Package ‘AR’

January 20, 2025

Type Package

Title Another Look at the Acceptance-Rejection Method
Version 1.1

Date 2018-05-02

Author Abbas Parchami (Department of Statistics, Faculty of Mathematics and Computer, Shahid Ba-
honar University of Kerman, Kerman, Iran)

Maintainer Abbas Parchami <parchami@uk.ac.ir>

Description In mathematics, 'rejection sampling' is a basic technique used to generate observa-
tions from a distribution. It is also commonly called 'the Acceptance-Rejection method' or 'Ac-
cept-Reject algorithm' and is a type of Monte Carlo method. 'Acceptance-

Rejection method' is based on the observation that to sample a random variable one can per-
form a uniformly random sampling of the 2D cartesian graph, and keep the samples in the re-
gion under the graph of its density function. Package 'AR' is able to generate/simulate ran-

dom data from a probability density function by Acceptance-Rejection method. More-

over, this package is a useful teaching resource for graphical presentation of Acceptance-
Rejection method. From the practical point of view, the user needs to calculate a constant in Ac-
ceptance-Rejection method, which package 'AR' is able to compute this constant by optimiza-
tion tools. Several numerical examples are provided to illustrate the graphical presenta-

tion for the Acceptance-Rejection Method.

License LGPL (>=3)

Imports DISTRIB

NeedsCompilation no

Repository CRAN

Date/Publication 2018-05-02 03:54:28 UTC

Contents
AR-package 2
ARSIM . . . e 3
Index 7

2 AR-package

AR-package Another Look at the Acceptance-Rejection Method

Description

There are many distributions for which the inverse transform method and even general transforma-
tions will fail to be able to generate the required random variables. For these cases, we must turn
to indirect methods; that is, methods in which we generate a candidate random variable and only
accept it subject to passing a test. This class of methods is extremely powerful and will allow us
to simulate from virtually any distribution; see (Robert and Casella, 2010) for more detailes. These
so-called Accept-Reject methods only require us to know the functional form of the density fx(.)
of interest (called the target density) up to a multiplicative constant. We use a simpler (to simulate)
density fy, called the instrumental or candidate density, to generate the random variable for which
the simulation is actually done. The constraints we impose on this candidate density fy are that:
(1) Y be simulate-able (the data simulation from Y be actually possible).

(ii) There is a constant ¢ with %Eg <cforallz € Sx = {z: fx(x) > 0}.

(iii) fx and fy have compatible supports (i.e., Sx C Sy).

In this case, X can be simulated as follows by Accept-Reject method. First, we generate y from
Y ~ fy and, independently, we generate u from U ~ U(0,1). If

Ix ()
v cfy(y)’

then we set x = y. If the inequality is not satisfied, we then discard/reject y and u and start again
(Robert and Casella, 2010).

Details

Package AR provides a useful tool for teaching students to understand the theoritical idea behind the
Accept-Reject method. This package works with only one function, i.e. function AR.Sim which
can generate random sample/vector on the basis of the Accept-Reject method.

Author(s)
Abbas Parchami

Maintainer: Abbas Parchami <parchami@uk.ac.ir>

References

Tacus, S.M., Simulation and Inference for Stochastic Differential Equations: With R Examples,
Springer, New York (2008).

Jones, O., Maillardet, R, Robinson, A., Introduction to Scientific Programming and Simulation
Using R, Chapman & Hall/CRC, Boca Raton (2009).

Robert, C.P.,, Casella, G., Introducing Monte Carlo Methods with R, New York: Springer (2010).

AR.Sim 3

Vasishth, S., Broe, M., The Foundations of Statistics: A Simulation-based Approach, Springer
(2010).

Wikipedia, the free encyclopedia, Rejection sampling, https://en.wikipedia.org/wiki/Rejection_sampling

AR.Sim Graphical Visualization for Accept-Reject Method

Description

Package AR provides a graphical presentation for Accept-Reject method by drawing three figures
which their explanations are as follow:

Explanation of Figure 1:

Moreover, even when the Rejection Accept-Reject method is applied, it is always hard to optimize
the constant c for the likelihood ratio. Although, the algorithm works with a bigger constant ¢ (with
respect to optimal/minimum possible c), but increasing c cause high rejection rate and the algorithm

can be very in-efficient. The first figure show three curves fx (z), fy (x) and ﬁf gf; . Moreover, the
fx(x)

optimum ¢ (minimum possible ¢, such that 1 e) < ¢) calculated as the maximum height of the

curve ’;if ég, which is also shown on the first figure.

Explanation of Figure 2:

To visualize the motivation behind the Acceptance-Rejection method, imagine graphing curve
C'f ;‘Y(E/;) onto a large rectangular board and throwing darts at it. Assume that the z-positions of these
darts/points are uniformly distributed around the board and the distribution of y-positions of them
are based on Y distribution. Now, remove all of the darts/points that are outside the area under the
curve % The x-positions of the remaining darts will be distributed according to the random

variable’s density of X within the area under the curve. Since, it can be prove that

fx(Y)
C fy (Y)

PlY<y|U< —P(X<uz).

Explanation of Figure 3:

For another graphical presentation of the motivation behind the Acceptance-Rejection method,
assumes that the considered board (which is presented in explanation of Figure 2) is not necessar-
ily rectangular but is shaped according to some distribution that we know how to generate sample
from it (c. fy (y)). Therefore, if y-positions of random points/darts be equal to u.c. fy (y), then all
darts/points will be land under the curve c. fy (y). The acceptance condition in the Acceptance-Rejection

method is
w< Ix(y)

~cfy(y)

or equivalently

w.c.fy(y) < fx(y),

and it means that after omitting the extra/red random darts/points from the board (which are not
satisfy in the acceptance condition), the z-positions of the remaining darts/points will be distributed
according to the distribution of X.

4 AR.Sim

Usage

AR.Sim(n, f_X, Y.dist, Y.dist.par, xlim = c(@, 1), S_X = xlim, Rej.Num = TRUE,
Rej.Rate = TRUE, Acc.Rate = TRUE)

Arguments

n The number/length of data which must be generated/simulated from fx density.

f_X The density fx of interest for simulation (called the target density)

Y.dist The distribution name of the random variable Y, which used to generate the
random data from fy. Precisely, Y.dist is the name of fy density which is
match with DISTRIB Package. For example, use Y.dist = "norm”, when Y ~
N(p,0?).

Y.dist.par A vector of Y distribution parameters with considered ordering in stats pack-

age and also is match with DISTRIB Package. For example, use Y.dist.par =
c(2,3),whenY ~ N(u = 2,02 = 9).

x1lim NULL or a numeric vector of length 2; if non-NULL it provides the defaults for
c(from, to) and, unless add=TRUE, selects the x-limits of the available plot. Its
default is x1im=c(0,1).

S_X The support of X with default S_X = x1im, which is needed for calculating the
optimum value of constant c.

Rej.Num A logical argument with default TRUE for calculate the number of rejections in
Accept-Reject method. If Rej.Num = FALSE, then the number of rejections is
not reported.

Rej.Rate A logical argument with default TRUE for calculate the ratio of rejections in
Accept-Reject method (i.e. Rej.Num / n). If Rej.Rate = FALSE, then the ratio
of rejections is not reported.

Acc.Rate A logical argument with default TRUE for calculate the ratio of acceptances in
Accept-Reject method (i.e. 1 - Rej.Rate). If Acc.Rate = FALSE, then the ra-
tio of acceptances is not reported.

Value

A vector of generated/simulated data from random variable X with length n.

Optimum value for ¢, i.e. the minimum possible value for c.

References

Robert, C.P.,, Casella, G., Introducing Monte Carlo Methods with R, New York: Springer (2010).

Wikipedia, the free encyclopedia, Rejection sampling, https://en.wikipedia.org/wiki/Rejection_sampling

Examples

Example 1:

data = AR.Sim(n = 150,
f_X = function(y){dbeta(y,2.7,6.3)},
Y.dist = "unif”, Y.dist.par = c(0,1),

AR.Sim 5

Rej.Num = TRUE,
Rej.Rate = TRUE,
Acc.Rate = FALSE
)

QQ-plot

g <- gbeta(ppoints(100), 2.7, 6.3)

qgplot(q, data, cex=0.6, xlab="Quantiles of Beta(2.7,6.3)",
ylab="Empirical Quantiles of simulated data")

abline(@, 1, col=2)

Example 2: From Page 54 of (Robert and Casella, 2009)

f_X = function(x) dbeta(x,2.7,6.3)

Simulationl <- AR.Sim(n=300, f_X, Y.dist = "unif”, Y.dist.par = c(0,1))
Simulation2 <- AR.Sim(n=2000, f_X, Y.dist="beta”, Y.dist.par=c(2,6))
Simulation3 <- AR.Sim(n=1000, f_X, Y.dist="beta"”, Y.dist.par=c(1.5,3.7))
Simulation4 <- AR.Sim(n=250, f_X, Y.dist="norm", Y.dist.par=c(.5,.2))
Simulation5 <- AR.Sim(n=200, f_X, Y.dist="exp", Y.dist.par=3)
Simulation6 <- AR.Sim(400 , f_X, Y.dist="gamma"”, Y.dist.par=c(2,5))

hist(Simulation1, prob=TRUE)#, col="gray20")

hist(Simulation2, prob=TRUE, add=TRUE, col="gray35")
hist(Simulation3, prob=TRUE, add=TRUE, col="gray60")
hist(Simulation4, prob=TRUE, add=TRUE, col="gray75")
hist(Simulation5, prob=TRUE, add=TRUE, col="gray85")
hist(Simulation6, prob=TRUE, add=TRUE, col="gray100")
curve(f_X(x), add=TRUE, col=2, 1lty=2, lwd=3)

#compare empirical and theoretical percentiles:

p <- seq(.1, .9, .1)

Qhat1 <- quantile(Simulationl, p) #Empirical quantiles of simulated sample
Qhat2 <- quantile(Simulation2, p) #Empirical quantiles of simulated sample
Qhat3 <- quantile(Simulation3, p) #Empirical quantiles of simulated sample
Qhat4 <- quantile(Simulation4, p) #Empirical quantiles of simulated sample
Qhat5 <- quantile(Simulation5, p) #Empirical quantiles of simulated sample
Qhat6 <- quantile(Simulation6, p) #Empirical quantiles of simulated sample
Q <- gbeta(p, 2.7, 6.3) #Theoretical quantiles of Be(2.7,6.3)

round(rbind(Q, Qhatl, Qhat2, Qhat3, Qhat4, Qhat5, Qhat6), 3)

Compute p-value of Kolmogorov-Smirnov test:
ks.test(Simulation1, "pbeta”, 2.7, 6.3)$%$p.value

ks.test(Simulation2, "pbeta”, 2.7, 6.3)$p.value
ks.test(Simulation3, "pbeta”, 2.7, 6.3)$p.value
ks.test(Simulation4, "pbeta”, 2.7, 6.3)$%p.value
ks.test(Simulation5, "pbeta”, 2.7, 6.3)$p.value
ks.test(Simulation6, "pbeta”, 2.7, 6.3)$p.value

Example 3: Simulate Truncated N(5,2%2) at 1=3 and r=14 in left and rigth sides, respectively.

AR.Sim

r=14

n = 400

f_X = function(x) dnorm(x,mu,sigma) *

as.integer(1<x & x<r) / (pnorm(r,mu,sigma)-pnorm(l,mu,sigma))

Siml <- AR.Sim(n, f_X, S_X=c(l,r), Y.dist="norm", Y.dist.par=c(5,4), xlim=c(l-1,r+1))
head(Sim1, 15)

hist(Sim1, prob=TRUE, col="lightgreen")

curve(f_X(x), add=TRUE, col=2, 1ty=2, lwd=3) # Truncated pdf of N(5,2%2) at 1 and r

c2 =1/ (pnorm(r,mu,sigma)-pnorm(l,mu,sigma)) ; c2 #See page 15 jozve

Index

* AR.Sim
AR-package, 2
AR.Sim, 3

* AR
AR-package, 2
AR.Sim, 3

* Accept-Reject method
AR-package, 2
AR.Sim, 3

x DISTRIB
AR-package, 2
AR.Sim, 3

* Simulation
AR-package, 2
AR.Sim, 3

* optimization
AR-package, 2
AR.Sim, 3

AR (AR-package), 2
AR-package, 2
AR.Sim, 3

	AR-package
	AR.Sim
	Index

