0.00146

We are at step : 6

The convergence of the network is (L1 norm) : 0.00111

We are at step : 7

The convergence of the network is (L1 norm) : 0.00089

We can plot a representation of F matrices (Figure 5) and the resulting network (Figure 6) by simply
using the plot method:

> plot(network,choice="F")

> plot(network,choice="network",gr=Selection@group,label_v=Selection@name)

Note that all network plots are computed using the Igraph R package (Csardi and Nepusz, 2006).

12

0
1

2
3

F12

● ● ●0
1

2
3

F22

● ● ●0
1

2
3

F32

F13

F23

● ● ●

F33

F14

F24

F34

Figure 5: The F matrices ; for each matrix, the first bar plot corresponds to the coefficient of the
diagonal, the second to the first sub-diagonal...

13

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

LO
C

10
05

06
29

9

C
C

D
C

40

un
kn

ow
n

LO
C

10
05

06
10

2

T
N

F
R

S
F

9

C
S

T
F

3

M
A

P
3K

7

S
F

X
N

5

un
kn

ow
n

S
P

A
G

17
Z

B
T

B
3

T
IP

A
R

P

D
G

C
R

11

P
IT

P
N

C
1

M
E

F
2C

T
N

F
R

S
F

1B

R
N

F
19

A

R
N

F
19

A

G
N

G
2

P
R

R
12

S
P

A
G

9

FA
M

21
0A

T
M

C
8

S
P

A
G

9

M
E

F
2C

G
N

G
2

S
P

A
G

9

C
D

20
0

P
T

P
N

22

un
kn

ow
n

C
D

84

R
P

S
16

W
N

T
8B

M
E

F
2C

A
F

F
3

C
12

or
f4

2

un
kn

ow
n

un
kn

ow
n

S
TA

T
5A

FA
M

86
B

1

P
C

C
D

47

C
A

M
K

1D

A
F

F
3

Z
B

T
B

20

S
C

F
D

2

S
IK

3

un
kn

ow
n

FA
D

S
3

C
D

47

IT
M

2B

A
C

A
C

A

S
LC

7A
7

C
H

D
2

E
G

R
1

C
D

27
4

B
Z

W
2

un
kn

ow
n

LR
M

P

M
Y

C

E
G

R
2

B
C

A
R

3

N
O

P
16

C
D

72 E
G

R
3

H
IV

E
P

3
AT

P
6V

0A
1

E
G

R
1

N
O

LC
1

un
kn

ow
n

S
LA

M
F

1

N
IN

A
IM

P
2

un
kn

ow
n

●
●

●
●

C
lu

st
er

 1
C

lu
st

er
 2

C
lu

st
er

 3
C

lu
st

er
 4

Figure 6: The resulting network with all edges

14

The number of edges in the network makes the message difficult to interpret ; and as we will see in
the next section, results in term of predictive positive value and F-score can be improved when choosing
a right cutoff level. Using the nv option, we will choose a cutoff under which the regression coefficient
estimates (ω̂ij(obs)) are set to 0. In Figure 7 a cutoff of 0.11 is chosen.

5.3 Choosing the best cutoff for edge minimal strength

The difficulty is now to choose the best cutoff. As a starting point, we propose method evolution,
that allows the user to see, in a html page, the evolution of the network when the cutoff is growing up.
When the fix option is set to FALSE, at each step the position of the genes are re-calculated.

> evolution(network,seq(0,0.4,by=0.01),gr=Selection@group,

fix=TRUE,label_v=Selection@name)

> evolution(network,seq(0,0.4,by=0.01),gr=Selection@group,

fix=FALSE,label_v=Selection@name)

To see the result of these functions, go to :

� http://www-irma.u-strasbg.fr/~njung/evolution_fix_true/evol.html : here the fix op-
tion is set to TRUE.

� http://www-irma.u-strasbg.fr/~njung/evolution_fix_false/evol.html: here the fix op-
tion is set to FALSE.

As it is mostly accepted, gene regulatory networks are supposed to be scale-free (Jeong et al., 2000).
The notion of scale freeness in networks relies on the probability distribution of the number of outgoing
edges. A network is called scale free when this distribution is a power law distribution (Clauset et al.,
2009). As this family of law is large, it is difficult to test such an hypothesis. We used the test proposed
by Clauset et al.(Clauset et al., 2009):

> #To be computed:

> #evol_cutoff<-cutoff(network)

> nv<-0.15

We plot here the smooth interpolation rather than the exact values, as our interest relies mostly on
the trend (Figure 8). We propose a choice of cutoff that relies on two criteria:

� the p-value should be greater than 0.10: in this case, the scale-freeness of the network is reliable
(Clauset et al., 2009).

� we determined by simulation the best area of choice (on the plot (Figure 8)).

Based on these two criteria, we choose a cutoff of nv = 0.11.

15

http://www-irma.u-strasbg.fr/~njung/evolution_fix_true/evol.html
http://www-irma.u-strasbg.fr/~njung/evolution_fix_false/evol.html

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

LOC100506299

CCDC40

unknown

LOC100506102

CSTF3

MAP3K7

SPAG17

ZBTB3

TIPARP

DGCR11

PITPNC1

MEF2C

TNFRSF1B

RNF19A

RNF19A

GNG2

PRR12

SPAG9

FAM210A

TMC8

SPAG9

MEF2C

GNG2

SPAG9

CD200

unknown

CD84

RPS16

WNT8B

MEF2C

AFF3

unknown

unknown

STAT5A

FAM86B1

PC

CD47

CAMK1D

AFF3

ZBTB20

SCFD2
unknown

FADS3

CD47

ITM2B

ACACA

SLC7A7

EGR1

CD274

BZW2

unknown

LRMP

MYC

EGR2

BCAR3

NOP16

CD72

EGR3

HIVEP3

ATP6V0A1 NOLC1

unknown

SLAMF1

NIN

AIMP2

unknown

● ● ● ●Cluster 1 Cluster 2 Cluster 3 Cluster 4

Figure 7: The resulting network with a cutoff of 0.15

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

cutoff sequence

sc
al

e−
fr

ee
ne

ss
 te

st
 p

−
va

lu
e

p−value=0.1: above this line, scale−freeness may be assumed
best area of choice (determined by simulation)
less recommended area of choice (determined by simulation)
area of choice to be avoided (determined by simulation)

Figure 8: Evolution of scale-freeness of the network in function of the cutoff. The p-value corresponds to the adequacy
of the data to a power law distribution.

16

5.4 Analyzing the network

One may want to know which genes are important in the network. In our representation, the bigger the
vertex the larger the number of outgoing edges. Indeed, genes with many outgoing edges, the hubs, are
important in the network. But genes controlling these hubs should be considered with attention. The
analyze_network method allows computing different indicators:

� betweenness : it is a measure of the node centrality. It is calculated, for node n, by the following
formula: ∑

s 6=t6=n

σst(n)

σst

where σst is the number of shortest ways between s and t, and σst(n) is the number of shortest
ways between s and t passing by n ;

� degree : the number of outgoing edges ;

� output : the sum of weights of outgoing genes ;

� closeness : it is a measure of the distance (in terms of shortest path) of a gene to others.

As our network is weighted we used specific measures developed by Opsahl (Opsahl, 2009).

> analyze<-analyze_network(network,nv,Selection@name)

> head(analyze)

node betweenness degree output closeness

1 LOC100506299 0 3 0.8133348 14.841838

2 CCDC40 0 3 0.8884602 7.305208

3 unknown 0 1 0.1749376 8.826222

4 LOC100506102 0 2 0.3661906 9.622533

5 TNFRSF9 0 0 0.0000000 0.000000

6 CSTF3 0 12 3.4345058 23.065564

Note that one can plot the network and modulate the size of the vertex following one of this measure,
using the weight.node option.

Using again the package animation, we can see how the signal spreads in the network by turning
to TRUE the option ani:

> plot(network,nv=nv,gr=Selection@group,ani=TRUE,label_v=Selection@name,

edge.arrow.size=0.9,edge.thickness=1.5)

Result is available at http://www-irma.u-strasbg.fr/~njung/network_spread/spread.html.

The method plot has basically two steps:

1. it calculates the position of the vertex,

2. it plots the graph.

In some case, it is interesting to produce two plots of a same network without changing vertex
positions. Here is a way to do that, using the ini option of method plot:

> P<-position(network,nv=nv)

> #plotting the network with the given position

> plot(network,nv=nv,gr=Selection@group,ini=P,label_v=Selection@name)

However, we didn’t develop all possibilities of the plot option ; for more possibilities, please refer
to the manual:

> vignette("Cascade-manual")

17

http://www-irma.u-strasbg.fr/~njung/network_spread/spread.html

6 Prediction of gene expression modulations after a knock-out
experiment

Once the network has been reverse-engineered, we want to know the impact of an experimental per-
turbation in this network. For example, what would happen if expression of EGR1 is knocked-out
?

> EGR1<-which(Selection@name %in% "EGR1")

First the geneNeighborhood method allows determining which are the neighborhood of EGR1 (see
Figure 9).

> geneNeighborhood(network,targets=EGR1,nv=nv,ini=P,

label_v=Selection@name)

> #label.hub: only hubs vertex should have a name

> #label_v: name of the vertex

We predict gene expression modulations within the network if EGR1 is experimentaly knocked-out.

> prediction_ko5<-predict(Selection,network,nv=nv,targets= EGR1)

Then we plot the results (Figure 10):

> #We plot the results.

> #Here for example we see changes at time point t2:

> plot(prediction_ko5,time=2,ini=P,label_v=Selection@name)

7 Simulation

To simulate gene expressions based on a gene regulatory network, we first have to generate the net-
work. Here, we implemented an algorithm that is inspired by the preferential attachment from Barabási
(Barabási, 2003; Jeong et al., 2007). We adapted this algorithm in our case of temporal cascade net-
works.

We then use our linear model to make some simulations, using Laplace laws to initiate the algorithm.

> #We set the seed to make the results reproducible

> set.seed(1)

> #We create a random scale free network

> Net<-network_random(

nb=100,

time_label=rep(1:4,each=25),

exp=1,

init=1,

regul=round(rexp(100,1))+1,

min_expr=0.1,

max_expr=2,

casc.level=0.4

)

> #We change F matrices

> T<-4

> F<-array(0,c(T-1,T-1,T*(T-1)/2))

18

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

LOC100506299

CCDC40

unknown

LOC100506102

CSTF3

MAP3K7

SPAG17

ZBTB3

TIPARP

DGCR11

PITPNC1

MEF2C

TNFRSF1B

RNF19A

RNF19A

GNG2

PRR12

SPAG9

FAM210A

TMC8

SPAG9

MEF2C

GNG2

SPAG9

CD200

unknown

CD84

RPS16

WNT8B

MEF2C

AFF3

unknown

unknown

STAT5A

FAM86B1

PC

CD47

CAMK1D

AFF3

ZBTB20

SCFD2
unknown

FADS3

CD47

ITM2B

ACACA

SLC7A7

EGR1

CD274

BZW2

unknown

LRMP

MYC
EGR2

BCAR3

NOP16

CD72

EGR3

HIVEP3

ATP6V0A1 NOLC1

unknown

SLAMF1

NIN

AIMP2

unknown

●

●

●

order 1
order 2
order 3

Figure 9: Neighborhood of gene EGR1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

LOC100506299

CCDC40

unknown

LOC100506102

CSTF3

MAP3K7

SPAG17

ZBTB3

TIPARP

DGCR11

PITPNC1

MEF2C

TNFRSF1B

RNF19A

RNF19A

GNG2

PRR12

SPAG9

FAM210A

TMC8

SPAG9

MEF2C

GNG2

SPAG9

CD200

unknown

CD84

RPS16

WNT8B

MEF2C

AFF3

unknown

unknown

STAT5A

FAM86B1

PC

CD47

CAMK1D

AFF3

ZBTB20

SCFD2
unknown

FADS3

CD47

ITM2B

ACACA

SLC7A7

EGR1

CD274

BZW2

unknown

LRMP

MYC
EGR2

BCAR3

NOP16

CD72

EGR3

HIVEP3

ATP6V0A1 NOLC1

unknown

SLAMF1

NIN

AIMP2

unknown

−0.37 0.370

Time point prediction = 2

Figure 10: Perturbation modulation at time point 2 of the network consecutively to the knock-out of
EGR1.

19

> for(i in 1:(T*(T-1)/2)){diag(F[,,i])<-1}

> F[,,2]<-F[,,2]*0.2

> F[2,1,2]<-1

> F[3,2,2]<-1

> F[,,4]<-F[,,2]*0.3

> F[3,1,4]<-1

> F[,,5]<-F[,,2]

> Net@F<-F

> #We simulate gene expression according to the network Net

> M<-gene_expr_simulation(

network=Net,

time_label=rep(1:4,each=25),

subject=5,

level_pic=200)

> #We infer the new network

> Net_inf<-inference(M)

> #Comparing true and inferred networks

> F_score<-rep(0,200)

> #Here are the cutoff level tested

> test.seq<-seq(0,max(abs(Net_inf@network*0.9)),length.out=200)

> u<-0

> for(i in test.seq){

u<-u+1

F_score[u]<-compare(Net,Net_inf,i)[3]

}

> #Choosing the cutoff

> cut.seq<-cutoff(Net_inf)

> points(0.125,0.1199,col="red",pch=16,cex=2)

> #Corresponding Fscore evolution

> plot(test.seq,F_score,type="l",xlab="cutoff",ylab="Fscore")

> abline(v=0.125,col="red")

Figure 11 shows the evolution of the p-value of the scale-freeness test while Figure 12 shows the
corresponding evolution of the F-score. As shown, choosing the best cut-off allows a dramatic increase
of the cut-off.

Figure 13 show the evolution of the F-score when the number of individuals increase.

20

0.00 0.05 0.10 0.15 0.20 0.25

0.
07

0.
08

0.
09

0.
10

0.
11

0.
12

cutoff sequence

sc
al

e-
fre

en
es

s
te

st
 p

-v
al

ue

p-value=0.1: above this line, scale-freeness may be assumed
best area of choice (determined by simulation)
less recommended area of choice (determined by simulation)
area of choice to be avoided (determined by simulation)

Figure 11: Evolution of the scale-freeness of the network in function of the cutoff

0.0 0.2 0.4 0.6 0.8

0.
2

0.
3

0.
4

0.
5

0.
6

cutoff

Fs
co
re

Figure 12: Evolution of F-score in function of the cutoff

21

0.0 0.2 0.4 0.6 0.8

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

cutoff

Fs
co
re

5
8
10
15

Figure 13: Evolution of F-score in function of the cutoff and the number of subject in the study

22

References

Bansal, M., Belcastro, V., Ambesi-Impiombato, A., and Di Bernardo, D. (2007). How to infer gene
networks from expression profiles. Molecular systems biology, 3(1).

Bar-Joseph, Z., Gitter, A., and Simon, I. (2012). Studying and modelling dynamic biological processes
using time-series gene expression data. Nature Reviews Genetics, 13(8):552–564.

Barabási, A.-L. (2003). Emergence of scaling in complex networks. In Bornholdt, S. and Schuster,
H. G., editors, Handbook of graphs and networks: from the genome to the internet, pages 69–84.
Wiley-VCH, Weinheim.

Barabási, A.-L. and Oltvai, Z. N. (2004). Network biology: understanding the cell’s functional organi-
zation. Nature Reviews Genetics, 5(2):101–113.

Clauset, A., Shalizi, C. R., and Newman, M. E. (2009). Power-law distributions in empirical data.
SIAM review, 51(4):661–703.

Crick, F. et al. (1970). Central dogma of molecular biology. Nature, 227(5258):561–563.

Csardi, G. and Nepusz, T. (2006). The igraph software package for complex network research. Inter-
Journal, Complex Systems:1695.

Hecker, M., Lambeck, S., Toepfer, S., Van Someren, E., and Guthke, R. (2009). Gene regulatory network
inference: data integration in dynamic models?a review. Biosystems, 96(1):86–103.

Jeong, H., Néda, Z., and Barabási, A.-L. (2007). Measuring preferential attachment in evolving net-
works. EPL (Europhysics Letters), 61(4):567.

Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and Barabási, A.-L. (2000). The large-scale organiza-
tion of metabolic networks. Nature, 407(6804):651–654.

Luscombe, N. M., Babu, M. M., Yu, H., Snyder, M., Teichmann, S. A., and Gerstein, M. (2004).
Genomic analysis of regulatory network dynamics reveals large topological changes. Nature,
431(7006):308–312.

Opsahl, T. (2009). Structure and Evolution of Weighted Networks. University of London (Queen Mary
College), London, UK.

Smyth, G. K. (2005). Limma: linear models for microarray data. In Gentleman, R., Carey, V., Dudoit,
S., Irizarry, R., and Huber, W., editors, Bioinformatics and Computational Biology Solutions using
R and Bioconductor, pages 397–420. Springer, New York.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), pages 267–288.

Vallat, L., Kemper, C. A., Jung, N., Maumy-Bertrand, M., Bertrand, F., Meyer, N., Pocheville, A.,
Fisher, J. W., Gribben, J. G., and Bahram, S. (2013). Reverse-engineering the genetic circuitry
of a cancer cell with predicted intervention in chronic lymphocytic leukemia. Proceedings of the
National Academy of Sciences, 110(2):459–464.

Vallat, L., Park, Y., Li, C., and Gribben, J. G. (2007). Temporal genetic program following b-cell
receptor cross-linking: altered balance between proliferation and death in healthy and malignant b
cells. Blood, 109(9):3989–3997.

Yosef, N. and Regev, A. (2011). Impulse control: temporal dynamics in gene transcription. Cell,
144(6):886–896.

Zhu, X., Gerstein, M., and Snyder, M. (2007). Getting connected: analysis and principles of biological
networks. Genes & development, 21(9):1010–1024.

23

	Introduction
	Installation requirements
	Data pre-processing
	Gene selection
	Gene regulatory network reverse-engineering
	Theoretical background
	The Lasso estimate
	Model for network reverse-engineering

	Performing the reverse-engineering algorithm
	Choosing the best cutoff for edge minimal strength
	Analyzing the network

	Prediction of gene expression modulations after a knock-out experiment
	Simulation

