Package 'CalcThemAll.PRM'

January 20, 2025

Title Calculate Pesticide Risk Metric (PRM) Values from Multiple Pesticides...Calc Them All

Version 1.1.1

Description Contains functions which can be used to calculate Pesticide Risk Metric values in aquatic environments from concentrations of multiple pesticides with known species sensitive distributions (SSDs). Pesticides provided by this package have all be validated however if the user has their own pesticides with SSD values they can append them to the pesticide_info table to include them in estimates.

Encoding UTF-8

License GPL (>= 3)

RoxygenNote 7.3.1

Imports dplyr, lubridate, magrittr, MASS, stats, VGAM, plotly, zoo, DT

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

Depends R (>= 2.10)

LazyData true

VignetteBuilder knitr

NeedsCompilation no

Author Alexander Bezzina [aut, cre, cph], Jennifer Strauss [aut], Catherine Neelamraju [aut], Hayley Kaminski [aut]

Maintainer Alexander Bezzina <alex.h.bezzina@gmail.com>

Repository CRAN

Date/Publication 2024-04-24 14:30:05 UTC

Contents

Burr_Type_III_Formula
calculate_daily_average_PRM 4
calculate_wet_season_average_PRM
Canto_pesticides
find_Sampling_Year
find_season
find_wet_season_end
Gamma_Formula
imputation_beta
imputation_kernel
Inverse_Weibull_Formula
Log_Gumbel_Formula
Log_Logistic_Formula
Log_Logistic_Log_Logistic_Formula 13
Log_Normal_Formula 14
Log_Normal_Log_Normal_Formula
pesticide_info
plot_daily_PRM
plot_wet_season_window
PRM_DT 19
treat_LORs
treat_LORs_all_data
22

Index

add_your_own_pesticide

Add new pesticides to the pesticide_info table

Description

Add new pesticides to the pesticide_info table

```
add_your_own_pesticide(
   pesticides,
   relative_LORs,
   pesticide_types,
   distribution_types,
   shape_locations = NA,
   shape_location_2s = NA,
   scales = NA,
   scale_2s = NA,
   weights = NA,
   pesticide_info = CalcThemAll.PRM::pesticide_info
)
```

pesticides	A vector of pesticide names		
relative_LORs	A vector of relative limit of reporting replacement values		
pesticide_types	pesticide_types		
	A vector of the new pesticide's types		
distribution_ty	/pes		
	A vector of the new pesticide's species sensitivity distribution types		
shape_locations			
	A vector of shape/location values (if applicable, else put NA)		
<pre>shape_location_2s</pre>			
	A vector of secondary shape/location values (if applicable, else put NA)		
scales	A vector of scale values (if applicable, else put NA)		
scale_2s	A vector of secondary scale values (if applicable, else put NA)		
weights	A vector of weight values (if applicable, else put NA)		
pesticide_info	A data set to add pesticides too		

Value

A data frame

Examples

```
new <- add_your_own_pesticide(pesticides = "Poison", relative_LORs = 0.023,
pesticide_types = "Poison", distribution_types = "Log-Normal", scales = 0.09,
shape_locations = 0.014)
multiple_new <- add_your_own_pesticide(pesticides = c("Poison", "Acid", "Sludge"),
relative_LORs = c(0.03, 0.01, 0.5), pesticide_types = c("Poison", "Acid", "Sludge"),
distribution_types = c("Log-Normal", "Log-Logistic Log-Logistic", "Burr Type III"),
scales = c(0.3, 0.002, 2),
scale_2s = c(NA, 0.04, NA), shape_locations = c(1, 0.07, 3),
shape_location_2s = c(NA, 0.14, 2.3), weights = c(NA, 0.08, NA))
```

Burr_Type_III_Formula Burr Type III (Inverse Burr) Equation Formula

Description

Burr Type III (Inverse Burr) Equation Formula

Usage

Burr_Type_III_Formula(concentration, scale, shape_location, shape_location_2)

concentration	The vector of concentration values for a selected pesticide, that has a Burr Type III shaped species sensitivity distribution, to run the equation on.	
scale	The Burr Type III scale/b value for the selected pesticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" data frame.	
shape_location	The Burr Type III c/shape value for the selected pesticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" table.	
shape_location_2		
	The Burr Type III k/shape value for the selected pesticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" table.	

Value

a numeric vector

Examples

```
#Chlorpyrifos is used as its species sensitivity distribution fits Burr Type III
Chlorpyrifos <- c(0.00000001, 0.5, 2.7, 11)
Burr_Type_III_Formula(concentration = Chlorpyrifos,
scale = pesticide_info$scale[pesticide_info$pesticide == "Chlorpyrifos"],
shape_location = pesticide_info$shape_location[pesticide_info$pesticide == "Chlorpyrifos"],
shape_location_2 = pesticide_info$shape_location_2[pesticide_info$pesticide == "Chlorpyrifos"])
```

calculate_daily_average_PRM Calculate Daily Average Pesticide Risk Metric Values For Each Pesticide Type

Description

Calculate Daily Average Pesticide Risk Metric Values For Each Pesticide Type

```
calculate_daily_average_PRM(
  LOR_treated_data,
  include_PAF = FALSE,
  pesticide_info = CalcThemAll.PRM::pesticide_info
)
```

LOR_treated_data

 A data set of LOR treated pesticide concentration values in individual columns that match the pesticide names in the "pesticide_info" data frame. This data set should also include a "Date", "Sampling Year" and "Site Name" column.
 include_PAF
 If "TRUE" Percentage Affected Fraction values are included in the output along with Daily PRM in a list format. These values can be useful for plotting relative individual pesticide contribution to overall PRM, however most will not need this so default is "FALSE".

 pesticide_info
 The reference table which contains all relevant information for calculations. It is recommended that the "pesticide_info" data set included in this package be used and if you wish to include more pesticides you can appended them with the relevant information to this table. If you are creating your own table you must ensure that the pesticide name column is title "pesticide" and the relative LOR replacement column is "relative_LOR" for the function to run.

Value

If include_PAF is "FALSE" returns a data frame of daily average PRM values for each pesticide type for each sample. Wet season average calculations can be run on the returned data. If include_PAF is "TRUE" returns a list with daily PRM values in a data frame as the first object and a data frame of PAF values as the second object.

Examples

Canto_pesticides_LOR_treated <- treat_LORs_all_data(raw_data = Canto_pesticides, pesticide_info = CalcThemAll.PRM::pesticide_info) Canto_daily_PRM <- calculate_daily_average_PRM(LOR_treated_data = Canto_pesticides_LOR_treated) head(Canto_daily_PRM)

calculate_wet_season_average_PRM

Calculate Wet Season Average Pesticide Risk Metric Values Using Multiple Imputation

Description

Calculate Wet Season Average Pesticide Risk Metric Values Using Multiple Imputation

```
calculate_wet_season_average_PRM(
  daily_PRM_data,
  PRM_group = "Total PRM",
  imputations = 1000,
  min_sampling_days = 12,
```

```
wet_season_length = 182
)
```

daily_PRM_data	A data set of calculated daily average PRM values. This data set should also include a "Date", "Sampling Year" and "Site Name" column.	
PRM_group	This specifies the name of the column to run the calculations on. The daily average calculations gives PRM for each pesticide type and total in different columns so this selects which to run. "Total" is set as the default as it is the PRM of all pesticides.	
imputations	This sets the number of imputations to run. The more imputations the greater the reliability, however it also increases calculation time. You can increase imputations beyond 1000 however the improvement of the confidence interval on imputed values may not be sufficient to warrant increased computing time. We recommend 1000 :)	
min_sampling_days		
	This is the minimum number of sampling days a site-year combination must have to calculate a wet season average PRM. No less than 12 is the default (1	

for each month) for reliability but more is recommended.

```
wet_season_length
```

The length of the wet season in days.

Value

A data frame

Examples

```
Canto_pesticides_LOR_treated <- treat_LORs_all_data(raw_data = Canto_pesticides,
pesticide_info = CalcThemAll.PRM::pesticide_info)
Canto_daily_PRM <- calculate_daily_average_PRM(LOR_treated_data = Canto_pesticides_LOR_treated)
Celestial_City_2019_2020_daily_PRM <- Canto_daily_PRM %>%
dplyr::filter(`Site Name` == "Celestial City" & `Sampling Year` == "2019-2020")
CC2019_2020_wet_season_PSII_PRM <- calculate_wet_season_average_PRM(daily_PRM_data =
Celestial_City_2019_2020_daily_PRM, PRM_group = "PSII Herbicide PRM")
CC2019_2020_wet_season_PSII_PRM
```

Canto_pesticides Canto Region Pesticide Concentration Values (Example Data Set)

Description

A subset of pesticide concentration data for all pesticides in "pesticide_info" created for this package with fabricated sites

find_Sampling_Year

Usage

Canto_pesticides

Format

Canto_pesticides:

A data frame with 808 rows and 64 columns:

Site Name Site name

Date Sampling date

Ametryn, Atrazine, Chlorpyrifos, Diuron, Fipronil, Fluroxypyr, Haloxyfop (acid), Hexazinone, Imazapic, Imidaclop pesticide concentration values in ug/L ...

find_Sampling_Year Find Sampling Year

Description

Find Sampling Year

Usage

find_Sampling_Year(dates, wet_season_split = 7)

Arguments

dates A date vector of sampling dates. Must be in yyyy-mm-dd format.

wet_season_split

The first month of the sampling year in numeric e.g. July = 7. July (7) is used as the default as this is the first month of the Queensland wet season.

Value

A factored character vector

Examples

```
dates <- as.Date(c("2014-03-04", "2014-12-30", "2015-06-12"))
sampling_years <- find_Sampling_Year(dates) #cut of date</pre>
```

find_season

Description

Find Sample's Season (Wet or Dry)

Usage

find_season(wet_season_start_dates, sampling_dates, wet_season_length = 182)

Arguments

wet_season_length

The length of the wet season in days.

Value

A character vector

Examples

```
dates <- as.Date(c("2014-12-04", "2014-10-30", "2015-11-12"))
wet_start_dates <- as.Date(c("2014-10-04", "2014-12-30", "2015-09-12"))
Seasons <- find_season(wet_start_dates, sampling_dates = dates)
#cut of date for the sampling year will be last day of June</pre>
```

find_wet_season_end Find Wet Season End Date

Description

Find Wet Season End Date

```
find_wet_season_end(wet_season_start, wet_season_length = 182)
```

Gamma_Formula

Arguments

wet_season_start

A vector of dates signifying the first day of the wet season for site year combinations.

wet_season_length

The length of the wet season in days.

Value

A character vector

Examples

```
wet_season_start_dates <- as.Date(c("2014-10-04", "2014-12-30", "2015-09-12"))
wet_season_end_dates <- find_wet_season_end(wet_season_start_dates)
#cut of date for the sampling year will be last day of June</pre>
```

Gamma_Formula

Gamma CDF Equation Formula

Description

Gamma CDF Equation Formula

Usage

Gamma_Formula(concentration, shape_location, scale)

Arguments

concentration	The vector of concentration values for a selected pesticide, that has a Gamma shaped species sensitivity distribution, to run the equation on.
shape_location	The k/shape value for the Gamma equation for the selected pesticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" table.
scale	The scale/theta value for the Gamma equation for the selected pesticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" table.

Value

a numeric vector

Examples

```
gamma_pesticide_concentrations <- c(0.000000001, 0.5, 2.7, 11)
Gamma_Formula(concentration = gamma_pesticide_concentrations,
shape_location = 0.23, scale = 1.3)</pre>
```

imputation_beta Imputation Function - Beta Version

Description

Imputation Function - Beta Version

Usage

```
imputation_beta(impute_variable, wet_season_length = 182)
```

Arguments

impute_variable

The variable you wish to impute. wet_season_length The length of the wet season in days.

Value

A data frame.

imputation_kernel Imputation Function - Kernal Version

Description

Imputation Function - Kernal Version

Usage

```
imputation_kernel(impute_variable, wet_season_length = 182)
```

Arguments

impute_variable

The variable you wish to impute.

wet_season_length

The length of the wet season in days.

Value

A data frame.

10

Inverse_Weibull_Formula

Inverse Weibull Formula

Description

Inverse Weibull Formula

Usage

Inverse_Weibull_Formula(concentration, shape_location, scale)

Arguments

concentration	The vector of concentration values for a selected pesticide, that has a Inverse Weibull shaped species sensitivity distribution, to run the equation on.
shape_location	The Inverse Weibull shape/alpha value for the selected pesticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" table.
scale	The Inverse Weibull scale/beta value for the selected pesticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" table.

Value

a numeric vector

Examples

```
Hexazinone <- c(0.000000001, 0.5, 2.7, 11)
#Hexazinone is used as its species sensitivity distribution plots fits Inverse Weibull
Inverse_Weibull_Formula(concentration = Hexazinone,
shape_location = pesticide_info$shape_location[pesticide_info$pesticide == "Hexazinone"],
scale = pesticide_info$scale[pesticide_info$pesticide == "Hexazinone"])</pre>
```

Log_Gumbel_Formula Log Gumbel CDF Equation Formula

Description

Log Gumbel CDF Equation Formula

Usage

Log_Gumbel_Formula(concentration, shape_location, scale)

Arguments

concentration	The vector of concentration values for a selected pesticide, that has a Log Gum- bel shaped species sensitivity distribution, to run the equation on.
shape_location	The mu/location value for the Log Gumbel equation for the selected pesticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" table.
scale	The beta/scale value for the Log Gumbel equation for the selected pesticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" table.

Value

a numeric vector

Examples

```
#This Example should produce roughly 1% and 5% PRM values
LogGumbel_pesticide_concentrations <- c(0.095957794, 0.245881898)
Log_Gumbel_Formula(concentration = LogGumbel_pesticide_concentrations,
shape_location = 0.9980581, scale = 2.188285)
```

Log_Logistic_Formula Log Logistic Formula

Description

Log Logistic Formula

Usage

```
Log_Logistic_Formula(concentration, scale, shape_location)
```

Arguments

concentration	The vector of concentration values for a selected pesticide, that has a Log Lo- gistic shaped species sensitivity distribution, to run the equation on.
scale	The Log Logistic alpha/scale value for the selected pesticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" table.

shape_location The Log Logistic beta/shape value for the selected pesticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" table.

Value

a numeric vector

Examples

```
Imazapic <- c(0.000000001, 0.5, 2.7, 11)
#Imazapic is used as its species sensitivity distribution plots fits Log Logistic
Log_Logistic_Formula(concentration = Imazapic,
scale = pesticide_info$scale[pesticide_info$pesticide == "Imazapic"],
shape_location = pesticide_info$shape_location[pesticide_info$pesticide == "Imazapic"])</pre>
```

Log_Logistic_Log_Logistic_Formula Log Logistic Log Logistic (double curve) CDF Formula

Description

Log Logistic Log Logistic (double curve) CDF Formula

Usage

```
Log_Logistic_Log_Logistic_Formula(
    concentration,
    scale,
    shape_location,
    scale_2,
    shape_location_2,
    weight
)
```

Arguments

concentration	The vector of concentration values for a selected pesticide, that has a Log Logistic Log Logistic shaped species sensitivity distribution, to run the equation on.
scale	The alpha/scale value for the first Log Logistic equation for the selected pes- ticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide info" table.

shape_location	The beta/shape value for the first Log Logistic equation for the selected pesti- cide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" table.	
scale_2	The alpha/scale value for the second Log Logistic equation for the selected pes- ticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" table.	
shape_location_2		
	The beta/shape value for the second Log Logistic equation for the selected pes- ticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" table.	
weight	The weight parameter for combining the two equations for the selected pesticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" table.	

Value

a numeric vector

Examples

```
#This Example should produce roughly 1% and 5% PRM values
LogL_LogL_pesticide_concentrations <- c(0.00341453, 0.009854566)
Log_Logistic_Log_Logistic_Formula(concentration = LogL_LogL_pesticide_concentrations,
scale = 0.5823392, shape_location = -3.499604, scale_2 = 1.144555,
shape_location_2 = 1.100755, weight = 0.3585467)
```

Log_Normal_Formula Log-Normal CDF Equation Formula

Description

Log-Normal CDF Equation Formula

Usage

Log_Normal_Formula(concentration, shape_location, scale)

concentration	The vector of concentration values for a selected pesticide, that has a Log Nor- mal shaped species sensitivity distribution, to run the equation on.
shape_location	The mu/location value for the Log Normal equation for the selected pesticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" table.
scale	The sigma/scale value for the Log Normal equation for the selected pesticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" table.

Value

a numeric vector

Examples

```
LogN_pesticide_concentrations <- c(0.000000001, 0.5, 2.7, 11)
Log_Normal_Formula(concentration = LogN_pesticide_concentrations,
shape_location = 0.23, scale = 1.3)</pre>
```

Log_Normal_Log_Normal_Formula

Log-Normal Log-Normal (double curve) CDF Equation Formula

Description

Log-Normal Log-Normal (double curve) CDF Equation Formula

Usage

```
Log_Normal_Log_Normal_Formula(
    concentration,
    shape_location,
    scale,
    shape_location_2,
    scale_2,
    weight
)
```

Arguments

concentration

The vector of concentration values for a selected pesticide, that has a Log Normal Log Normal species sensitivity distribution, to run the equation on.

shape_location	The mu/shape value for the first Log Normal equation for the selected pesticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" table.
scale	The sigma/scale value for the first Log Normal equation for the selected pes- ticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" table.
shape_location_	2
	The mu/shape value for the second Log Normal equation for the selected pes- ticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" table.
scale_2	The sigma/scale value for the second Log Normal equation for the selected pes- ticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" table.
weight	The weight parameter for combining the two equations for the selected pesticide. These can be found in the "pesticide_info" data frame provided in this package. If you are including other pesticides you will need to append them with their respective distribution variables to the "pesticide_info" table.

Value

a numeric vector

Examples

```
#This Example should produce roughly 1% and 5% PRM values
LogN_LogN_pesticide_concentrations <- c(4.79E-05, 0.000225588)
Log_Normal_Log_Normal_Formula(concentration = LogN_LogN_pesticide_concentrations,
shape_location = -5.596431, scale = 2.061943,
shape_location_2 = 0.01174954, scale_2 = 0.9134796, weight = 0.5733126)
```

pesticide_info	Pesticide Information for Pesticide Risk Metric Calculations (Refer-
	ence Table)

Description

A reference table for PRM calculations in this package that include pesticide information such as type, species sensitivity distribution distributions and relevant equation variables.

Usage

pesticide_info

plot_daily_PRM

Format

pesticide_info: A data frame with 62 rows and 9 columns: pesticide Pesticide name relative_LOR The relative Limit of Reporting replacement value pesticide_type The pesticide method of effect distribution_type The species sensitivity distribution shape/type shape_location, shape_location2, scale, scale2, weight Species sensitivity distribution variables used in PRM calculations ...

Source

```
https://www.publications.qld.gov.au/dataset/method-development-pesticide-risk-metric-baseline-cond:
resource/c65858f9-d7ba-4aef-aa4f-e148f950220f
```

plot_daily_PRM Plot Daily Average PRM Values for a Single Site/Sampling Year

Description

Plot Daily Average PRM Values for a Single Site/Sampling Year

Usage

```
plot_daily_PRM(
   daily_PRM_data,
   wet_season_start = NULL,
   wet_season_length = 182,
   PRM_group = "Total PRM",
   title = FALSE,
   legend = "Numerical"
)
```

Arguments

daily_PRM_data	A data set of calculated daily average PRM values for a single site and sampling year. This data set should also include a "Date", "Sampling Year" and "Site
	Name" column.
wet_season_star	rt
	The date of the start of the wet season for this site sampling year. If not applica-
	ble leave as NA
wet_season_leng	gth
	The length of the wet season in days.
PRM_group	This specifies the name of the column to plot. The daily average calculations gives PRM for each pesticide type and a total in different columns. "Total" is set as the default as it is the PRM value for all pesticides.

title	TRUE or FALSE value to include a title.
legend	Does the legend show "Numerical" or "Categorical" values for PRM values on the plot.

Value

A plotly plot

Examples

```
Canto_pesticides_LOR_treated <- treat_LORs_all_data(raw_data = Canto_pesticides,
pesticide_info = CalcThemAll.PRM::pesticide_info)
Canto_daily_PRM <- calculate_daily_average_PRM(LOR_treated_data = Canto_pesticides_LOR_treated)
Violet_Town_2017_2018_PRM <- Canto_daily_PRM %>%
dplyr::filter(.data$`Sampling Year` == "2017-2018" & .data$`Site Name` == "Violet Town")
plot_daily_PRM(Violet_Town_2017_2018_PRM, "2017-10-02", PRM_group = "Total PRM")
```

plot_wet_season_window

Plot Wet Season Window Box on plot_daily_PRM

Description

Plot Wet Season Window Box on plot_daily_PRM

Usage

```
plot_wet_season_window(wet_season_start = 0, wet_season_length = 182)
```

Arguments

```
wet_season_start
```

The date of the start of the wet season for this site sampling year.

wet_season_length

The length of the wet season in days.

Value

A plotly shape

Examples

shape <- plot_wet_season_window(wet_season_start = "2017-08-01")</pre>

PRM_DT

Description

PRM Data Table Function

Usage

PRM_DT(PRM_data, fill_cols = NULL, colour_cols = NULL)

Arguments

PRM_data	a data frame of either daily average or wet season PRM values
fill_cols	A vector of column names of pesticide groups to fill colour with corresponding PRM risk category
colour_cols	A vector of column names of pesticide groups to colour text with corresponding PRM risk category

Value

a data table colour coded to PRM risk

Examples

```
Canto_pesticides_LOR_treated <- treat_LORs_all_data(raw_data = Canto_pesticides,
pesticide_info = CalcThemAll.PRM::pesticide_info)
Canto_daily_PRM <- calculate_daily_average_PRM(LOR_treated_data = Canto_pesticides_LOR_treated)
PRM_DT(PRM_data = Canto_daily_PRM, fill_cols = "Total PRM",
colour_cols = c("PSII Herbicide PRM", "Other Herbicide PRM", "Insecticide PRM"))
```

treat_LORs

Treat a single observations LORs

Description

Treat a single observations LORs

```
treat_LORs(
   sample_data,
   pesticide_info = CalcThemAll.PRM::pesticide_info,
   treatment_method = "Zero"
)
```

sample_data	A single observation containing a concentration value for each pesticide being used in the metric. LOR values should be in "<0.05" format and no values should be empty "".
pesticide_info	The reference table which contains all relevant information for calculations. It is recommended that the "pesticide_info" dataset included in this package be used and if you wish to include more or less pesticides you can appended them with the relevant information to this table. If you are creating your own table you must ensure that the pesticide name column is title "pesticides" and the relative LOR replacement column is "relative_LOR" for the function to run.
treatment_metho	bd
	Select how to treat the LOR values with either "WQI" representing the Queens- land Department of Environment & Science Water Quality Monitoring & In- vestigations team's method for replacing LORs or "Zero" which replaces them with a negligible numeric value. Zero is the default here as this function on its own only treats a single observation and therefore the first detection in the WQI

Value

returns the provided data set with the first row's LOR values treated.

method cannot be used.

Examples

```
first_sample <- Canto_pesticides[1,] #this selects only the first row (sample)
LOR_treated_first_sample <- treat_LORs(sample_data = first_sample,
pesticide_info = CalcThemAll.PRM::pesticide_info, treatment_method = "Zero")
print(LOR_treated_first_sample)</pre>
```

treat_LORs_all_data Treat a whole data set's LOR values

Description

Treat a whole data set's LOR values

```
treat_LORs_all_data(
  raw_data,
  pesticide_info = CalcThemAll.PRM::pesticide_info,
  wet_season_split = 7,
   treatment_method = "WQI"
)
```

raw_data	A data set of raw pesticide concentration values in individual columns that match the pesticide names in the "pesticide_info" data frame. This data set should also include a "Date" column and "Site Name" column. A reference data set can be seen in the "Canto_pesticides" data frame provided in this package, your data should mirror these column headings.	
pesticide_info	The reference table which contains all relevant information for calculations. It is recommended that the "pesticide_info" data set included in this package be used and if you wish to include more or less pesticides you can appended them with the relevant information to this table. If you are creating your own table you must ensure that the pesticide name column is title "pesticides" and the relative LOR replacement column is "relative_LOR" for the function to run.	
wet_season_split		
	The first month of the sampling year in numeric e.g. $July = 7$. $July (7)$ is used as the default as this is the first month of the Queensland wet season. This is only required for the LOR replacement method and if needed.	
treatment_method		
	Select how to treat the LOR values with either the default "WQI" representing the Queensland Department of Environment & Science Water Quality Moni- toring & Investigations team's method for replacing LORs or "Zero" which re- places them with a negligible numeric value.	

Value

returns the raw_data frame with the LOR values replaced by their specified treatment values. PRM calculations can now be run on the returned data.

Examples

```
Canto_pesticides_LOR_treated <- treat_LORs_all_data(raw_data = Canto_pesticides,
pesticide_info = CalcThemAll.PRM::pesticide_info)
head(Canto_pesticides_LOR_treated)
```

Index

* datasets Canto_pesticides, 6 pesticide_info, 16 add_your_own_pesticide, 2 Burr_Type_III_Formula, 3 calculate_daily_average_PRM, 4 calculate_wet_season_average_PRM, 5 Canto_pesticides, 6

find_Sampling_Year,7
find_season,8
find_wet_season_end,8

Gamma_Formula, 9

imputation_beta, 10
imputation_kernel, 10
Inverse_Weibull_Formula, 11

Log_Gumbel_Formula, 11 Log_Logistic_Formula, 12 Log_Logistic_Log_Logistic_Formula, 13 Log_Normal_Formula, 14 Log_Normal_Log_Normal_Formula, 15

pesticide_info, 16
plot_daily_PRM, 17
plot_wet_season_window, 18
PRM_DT, 19

treat_LORs, 19
treat_LORs_all_data, 20