Package ‘BoolNet’

January 20, 2025
Type Package

Title Construction, Simulation and Analysis of Boolean Networks
Version 2.1.9

Date 2023-10-02

Imports igraph (>=0.6), XML

Description Functions to reconstruct, generate, and simulate synchronous, asynchronous, probabilis-
tic, and temporal Boolean networks. Provides also functions to analyze and visualize attrac-
tors in Boolean networks <doi:10.1093/bioinformatics/btq124>.

License Artistic-2.0
LazyLoad yes
ByteCompile TRUE
Encoding UTF-8
NeedsCompilation yes

Author Christoph Miissel [aut],
Martin Hopfensitz [aut],
Dao Zhou [aut],
Hans A. Kestler [aut, cre],
Armin Biere [ctb] (contributed PicoSAT code),
Troy D. Hanson [ctb] (contributed uthash macros)

Maintainer Hans A. Kestler <hans.kestler@uni-ulm.de>
Repository CRAN
Date/Publication 2023-10-02 14:30:04 UTC

Contents
attractorsToLaTeX e 3
binarizeTimeSerieso 4
celleycle L 7
chooseNetwork 8
examplePBN 9
iIXGenes e e 10

https://doi.org/10.1093/bioinformatics/btq124

Index

Contents

generateRandomNKNetwork L 11
generateState L. L e e e e e e e 14
generateTimeSeries e 15
generationFunctions L. e 17
GELALIaCtOrS e e e e e e 18
EtAractorSeqUENCEe e e e e e e e e e 23
getBasinOfAttraction 24
getPathTOAttractor o e 25
getStateSummary oL L e e e e e e e 27
getTransitionProbabilities L 28
getTransitionTable L 29
¥ 30
loadBioTapestry o v e e e e e e 30
loadNetwork 32
loadSBML e 37
markovSimulation Lo 38
perturbNetwork e 40
perturbTrajectories L 41
PIOALIACtOrS o o e e e e e e e e 43
plotNetworkWiring e e e e 46
plotPBNTransitions e 47
plotSequence e e e e 49
plotStateGraph 52
print. AttractorInfo L. o oL 54
print.BooleanNetwork 54
print. MarkovSimulation 55
print.ProbabilisticBooleanNetwork oo 56
print.SymbolicSimulation 57
print.TransitionTable 58
reconstructNetwork oL 59
saveNetwork 61
sequenceToLaTeX e 63
simplifyNetwork 65
simulateSymbolicModel L 66
stateTransition 69
symbolicToTruthTable 71
testNetworkProperties oL 72
toPajek e 77
toSBML e 78
truthTableToSymbolic 79
yeastTimeSeries e e e 80

82

attractorsToLaTeX

attractorsTolLaTeX

Create LaTeX state table of attractors

Description

Exports state tables of attractors (corresponding to the plot generated by plotAttractors with
mode="table") to a LaTeX document.

Usage

attractorsTolLaTeX(attractorInfo,

Arguments

attractorInfo

subset

grouping

title
plotFixed

onColor
offColor

reverse

file

subset,

title = "",

grouping = list(),
plotFixed = TRUE,

onColor = "[grayl{0.9}",
offColor = "[grayl{0.6}",
reverse = FALSE,

file = "attractors.tex")

An object of class AttractorInfo, as returned by getAttractors, or an object
of class SymbolicSimulation, as returned by simulateSymbolicModel.

An subset of attractors to be exported. This is a vector of attractor indices in
attractorInfo.

An optional structure to form groups of genes in the plot. This is a list with the
following elements:

class A vector of names for the groups. These names will be printed in the
region belonging to the group in the table.

index A list with the same length as class. Each element is a vector of gene
indices belonging to the group.

An optional title for the plot

If this is true, genes with fixed values are included in the plot. Otherwise, these
genes are not shown.

An optional color value for the 1/ON values in the table. Defaults to dark grey.
An optional color value for the O/OFF values in the table. Defaults to light grey.

Specifies the order of the genes in the plot. By default, the first gene is placed
in the first row of the table. If reverse=TRUE, the first gene in the network is
placed in the bottom row of the table.

The file to which the LaTeX document is written. Defaults to "attractors.tex".

4 binarizeTimeSeries

Details

This function creates LaTeX tables that visualize the states of synchronous attractors. Asynchronous
attractors are ignored. Attractors in attractorInfo are first grouped by length. Then, a LaTeX
table environment is created for each attractor length (i.e. one plot with all attractors consisting of
1 state, one plot with all attractors consisting of 2 states, etc.). The output file does not contain a
document header and requires the inclusion of the packages tabularx and colortbl. The tables
have the genes in the rows and the states of the attractors in the columns. If not specified otherwise,
cells of the table are light grey for 0/OFF values and dark grey for 1/ON values. If grouping is
set, the genes are rearranged according to the indices in the group, horizontal separation lines are
plotted between the groups, and the group names are printed.

Value

A list of matrices corresponding to the plots is returned. Each of these matrices has the genes in the
rows and the states of the attractors in the columns.

See Also

getAttractors, plotAttractors, sequenceTolLaTeX, plotSequence

Examples

Not run:
load example data
data(cellcycle)

get attractors
attractors <- getAttractors(cellcycle)

output LaTeX document
attractorsToLaTeX(attractors, file="attractors.tex")

End(Not run)

binarizeTimeSeries Binarize a set of real-valued time series

Description

Binarizes a set of real-valued time series using k-means clustering, edge detection, or scan statistics.

Usage

binarizeTimeSeries(measurements,
method = c("kmeans”, "edgeDetector”, "scanStatistic"),
nstart = 100,
iter.max = 1000,
edge = c("firstEdge”, "maxEdge"),

binarize TimeSeries

Arguments

measurements

method

nstart

iter.max

edge

scaling

windowSize

sign.level

scaling = 1
windowSize = 0.25,
sign.level = 0.1,
dropInsignificant = FALSE)

A list of matrices, each corresponding to one time series. Each row of these
matrices contains real-valued measurements for one gene on a time line, i. e.
column i+1 contains the successor states of column i+1. The genes must be the
same for all matrices in the list.

The employed binarization technique. "kmeans" uses k-means clustering for
binarization. "edgeDetector" searches for a large gradient in the sorted mea-
surements. "scanStatistic" searches for accumulations in the measurements. See
Details for descriptions of the techniques.

If method="kmeans", this is the number of restarts for k-means. See kmeans for
details.

If method="kmeans"”, the maximum number of iterations for k-means. See
kmeans for details.

If method="edgeDetector”, this decides which of the edges is used as a thresh-
old for binarization. If set to "firstEdge",the binarization threshold is the first
combination of two successive sorted values whose difference exceeds a prede-
fined value (average gradient * scaling). The parameter scaling can be used
to adjust this value.

If set to "maxEdge", the binarization threshold is the position of the edge with
the overall highest gradient.

If method="edgeDetector” and edge="firstEdge"”, this holds the scaling fac-
tor used for adjustment of the average gradient.

If method="scanStatistic", this specifies the size of the scanning window
(see Details). The size is given as a fraction of the whole range of input values
for a gene. Default is 0.25.

If method="scanStatistic", the significance level used for the scan statistic
(see Details).

dropInsignificant

Details

If this is set to true, genes whose binarizations are insignificant in the scan statis-
tic (see Details) are removed from the binarized time series. Otherwise, a warn-
ing is printed if such genes exist.

This method supports three binarization techniques:

k-means clustering For each gene, k-means clusterings are performed to determine a good sepa-
ration of groups. The values belonging to the cluster with the smaller centroid are set to 0, and
the values belonging to the greater centroid are set to 1.

binarizeTimeSeries

Edge detector This approach first sorts the measurements for each gene. In the sorted measure-

ments, the algorithm searches for differences of two successive values that satisfy a predefined
condition: If the "firstEdge" method was chosen, the pair of values whose difference exceeds
the scaled average gradient of all values is chosen and used as maximum and minimum value
of the two groups. If the "maxEdge" method was chosen, the largest difference between two
successive values is taken. For details, see Shmulevich et al.

Scan statistic The scan statistic assumes that the measurements for each gene are uniformly and in-

Value

dependently distributed independently over a certain range. The scan statistic shifts a scanning
window across the data and decides for each window position whether there is an unusual ac-
cumulation of data points based on an approximated test statistic (see Glaz et al.). The window
with the smallest p-value is remembered. The boundaries of this window form two thresholds,
from which the value that results in more balanced groups is taken for binarization. Depend-
ing on the supplied significance level, gene binarizations are rated according to the p-value of
the chosen window.

Returns a list with the following elements:

binarizedMeasurements

A list of matrices with the same structure as measurements containing the bina-
rized time series measurements

reject If method="scanStatistic”, a Boolean vector indicating for each gene whether

the scan statistic algorithm was able to find a significant binarization window
(FALSE) or not (TRUE). Rejected genes should probably be excluded from the
data.

thresholds The thresholds used for binarization

References

I. Shmulevich and W. Zhang (2002), Binary analysis and optimization-based normalization of gene
expression data. Bioinformatics 18(4):555-565.

J. Glaz, J. Naus, S. Wallenstein (2001), Scan Statistics. New York: Springer.

See Also

reconstructNetwork

Examples

load test data
data(yeastTimeSeries)

perform binarization with k-means
bin <- binarizeTimeSeries(yeastTimeSeries)
print(bin)

perform binarization with scan statistic
- will find and remove 2 insignificant genes!

cellcycle 7

bin <- binarizeTimeSeries(yeastTimeSeries, method="scanStatistic”,
dropInsignificant=TRUE, sign.level=0.2)
print(bin)

perform binarization with edge detector
bin <- binarizeTimeSeries(yeastTimeSeries, method="edgeDetector")
print(bin)

reconstruct a network from the data

reconstructed <- reconstructNetwork(bin$binarizedMeasurements,
method="bestfit"”, maxK=4)

print(reconstructed)

cellcycle Mammalian cell cycle network

Description

The mammalian cell cycle network as described by Faure et al.

Usage

data(cellcycle)

Details

The data consists of a variable cellcycle of class BooleanNetwork with 10 genes describing the
four phases of the mammalian cell cycle. The network has one steady-state attractor. Furthermore,
it has one synchronous attractor with 7 states and one asynchronous complex/loose attractor with
112 states. The class BooleanNetwork is described in more detail in 1oadNetwork.

Source

A. Faure, A. Naldi, C. Chaouiya and D. Thieffry (2006), Dynamical analysis of a generic Boolean
model for the control of the mammalian cell cycle. Bioinformatics 22(14):e124—e131.

Examples

data(cellcycle)

the network is stored in a variable called 'cellcycle'
print(cellcycle)

8 chooseNetwork

chooseNetwork Extract a single Boolean network from a probabilistic Boolean net-
work

Description

Creates a BooleanNetwork object with exactly one function per gene by extracting a specified set
of transition functions from a ProbabilisticBooleanNetwork or BooleanNetworkCollection
object.

Usage

chooseNetwork (probabilisticNetwork,
functionIndices,
dontCareValues=NULL,
readableFunctions=FALSE)

Arguments

probabilisticNetwork
A ProbabilisticBooleanNetwork or BooleanNetworkCollection object as
returned by reconstructNetwork or loadNetwork

functionIndices
A vector of function indices with one entry for each gene

dontCareValues If probabilisticNetwork is of class BooleanNetworkCollection, this spec-
ifies the values to fill in for "don’t care" (*) values in the truth tables of the
transition functions. This is a list containing one vector of Boolean values for
each gene. The lengths of the vectors must coincide with the numbers of "don’t
care" values in the functions.

readableFunctions
If probabilisticNetwork is of class BooleanNetworkCollection, the string
representations of the transition functions must be refreshed after filling in val-
ues for the "don’t care" entries. This parameter specifies if readable DNF rep-
resentations of the transition function truth tables are generated and displayed
when the network is printed. If set to FALSE, the truth table result column is
displayed. If set to "canonical", a canonical Disjunctive Normal Form is gener-
ated from each truth table. If set to "short", the canonical DNF is minimized by
joining terms (which can be time-consuming for functions with many inputs). If
set to TRUE, a short DNF is generated for functions with up to 12 inputs, and a
canonical DNF is generated for functions with more than 12 inputs.

Value

Returns an object of class BooleanNetwork consisting of the transition functions whose indices
were specified in functionIndices. The class BooleanNetwork is described in more detail in
loadNetwork.

examplePBN 9

Constant genes are automatically fixed (e.g. knocked-out or over-expressed). This means that they
are always set to the constant value, and states with the complementary value are not considered in
transition tables etc. If you would like to change this behaviour, use fixGenes to reset the fixing.

See Also

reconstructNetwork, loadNetwork

Examples

Not run:
load example data
data(examplePBN)

extract a unique network
- always use the first function

net <- chooseNetwork(examplePBN, rep(1, length(examplePBN$genes)))

get attractors from this network
print(getAttractors(net))

End(Not run)

examplePBN An artificial probabilistic Boolean network

Description

An artificial probabilistic Boolean network example introduced by Shmulevich et al.

Usage

data(examplePBN)

Details

This artificial network is introduced by Shmulevich et al. for a step-by-step description of their
Markov chain algorithm. It is included as a general example for a probabilistic Boolean network.
The network consists of 3 genes, where gene 1 and gene 3 have two alternative transition functions,
and gene 1 has a unique transition function.

Source

I. Shmulevich, E. R. Dougherty, S. Kim, W. Zhang (2002), Probabilistic Boolean networks: a rule-
based uncertainty model for gene regulatory networks. Bioinformatics 18(2):261-274.

10 fixGenes
Examples
data(examplePBN)

the network is stored in a variable called 'examplePBN'
print(examplePBN)

fixGenes Simulate knocked-out or over-expressed genes

Description
Simulates knocked-out or over-expressed genes by fixing the values of genes to O or 1, or turn off
knock-out or over-expression of genes.

Usage

fixGenes(network, fixIndices, values)

Arguments
network The original network of class BooleanNetwork,
SymbolicBooleanNetwork or ProbabilisticBooleanNetwork containing the
genes to be fixed
fixIndices A vector of names or indices of the genes to be fixed
values Either one single value, or a vector with the same length as fixIndices. For
each gene, a value of 1 means that the gene is always turned on (over-expressed),
a value of 0 means that the gene is always turned off (knocked-out), and a value
of -1 means that the gene is not fixed.
Value

Depending on the input, an object of class BooleanNetwork, SymbolicBooleanNetwork or ProbabilisticBooleanNetworl
containing the fixed genes is returned. These classes are described in more detail in loadNetwork.

See Also

loadNetwork

Examples

Not run:
load example data
data(cellcycle)

knock out gene CycD (index 1)

net <- fixGenes(cellcycle, 1, 0)

or

net <- fixGenes(cellcycle, "CycD", 0)

generateRandomNKNetwork 11

get attractors by exhaustive search
attractors <- getAttractors(net)

print(attractors)

End(Not run)

generateRandomNKNetwork
Generate a random N-K Boolean network

Description

Generates a random N-K Boolean network (see Kauffman, 1969) using different configurations for
the topology, the linkage, and the functions.

Usage
generateRandomNKNetwork(n, k,
topology = c("fixed"”, "homogeneous”, "scale_free"),
linkage = c("uniform”, "lattice"),
functionGeneration = c("uniform”, "biased"),

validationFunction, failurelterations=10000,
simplify = FALSE, nolrrelevantGenes=TRUE,
readableFunctions = FALSE,

d_lattice = 1, zeroBias = 0.5,

gamma = 2.5, approx_cutoff = 100)

Arguments

n The total number of genes in the network

k If this is a single number, this is either the maximum number of genes in the in-
put of a transition function (for topology="f1ixed"” and topology="scale_free")
or the mean number of genes in the input of a function (for topology="homogeneous").
If topology="fixed", this can also be a vector with n elements specifying the
number of input genes for each gene separately.

topology If set to "fixed", all transition functions of the network depend on exactly k input

genes (unless there are irrelevant input genes to be removed if simplify=TRUE
and nolrrelevantGenes=FALSE).

If set to "homogeneous", the number of input genes is drawn independently at
random from a Poisson distribution with lambda = k.

If set to "scale_free", the number of input genes of each function is drawn from
a Zeta distribution with parameter gamma.

12

linkage

generateRandomNKNetwork

If this parameter is "uniform", the actual input genes are drawn uniformly at
random from the total k genes.

If set to "lattice", only genes from the neighbourhood

(i -d_latticexk_i): (i +d_lattice * k_i) are taken, which means that all
genes are dependent from other genes in the direct neighbourhood.

functionGeneration

This parameter specifies how the truth tables of the transition functions are gen-
erated. If set to "uniform", the truth table result column of the function is filled
uniformly at random with 0 and 1. If set to "biased", a bias is introduced, where
the probability of drawing a O is determined by the parameter zeroBias.

As a third option, functionGeneration can be set to a user-defined function
that generates the truth tables. This function must have a single parameter
input that is supplied with a vector of input gene indices. It must return a
binary vector of size 2*1length(input) corresponding to the result column of
the truth table. For the generation of canalyzing and nested canalyzing func-
tions that are often assumed to be biologically plausible, the generation func-
tions generateCanalyzing and generateNestedCanalyzing are included in
BoolNet.

validationFunction

An optional function that restricts the generated Boolean functions to certain
classes. This can be used if no explicit generation function can be specified in
functionGeneration, but it is nevertheless possible to check whether a gener-
ated function belongs to that class or not. The function should have two input
parameter input and func that receive a candidate function. input is a matrix
of 0/1 integer values specifying the input part of the truth table of the candidate
function, with the input genes in the columns. Each of the 2”k rows of input
(where k is the number of input genes) corresponds to one entry of func, which
is an integer vector of 0/1 values corresponding to the output of the candidate
function. The validation function should return TRUE if the candidate function is
accepted or FALSE if it is rejected.

failurelterations

simplify

The maximum number of iterations the generator tries to generate a function
that is accepted by validationFunction before it gives up and throws an error.
Defaults to 10000.

If this is true, simplifyNetwork is called to simplify the gene transition func-
tions after the perturbation. This removes irrelevant input genes. Should not be
used together with noIrrelevantGenes=TRUE, as this automatically generates
a network that cannot be simplified any further. Defaults to FALSE.

nolrrelevantGenes

If set to true, gene transition functions are not allowed to contain irrelevant
genes, i.e. the functions have exactly the number of input genes determined
by the topology method. This means that the network cannot be simplified any
further, and simplify should be turned off. The default value is TRUE.

readableFunctions

This parameter specifies if readable DNF representations of the transition func-
tion truth tables are generated and displayed when the network is printed. If set
to FALSE, the truth table result column is displayed. If set to "canonical", a

generateRandomNKNetwork 13

d_lattice

zeroBias

gamma

approx_cutoff

Details

canonical Disjunctive Normal Form is generated from each truth table. If set to
"short", the canonical DNF is minimized by joining terms (which can be time-
consuming for functions with many inputs). If set to TRUE, a short DNF is
generated for functions with up to 12 inputs, and a canonical DNF is generated
for functions with more than 12 inputs.

The dimension parameter for the lattice if 1inkage="1attice". Defaults to 1.

The bias parameter for biased functions for functionGeneration="biased".
Defaults to 0.5 (no bias).

The Gamma parameter of the Zeta distribution for topology="scale_free".
Default is 2.5.

This parameter is only used with topology="scale_free". It sets the number
of iterations in the sum used to approximate the Riemann Zeta function. Defaults
to 100.

The function supports a high number of different configurations to generate random networks. Sev-
eral of the parameters are only needed for special configurations. The generated networks have
different structural properties. Refer to the literature for more details.

Constant genes are automatically fixed (e.g. knocked-out or over-expressed). This means that they
are always set to the constant value, and states with the complementary value are not considered in
transition tables etc. If you would like to change this behaviour, use fixGenes to reset the fixing.

Value

An object of class BooleanNetwork containing the generated random network. The class
BooleanNetwork is described in more detail in loadNetwork.

References

S. A. Kauffman (1969), Metabolic stability and epigenesis in randomly constructed nets. J. Theor.

Biol. 22:437-467.

S. A. Kauffman (1993), The Origins of Order. Oxford University Press.
M. Aldana (2003), Boolean dynamics of networks with scale-free topology. Physica D 185: 45-66.

M. Aldana and S. Coppersmith and L. P. Kadanoff (2003), Boolean dynamics with random cou-
pling. In E. Kaplan, J. E. Marsden and K. R. Sreenivasan (editors): Perspectives and Problems in
Nonlinear Science, Springer.

See Also

perturbNetwork,loadNetwork, simplifyNetwork, fixGenes

Examples

Not run:

generate different random networks
netl <- generateRandomNKNetwork(n=10, k=10,

14 generateState

topology="scale_free",
linkage="uniform”,
functionGeneration="uniform",
nolrrelevantGenes=FALSE,
simplify=TRUE)

net2 <- generateRandomNKNetwork(n=10, k=3,
topology="homogeneous”,
linkage="lattice"”,
functionGeneration="uniform",
d_lattice=1.5,
simplify=TRUE)

net3 <- generateRandomNKNetwork(n=10, k=2,
topology="fixed",
linkage="uniform",
functionGeneration="biased",
nolrrelevantGenes=FALSE,
zeroBias=0.6)

get attractors

print(getAttractors(netl))
print(getAttractors(net2))
print(getAttractors(net3))

End(Not run)

generateState Generate a state vector from single gene values

Description

This function provides a simple interface to generate full state vectors by specifying only the genes
of interest. For example, only those genes that are active can be specified, while the others are set
to a default value.

Usage
generateState(network,
specs,
default = 0)
Arguments
network An network of class BooleanNetwork, SymbolicBooleanNetwork or ProbabilisticBooleanNetwork
for which a state is generated.
specs A named vector or list specifying the genes to be set. Here, the names of the

elements correspond to the gene names, and the elements correspond to the gene
values. The function can also generate a matrix of states if the elements of specs
are vectors of values (of the same length).

generate TimeSeries 15

default The default value used for the unspecified genes (usually 0).

Value

Returns a full state vector with one entry for each gene of the network, or a matrix with one state in
each row if specs contains vectors of state values.

See Also

getAttractors, simulateSymbolicModel, stateTransition

Examples

Not run:
load cell cycle network
data(cellcycle)

generate a state in which only CycD and CycA are active
state <- generateState(cellcycle, c("CycD"=1, "CycA"=1))
print(state)

use the state as a start state for attractor search
print(getAttractors(cellcycle, startStates=list(state)))

End(Not run)

generateTimeSeries Generate time series from a network

Description

Generates time series by simulating successive state transitions from random start states. In addi-
tion, the resulting matrices can be perturbed by Gaussian noise.

Usage
generateTimeSeries(network,
numSeries,
numMeasurements,
type = c("synchronous”,"asynchronous”, "probabilistic"”),
geneProbabilities,

perturbations = 0,
noiselLevel = 0)

16 generateTimeSeries

Arguments

network An object of class BooleanNetwork or SymbolicBooleanNetwork that contains
the network for which time series are generated

numSeries The number of random start states used to generate successive series of states,
that is, the number of time series matrices to generate

numMeasurements
The number of states in each of the time series matrices. The first state of each
time series is the randomly generated start state. The remaining numMeasurements
- 1 states are obtained by successive state transitions.

type The type of state transitions to be performed (see stateTransition)

geneProbabilities

An optional vector of probabilities for the genes if type="asynchronous”. By
default, each gene has the same probability to be chosen for the next state transi-
tion. These probabilities can be modified by supplying a vector of probabilities
for the genes which sums up to one.

perturbations If this argument has a value greater than 0, artificial perturbation experiments
are generated. That is, perturbations genes in each time series are knocked
out or overexpressed artificially using the fixGenes function.

noiselLevel If this is non-zero, it specifies the standard deviation of the Gaussian noise which
is added to all entries of the time series matrices. By default, no noise is added
to the time series.

Value

A list of matrices, each corresponding to one time series. Each row of these matrices contains
measurements for one gene on a time line, i. e. column i+1 contains the successor states of column
i+1. If noiseLevel is non-zero, the matrices contain real values, otherwise they contain only 0 and
1.

If perturbations>0, the result list contains an additional matrix perturbations specifying the
artificial perturbations applied to the different time series. This matrix has numSeries columns and
one row for each gene in the network. A matrix entry is O for a knock-out of the corresponding gene
in the corresponding time series, 1 for overexpression, and NA for no perturbation.

The result format is compatible with the input parameters of binarizeTimeSeries
and reconstructNetwork.

See Also

stateTransition, binarizeTimeSeries, reconstructNetwork

Examples

Not run:

generate noisy time series from the cell cycle network

data(cellcycle)

ts <- generateTimeSeries(cellcycle, numSeries=50, numMeasurements=1@, noiselLevel=0.1)

binarize the noisy time series

generationFunctions 17

bin <- binarizeTimeSeries(ts, method="kmeans")$binarizedMeasurements

reconstruct the network
print(reconstructNetwork(bin, method="bestfit"))

End(Not run)

generationFunctions Generation functions for biologically relevant function classes

Description

These generation functions randomly generate canalyzing or nested canalyzing Boolean functions.
These functions are usually not called directly, but are supplied to the functionGeneration pa-
rameter of generateRandomNKNetwork.

Usage
generateCanalyzing(input)
generateNestedCanalyzing(input)
Arguments

input A vector of input gene indices for the Boolean function

Value

A binary vector corresponding to the result column of the truth table that represents the canalyz-
ing/nested canalyzing function.

References

S. Kauffman and C. Peterson and B. Samuelsson and C. Troein (2004), Genetic networks with
canalyzing Boolean rules are always stable. PNAS 101(49):7102-17107.

See Also

generateRandomNKNetwork

Examples

Not run:
generate a random network with canalyzing functions
netl <- generateRandomNKNetwork(n=10, k=5,
functionGeneration="generateCanalyzing")
print(net1)

generate a random network with nested canalyzing functions
net2 <- generateRandomNKNetwork(n=10, k=5,

18 getAttractors

functionGeneration="generateNestedCanalyzing")
print(net2)

End(Not run)

getAttractors Identify attractors in a Boolean network

Description

Identifies attractors (cycles) in a supplied Boolean network using synchronous or asynchronous
state transitions

Usage

getAttractors(network,
type = c(”synchronous”, "asynchronous”),
method = c("exhaustive”,
"sat.exhaustive”,
"sat.restricted”,
"random” ,
"chosen"),
startStates = list(),
genesON = c(), genesOFF = c(),
canonical = TRUE,
randomChainLength = 10000,
avoidSelflLoops = TRUE,
geneProbabilities = NULL,
maxAttractorLength = Inf,
returnTable = TRUE)

Arguments
network A network structure of class BooleanNetwork or SymbolicBooleanNetwork.
These networks can be read from files by loadNetwork, generated by generateRandomNKNetwork,
or reconstructed by reconstructNetwork.
type If type="synchronous"”, synchronous state transitions are used, i.e. all genes

are updated at the same time. Synchronous attractor search can be performed in
an exhaustive manner or using a heuristic that starts from predefined states. For
symbolic networks, only synchronous updates are possible.

If type="asynchronous"”, asynchronous state transitions are performed, i.e.
one (randomly chosen) gene is updated in each transition. Steady-state attractors
are the same in asynchronous and synchronous networks, but the asynchronous
search is also able to identify complex/loose attractors. Asynchronous search
relies on a heuristic algorithm that starts from predefined states.

See Details for more information on the algorithms.

getAttractors 19

method The search method to be used. If "exhaustive", attractors are identified by ex-
haustive state space search, i.e. by calculating the sucessors of all 2*n states
(where n is the number of genes that are not set to a fixed value). This kind
of search is only available for synchronous attractor search, and the maximum
number of genes allowed for exhaustive search is 29. Apart from the attractors,
this method generates the full state transition graph.

If method is "sat.exhaustive" or "sat.restricted", attractors are identified using al-
gorithms based on the satisfiability problem. This search type is also restricted
to synchronous networks. It can be used to identify attractors in much larger
networks than with method="exhaustive"”, but does not return the state tran-
sition graph. For method="sat.exhaustive”, an exhaustive attractor search is
performed, while method="sat.restricted” only searches for attractors of a
specified maximum length maxAttractorLength.

If method is "random", startStates is interpreted as an integer value spec-
ifying the number of states to be generated randomly. The algorithm is then
initialized with these random states and identifies the attractors to which these
states lead.

If method is "chosen", startStates is interpreted as a list of binary vectors,

each specifying one input state. Each vector must have length(network$genes)
elements with O or 1 values. The algorithm identifies the attractors to which

the supplied states lead. If network is of class SymbolicBooleanNetwork and
makes use of more than one predecessor state, this can also be a list of matrices

with the genes in the columns and multiple predecessor states in the rows.

If method is not supplied, the desired method is inferred from the type of startStates.

By default, if neither method nor startStates are provided, an exhaustive
search is performed.

startStates The value of startStates depends on the chosen method. See method for more
details.
genesON A vector of genes whose values are fixed to 1, which reduces the complexity of

the search. This is equivalent to a preceding call of fixGenes.

genesOFF A vector of genes whose values are fixed to 0, which reduces the complexity of
the search. This is equivalent to a preceding call of fixGenes.

canonical If set to true, the states in the attractors are rearranged such that the state whose
binary encoding makes up the smallest number is the first element of the vector.
This ensures that attractors found by different heuristic runs of getAttractors
are comparable, as the cycles may have been entered at different states in differ-
ent runs of the algorithm.

randomChainLength
If type="asynchronous"”, this parameter specifies the number of random transi-

tions performed by the search to enter a potential attractor (see Details). Defaults
to 10000.

avoidSelfLoops If type="asynchronous"” and avoidSelfLoops=TRUE, the asynchronous attrac-
tor search only enters self loops (i.e. transitions that result in the same state) if
none of the possible transitions can leave the state. This results in attractors with
fewer edges. Otherwise, self loops are included in the attractors. By default, self
loops are avoided.

20

getAttractors

geneProbabilities

If type="asynchronous"”, this allows to specify probabilities for the genes. By
default, each gene has the same probability to be chosen for the next state transi-
tion. You can supply a vector of probabilities for each of the genes which sums
up to one.

maxAttractorLength

returnTable

Details

If method="sat.restricted", this required parameter specifies the maximum
size of attractors (i.e. the number of states in the loop) to be searched. For
method="sat.exhaustive”, this parameter is optional and specifies the max-
imum attractor length for the initial length-restricted search phase that is per-
formed to speed up the subsequent exhaustive search. In this case, changing this
value might bring performance benefits, but does not change the results.

Specifies whether a transition table is included in the returned AttractorInfo
structure. If type="asynchronous” or method="sat", this parameter is ig-
nored, as the corresponding algorithms never return a transition table.

Depending on the type of network and the chosen parameters, different search algorithms are

started.

For BooleanNetwork networks, there are three different modes of attractor search:

Exhaustive synchronous state space search In this mode, synchronous state transitions are car-
ried out from each of the possible states until an attractor is reached. This identifies all syn-
chronous attractors.

Heuristic synchronous state space search In contrast to exhaustive synchronous search, only a
subset of the possible states is used. From these states, synchronous transitions are carried out
until an attractor is reached. This subset is specified in startStates.

Exhaustive synchronous SAT-based search Here, the attractor search problem is formulated as
a satisfiability problem and solved using Armin Biere’s PicoSAT solver. The algorithm is a
variant of the method by Dubrova and Teslenko which searches for a satisfying assignment of a
chain constructed by unfolding the transition relation. Depending on maxAttractorLength, it
additionally applies an initial size-restricted SAT-based search (see below) to increase overall
search speed. This method is suitable for larger networks of up to several hundreds of genes
and exhaustively identifies all attractors in these networks. In contrast to the state space search,
it does not construct and return a state transition table.

Size-restricted synchronous SAT-based search Here, the SAT solver directly looks for satisfying
assignments for loops of a specific size. This may be more efficient for large networks and
is guaranteed to find all attractors that comprise up to maxAttractorLength states (e.g. all
steady states for maxAttractorLength=1), but does not find any larger attractors. As for the
exhaustive SAT-based method, no transition table is returned.

Heuristic asynchronous search This algorithm uses asynchronous state transitions and is able to
identify steady-state and complex/loose attractors (see Harvey and Bossomaier, Garg et al.).
These attractors are sets of states from which all possible asynchronous transitions lead into a
state that is member of the set as well. The heuristic algorithm does the following for each of
the input state specified by startStates:

getAttractors 21

1. Perform randomChainLength random asynchronous transitions. After these transitions,
the network state is expected to be located in an attractor with a high probability.

2. Calculate the forward reachable set of the current state. Then, compare this set to the
forward reachable set of all states in the set. If all sets are equal, a complex attractor is
found.

For SymbolicBooleanNetwork networks, getAttractors is simply a wrapper for simulateSymbolicModel
with preset parameters.

Printing the return value of getAttractors using print visualizes the identified attractors.

Value
For BooleanNetwork networks, this returns a list of class AttractorInfo with components

attractors A list of attractors. Each element is a 2-element list with the following compo-
nents:

involvedStates A matrix containing the states that make up the attractor. Each
column represents one state. The entries are decimal numbers that inter-
nally represent the states of the genes. The number of rows depends on the
number of genes in the network: The first 32 genes are encoded in the first
row, genes 33-64 are encoded in the second row, etc.

initialStates This element is only available if an asynchronous search was car-
ried out and this is a complex attractor. In this case, it holds the encoded
start states of the transitions in the complex attractor

nextStates This element is only available if an asynchronous search was car-
ried out and this is a complex attractor. In this case, it holds the encoded
successor states of the transitions in the complex attractor

basinSize The number of states in the basin of attraction. Details on the states
in the basin can be retrieved via getBasinOfAttraction.

statelInfo A summary structure of class BooleanStateInfo containing information on the
transition table. It has the following components:

initialStates This element is only available if type="synchronous”, method is
"random" or "chosen", and returnTable=TRUE. This is a matrix describing
the initial states that lead to the states in table after a state transition. If
method is "exhaustive", this component is NULL. In this case, the initial
states can be inferred, as all states are used. The format of the matrix is
described in involvedStates.

table This element is only available if type="synchronous” and
returnTable=TRUE. It holds result vector of the transition table as a matrix
with one column for each state. These are encoded bit vectors in decimal
numbers as described above.

attractorAssignment This element is only available if type="synchronous”
and returnTable=TRUE. It contains a vector that corresponds to the entries
in table and describes the attractor index in attractors to which succes-
sive transitions from the described state finally lead.

stepsToAttractor This element is only available if type="synchronous"” and
returnTable=TRUE. Referring to attractorAssignment, this is the num-
ber of transitions needed to reach the attractor.

22 getAttractors

genes A list of names of the genes in network.
fixedGenes Specifies the fixed genes as in the fixed component of network.

The structure supports pretty printing using the print method.

For SymbolicBooleanNetwork networks, getAttractors redirects the call to simulateSymbolicModel
and returns an object of class SymbolicSimulation containing the attractors and (if returnTable=TRUE)
the transition graph.

References

S. A. Kauffman (1969), Metabolic stability and epigenesis in randomly constructed nets. J. Theor.
Biol. 22:437-467.

S. A. Kauffman (1993), The Origins of Order. Oxford University Press.

I. Harvey, T. Bossomaier (1997), Time out of joint: Attractors in asynchronous random Boolean
networks. Proc. of the Fourth European Conference on Artificial Life, 67-75.

A. Garg, A. Di Cara, 1. Xenarios, L. Mendoza, G. De Micheli (2008), Synchronous versus asyn-
chronous modeling of gene regulatory networks. Bioinformatics 24(17):1917-1925.

E. Dubrova, M. Teslenko (2011), A SAT-based algorithm for finding attractors in synchronous
Boolean networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(5):1393—
1399.

A. Biere (2008), PicoSAT Essentials. Journal on Satisfiability, Boolean Modeling and Computation
4:75-97.

See Also

loadNetwork, generateRandomNKNetwork, simulateSymbolicModel, plotAttractors, attractorsTolLaTeX,
getTransitionTable, getBasinOfAttraction, getAttractorSequence, getStateSummary, getPathToAttractor,
fixGenes, generateState

Examples

Not run:
load example data
data(cellcycle)

get all synchronous attractors by exhaustive search
attractors <- getAttractors(cellcycle)

plot attractors side by side
par(mfrow=c(2, length(attractors$attractors)))
plotAttractors(attractors)

finds the synchronous attractor with 7 states

attractors <- getAttractors(cellcycle, method="chosen”,
startStates=list(rep(1, length(cellcycle$genes))))

plotAttractors(attractors)

finds the attractor with 1 state
attractors <- getAttractors(cellcycle, method="chosen”,

getAttractorSequence 23

startStates=list(rep(@, length(cellcycle$genes))))
plotAttractors(attractors)

also finds the attractor with 1 state by restricting the attractor length
attractors <- getAttractors(cellcycle, method="sat.restricted”,

maxAttractorLength=1)
plotAttractors(attractors)

identifies asynchronous attractors
attractors <- getAttractors(cellcycle, type="asynchronous”, startStates=100)

plotAttractors(attractors, mode="graph")

End(Not run)

getAttractorSequence Decode the state sequence of a synchronous attractor

Description

Obtains the sequence of states belonging to a single synchronous attractor from the encoded data in
an AttractorInfo structure or in a SymbolicSimulation structure.

Usage

getAttractorSequence(attractorInfo, attractorNo)

Arguments

attractorInfo An object of class AttractorInfo, as returned by getAttractors, or of class
SymbolicSimulation, as returned by simulateSymbolicModel. As the tran-
sition table information in this structure is required, getAttractors must be
called in synchronous mode and with returnTable set to TRUE. Similarly,
simulateSymbolicModel must be called with returnGraph=TRUE.

attractorNo The index of the attractor in attractorInfo whose state sequence should be
obtained

Value

Returns a data frame with the genes in the columns. The rows are the successive states of the
attractor. The successor state of the last state (i.e. the last row) is the first state (i.e. the first row).

See Also

getAttractors, simulateSymbolicModel, getPathToAttractor, plotSequence, sequenceTolLaTeX

24 getBasinOfAttraction

Examples

Not run:
load example data
data(cellcycle)

get attractors
attractors <- getAttractors(cellcycle)

print basin of 7-state attractor
print(getAttractorSequence(attractors, 2))

End(Not run)

getBasinOfAttraction Get states in basin of attraction

Description

Extracts information on all states in the basin of a supplied attractor

Usage

getBasinOfAttraction(attractorInfo, attractorNo)

Arguments

attractorInfo An object of class AttractorInfo, as returned by getAttractors, or of class
SymbolicSimulation, as returned by simulateSymbolicModel. As the tran-
sition table information in this structure is required, getAttractors must be
called in synchronous mode and with returnTable set to TRUE. Similarly,
simulateSymbolicModel must be called with returnGraph=TRUE.

attractorNo The index of the attractor in attractorInfo whose basin should be identified

Details

The function outputs a transition table containing only the states that are contained in the basin
of attraction, and displays additional information on these states. If attractorInfo is the re-
sult of an exhaustive synchronous attractor search, the complete basin of attraction is returned. If
attractorInfo is the result of a heuristic synchronous search, there is no guarantee that the com-
plete basin of attraction is returned, as only the calculated states are included. Asynchronous search
results are not supported, as no transition table is calculated.

Value

Returns a generic dataframe of the class TransitionTable. For n genes, the first n columns code
for the original state, i.e. each column represents the value of one gene. The next n columns
code for the successive state after a transition. The column attractorAssignment indicates the
attractor to the state is assigned (in this case, attractorNo). If this information is available, the

getPathToAttractor 25

column stepsToAttractor indicates how many transitions are needed from the original state to
the attractor. The TransitionTable class supports pretty printing using the print method.

See Also

getStateSummary, getTransitionTable, getAttractors, simulateSymbolicModel

Examples

Not run:
load example data
data(cellcycle)

get attractors
attractors <- getAttractors(cellcycle)

print basin of first attractor
print(getBasinOfAttraction(attractors, 1))

End(Not run)

getPathToAttractor Get state transitions between a state and its attractor

Description

Lists the states in the path from a specified state to the corresponding synchronous attractor.

Usage

getPathToAttractor(network,
state,
includeAttractorStates = c("all”,"first"”,"none"))

Arguments
network Either a network structure of class BooleanNetwork or SymbolicBooleanNetwork
, or an attractor search result of class AttractorInfo. In the former case, a syn-
chronous attractor search starting from state is conducted. In the latter case,
network must be the result of a call to getAttractors with returnTable=TRUE,
and its transition table must include state.
state A binary vector with exactly one entry per gene in the network. If network is

of class SymbolicBooleanNetwork and makes use of more than one predeces-
sor state, this can also be a matrix with the genes in the columns and multiple
predecessor states in the rows.

26 getPathToAttractor

includeAttractorStates

Specifies whether the actual attractor states are included in the resulting table or
not. If includeAttractorStates = "all” (which is the default behaviour), the
sequence ends when the attractor was traversed once. If includeAttractorStates
= "first", only the first state of attractor is added to the sequence. This corre-
sponds to the behaviour prior to BoolNet version 1.5. If includeAttractorStates

= "none", the sequence ends with the last non-attractor state. In this case, the
sequence can be empty if the start state is an attractor state.

Value

Returns a data frame with the genes in the columns. The rows are the successive states from state
to the the corresponding attractor. Depending on includeAttractorStates, attractor states are
included or not. The data frame has an attribute attractor specifying the indices of the states
that belong to the attractor. If includeAttractorStates is "first” or "none”, these indices
may correspond to states that are not included in the sequence itself. This attribute is used by
plotSequence to highlight the attractor states.

See Also

getAttractors, simulateSymbolicModel, getTransitionTable, getBasinOfAttraction, plotSequence,
attributes

Examples

Not run:
load example network
data(cellcycle)

get path from a state to its attractor

include all attractor states

path <- getPathToAttractor(cellcycle, rep(1,10),
includeAttractorStates="all")

print(path)

include only the first attractor state

path <- getPathToAttractor(cellcycle, rep(1,10),
includeAttractorStates="first")

print(path)

exclude attractor states

path <- getPathToAttractor(cellcycle, rep(1,10),
includeAttractorStates="none")

print(path)

End(Not run)

getStateSummary 27

getStateSummary Retrieve summary information on a state

Description

Returns information on the supplied state, i.e. the successive state after a transition, the (syn-
chronous) attractor to which the state leads, and the distance to this attractor.

Usage

getStateSummary(attractorInfo, state)

Arguments

attractorInfo An object of class AttractorInfo, as returned by getAttractors, or of class
SymbolicSimulation, as returned by simulateSymbolicModel. As the tran-
sition table information in this structure is required, getAttractors must be
called in synchronous mode and with returnTable set to TRUE. Similarly,
simulateSymbolicModel must be called with returnGraph=TRUE.

state A 0-1 vector with n elements (where n is the number of genes in the underlying
networks) describing the state.

Value

Returns a generic dataframe of the class TransitionTable. For n genes, the first n columns code
for the original state (in this case, the state parameter), i.e. each column represents the value
of one gene. The next n columns code for the successive state after a transition. The column
attractorAssignment indicates the attractor to the state is assigned. If this information is avail-
able, the column stepsToAttractor indicates how many transitions are needed from the original
state to the attractor. In this case, the table has only one row describing the supplied state. The
TransitionTable class supports pretty printing using the print method.

See Also

getBasinOfAttraction, getTransitionTable, getAttractors, simulateSymbolicModel

Examples

Not run:
load example data
data(cellcycle)

get attractors
attractors <- getAttractors(cellcycle)

print information for an arbitrary state
print(getStateSummary(attractors, c(1,1,1,1,1,1,1,1,1,1)))

End(Not run)

28 getTransitionProbabilities

getTransitionProbabilities

Get a matrix of transitions and their probabilities in probabilistic
Boolean networks

Description
Retrieves the state transitions and their probabilities in a probabilistic Boolean network. This takes
the transition table information calculated by the markovSimulation method.

Usage

getTransitionProbabilities(markovSimulation)

Arguments
markovSimulation
An object of class MarkovSimulation, as returned by markovSimulation. As
the transition table information in this structure is required, markovSimulation
must be called with returnTable set to TRUE.
Value

Returns a data frame with the first n columns describing the values of the genes before the transition,
the next n columns describing the values of the genes after the transition, and the last column con-
taining the probability of the transition. Here, n is the number of genes in the underlying network.
Only transitions with non-zero probability are included.

See Also

markovSimulation

Examples

Not run:
load example network
data(examplePBN)

perform a Markov chain simulation
sim <- markovSimulation(examplePBN)

print out the probability table
print(getTransitionProbabilities(sim))

End(Not run)

getTransitionTable 29

getTransitionTable Retrieve the transition table of a network

Description

Retrieves the transition table and additional attractor information of a network.

Usage

getTransitionTable(attractorInfo)

Arguments

attractorInfo An object of class AttractorInfo, as returned by getAttractors, or of class
SymbolicSimulation, as returned by simulateSymbolicModel. As the tran-
sition table information in this structure is required, getAttractors must be
called in synchronous mode and with returnTable set to TRUE. Similarly,
simulateSymbolicModel must be called with returnGraph=TRUE.

Details

Depending on the configuration of the call to getAttractors or simulateSymbolicModel that
returned attractorInfo, this function either returns the complete transition table (for exhaustive
synchronous search) or the part of the transition table calculated in a heuristic synchronous search.
Asynchronous search is not supported, as no transition table is calculated.

Value

Returns a generic dataframe of the class TransitionTable. For n genes, the first n columns code
for the original state (in this case, the state parameter), i.e. each column represents the value
of one gene. The next n columns code for the successive state after a transition. The column
attractorAssignment indicates the attractor to the state is assigned. If this information is avail-
able, the column stepsToAttractor indicates how many transitions are needed from the original
state to the attractor. The table has a row for each possible input state. The TransitionTable class
supports pretty printing using the print method.

See Also

getStateSummary, getBasinOfAttraction, getAttractors, simulateSymbolicModel

Examples

Not run:
load example data
data(cellcycle)

get attractors
attractors <- getAttractors(cellcycle)

30 loadBioTapestry

print the transition table
print(getTransitionTable(attractors))

End(Not run)

igf Boolean model of the IGF pathway

Description

A small Boolean model of major components of the IGF (Insuline-like growth receptor) pathway.
Through IRS, IGF activates the well-known PI3K-Akt-mTOR signalling cascade. This cascade is
finally inactivated by a feedback inhibion of IRS.

The model simplifies several complex formations and cascades by representing them as single nodes
and specifying time delays instead. It therefore demonstrates the usage of temporal Boolean net-
works in BoolNet.

Usage
data(igf)

Format
This data set consists of a variable igf of class SymbolicBooleanNetwork with 5 genes. The class
SymbolicBooleanNetwork is described in more detail in loadNetwork.

Examples

data(igf)

sim <- simulateSymbolicModel (igf)
plotAttractors(sim)

loadBioTapestry Import a network from BioTapestry

Description

Imports a Boolean network from a BioTapestry file (*.btp). BioTapestry is an interactive tool for
building, visualizing, and simulating gene-regulatory networks, and can be accessed at https:
//biotapestry.systemsbiology.net.

Usage

loadBioTapestry(file,
symbolic = FALSE)

https://biotapestry.systemsbiology.net
https://biotapestry.systemsbiology.net

loadBioTapestry 31

Arguments
file The name of the file to import. This must be a BioTapestry XML file (*.btp).
symbolic If set to TRUE, the function returns an object of class SymbolicBooleanNetwork
with an expression tree representation. Otherwise, it returns an object of class
BooleanNetwork with a truth table representation.
Details

The function builds up a Boolean network by importing the nodes, the links between these nodes,
and the simulation parameters of the top-level plot of a BioTapestry file. The BioTapestry network
should have the following properties:

* All links should be either enhancers or repressors. Unspecified ("neutral") links are ignored.

* In the simulation parameters, each node should specify the correct logical function (AND,
OR, XOR) for its inputs.

* Constant genes can be generated by modeling a gene without any input link and setting the
simulation parameter initVal to O or 1.

Value

A network of class BooleanNetwork or SymbolicBooleanNetwork, as described in 1oadNetwork.

References

W.J. R. Longabaugh, E. H. Davidson, H. Bolour (2005), Computational representation of develop-
mental genetic regulatory networks. Developmental Biology 283(1):1-16.

See Also

loadNetwork, loadSBML

Examples

import the example BioTapestry file

included in the package vignette

exampleFile <- system.file("doc/example.btp”,
package="BoolNet")

net <- loadBioTapestry(exampleFile)

print the imported network
print(net)

32 loadNetwork

loadNetwork Load a Boolean network from a file

Description

Loads a Boolean network or probabilistic Boolean network from a file and converts it to an internal
transition table representation.

Usage
loadNetwork(file,
bodySeparator = " ",
lowercaseGenes = FALSE,
symbolic = FALSE)
Arguments
file The name of the file to be read

bodySeparator An optional separation character to divide the target factors and the formulas.
Defaultis ",".

lowercaseGenes If set to TRUE, all gene names are converted to lower case, i.e. the gene names are
case-insensitive. This corresponds to the behaviour of BoolNet versions prior to
1.5. Defaults to FALSE.

symbolic If set to TRUE, a symbolic representation of class SymbolicBooleanNetwork is
returned. This is not available for asynchronous or probabilistic Boolean net-
works, but is required for the simulation of networks with extended temporal
predicates and time delays (see simulateSymbolicModel). If such predicates
are detected, the switch is activated by default.

Details

Depending on whether the network is loaded in truth table representation or not, the supported
network file formats differ slightly.

For the truth table representation (symbolic=FALSE), the language basically consists of expressions
based on the Boolean operators AND (&), or (I), and NOT (!). In addition, some convenience
operators are included (see EBNF and operator description below). The first line contains a header.
In case of a Boolean network with only one function per gene, the header is "targets, functions";
in a probabilistic network, there is an optional third column "probabilities”". All subsequent lines
contain Boolean rules or comment lines that are omitted by the parser. A rule consists of a target
gene, a separator, a Boolean expression to calculate a transition step for the target gene, and an
optional probability for the rule (for probabilistic Boolean networks only — see below).

The EBNF description of the network file format is as follows:

Header Newline {Rule Newline | Comment Newline};
"targets” Separator "factors";

Network
Header

loadNetwork 33

Rule = GeneName Separator BooleanExpression [Separator Probability];
Comment = "#" String;
BooleanExpression = GeneName

"1" BooleanExpression

|
| "(" BooleanExpression ")"

| BooleanExpression ” & " BooleanExpression
|

|

|

BooleanExpression " | " BooleanExpression;
"all(" BooleanExpression {",” BooleanExpression} ")"
"any (" BooleanExpression {"," BooleanExpression} ")"
| "maj(" BooleanExpression {","” BooleanExpression} ")"
| "sumgt(" BooleanExpression {","” BooleanExpression} ","” Integer ")"
| "sumlt(" BooleanExpression {","” BooleanExpression} "," Integer ")";
GeneName = ? A gene name from the list of involved genes ?;
Separator =""
Integer = ? An integer value?;
Probability = ? A floating-point number ?;
String = ? Any sequence of characters (except a line break) ?;
Newline = ? A line break character ?;

The extended format for Boolean networks with temporal elements that can be loaded if symbolic=TRUE
additionally allows for a specification of time steps. Furthermore, the operators can be extended
with iterators that evaluate their arguments over multiple time steps.

Network = Header Newline

{Function Newline | Comment Newline};
Header = "targets” Separator "factors”;
Function = GeneName Separator BooleanExpression;
Comment = "#" String;
BooleanExpression = GeneName | GeneName TemporalSpecification | BooleanOperator | TemporalOperator
BooleanOperator = BooleanExpression

"1" BooleanExpression

"(" BooleanExpression ")"
BooleanExpression " & " BooleanExpression

BooleanExpression " | " BooleanExpression;
TemporalOperator = "all” [TemporallteratorDef]
"(" BooleanExpression {"," BooleanExpression} ")"
| "any"” [TemporallteratorDef]
"(" BooleanExpression {"," BooleanExpression} ")"
| "maj" [TemporallteratorDef]
"(" BooleanExpression {"," BooleanExpression} ")"
| "sumgt” [TemporallteratorDef]
"(" BooleanExpression {"," BooleanExpression} "," Integer ")"
| "sumlt" [TemporallteratorDef]
"(" BooleanExpression {"," BooleanExpression} ","” Integer ")"

| ”timeis” H(” Integer H)”

| ”timegt” H(” Integer H)”

| "timelt” "(" Integer ")";
TemporallteratorDef = "[" Temporallterator "=" Integer ".." Integer "]1";
TemporalSpecification = "[" TemporalOperand {"+" TemporalOperand | "-" TemporalOperand} "1";

34

loadNetwork

TemporalOperand Temporallterator | Integer
Temporallterator = ? An alphanumeric string ?;

GeneName = ? A gene name from the list of involved genes ?;
Separator =""

Integer = ? An integer value?;

String = ? Any sequence of characters (except a line break) ?;
Newline = ? A line break character ?;

The meaning of the operators is as follows:

all Equivalent to a conjunction of all arguments. For symbolic networks, the operator can have
a time range, in which case the arguments are evaluated for each time point specified in the
iterator.

any Equivalent to a disjunction of all arguments. For symbolic networks, the operator can have
a time range, in which case the arguments are evaluated for each time point specified in the
iterator.

maj Evaluates to true if the majority of the arguments evaluate to true. For symbolic networks, the
operator can have a time range, in which case the arguments are evaluated for each time point
specified in the iterator.

sumgt Evaluates to true if the number of arguments (except the last) that evaluate to true is greater
than the number specified in the last argument. For symbolic networks, the operator can have
a time range, in which case the arguments are evaluated for each time point specified in the
iterator.

sumlt Evaluates to true if the number of arguments (except the last) that evaluate to true is less
than the number specified in the last argument. For symbolic networks, the operator can have
a time range, in which case the arguments are evaluated for each time point specified in the
iterator.

timeis Evaluates to true if the current absolute time step (i.e. number of state transitions performed
from the current start state) is the same as the argument.

timelt Evaluates to true if the current absolute time step (i.e. number of state transitions performed
from the current start state) is the less than the argument.

timegt Evaluates to true if the current absolute time step (i.e. number of state transitions performed
from the current start state) is greater than the argument.

If symbolic=FALSE and there is exactly one rule for each gene, a Boolean network of class BooleanNetwork

is created. In these networks, constant genes are automatically fixed (e.g. knocked-out or over-
expressed). This means that they are always set to the constant value, and states with the comple-
mentary value are not considered in transition tables etc. If you would like to change this behaviour,
use fixGenes to reset the fixing.

If symbolic=FALSE and two or more rules exist for the same gene, the function returns a proba-
bilistic network of class ProbabilisticBooleanNetwork. In this case, alternative rules may be
annotated with probabilities, which must sum up to 1 for all rules that belong to the same gene. If
no probabilities are supplied, uniform distribution is assumed.

If symbolic=TRUE, a symbolic representation of a (possibly temporal) Boolean network of class
SymbolicBooleanNetwork is created.

loadNetwork

Value

35

If symbolic=FALSE and only one function per gene is specified, a structure of class BooleanNetwork
representing the network is returned. It has the following components:

genes

interactions

fixed

A vector of gene names involved in the network. This list determines the indices
of genes in inputs of functions or in state bit vectors.

A list with 1length(genes) elements, where the i-th element describes the tran-
sition function for the i-th gene. Each element has the following sub-components:

input A vector of indices of the genes that serve as the input of the Boolean
transition function. If the function has no input (i.e. the gene is constant),
the vector consists of a zero element.

func The transition function in truth table representation. This vector has
2*length(input) entries, one for each combination of input variables. If
the gene is constant, the function is 1 or 0.

expression A string representation of the Boolean expression from which the
truth table was generated

A vector specifying which genes are knocked-out or over-expressed. For each
gene, there is one element which is set to 0 if the gene is knocked-out, to 1 if
the gene is over-expressed, and to -1 if the gene is not fixed at all, i. e. can
change its value according to the supplied transition function. Constant genes
are automatically set to fixed values.

If symbolic=FALSE and there is at least one gene with two or more alternative transition func-
tions, a structure of class ProbabilisticBooleanNetwork is returned. This structure is similar to
BooleanNetwork, but allows for storing more than one function in an interaction. It consists of the
following components:

genes

interactions

fixed

A vector of gene names involved in the network. This list determines the indices
of genes in inputs of functions or in state bit vectors.

A list with length(genes) elements, where the i-th element describes the al-
ternative transition functions for the i-th gene. Each element is a list of tran-
sition functions. In this second-level list, each element has the the following
sub-components:

input A vector of indices of the genes that serve as the input of the Boolean
transition function. If the function has no input (i.e. the gene is constant),
the vector consists of a zero element.

func The transition function in truth table representation. This vector has
2*length(input) entries, one for each combination of input variables. If
the gene is constant, the function is -1.

expression A string representation of the underlying Boolean expression

probability The probability that the corresponding transition function is chosen

A vector specifying which genes are knocked-out or over-expressed. For each
gene, there is one element which is set to O if the gene is knocked-out, to 1 if the
gene is over-expressed, and to -1 if the gene is not fixed at all, i. e. can change
its value according to the supplied transition function. You can knock-out and
over-express genes using fixGenes.

36

If symbolic=TRUE,

loadNetwork

a structure of class SymbolicBooleanNetwork that represents the network as

expression trees is returned. It has the following components:

genes

interactions

internalStructs

timeDelays

fixed

See Also

A vector of gene names involved in the network. This list determines the indices
of genes in inputs of functions or in state bit vectors.

A list with 1length(genes) elements, where the i-th element describes the tran-
sition function for the i-th gene in a symbolic representation. Each such element
is a list that represents a recursive expression tree, possibly consisting of sub-
elements (operands) that are expression trees themselves. Each element in an
expression tree can be a Boolean/temporal operator, a literal ("atom") or a nu-
meric constant.

A pointer referencing an internal representation of the expression trees as raw C
objects. This is used for simulations and must be set to NULL if interactions
are changed to force a refreshment.

An integer vector storing the temporal memory sizes required for each of the
genes in the network. That is, the vector stores the minimum number of prede-
cessor states of each gene that need to be saved to determine the successor state
of the network.

A vector specifying which genes are knocked-out or over-expressed. For each
gene, there is one element which is set to O if the gene is knocked-out, to 1 if
the gene is over-expressed, and to -1 if the gene is not fixed at all, i. e. can
change its value according to the supplied transition function. Constant genes
are automatically set to fixed values.

getAttractors, simulateSymbolicModel, markovSimulation, stateTransition, fixGenes,
loadSBML, loadBioTapestry

Examples

Not run:

write example network to file
fil <- tempfile(pattern = "testNet")

sink(fil)

cat("targets, factors\n”)
cat("Genel, !Gene2 | !Gene3\n")
cat("Gene2, Gene3 & Gene4\n")
cat("Gene3, Gene2 & !Genel\n")

cat("Gene4, 1\n")
sink()

read file

net <- loadNetwork(fil)

print(net)

End(Not run)

loadSBML 37

loadSBML Load an SBML document

Description
Loads an SBML document that specifies a qualitative model using the sbml-qual extension pack-
age.

Usage

loadSBML (file, symbolic=FALSE)

Arguments
file The SBML document to be imported
symbolic If set to TRUE, the function returns an object of class SymbolicBooleanNetwork
with an expression tree representation. Otherwise, it returns an object of class
BooleanNetwork with a truth table representation.
Details

The import assumes an SBML level 3 version 1 document with the sbml-qual extension package
version 1.0. BoolNet only supports a subset of the sbml-qual standard. The function tries to
import those documents that describe a logical model with two possible values per species. It does
not support general logical models with more than two values per species or Petri nets.

Further details on the import:

* The import supports multiple function terms with the same output for a transition and inter-
prets them as a disjunction, as proposed in the specification.

» Comparison operators are converted to the corresponding Boolean expressions.

e Compartments are ignored.

For the import, the XML package is required.

Value

Returns a structure of class BooleanNetwork or SymbolicBooleanNetwork, as described in loadNetwork.

References
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/Qualitative_Models_
(qual)

See Also

toSBML, loadNetwork

http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/Qualitative_Models_(qual)
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/Qualitative_Models_(qual)

38

Examples

Not run:

markovSimulation

load the cell cycle network

data(cellcycle)

fil <- tempfile()

export the network to SBML

toSBML (cellcycle,

fil)

reimport the model
print(loadSBML(fil))

End(Not run)

markovSimulation

Identify important states in probabilistic Boolean networks

Description

Identifies important states in probabilistic Boolean networks (PBN) using a Markov chain simula-

tion

Usage

markovSimulation(network,

Arguments

network

numIlterations

startStates

cutoff

returnTable

numIterations = 1000,
startStates = list(),
cutoff = 0.001,
returnTable = TRUE)

An object of class ProbabilisticBooleanNetwork or BooleanNetwork whose
transitions are simulated

The number of iterations for the matrix multiplication, which corresponds to the
number of state transitions to simulate

An optional list of start states. Each entry of the list must be a vector with a
0/1 value for each gene. If specified, the simulation is restricted to the states
reachable from the supplied start states. Otherwise, all states are considered.

The cutoff value used to determine if a probability is 0. All output probabilities
less than or equal to this value are set to 0.

If set to true, a transition table annotated with the probabilities for the transi-
tions is included in the results. This is required by plotPBNTransitions and
getTransitionProbabilities.

markovSimulation 39

Details

The algorithm identifies important states by performing the following steps: First, a Markov matrix
is calculated from the set of transition functions, where each entry of the matrix specifies the prob-
ability of a state transition from the state belonging to the corresponding row to the state belonging
to the corresponding column. A vector is initialized with uniform probability for all states (or —
if specified — uniform probability for all start states) and repeatedly multiplied with the Markov
matrix. The method returns all states with non-zero probability in this vector. See the references for
more details.

Value
An object of class MarkovSimulation with the following components:

reachedStates A data frame with one state in each row. The first columns specify the gene val-
ues of the state, and the last column holds the probability that the corresponding
state is reached after numIterations transitions. Only states with a probability
greater than cutoff are included in this table.

genes A vector of gene names of the input network

table If returnTable=TRUE, this structure holds a table of transitions with the corre-
sponding probabilities that transitions are chosen. This is a list with the follow-
ing components:

initialStates A matrix of encoded start states of the transitions
nextStates The encoded successor states of the transitions
probabilities The probabilities that the transitions are chosen in a single step

References

I. Shmulevich, E. R. Dougherty, S. Kim, W. Zhang (2002), Probabilistic Boolean networks: a rule-
based uncertainty model for gene regulatory networks. Bioinformatics 18(2):261-274.

See Also

reconstructNetwork, plotPBNTransitions, getTransitionProbabilities

Examples

Not run:
load example network
data(examplePBN)

perform a Markov chain simulation
sim <- markovSimulation(examplePBN)

print the relevant states and transition probabilities
print(sim)

plot the transitions and their probabilities
plotPBNTransitions(sim)

End(Not run)

40 perturbNetwork

perturbNetwork Perturb a Boolean network randomly

Description

Modifies a synchronous, asynchronous, or probabilistic Boolean network by randomly perturbing
either the functions for single genes or the state transitions. Random perturbations can be employed
to assess the stability of the network.

Usage

perturbNetwork(network,
perturb = c("functions"”,"transitions”),
method = c("bitflip"”,"shuffle"),
simplify = (perturb[1]!="functions"),
readableFunctions = FALSE,
excludeFixed = TRUE,
maxNumBits = 1,
numStates = max(1,2”length(network$genes)/100))

Arguments

network A network structure of class BooleanNetwork or ProbabilisticBooleanNetwork.
These networks can be read from files by loadNetwork, generated by
generateRandomNKNetwork, or reconstructed by reconstructNetwork.

perturb If set to "functions", a transition function of a single gene is chosen at random
and perturbed directly. This is the default mode. If set to "transitions", the
transition table is generated, one or several state transitions are perturbed ran-
domly, and the gene transition functions are rebuilt from the modified transition
table. perturb="transitions" is only allowed for non-probabilistic networks
of class BooleanNetworks.

method The perturbation method to be applied to the functions or transitions. "bitflip"
randomly inverts one or several bits (depending on the value of maxNumBits).
"shuffle" generates a random permutation of the positions in the function or state
and rearranges the bits according to this permutation.

simplify If this is true, simplifyNetwork is called to simplify the gene transition func-
tions after the perturbation. This removes irrelevant input genes. Defaults to
TRUE if perturb is "transitions", and to FALSE otherwise.
readableFunctions

If this is true, readable DNF representations of the truth tables of the functions
are generated. These DNF are displayed when the network is printed. The DNF
representations are not minimized and can thus be very long. If set to FALSE,
the truth table result column is displayed.

excludeFixed Determines whether fixed variables can also be perturbed (if set to FALSE) or if
they are excluded from the perturbation (if set to TRUE). Default is TRUE.

perturbTrajectories 41

maxNumBits The maximum number of bits to be perturbed in one function or state. Defaults
to 1.
numStates The number of state transitions to be perturbed if perturb is "transitions". De-
faults to 1
Value

Depending on the input, an object of class BooleanNetwork or ProbabilisticBooleanNetwork
containing the perturbed copy of the original network is returned. The classes BooleanNetwork
and ProbabilisticBooleanNetwork are described in more detail in 1oadNetwork.

References

Y. Xiao and E. R. Dougherty (2007), The impact of function perturbations in Boolean networks.
Bioinformatics 23(10):1265-1273.

I. Shmulevich, E. R. Dougherty, W. Zhang (2002), Control of stationary behavior in probabilistic
Boolean networks by means of structural intervention. Journal of Biological Systems 10(4):431—
445.

See Also

loadNetwork, generateRandomNKNetwork, reconstructNetwork, simplifyNetwork

Examples

Not run:
load example data
data(cellcycle)

perturb the network
perturbedNet1 <- perturbNetwork(cellcycle, perturb="functions”, method="shuffle")
perturbedNet2 <- perturbNetwork(cellcycle, perturb="transitions”, method="bitflip")

get attractors
print(getAttractors(perturbedNet1))
print(getAttractors(perturbedNet2))

End(Not run)

perturbTrajectories Perturb the state trajectories and calculate robustness measures

Description

Perturbs the state trajectories of a network and assesses the robustness by comparing the successor
states or the attractors of a set of initial states and a set of perturbed copies of these initial states.

42 perturbTrajectories
Usage
perturbTrajectories(network,
measure = c("hamming”, "sensitivity"”, "attractor"),
numSamples = 1000,
flipBits = 1,
updateType = c("synchronous”, "asynchronous”, "probabilistic"),
gene,
)
Arguments
network A network structure of class BooleanNetwork, SymbolicBooleanNetwork or
ProbabilisticBooleanNetwork whose robustness is measured.
measure Defines the way the robustness is measured (see Details).
numSamples The number of randomly generated pairs of initial states and perturbed copies.
Defaults to 1000.
flipBits The number of bits that are flipped to generate a perturbed copy of an initial
state. Defaults to 1.
updateType If measure="hamming", the type of update that is performed to calculate suc-
cessor states.
gene If measure="sensitivity", the name or index of the gene for whose transition
function the average sensitivity is calculated.
Further parameters to stateTransition and getAttractors.
Details

The function generates a set of numSamples initial states and then applies flipBits random bit
flips to each initial state to generate a perturbed copy of each initial state. For each pair of initial
state and perturbed state, a robustness statistic is calculated depending measure:

If measure="hamming", the normalized Hamming distances between the successor states of each
initial state and the corresponding perturbed state are calculated.

If measure="sensitivity”, the average sensitivity of a specific transition function (specified in
the gene parameter) is approximated: The statistic is a logical vector that is TRUE if gene differs in
the successor states of each initial state and the corresponding perturbed state.

If measure="attractor”, the attractors of all initial states and all perturbed states are identified.
The statistic is a logical vector specifying whether the attractors are identical in each pair of initial
state and perturbed initial state.

Value

A list with the following items:

stat A vector of size numSamples containing the robustness statistic for each pair of
initial state and perturbed copy.

value The summarized statistic (i.e. the mean value) over all state pairs.

plotAttractors 43

References

I. Shmulevich and S. A. Kauffman (2004), Activities and Sensitivities in Boolean Network Models.
Physical Review Letters 93(4):048701.

See Also

testNetworkProperties, perturbNetwork

Examples

Not run:
data(cellcycle)

calculate average normalized Hamming distance of successor states
hamming <- perturbTrajectories(cellcycle, measure="hamming”, numSamples=100)
print(hamming$value)

calculate average sensitivity of transition function for gene "Cdh1”
sensitivity <- perturbTrajectories(cellcycle, measure="sensitivity"”, numSamples=100, gene="Cdh1")
print(sensitivity$value)

calculate percentage of equal attractors for state pairs
attrEqual <- perturbTrajectories(cellcycle, measure="attractor”, numSamples=100)

print(attreEqual$value)

End(Not run)

plotAttractors Plot state tables or transition graphs of attractors

Description

Visualizes attractors, either by drawing a table of the involved states in two colors, or by drawing a
graph of transitions between the states of the attractor.

Usage
plotAttractors(attractorInfo,
subset,
title = "",

mode = c("table”,"graph”),
grouping = list(),
plotFixed = TRUE,

onColor = "#4daf4a",
offColor = "#e4lalc",
layout = layout.circle,
drawLabels = TRUE,
drawLegend = TRUE,

Arguments

attractorInfo

subset

title

mode

grouping

plotFixed

onColor

offColor

layout

drawLabels

drawLegend

ask

reverse

borderColor

plotAttractors

ask = TRUE,

reverse = FALSE,

borderColor = "black”,

eps = 0.1,

allInOnePlot = FALSE,
.

An object of class AttractorInfo, as returned by getAttractors, or an object
of class SymbolicSimulation, as returned by simulateSymbolicModel.

An subset of attractors to be plotted. This is a vector of attractor indices in
attractorInfo.

An optional title for the plot

Switches between two kinds of attractor plots. See Details for more information.
Default is "table".

This optional parameter is only used if mode="table" and specifies a structure
to form groups of genes in the plot. This is a list with the following elements:

class A vector of names for the groups. These names will be printed in the
region belonging to the group in the plot.

index A list with the same length as class. Each element is a vector of gene
names or gene indices belonging to the group.

This optional parameter is only used if mode="table". If this is true, genes with
fixed values are included in the plot. Otherwise, these genes are not drawn.

This optional parameter is only used if mode="table" and specifies the color
value for the 1/ON values in the table. Defaults to green.

This optional parameter is only used if mode="table" and specifies the color
value for the 0/OFF values in the table. Defaults to red.

If mode="graph”, this parameter specifies a layouting function that determines
the placement of the nodes in the graph. Please refer to the layout manual entry
in the igraph package for further details. By default, the circle layout is used.

This parameter is only relevant if mode="graph”. It determines whether the
nodes of the graph are annotated with the corresponding values of the genes in
the attractor states.

Specifies whether a color key for the ON/OFF states is drawn if mode="table".
Defaults to TRUE.

If set to true, the plot function will prompt for a user input for each new plot that
is shown on an interactive device (see link{par("ask")3}).

Specifies the order of the genes in the plot. By default, the first gene is placed in
the first row of the plot. If reverse=TRUE (which was the default until BoolNet
version 2.0.2), the first gene in the network is placed in the bottom row of the
plot.

Specifies the border or seprating color of states in an attractor. Defaults to
"black”.

plotAttractors 45

eps Specifies plotting margin for the sequence of states. Defaults to . 1.

allInOnePlot If this is TRUE then all attractors, with mode = "table", are plotted in one plot as
specified internally by par$mfrow parameter. Previous value of the par$mfrow
parameter is preserved. Defaults to FALSE, meaning the plots for more than
one attractor will be switched interactively or all plotted in an non-interactive
graphical device.

Further graphical parameters to be passed to plot.igraph if mode="graph".

Details

This function comprises two different types of plots:

The "table" mode visualizes the gene values of the states in the attractor and is only suited for
synchronous or steady-state attractors. Complex asynchronous attractors are omitted in this mode.
Attractors in attractorInfo are first grouped by length. Then, a figure is plotted to the currently
selected device for each attractor length (i.e. one plot with all attractors consisting of 1 state, one
plot with all attractors consisting of 2 states, etc.). If ask=TRUE and the standard X11 output device
is used, the user must confirm that the next plot for the next attractor size should be shown. The
figure is a table with the genes in the rows and the states of the attractors in the columns. Cells of
the table are (by default) red for O/OFF values and green for 1/ON values. If grouping is set, the
genes are rearranged according to the indices in the group, horizontal separation lines are plotted
between the groups, and the group names are printed.

The "graph" mode visualizes the transitions between different states. It creates a graph in which the
vertices are the states in the attractor and the edges are state transitions among these states. This
mode can visualize all kinds of attractors, including complex/loose attractors. One plot is drawn
for each attractor. As before, this means that on the standard output device, only the last plot is
displayed unless you set par (mfrow=c(...)) accordingly.

Value

If mode="table", a list of matrices corresponding to the tables is returned. Each of these matrices
has the genes in the rows and the states of the attractors in the columns.

If mode="graph", a list of objects of class igraph is returned. Each of these objects describes the
graph for one attractor.

See Also

getAttractors, simulateSymbolicModel, attractorsTolLaTeX, plotSequence, sequenceTolLaTeX

Examples

Not run:
load example data
data(cellcycle)

get attractors
attractors <- getAttractors(cellcycle)

calculate number of different attractor lengths,
and plot attractors side by side in "table" mode

46 plotNetworkWiring

par(mfrow=c(1, length(table(sapply(attractors$attractors,
function(attractor)
{
length(attractor$involvedStates)
DO
plotAttractors(attractors)

plot attractors in "graph” mode
par(mfrow=c(1, length(attractors$attractors)))
plotAttractors(attractors, mode="graph")

identify asynchronous attractors
attractors <- getAttractors(cellcycle, type="asynchronous")

plot attractors in "graph” mode
par(mfrow=c(1, length(attractors$attractors)))
plotAttractors(attractors, mode="graph")

End(Not run)

plotNetworkWiring Plot the wiring of a Boolean network

Description

Plots the wiring of genes (i.e. the gene dependencies) of a synchronous or probabilistic Boolean
network. The nodes of the graph are the genes, and the directed edges show the dependencies of
the genes. This requires the igraph package.

Usage

plotNetworkWiring(network,
layout = layout.fruchterman.reingold,
plotIt = TRUE, ...)

Arguments

network A network structure of class BooleanNetwork, SymbolicBooleanNetwork or
ProbabilisticBooleanNetwork. These networks can be read from files by
loadNetwork, generated by
generateRandomNKNetwork, or reconstructed by reconstructNetwork.

layout A layouting function that determines the placement of the nodes in the graph.
Please refer to the 1ayout manual entry in the igraph package for further details.
By default, the Fruchterman-Reingold algorithm is used.

plotIt If this is true, a plot is generated. Otherwise, only an object of class igraph is
returned, but no plot is drawn.

Further graphical parameters to be passed to plot.igraph.

plotPBNTransitions 47

Details
This function uses the plot. igraph function from the igraph package. The plots are customizeable
using the ... argument. For details on possible parameters, please refer to igraph.plotting.
Value

Returns an invisible object of class igraph containing the wiring graph.

See Also

loadNetwork, generateRandomNKNetwork, reconstructNetwork, plotStateGraph, igraph.plotting

Examples

Not run:
load example data
data(cellcycle)

plot wiring graph
plotNetworkWiring(cellcycle)

End(Not run)

plotPBNTransitions Visualize the transitions in a probabilistic Boolean network

Description

Visualizes the state transitions and their probabilities in a probabilistic Boolean network. This takes
the transition table information calculated by the markovSimulation method. Only transitions with
non-zero probability are included in the plot. The function requires the igraph package.

Usage

plotPBNTransitions(markovSimulation,
stateSubset,
drawProbabilities = TRUE,
drawStatelLabels = TRUE,
layout = layout.fruchterman.reingold,
plotIt = TRUE, ...)

Arguments

markovSimulation

An object of class MarkovSimulation, as returned by markovSimulation. As
the transition table information in this structure is required, markovSimulation
must be called with returnTable set to TRUE.

48 plotPBNTransitions

stateSubset An optional list of states, where each element of the list must be a vector with a
0/1 entry for each gene. If this argument is supplied, the graph only contains the
specified states and transitions between these states.

drawProbabilities
If set to true, the edges of the graph are annotated with the probabilities of the
corresponding transitions. Default is TRUE.

drawStatelabels
If set to true, the vertices of the graph are annotated with the gene values of the
corresponding states. Defaults to TRUE.

layout A layouting function that determines the placement of the nodes in the graph.
Please refer to the 1ayout manual entry in the igraph package for further details.
By default, the Fruchterman-Reingold algorithm is used.

plotIt If this is true, a plot is generated. Otherwise, only an object of class igraph is
returned, but no plot is drawn.

Further graphical parameters to be passed to plot.igraph.

Details
This function uses the plot. igraph function from the igraph package. The plots are customizeable
using the ... argument. For details on possible parameters, please refer to igraph.plotting.
Value

Returns an invisible object of class igraph containing the wiring graph.

See Also

markovSimulation

Examples

Not run:
load example network
data(examplePBN)

perform a Markov chain simulation
sim <- markovSimulation(examplePBN)

plot the transitions and their probabilities
plotPBNTransitions(sim)

End(Not run)

plotSequence 49

plotSequence Plot a sequence of states

Description

Visualizes sequences of states in synchronous Boolean networks, either by drawing a table of the
involved states in two colors, or by drawing a graph of transitions between the successive states.

Usage

plotSequence(network,
startState,
includeAttractorStates = c("all”,"first","none"),
sequence,
title = "",
mode=c("table”, "graph”),
plotFixed = TRUE, grouping = list(),
onColor="#4daf4a",
offColor = "#e41alc",
layout,
drawlLabels=TRUE,
drawLegend=TRUE,
highlightAttractor=TRUE,
reverse = FALSE,
borderColor = "black”,
eps=0.1,
attractor.sep.lwd = 2,
attractor.sep.col = "blue”,

)

Arguments

network An object of class BooleanNetwork or SymbolicBooleanNetwork for which a
sequence of state transitions is calculated

startState The start state of the sequence

includeAttractorStates
Specifies whether the actual attractor states are included in the plot or not (see
also getPathToAttractor). If includeAttractorStates = "all"” (which is
the default behaviour), the sequence ends when the attractor was traversed once.
If includeAttractorStates = "first”, only the first state of attractor is added
to the sequence. If includeAttractorStates = "none", the sequence ends with the
last non-attractor state.

sequence The alternative call to plotSequence requires the specification of the sequence
itself instead of the network and the start state. The sequence must be provided
as a data frame with the genes in the columns and the successive states in the
rows. For example, sequences can be obtained using getPathToAttractor or

50

title
mode

plotFixed

grouping

onColor

offColor

layout

drawLabels

drawLegend

plotSequence

getAttractorSequence (however, the specialized plot plotAttractors exists
for attractors).

An optional title for the plot

Switches between two kinds of attractor plots. See Details for more information.
Default is "table".

This optional parameter is only used if mode="table". If this is true, genes with
fixed values are included in the plot. Otherwise, these genes are not drawn.

This optional parameter is only used if mode="table" and specifies a structure
to form groups of genes in the plot. This is a list with the following elements:

class A vector of names for the groups. These names will be printed in the
region belonging to the group in the plot.

index A list with the same length as class. Each element is a vector of gene
names or gene indices belonging to the group.

This optional parameter is only used if mode="table" and specifies the color
value for the 1/ON values in the table. Defaults to green.

This optional parameter is only used if mode="table" and specifies the color
value for the 0/OFF values in the table. Defaults to red.

If mode="graph", this parameter specifies a layouting function that determines
the placement of the nodes in the graph. Please refer to the layout manual entry
in the igraph package for further details. By default, the nodes are placed in a
horizontal line.

This parameter is only relevant if mode="graph”. It determines whether the
nodes of the graph are annotated with the corresponding values of the genes in
the attractor states.

Specifies whether a color key for the ON/OFF states is drawn if mode="table".
Defaults to TRUE.

highlightAttractor

reverse

borderColor

eps

If set to true, the attractor states are highlighted in the plot. If mode="table",
a line is drawn at the begin of the attractor, and the states are labeled corre-
spondingly. If mode="graph", the attractor transitions are drawn as bold lines.
Information on the attractor must be supplied in the attribute attractor of
the sequence, which is a vector of indices of the states that belong to the at-
tractor. This attribute is usually present if the sequence was obtained using
getPathToAttractor.

Specifies the order of the genes in the plot. By default, the first gene is placed in
the first row of the plot. If reverse=TRUE (which was the default until BoolNet
version 2.0.2), the first gene in the network is placed in the bottom row of the
plot.

Specifies the border or seprating color of states in an attractor. Defaults to
"black”.

Specifies plotting margin for the sequence of states. Defaults to @. 1.

attractor.sep.lwd

Specifies the line width of the attractor separator. Defaults to 2.

attractor.sep.col

Specifies the line color of the attractor separator. Defaults to "blue”.
Further graphical parameters to be passed to plot.igraph if mode="graph".

plotSequence 51

Details

This function comprises two different types of plots:

The "table" mode visualizes the gene values of the states in the sequence. The figure is a table with
the genes in the rows and the successive states of the sequence in the columns. Cells of the table
are (by default) red for O/OFF values and green for 1/ON values. If grouping is set, the genes are
rearranged according to the indices in the group, horizontal separation lines are plotted between the
groups, and the group names are printed.

The "graph" mode visualizes the transitions between different states. It creates a graph in which the
vertices are the states in the sequence and the edges are state transitions among these states.

The function can be called with different types of inputs: The user can specify the parameters
network, startState and includeAttractorStates), in which case getPathToAttractor is
called to obtain the sequence. Alternatively, the sequence can be supplied directly as a data frame
in the sequence parameter.

Value

If mode="table", a matrix corresponding to the table is returned. The matrix has the genes in the
rows and the states of the attractors in the columns. If sequence was supplied, this corresponds to
the transposed input whose rows may be rearranged if grouping was set.

If mode="graph”, an object of class igraph describing the graph for the sequence is returned.

See Also

sequenceTolaTeX, plotAttractors, attractorsTolLaTeX, getPathToAttractor, getAttractorSequence,
simulateSymbolicModel

Examples

Not run:
load example data
data(cellcycle)

alternative 1: supply network and start state

and plot sequence as a table

plotSequence(network=cellcycle,
startState=rep(1,10),
includeAttractorStates="all")

alternative 2: calculate sequence in advance

sequence <- getPathToAttractor(cellcycle,
state=rep(1,10),
includeAttractorStates="all")

plot sequence as a graph
plotSequence(sequence=sequence,

mode="graph")

End(Not run)

52 plotStateGraph

plotStateGraph Visualize state transitions and attractor basins

Description

Plots a graph containing all states visited in stateGraph, and optionally highlights attractors and
basins of attraction. This requires the igraph package.

Usage

plotStateGraph(stateGraph, highlightAttractors = TRUE,

colorBasins = TRUE, colorSet,

drawLegend = TRUE, drawLabels = FALSE,

layout = layout.kamada.kawai,

piecewise = FALSE,

basin.lty = 2, attractor.lty =1,

plotIt = TRUE,

colorsAlpha = c(colorBasinsNodeAlpha
colorBasinsEdgeAlpha
colorAttractorNodeAlpha = 1,
colorAttractorkEdgeAlpha

I
w w

1l
—_
~—

Arguments

stateGraph An object of class AttractorInfo or SymbolicSimulation, as returned by
getAttractors and simulateSymbolicModel respectively. As the transition
table information in this structure is required, getAttractors must be called in
synchronous mode and with returnTable set to TRUE. Similarly, simulateSymbolicModel
must be called with returnGraph=TRUE. Alternatively, stateGraph can be an
object of class TransitionTable, which can be extracted using the functions
getTransitionTable, getBasinOfAttraction, or getStateSummary
highlightAttractors
If this parameter is true, edges in attractors are drawn bold and with a different
line type (which can be specified in attractor.1ty). Defaults to TRUE.

colorBasins If set to true, each basin of attraction is drawn in a different color. Colors can be
specified in colorSet. Defaults to TRUE.

colorSet An optional vector specifying the colors to be used for the different attractor
basins. If not supplied, a default color set is used.

drawLegend If set to true and colorBasins is true, a legend for the colors of the basins of
attraction is drawn. Defaults to TRUE.

drawLabels If set to true, the binary encodings of the states are drawn beside the vertices of
the graph. As this can be confusing for large graphs, the default value is FALSE.

layout A layouting function that determines the placement of the nodes in the graph.
Please refer to the 1layout manual entry in the igraph package for further details.
By default, the Fruchterman-Reingold algorithm is used.

plotStateGraph 53

piecewise If set to true, a piecewise layout is used, i.e. the subgraphs corresponding to
different basins of attraction are separated and layouted separately.

basin.lty The line type used for edges in a basin of attraction. Defaults to 2 (dashed).

attractor.lty If highlightAttractors is true, this specifies the line type for edges in an
attractor. Defaults to 1 (straight).

plotIt If this is true, a plot is generated. Otherwise, only an object of class igraph is
returned, but no plot is drawn.

colorsAlpha These parameters apply alpha correction to the colors of basins and attractors
in the following order: basin node, basin edge, attractor node, attractor edge.
Defaults to a vector of length 4 with settings alpha = @. 3 for basins and alpha
=1 for attractors.

Further graphical parameters to be passed to plot.igraph.

Details

This function uses the plot. igraph function from the igraph package. The plots are customizeable
using the ... argument. For details on possible parameters, please refer to igraph.plotting.

Value

Returns an invisible object of class igraph containing the state graph, including color and line
attributes.

See Also

getAttractors, simulateSymbolicModel, getTransitionTable, getBasinOfAttraction, getStateSummary,
plotNetworkWiring, igraph.plotting

Examples

load example data
data(cellcycle)

get attractors
attractors <- getAttractors(cellcycle)

plot state graph
Not run:

plotStateGraph(attractors, main = "Cell cycle network”, layout = layout.fruchterman.reingold)

End(Not run)

54 print.BooleanNetwork

print.AttractorInfo Print attractor cycles

Description

Specialized print method to print the attractor cycles stored in an AttractorInfo object. For simple
or steady-state attractors, the states of the attractors are printed in binary encoding in the order they
are reached. For asynchronous complex/loose attractors, the possible transitions of the states in the
attractor are printed. The method can print either the full states, or only the active genes of the

states.
Usage
S3 method for class 'AttractorInfo’
print(x,
activeOnly = FALSE,
>
Arguments
X An object of class AttractorInfo to be printed
activeOnly If set to true, a state is represented by a list of active genes (i.e., genes which are
set to 1). If set to false, a state is represented by a binary vector with one entry
for each gene, specifying whether the gene is active or not. Defaults to FALSE.
Further parameters for the print method. Currently not used.
Value

Invisibly returns the printed object

See Also

print, getAttractors

print.BooleanNetwork Print a Boolean network

Description

A specialized method to print an object of class BooleanNetwork. This prints the transition func-
tions of all genes. If genes are knocked-out or over-expressed, these genes are listed below the
functions.

print. MarkovSimulation 55

Usage
S3 method for class 'BooleanNetwork'
print(x, ...)
Arguments
X An object of class BooleanNetwork to be printed
Further parameters for the print method. Currently not used.
Value

Invisibly returns the printed object

See Also

print, loadNetwork

print.MarkovSimulation
Print the results of a Markov chain simulation

Description

A specialized method to print an object of class MarkovSimulation. This prints all states that have
a non-zero probability to be reached after the number of iterations in the Markov simulation. If
the simulation was run with returnTable=TRUE, it also prints a table of state transitions and their
probabilities to be chosen in a single step.

Usage
S3 method for class 'MarkovSimulation'
print(x,
activeOnly = FALSE,
.2
Arguments
X An object of class MarkovSimulation to be printed
activeOnly If set to true, a state is represented by a list of active genes (i.e., genes which are
set to 1). If set to false, a state is represented by a binary vector with one entry
for each gene, specifying whether the gene is active or not. Defaults to FALSE.
Further parameters for the print method. Currently not used.
Value

Invisibly returns the printed object

56 print.ProbabilisticBooleanNetwork

See Also

print, markovSimulation

print.ProbabilisticBooleanNetwork
Print a probabilistic Boolean network

Description

A specialized method to print an object of class ProbabilisticBooleanNetwork. For backward
compatibility, this method also prints objects of class BooleanNetworkCollection, which have
been replaced by ProbabilisticBooleanNetwork. This prints all alternative transition functions
and their probabilities. If the network is the result of a reconstruction from time series measure-
ments, it also outputs the error the functions make on the time series. If genes are knocked-out or
over-expressed, these genes are listed below the functions.

Usage

S3 method for class 'ProbabilisticBooleanNetwork'
print(x, ...)

S3 method for class 'BooleanNetworkCollection'

print(x, ...)
Arguments
X An object of class ProbabilisticBooleanNetwork or BooleanNetworkCollection
to be printed
Further parameters for the print method. Currently not used.
Value

Invisibly returns the printed object

See Also

print, reconstructNetwork, loadNetwork

print.SymbolicSimulation 57

print.SymbolicSimulation

Print simulation results

Description

Specialized print method to print the information stored in an AttractorInfo object. By default,
the states of the identified attractors are printed in a binary encoding. Furthermore, the state transi-
tion graph and the sequences from the start states to the attractors can be printed. The method can
print either the full states, or only the active genes of the states.

Usage

S3 method for class 'SymbolicSimulation'

print(x,

Arguments

X

activeOnly

sequences

graph

attractors

Value

activeOnly = FALSE,

sequences = FALSE,

graph = FALSE,

attractors = TRUE,
.

An object of class SymbolicSimulation to be printed.

If set to true, a state is represented by a list of active genes (i.e., genes which are
set to 1). If set to false, a state is represented by a binary vector with one entry
for each gene, specifying whether the gene is active or not. Defaults to FALSE.

If set to true and if simulateSymbolicModel has been started with returnSequences=TRUE,
the sequences from the start states to the attractors are printed. Defaults to
FALSE.

If set to true if simulateSymbolicModel has been started with returnGraph=TRUE,
the state transition table is printed. Defaults to FALSE.

If set to true if simulateSymbolicModel has been started with returnAttractor=TRUE,
the state transition table is printed. Defaults to TRUE.

Further parameters for the print method. Currently not used.

Invisibly returns the printed object

See Also

simulateSymbolicModel

58 print. TransitionTable

print.TransitionTable Print a transition table

Description

Specialized print method to print a transition table with the initial state in the first column, the
successor state in the second column, the basin of attraction to which the state leads in the third
column, and the number of transitions to the attractor in the fourth column.

Usage
S3 method for class 'TransitionTable'
print(x,
activeOnly = FALSE,
>
S3 method for class 'BooleanStatelInfo'
print(x,
activeOnly=FALSE,
.2
Arguments
X An object of class TransitionTable or BooleanStateInfo to be printed
activeOnly If set to true, a state is represented by a list of active genes (i.e., genes which are
set to 1). If set to false, a state is represented by a binary vector with one entry
for each gene, specifying whether the gene is active or not. Defaults to FALSE.
Further parameters for the print method. Currently not used.
Value

Invisibly returns the printed object

See Also

print, getTransitionTable, getBasinOfAttraction, getStateSummary

reconstructNetwork

59

reconstructNetwork Reconstruct a Boolean network from time series of measurements

Description

Reconstructs a Boolean network from a set of time series or from a transition table using the best-fit
extension algorithm or the REVEAL algorithm.

Usage

reconstructNetwork(measurements,

Arguments

measurements

method

maxK

method = c("bestfit”, "reveal"),

maxK = 5,
requiredDependencies = NULL,
excludedDependencies = NULL,

perturbations=NULL,
readableFunctions=FALSE,
allSolutions=FALSE,
returnPBN=FALSE)

This can either be an object of class TransitionTable as returned by
getTransitionTable, or a set of time series of measurements. In this case,
measurements must be a list of matrices, each corresponding to one time series.
Each row of these matrices contains measurements for one gene on a time line,
i. e. column i+1 contains the successor states of column i. The genes must be
the same for all matrices in the list. Real-valued time series can be binarized
using binarizeTimeSeries.

This specifies the reconstruction algorithm to be used. If set to "bestfit", Lae-
hdesmaeki’s Best-Fit Extension algorithm is employed. This algorithm is an
improvement of the algorithm by Akutsu et al. with a lower runtime complex-
ity. It determines the functions with a minimal error for each gene. If set to
"reveal", Liang’s REVEAL algorithm is used. This algorithm searches for rele-
vant input genes using the mutual information between the input genes and the
output gene.

The maximum number of input genes for one gene to be tested. Defaults to 5.

requiredDependencies

An optional specification of known dependencies that must be included in re-
constructed networks. This is a named list containing a vector of gene names
(regulators) for each target.

excludedDependencies

Analogous to requiredDependencies, this is an optional specification of de-
pendencies that must not be included in reconstructed networks. This is a named
list containing a vector of gene names (prohibited regulators) for each target.

60 reconstructNetwork

perturbations If measurements contains data obtained from perturbation experiments (i.e. dif-
ferent targeted knock-outs and overexpressions), this optional parameter is a
matrix with one column for each entry in measurements and a row for each
gene. A matrix entry is O for a knock-out of the corresponding gene in the
corresponding time series, 1 for overexpression, and NA or -1 for no perturba-
tion. If measurements has an element perturbations and this argument is not
specified, the element of measurements is taken.

readableFunctions
If this is true, readable DNF representations of the truth tables of the functions
are generated. These DNF are displayed when the network is printed. The DNF
representations are not minimized and can thus be very long. If set to FALSE,
the truth table result column is displayed.

allSolutions If this is true, all solutions with the minimum error and up to maxK inputs are re-
turned. By default, al1Solutions=FALSE, which means that only the solutions
with both minimum error and minimum k are returned.

returnPBN Specifies the way unknown values in the truth tables of the transition functions
("don’t care" values) are processed. If returnPBN=TRUE, all possible functions
are enumerated recursively, and an object of class ProbabilisticBooleanNetwork
is returned. This can consume a high amount of memory and computation
time. If returnPBN=FALSE, the transition functions may contain "don’t care"
(*) values, and an object of class BooleanNetworkCollection is returned.
returnPBN=TRUE corresponds to the behaviour prior to version 2.0. The default
value is returnPBN=FALSE.

Details

Both algorithms iterate over all possible input combinations. While Best-Fit Extension is capable
of returning functions that do not perfectly explain the measurements (for example, if there are
inconsistent measurements or if maxK was specified too small), REVEAL only finds functions that
explain all measurements. For more information, please refer to the cited publications.

Value

If returnPBN=TRUE, the function returns an object of class ProbabilisticBooleanNetwork, with
each alternative function of a gene having the same probability. The structure is described in de-
tail in loadNetwork. In addition to the standard components, each alternative transition function
has a component error which stores the error of the function on the input time series data. If
returnPBN=FALSE, the function returns an object of class BooleanNetworkCollection that has
essentially the same structure as ProbabilisticBooleanNetwork, but does not store probabilities
and keeps "don’t care" values in the functions. Due to the "don’t care" (*) values, this collection
cannot be simulated directly. However, a specific Boolean network of class BooleanNetwork can be
extracted from both BooleanNetworkCollection and ProbabilisticBooleanNetwork structures
using chooseNetwork.

References

H. Laehdesmaeki, I. Shmulevich and O. Yli-Harja (2003), On Learning Gene-Regulatory Networks
Under the Boolean Network Model. Machine Learning 52:147-167.

saveNetwork 61
T. Akutsu, S. Miyano and S. Kuhara (2000). Inferring qualitative relations in genetic networks and
metabolic pathways. Bioinformatics 16(8):727-734.

S. Liang, S. Fuhrman and R. Somogyi (1998), REVEAL, a general reverse engineering algorithm
for inference of genetic network architectures. Pacific Symposium on Biocomputing 3:18-29.

See Also

generateTimeSeries, binarizeTimeSeries, chooseNetwork

Examples

Not run:
load example data
data(yeastTimeSeries)

perform binarization with k-means
bin <- binarizeTimeSeries(yeastTimeSeries)

reconstruct networks from binarized measurements
net <- reconstructNetwork(bin$binarizedMeasurements, method="bestfit"”, maxK=3, returnPBN=TRUE)

print reconstructed net
print(net)

plot reconstructed net
plotNetworkWiring(net)

End(Not run)

saveNetwork Save a network

Description

Saves synchronous, asynchronous, probabilistic and temporal networks in the BoolNet network file
format .

Usage

saveNetwork(network,
file,
generateDNFs = FALSE,
saveFixed = TRUE)

62

Arguments

network

file

generateDNFs

saveFixed

Details

saveNetwork

An object of class BooleanNetwork or SymbolicBooleanNetwork to be ex-
ported

The name of the network file to be created

If network is a BooleanNetwork object, this parameter specifies whether for-
mulae in Disjunctive Normal Form are exported instead of the expressions that
describe the transition functions. If set to FALSE, the original expressions are
exported. If set to "canonical", a canonical Disjunctive Normal Form is gener-
ated from each truth table. If set to "short", the canonical DNF is minimized by
joining terms (which can be time-consuming for functions with many inputs). If
set to TRUE, a short DNF is generated for functions with up to 12 inputs, and a
canonical DNF is generated for functions with more than 12 inputs. For objects
of class SymbolicBooleanNetwork, this parameter is ignored.

If set to TRUE, knock-outs and overexpression of genes override their transition
functions. That is, if a gene in the network is fixed to 0 or 1, this value is saved,
regardless of the transition function. If set to FALSE, the transition function is
saved. Defaults to TRUE.

The network is saved in the BoolNet file format (see 1oadNetwork for details).

If the expressions in the transition functions cannot be parsed or generateDNFs is true, a DNF
representation of the transition functions is generated.

See Also

loadNetwork

Examples

Not run:

load the cell cycle network

data(cellcycle)

save it to a file
saveNetwork(cellcycle, file="cellcycle.txt")

reload the model
print(loadNetwork("cellcycle.txt"))

End(Not run)

sequenceToLaTeX 63

sequenceTolLaTeX Create LaTeX table of state sequences

Description

Exports tables of state sequences (corresponding to the plot generated by plotSequence with
mode="table") to a LaTeX document.

Usage
sequenceTolLaTeX(network,
startState,
includeAttractorStates = c("all"”,"first"”,"none"),
sequence,
title = ",

grouping = list(),
plotFixed = TRUE,
onColor="[grayl]{0.9}",
offColor="[grayl{0.63}",
highlightAttractor=TRUE,
reverse = FALSE,
file="sequence.tex")

Arguments
network An object of class BooleanNetwork or SymbolicBooleanNetwork for which a
sequence of state transitions is calculated
startState The start state of the sequence

includeAttractorStates
Specifies whether the actual attractor states are included in the table or not (see
also getPathToAttractor). If includeAttractorStates ="all"” (which is
the default behaviour), the sequence ends when the attractor was traversed once.
If includeAttractorStates = "first”, only the first state of attractor is added
to the sequence. If includeAttractorStates = "none", the sequence ends with the
last non-attractor state.

sequence The alternative call to sequenceToLaTeX requires the specification of the se-
quence itself instead of the network and the start state. The sequence must be
provided as a data frame with the genes in the columns and the successive states
in the rows. For example, sequences can be obtained using getPathToAttractor
or getAttractorSequence (however, the specialized function attractorsToLaTeX
exists for attractors).

title An optional title for the table

plotFixed If this is true, genes with fixed values are included in the plot. Otherwise, these
genes are not shown.

grouping This optional parameter specifies a structure to form groups of genes in the table.
This is a list with the following elements:

64 sequenceToLaTeX

class A vector of names for the groups. These names will be printed in the
region belonging to the group in the tabke.

index A list with the same length as class. Each element is a vector of gene
names or gene indices belonging to the group.

onColor An optional color value for the 1/ON values in the table. Defaults to dark grey.
offColor An optional color value for the 0/OFF values in the table. Defaults to light grey.
highlightAttractor

If set to true, the attractor states are highlighted in the plot by drawing a line at
the begin of the attractor and labeling the states correspondingly. Information on
the attractor must be supplied in the attribute attractor of the sequence, which
is a vector of indices of the states that belong to the attractor. This attribute is
usually present if the sequence was obtained using getPathToAttractor.

reverse Specifies the order of the genes in the plot. By default, the first gene is placed
in the first row of the table. If reverse=TRUE, the first gene in the network is
placed in the bottom row of the table.

file The file to which the LaTeX document is written. Defaults to "sequence.tex".

Details

This function creates a LaTeX table that visualizes a sequence of states in a synchronous network.
The output file does not contain a document header and requires the inclusion of the packages
tabularx and colortbl. The tables have the genes in the rows and the successive states of the
sequence in the columns. If not specified otherwise, cells of the table are light grey for O/OFF
values and dark grey for 1/ON values. If grouping is set, the genes are rearranged according to
the indices in the group, horizontal separation lines are plotted between the groups, and the group
names are printed.

The function can be called with different types of inputs: The user can specify the parameters
network, startState and includeAttractorStates), in which case getPathToAttractor is
called to obtain the sequence. Alternatively, the sequence can be supplied directly as a data frame
in the sequence parameter.

Value

Returns a matrix corresponding to the table. The matrix has the genes in the rows and the states of
the attractors in the columns. If sequence was supplied, this corresponds to the transposed input
whose rows may be rearranged if grouping was set.

See Also

attractorsTolLaTeX, plotSequence, plotAttractors, getPathToAttractor, getAttractorSequence.

Examples

Not run:
load example data
data(cellcycle)

alternative 1: supply network and start state

simplifyNetwork 65

and export sequence to LaTeX

sequenceToLaTeX(network=cellcycle,
startState=rep(1,10),
includeAttractorStates="all",
file="sequence.txt")

alternative 2: calculate sequence in advance

sequence <- getPathToAttractor(cellcycle,
state=rep(1,10),
includeAttractorStates="all")

sequenceTolLaTeX(sequence=sequence,
file="sequence.txt")

End(Not run)

simplifyNetwork Simplify the functions of a synchronous, asynchronous, or probabilis-
tic Boolean network

Description

Eliminates irrelevant variables from the inputs of the gene transition functions. This can be useful
if the network was generated randomly via generateRandomNKNetwork or if it was perturbed via
perturbNetwork.

Usage

simplifyNetwork(network, readableFunctions = FALSE)

Arguments
network A network structure of class BooleanNetwork, ProbabilisticBooleanNetwork
or BooleanNetworkCollection. These networks can be read from files by
loadNetwork, generated by
generateRandomNKNetwork, or reconstructed by reconstructNetwork.
readableFunctions

This parameter specifies if readable DNF representations of the transition func-
tion truth tables are generated and displayed when the network is printed. If set
to FALSE, the truth table result column is displayed. If set to "canonical", a
canonical Disjunctive Normal Form is generated from each truth table. If set to
"short", the canonical DNF is minimized by joining terms (which can be time-
consuming for functions with many inputs). If set to TRUE, a short DNF is
generated for functions with up to 12 inputs, and a canonical DNF is generated
for functions with more than 12 inputs.

66 simulateSymbolicModel

Details

The function checks whether the output of a gene transition function is independent from the states
of any of the input variables. If this is the case, these input variables are dropped, and the transition
function is shortened accordingly.

In non-probabilistic Boolean networks (class BooleanNetwork), constant genes are automatically
fixed (e.g. knocked-out or over-expressed). This means that they are always set to the constant
value, and states with the complementary value are not considered in transition tables etc. If you
would like to change this behaviour, use fixGenes to reset the fixing.

Value

The simplified network of class BooleanNetwork, ProbabilisticBooleanNetwork or BooleanNetworkCollection.
These classes are described in more detail in 1loadNetwork and reconstructNetwork.

See Also

loadNetwork,generateRandomNKNetwork, perturbNetwork, reconstructNetwork, fixGenes

Examples

Not run:
load example data
data(cellcycle)

perturb the network
perturbedNet <- perturbNetwork(cellcycle, perturb="functions"”, method="shuffle")
print(perturbedNet$interactions)

simplify the network
perturbedNet <- simplifyNetwork(perturbedNet)

print(perturbedNet$interactions)

End(Not run)

simulateSymbolicModel Simulate a symbolic Boolean network

Description

This function simulates Boolean networks in a symbolic representation, possibly with additional
temporal qualifiers. The function can identify attractors, determine the state transition graph, and
generate sequences of successive states.

simulateSymbolicModel 67

Usage

simulateSymbolicModel (network,

Arguments

network

startStates

method

method = c("exhaustive”,
"random”,
"chosen”,
"sat.exhaustive”,
"sat.restricted"),

startStates = NULL,

returnSequences =
(! (match.arg(method) %in%
c("sat.exhaustive”, "sat.restricted"))),
returnGraph =
(! (match.arg(method) %in%
c("sat.exhaustive”, "sat.restricted”))),

returnAttractors = TRUE,
maxTransitions = Inf,
maxAttractorLength = Inf,
canonical = TRUE)

A network structure of class SymbolicBooleanNetwork. These networks can
be read from files by loadNetwork, loadBioTapestry or loadSBML with the
symbolic=TRUE flag.

An optional parameter specifying the start states. If this is an integer value, it
denotes the number of random start states to generate. Otherwise, it has to be a
list of states. The list elements must either be vectors with one value for each
gene in the network, or matrices with the genes in the columns and multiple
predecessor states in the rows. These predecessor states may be evaluated if
temporal predicates in the network have a time delay of more than one. If the
number of supplied predecessor states is smaller than the maximum time delay
in the network, genes are assumed to have had the same value as in the first
supplied state prior to this state. In particular, if only a single state is supplied,
it is assumed that the network always resided in this state prior to starting the
simulation.

The simulation method to be used (see details). If method is not specified, the
desired method is inferred from the type of startStates.

returnSequences

returnGraph

If set to true (and no SAT-based method is chosen), the return value has an
element sequences specifying the sequences of states to the attractor.

If set to true (and no SAT-based method is chosen), the return value has an
element graph specifying the state transition graph of the network.

returnAttractors

If set to true, the return value has an element attractors containing a list of
identified attractors.

maxTransitions The maximum number of state transitions to be performed for each start state

(defaults to Inf).

68

simulateSymbolicModel

maxAttractorLength

If method="sat.restricted", this required parameter specifies the maximum
size of attractors (i.e. the number of states in the loop) to be searched. For
method="sat.exhaustive", this parameter is optional and specifies the max-
imum attractor length for the initial length-restricted search phase that is per-
formed to speed up the subsequent exhaustive search. In this case, changing this
value might bring performance benefits, but does not change the results.

canonical If set to true and returnAttractors=TRUE, the states in the attractors are rear-

Details

ranged such that the state whose binary encoding makes up the smallest number
is the first element of the vector. This ensures that attractors determined in runs
with different start states are comparable, as the cycles may have been entered
at different states.

Similarly to getAttractors, the symbolic simulator supports different simulation modes which
can be specified in the method parameter:

Value

» Exhaustive search If method="exhaustive"”, all possible states in the network are used as

start states. If the network has time delays greater than one (temporal network), this means
that exhaustive search does not only cover all 2”n possible states for a network with n genes,
but also all possible state histories of those genes for which longer delays are required.

Heuristic search For method="random” or method="chosen"”, a subset of states is used as
start states for the simulation.

If method="random", startStates is interpreted as an integer value specifying the number
of states to be generated randomly. The algorithm is then initialized with these random start
states.

If method="chosen", startStates is interpreted as a list of binary vectors, each specifying
one start state (see also parameter description above for details).

SAT-based attractor search If method is "sat.exhaustive" or "sat.restricted", the simulator trans-
forms the network into a satisfiability problem and solves it using Armin Biere’s PicoSAT
solver (see also getAttractors for more details). If method="sat.restricted”, only at-
tractors comprising up to maxAttractorLength states are identified. Otherwise, the algorithm
by Dubrova and Teslenko is applied to identify all attractors. As the SAT-based approaches
identify attractors directly, no state sequences and no transition graph are returned.

Returns a list of class SymbolicSimulation containing the simulation results:

If returnSequences is true and no SAT-based method was chosen, the list contains an element
sequences consisting of a list of data frames, each representing the state transitions performed
from one start state (denoted as time step 0) to the attractor. Here, the columns correspond to the
genes in the network, and the rows correspond to the states. Apart from the immediate start state,
the sequences may also contain the supplied or assumed predecessor states of the start state (marked
by a negative time step t) if the network contains time delays greater than one.

If returnGraph is true and no SAT-based method was chosen, the list contains an element graph
of class TransitionTable. Each row of the table corresponds to one state transition from an initial
state to a successor state, i.e. an edge in the state transition graph.

stateTransition 69

If returnAttractors is true, the list contains an element attractors, which itself is a list of data
frames. Each data frame represents one unique attractor, where each column corresponds to a gene,
and each row corresponds to one state in the attractor.

If both returnSequences and returnAttractors are true, there is an additional element attractorAssignment.
This integer vector specifies the indices of the attractors to which the sequences lead.

The structure supports pretty printing using the print method.

References

E. Dubrova, M. Teslenko (2011), A SAT-based algorithm for finding attractors in synchronous
Boolean networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(5):1393—
1399.

A. Biere (2008), PicoSAT Essentials. Journal on Satisfiability, Boolean Modeling and Computation
4:75-97.

See Also

loadNetwork, loadBioTapestry, loadSBML, getAttractors, plotAttractors, attractorsToLaTeX
getTransitionTable, getBasinOfAttraction, getAttractorSequence, getStateSummary, getPathToAttractor,
fixGenes

Examples

Not run:
data(igf)

exhaustive state space simulation
sim <- simulateSymbolicModel (igf)
plotAttractors(sim)

exhaustive attractor search using SAT solver
sim <- simulateSymbolicModel(igf, method="sat.exhaustive")

plotAttractors(sim)

End(Not run)

stateTransition Perform a transition to the next state

Description

Calculates the next state in a supplied network for a given current state

70 stateTransition

Usage

stateTransition(network,
state,
type = c("synchronous”,"asynchronous"”, "probabilistic"”),
geneProbabilities,
chosenGene,
chosenFunctions,
timeStep = Q)

Arguments

network A network structure of class BooleanNetwork, SymbolicBooleanNetwork or
ProbabilisticBooleanNetwork. These networks can be read from files by
loadNetwork, generated by
generateRandomNKNetwork, or reconstructed by reconstructNetwork.

state The current state of the network, encoded as a vector with one 0-1 element for
each gene. If network is of class SymbolicBooleanNetwork and makes use of
more than one predecessor state, this can also be a matrix with the genes in the
columns and multiple predecessor states in the rows.

type The type of transition to be performed.

If set to "synchronous", all genes are updated using the corresponding transition
functions.

If set to "asynchronous", only one gene is updated. This gene is either chosen
randomly or supplied in parameter chosenGene.

If set to "probabilistic”, one transition function is chosen for each gene, and the
genes are updated synchronously. The functions are either chosen randomly de-
pending on their probabilities, or they are supplied in parameter chosenFunctions.

Default is "synchronous" for objects of class BooleanNetwork and SymbolicBooleanNetwork,
and "probabilistic” for objects of class ProbabilisticBooleanNetwork.

geneProbabilities
An optional vector of probabilities for the genes if type="asynchronous”. By
default, each gene has the same probability to be chosen for the next state transi-
tion. These probabilities can be modified by supplying a vector of probabilities
for the genes which sums up to one.

chosenGene If type="asynchronous” and this parameter is supplied, no random update is
performed. Instead, the gene with the supplied name or index is chosen for the
next transition.

chosenFunctions
If type="probabilistic”, this parameter can contain a set of function indices
for each gene. In this case, transition functions are not chosen randomly, but the
provided functions are used in the state transition.

timeStep An optional parameter that specifies the current time step associated with state.
This is only relevant for networks of class SymbolicBooleanNetwork that make
use of time-dependent predicates (timelt, timeis, timegt). Otherwise, this
parameter is ignored.

symbolicToTruthTable 71

Value

The subsequent state of the network, encoded as a vector with one 0-1 element for each gene.

See Also

loadNetwork, generateRandomNKNetwork, generateState

Examples

Not run:
load example network
data(cellcycle)

calculate a synchronous state transition
print(stateTransition(cellcycle, c(1,1,1,1,1,1,1,1,1,1)))

calculate an asynchronous state transition of gene CycA
print(stateTransition(cellcycle, c(1,1,1,1,1,1,1,1,1,1),
type="asynchronous”, chosenGene="CycA"))

load probabilistic network
data(examplePBN)

perform a probabilistic state transition
print(stateTransition(examplePBN, c(@,1,1),
type="probabilistic"))

End(Not run)

symbolicToTruthTable Convert a symbolic network into a truth table representation

Description
Converts an object of class SymbolicBooleanNetwork into an object of class BooleanNetwork by
generating truth tables from the symbolic expression trees.

Usage
symbolicToTruthTable(network)

Arguments

network An object of class SymbolicBooleanNetwork to be converted.

Details

The symbolic network network must not contain temporal operators, as these are not compatible
with the truth table representation in BooleanNetwork objects.

72 testNetworkProperties

Value

Returns an object of class BooleanNetwork, as described in loadNetwork.

See Also

truthTableToSymbolic, loadNetwork

Examples

Not run:

Convert a truth table representation into a
symbolic representation and back
data(cellcycle)

symbolicNet <- truthTableToSymbolic(cellcycle)
print(symbolicNet)

ttNet <- symbolicToTruthTable(symbolicNet)
print(cellcycle)

End(Not run)

testNetworkProperties Test properties of networks by comparing them to random networks

Description
This is a general function designed to determine unique properties of biological networks by com-
paring them to a set of randomly generated networks with similar structure.

Usage

testNetworkProperties(network,
numRandomNets = 100,

testFunction = "testIndegree”,
testFunctionParams = list(),
accumulation = c("characteristic”, "kullback_leibler"),

alternative=c("greater"”,"less"),
sign.level = 0.05,
drawSignificancelLevel = TRUE,

klBins,

kIMinVal = 1e-05,

linkage = c("uniform”, "lattice"),
functionGeneration = c("uniform”, "biased"),

validationFunction, failurelterations=10000,
simplify = FALSE,

nolrrelevantGenes = TRUE,

d_lattice =1,

testNetworkProperties

Arguments

network
numRandomNets
testFunction

73

zeroBias = 0.5,
title = "”,
xlab,
xlim,
breaks = 30,

D)

A network structure of class BooleanNetwork or SymbolicBooleanNetwork
The number of random networks to generate for comparison

The name of a function that calculates characteristic values that describe prop-
erties of the network. There are two built-in functions: "testIndegree" calculates
the in-degrees of states in the network, and "testAttractorRobustness" counts
the occurrences of attractors in perturbed copies. It is possible to supply user-
defined functions here. See Details.

testFunctionParams

accumulation

alternative

sign.level

A list of parameters to testFunction. The elements of the list depend on the
chosen function.

If "characteristic" is chosen, the test function is required to return a single value
that describes the network. In this case, a histogram of these values in random
networks is plotted, and the value of the original network is inserted as a vertical
line.

If "kullback_leibler" is chosen, the test function can return a vector of values
which is regarded as a sample from a probability distribution. In this case, the
Kullback-Leibler distances of the distributions from the original network and
each of the random networks are calculated and plotted in a histogram. The
Kullback-Leibler distance measures the difference between two probability dis-
tributions. In this case, the resulting histogram shows the distribution of differ-
ences between the original network and randomly generated networks.

If accumulation="characteristic”, this specifies whether the characteristic
value is expected to be greater or less than the random results under the alterna-
tive hypothesis.

If accumulation="characteristic”, this specifies a significance level for a
computer-intensive test.

If alternative="greater", the test is significant if the characteristic value is
greater than at least (1-sign.level)*100% of the characteristic values of the
random networks.

If alternative="1ess", the test is significant if the characteristic value is less
than at most sign.level*x100% of the characteristic values of the random net-
works.

drawSignificancelevel

If accumulation="characteristic” and this is true, a vertical line is plotted
for the significance level in the histogram.

linkage, functionGeneration, validationFunction, failurelterations,
simplify, noIrrelevantGenes, d_lattice, zeroBias

The corresponding parameters of generateRandomNKNetwork used to generate
the random networks. This allows for customization of the network generation

74

testNetworkProperties

process. The three remaining parameters of generateRandomNKNetwork are set
to values that ensure structural similarity to the original network: The param-
eters n and k are set to the corresponding values of the original network, and
topology="fixed".

k1Bins If accumulation="kullback_leibler"”, the number of bins used to discretize
the samples for the Kullback-Leibler distance calculations. By default, each
unique value in the samples has its own bin, i.e. no further discretization is
performed. The influence of discretization on the resulting histogram may be

high.

k1Minval If accumulation="kullback_leibler”, this defines the minimum probability
for the calculation of the Kullback-Leibler distance to ensure stability of the
results.

title The title of the plots. This is empty by default.

x1lab Customizes label of the x axis of the histogram. For the built-in test functions,

the x axis label is set automatically.

x1lim Customizes the limits of the x axis of the histogram. For the built-in test func-
tions, suitable values are chosen automatically.

breaks Customizes the number of breaks in the

Further graphical parameters for hist

Details

This function generically compares properties of biological networks to a set of random networks.
It can be extended by supplying custom functions to the parameter testFunction. Such a function
must have the signature

function(network, accumulate=TRUE, params)

network This is the network to test. In the process of the comparison, both the original network
and the random networks are passed to the function

accumulate If accumulate=TRUE, the function must return a single value quantifying the examined
property of the network. If accumulate=FALSE, the function can return a vector of values (e.g.,
one value for each gene/state etc.)

params A list of further parameters for the function supplied by the user in testFunctionParams
(see above). This can contain any type of information your test function needs.

Three built-in functions for synchronous Boolean networks already exist:

testindegree This function is based on the observation that, often, in biological networks, many
state transitions lead to the same states. In other words, there is a small number of "hub" states.
In the state graph, this means that the in-degree of some states (i.e., the number of transitions
leading to it) is high, while the in-degree of many other states is 0. We observed that random
networks do not show this behaviour, thus it may be a distinct property of biological networks.
For this function, the parameter alternative of testNetworkProperties should be set to
"greater”.

The function does not require any parameter entries in params. If accumulate=FALSE, it
returns the in-degrees of all synchronous states in the network. If accumulate=TRUE, the Gini

testNetworkProperties 75

index of the in-degrees is returned as a characteristic value of the network. The Gini index is
a measure of inequality. If all states have an in-degree of 1, the Gini index is 0. If all state
transitions lead to one single state, the Gini index is 1.

This function requires the igraph package for the analysis of the in-degrees.

testAttractorRobustness This function tests the robustness of attractors in a network to noise. We
expect attractors in a real network to be less susceptible to noise than attractors in randomly
generated networks, as biological processes can be assumed to be comparatively stable. There
are modes of generating noise: Either the functions of the network can be perturbed, or the
state trajectories can be perturbed in a simulation of the network. If perturb="functions" or
perturb="transitions", the function generates a number of perturbed copies of the network
using perturbNetwork and checks whether the original attractors can still be found in the
network. If perturb="trajectories”, the network itself is not perturbed. Instead, a set of
random initial states is generated, and a set of perturbed states is generated from these initial
states by flipping one or more bits. Then, the function tests whether the attractors are the
same for the initial states and the corresponding perturbed states. This corresponds to calling
perturbTrajectories with measure="attractor”.
params can hold a number of parameters:

numSamples If perturb="trajectories”, the number of randomly generated state pairs to
generate. Otherwise the number of perturbed networks that are generated.

perturb Specifies the type of perturbation to be applied (possible values: "functions”,
"transitions” and "trajectories” — see above).

method, simplify, readableFunctions, excludeFixed, maxNumBits, numStates If perturb="functions”
or perturb="transitions", these are the corresponding parameters of perturbNetwork
that influence the way the network is perturbed.

flipBits If perturb="trajectories"”, the are the corresponding parameters of perturbTrajectories
that defines how many bits are flipped.

If perturb="functions" or perturb="transitions"” and accumulate=FALSE, the function re-
turns a vector of percentages of original attractors found in each of the perturbed copies of the
original network. If accumulate=TRUE, the function returns the overall percentage of original
attractors found in all perturbed copies.

If perturb="trajectories” and accumulate=FALSE, the function returns a logical vector
of length numSamples specifying whether the attractor was the same for each initial state and
the corresponding perturbed state. If accumulate=TRUE, the function returns the percentage
of pairs of initial states and perturbed states for which the attractors were the same.

For this function, the parameter alternative of testNetworkProperties should be set to
"greater".

testTransitionRobustness This function calls perturbTrajectories with measure="hamming"
to measure the average Hamming distance between successor states of randomly generated
initial states and perturbed copies of these states.
codeparams can hold parameters numSamples, flipBits corresponding to the parameters of
perturbTrajectories that define how many initial states are drawn and how many bits are
flipped.
If accumulate=FALSE, the function returns a numeric vector of length numSamples with
the normalized Hamming distances of all pairs of initial states and perturbed copies. If
accumulate=TRUE, the mean normalized Hamming distance over all pairs is returned.
For this function, the parameter alternative of testNetworkProperties should be set to
"less".

76 testNetworkProperties

Value

The function returns a list with the following elements

hist The histogram that was plotted. The type of histogram depends on the parameter
accumulation.
pval If accumulation="characteristic”, a p-value for the alternative hypothesis

that the test statistic value of the supplied network is greater than the value of a
randomly generated network is supplied.

significant If accumulation="characteristic"”, this is true for pval < sign.level.

See Also

generateRandomNKNetwork, perturbNetwork, perturbTrajectories, plotStateGraph, getAttractors

Examples

Not run:
load mammalian cell cycle network
data(cellcycle)

if (interactive())
do not run these examples in the package check, as they take some time
{
compare the in-degrees of the states in the
cell cycle network to random networks
testNetworkProperties(cellcycle, testFunction="testIndegree”, alternative="greater")

compare the in-degrees of the states in the

cell cycle network to random networks,

and plot the Kullback-Leibler distances of the 100 experiments

testNetworkProperties(cellcycle, testFunction="testIndegree”,
accumulation = "kullback_leibler")

compare the robustness of attractors in the cell cycle network

to random networks by perturbing the networks

testNetworkProperties(cellcycle, testFunction="testAttractorRobustness”,
testFunctionParams=list(perturb="functions”, numSamples=10),
alternative="greater")

compare the robustness of attractors in the cell cycle network

to random networks by perturbing the state trajectories

testNetworkProperties(cellcycle, testFunction="testAttractorRobustness”,
testFunctionParams=list(perturb="trajectories”, numSamples=10),
alternative="greater")

compare the robustness of single state transitions in the cell cycle network

testNetworkProperties(cellcycle, testFunction="testTransitionRobustness”,
testFunctionParams=1ist(numSamples=10),
alternative="less")

toPajek 77

End(Not run)

toPajek Export a network to the Pajek file format

Description

Exports a network to the Pajek file format to visualize transition trajectories. For more information
on Pajek, please refer to http://mrvar.fdv.uni-1j.si/pajek/

Usage
toPajek(stateGraph, file = "boolean.net”, includelLabels=FALSE, ...)
Arguments
stateGraph An object of class AttractorInfo or SymbolicSimulation, as returned by
getAttractors and simulateSymbolicModel respectively. As the transition
table information in this structure is required, getAttractors must be called in
synchronous mode and with returnTable set to TRUE. Similarly, simulateSymbolicModel
must be called with returnGraph=TRUE. Alternatively, stateGraph can be an
object of class TransitionTable, which can be extracted using the functions
getTransitionTable, getBasinOfAttraction, or getStateSummary .
file The name of the output file for Pajek. Defaults to "boolean.net".

includelLabels If set to true, the vertices of the graph in the output file are labeled with the
binary encodings of the states. Defaults to FALSE.

This is only for compatibility with previous versions and should not be used.

Value

This function has no return value.

See Also

getAttractors, simulateSymbolicModel, getTransitionTable, getBasinOfAttraction, getStateSummary,
toSBML

Examples

Not run:
load example data
data(cellcycle)

get attractors
attractors <- getAttractors(cellcycle)

export to Pajek
toPajek(attractors, file="pajek_export.net"”)

http://mrvar.fdv.uni-lj.si/pajek/

78

End(Not run)

toSBML

toSBML

Export a network to SBML

Description

Exports a synchronous or asynchronous Boolean network to SBML with the sbml-qual extension

package.

Usage

toSBML (network,
file,

generateDNFs = FALSE,
saveFixed = TRUE)

Arguments

network

file

generateDNFs

saveFixed

Details

An object of class BooleanNetwork or SymbolicBooleanNetwork to be ex-
ported

The name of the SBML file to be created

If network is a BooleanNetwork object, this parameter specifies whether for-
mulae in Disjunctive Normal Form are exported instead of the expressions that
describe the transition functions. If set to FALSE, the original expressions are
exported. If set to "canonical", a canonical Disjunctive Normal Form is gener-
ated from each truth table. If set to "short", the canonical DNF is minimized by
joining terms (which can be time-consuming for functions with many inputs). If
set to TRUE, a short DNF is generated for functions with up to 12 inputs, and a
canonical DNF is generated for functions with more than 12 inputs. For objects
of class SymbolicBooleanNetwork, this parameter is ignored.

If set to TRUE, knock-outs and overexpression of genes override their transition
functions. That is, if a gene in the network is fixed to O or 1, this value is
exported, regardless of the transition function. If set to FALSE, the transition
function is exported. Defaults to TRUE.

The export creates an SBML file describing a general logical model that corresponds to the Boolean
network. Importing tools must support the sbml-qual extension package version 1.0.

The export translates the expressions that describe the network transition functions to a MathML
description. If these expressions cannot be parsed or generateDNFs is true, a DNF representation
of the transition functions is generated and exported.

For symbolic networks, temporal operators and delays of more than one time step are not allowed,
as they are not compatible with SBML.

truthTableToSymbolic 79

References
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/Qualitative_Models_
(qual)

See Also

loadSBML, loadNetwork, saveNetwork, toPajek

Examples

Not run:
load the cell cycle network
data(cellcycle)

export the network to SBML
toSBML (cellcycle, file="cellcycle.sbml")

reimport the model
print(loadSBML("cellcycle.sbml"))

End(Not run)

truthTableToSymbolic Convert a network in truth table representation into a symbolic repre-
sentation

Description

Converts an object of class BooleanNetwork into an object of class SymbolicBooleanNetwork by
generating symbolic expression trees.

Usage

truthTableToSymbolic(network, generateDNFs = FALSE)

Arguments

network An object of class BooleanNetwork to be converted.

generateDNFs This parameter specifies whether formulae in Disjunctive Normal Form are gen-
erated instead of the parsing the string expressions that describe the transition
functions. If set to FALSE, the original expressions are parsed. If set to "canoni-
cal", a canonical Disjunctive Normal Form is generated from each truth table. If
set to "short", the canonical DNF is minimized by joining terms (which can be
time-consuming for functions with many inputs). If set to TRUE, a short DNF is
generated for functions with up to 12 inputs, and a canonical DNF is generated
for functions with more than 12 inputs.

http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/Qualitative_Models_(qual)
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/Qualitative_Models_(qual)

80 yeastTimeSeries

Value

Returns an object of class SymbolicBooleanNetwork, as described in loadNetwork.

See Also

truthTableToSymbolic, loadNetwork

Examples

Not run:

Convert a truth table representation into a
symbolic representation and back
data(cellcycle)

symbolicNet <- truthTableToSymbolic(cellcycle)
print(symbolicNet)

ttNet <- symbolicToTruthTable(symbolicNet)
print(cellcycle)

End(Not run)

yeastTimeSeries Yeast cell cycle time series data

Description
Preprocessed time series measurements of four genes from the yeast cell cycle data by Spellman et
al.

Usage

data(yeastTimeSeries)

Format

A matrix with 14 measurements for the genes Fhk2, Swi5, Sicl, and Clbl. Each gene is a row of
the matrix, and each column is a measurement.

Details

The data were obtained from the web site of the yeast cell cycle analysis project. The time series
synchronized with the elutriation method were extracted for the genes Fhk2, Swi5, SIC1, and CIb1.
In a preprocessing step, missing values were imputed by taking the means of the measurements of
the same genes at neighbouring time points.

yeastTimeSeries 81

Source

P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Bot-
stein, B. Futcher (1998), Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast

Saccharomyces cerevisiae by Microarray Hybridization. Molecular Biology of the Cell 9(12):3273—
3297.

Examples

data(yeastTimeSeries)

the data set is stored in a variable called 'yeastTimeSeries'
print(yeastTimeSeries)

Index

attractorsTolLaTeX, 3, 22,45, 51, 63, 64, 69
attributes, 26

binarizeTimeSeries, 4, 16, 59, 61

cellcycle, 7
chooseNetwork, 8, 60, 61

examplePBN, 9
fixGenes, 9, 10, 13, 16, 19, 22, 34-36, 66, 69

generateCanalyzing, 12
generateCanalyzing
(generationFunctions), 17
generateNestedCanalyzing, 12
generateNestedCanalyzing
(generationFunctions), 17
generateRandomNKNetwork, 11, 17, 18, 22,
40, 41, 46, 47, 65, 66, 70, 71, 73, 74,
76
generateState, 14,22, 71
generateTimeSeries, 15, 61
generationFunctions, 17
getAttractors, 3, 4, 15, 18, 23-27, 29, 36,
42,44, 45, 52-54, 68, 69, 76, 77
getAttractorSequence, 22, 23, 50, 51, 63,
64, 69
getBasinOfAttraction, 21, 22, 24, 26, 27,
29,52, 53,58, 69, 77
getPathToAttractor, 22, 23, 25, 49-51, 63
64, 69
getStateSummary, 22, 25, 27, 29, 52, 53, 58,
69,77
getTransitionProbabilities, 28, 38, 39
getTransitionTable, 22, 25-27, 29, 52, 53,
58, 59, 69, 77

hist, 74

igf, 30

82

igraph.plotting, 47, 48, 53
kmeans, 5

layout, 44, 46, 48, 50, 52
loadBioTapestry, 30, 36, 67, 69
loadNetwork, 7-10, 13, 18, 22, 30, 31, 32, 37,
40, 41, 46, 47, 55, 56, 60, 62, 65-67,
69-72,79, 80
loadSBML, 31, 36, 37, 67, 69, 79

markovSimulation, 28, 36, 38, 47, 48, 56

perturbNetwork, 13, 40, 43, 65, 66, 75, 76
perturbTrajectories, 41, 75, 76
plot.igraph, 45—48, 50, 53
plotAttractors, 3, 4, 22, 43, 50, 51, 64, 69
plotNetworkWiring, 46, 53
plotPBNTransitions, 38, 39, 47
plotSequence, 4, 23, 26, 45, 49, 63, 64
plotStateGraph, 47, 52, 76

print, 21, 22, 25, 27, 29, 54-58, 69
print.AttractorInfo, 54
print.BooleanNetwork, 54
print.BooleanNetworkCollection

(print.ProbabilisticBooleanNetwork),

56
print.BooleanStateInfo
(print.TransitionTable), 58
print.MarkovSimulation, 55
print.ProbabilisticBooleanNetwork, 56
print.SymbolicSimulation, 57
print.TransitionTable, 58

reconstructNetwork, 6, 8, 9, 16, 18, 39-41,
46, 47, 56, 59, 65, 66, 70

saveNetwork, 61, 79
sequenceTolaTeX, 4, 23,45, 51, 63
simplifyNetwork, 12, 13,40, 41, 65

INDEX

simulateSymbolicModel, 3, 15, 21-27, 29,
32, 36,44, 45, 51-53, 57,66, 77

stateTransition, 15, 16, 36, 42, 69

symbolicToTruthTable, 71

testAttractorRobustness
(testNetworkProperties), 72
testIndegree (testNetworkProperties), 72
testNetworkProperties, 43, 72
testTransitionRobustness
(testNetworkProperties), 72
toPajek, 77, 79
toSBML, 37, 77,78
truthTableToSymbolic, 72,79, 80

yeastTimeSeries, 80

83

	attractorsToLaTeX
	binarizeTimeSeries
	cellcycle
	chooseNetwork
	examplePBN
	fixGenes
	generateRandomNKNetwork
	generateState
	generateTimeSeries
	generationFunctions
	getAttractors
	getAttractorSequence
	getBasinOfAttraction
	getPathToAttractor
	getStateSummary
	getTransitionProbabilities
	getTransitionTable
	igf
	loadBioTapestry
	loadNetwork
	loadSBML
	markovSimulation
	perturbNetwork
	perturbTrajectories
	plotAttractors
	plotNetworkWiring
	plotPBNTransitions
	plotSequence
	plotStateGraph
	print.AttractorInfo
	print.BooleanNetwork
	print.MarkovSimulation
	print.ProbabilisticBooleanNetwork
	print.SymbolicSimulation
	print.TransitionTable
	reconstructNetwork
	saveNetwork
	sequenceToLaTeX
	simplifyNetwork
	simulateSymbolicModel
	stateTransition
	symbolicToTruthTable
	testNetworkProperties
	toPajek
	toSBML
	truthTableToSymbolic
	yeastTimeSeries
	Index

