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Guide to Credit Scoring in R

By DS (ds5j@excite.com)  (Interdisciplinary Independent Scholar with 9+ years  
experience in risk management)

Summary

To date Sept 23 2009, as Ross Gayler has pointed out, there is no guide or 
documentation on Credit Scoring using R (Gayler, 2008).  This document is the first 
guide to credit scoring using the R system.  This is a brief practical guide based on 
experience showing how to do common credit scoring development and validation using 
R.  In addition the paper highlights cutting edge algorithms available in R and not in 
other commercial packages and discusses an approach to improving existing credit 
scorecards using the Random Forest package.

Note: This is not meant to be tutorial on basic R or the benefits of it necessarily as 
other documentation for e.g. http://cran.r-project.org/other-docs.html does a good job 
for introductory R. 

Acknlowedgements:  Thanks to Ross Gayler for the idea and  generous and detailed 
feedback.  Thanks also to Carolin Strobl for her help on unbiased random forest 
variable and party package.
Thanks also to George Overstreet and Peter Beling for helpful discussions and 
guidance.  Also much thanks to Jorge Velez and other people on R-help who helped 
with coding and R solutions.

http://cran.r-project.org/other-docs.html
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Goals
The goal of this guide to show basic credit scoring computations in R using 

simple code.

Approach to Model Building
It is suggested that credit scoring practitioners adopt a systems approach to model 

development and maintenance.  From this point of view one can use the SOAR 
methodology, developed by Don Brown at UVA (Brown, 2005).   The SOAR process 
comprises of understanding the goal of the system being developed and specifying it in 
clear terms along with a clear understanding and specification of the data, observing the 
data, analyzing the data, and the making recommendations (2005). For references on the 
traditional credit scoring development process like Lewis, Siddiqi, or Anderson please 
see Ross Gayler’s Credit Scoring references page 
(http://r.gayler.googlepages.com/creditscoringresources ).

Architectural Suggestions
Clearly in the commercial statistical computing world SAS is the industry leading 

product to date.  This is partly due to the vast amount of legacy code already in existence 
in corporations and also because of its memory management and data manipulation 
capabilities.  R in contrast to SAS offers open source support, along with cutting edge 
algorithms, and facilities.  To successfully use R in a large scale industrial environment it 
is important to run it on large scale computers where memory is plentiful as R, unlike 
SAS, loads all data into memory.  Windows has a 2 gigbayte memory limit which can be 
problematic for super large data sets.

Although SAS is used in many companies as a one stop shop, most statistical 
departments would benefit in the long run by separating all data manipulation to the 
database layer (using SQL) which leaves only statistical computing to be performed. 
Once these 2 functions are decoupled it becomes clear R offers a lot in terms of robust 
statistical software.

Practical Suggestions
Building high performing models requires skill, ability to conceptualize and 

understand data relationships, some theory.  It is helpful to be versed in the appropriate 
literature, brainstorm relationships that should exist in the data, and test them out.  This is 
an ad hoc process I have used and found to be effective.  For formal methods like 
Geschka’s brainwriting and Zwicky’s morphological box see Gibson’s guide to Systems 
analysis (Gibson etal, 2004).  For the advantages of R and introductory tutorials see 
http://cran.r-project.org/other-docs.html.

http://cran.r-project.org/other-docs.html
http://r.gayler.googlepages.com/creditscoringresources
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R Code Examples
In the credit scoring examples below the German Credit Data set is used 

(Asuncion et al, 2007).  It has 300 bad loans and 700 good loans and is a better data set 
than other open credit data as it is performance based vs. modeling the decision to grant a 
loan or not.   The bad loans did not pay as intended.  It is common in credit scoring to 
classify bad accounts as those which have ever had a 60 day delinquency or worse (in 
mortgage loans often 90 day plus is often used).

Reading Data In
# read comma separated file into memory
data<-read.csv("C:/Documents and Settings/My 
Documents/GermanCredit.csv")

Binning Example

In R dummy data variables are called factors and numeric or double are numeric types.
#code to convert variable to factor
data$ property <-as.factor(data$ property)

#code to convert to numeric
data$age <-as.numeric(data$age)

#code to convert to decimal
data$amount<-as.double(data$amount)

Often in credit scoring it is recommended that continuous variables like Loan to Value 
ratios, expense ratios, and other continuous variables be converted to dummy variables to 
improve performance (Mays, 2000). 

Example of Binning or Coarse Classifying in R:
data$amount<-as.factor(ifelse(data$amount<=2500,'0-
2500',ifelse(data$amount<=5000,'2600-5000','5000+')))

Note: Having a variable in both continuous and binned (discrete form) can result in 
unstable  or poorer performing results.

Breaking Data into Training and Test Sample
The following code creates a training data set comprised of randomly selected 60% of the 
data and the out of sample test sample being a random 40% sample remaining.
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d = sort(sample(nrow(data), nrow(data)*.6))
#select training sample
train<-data[d,]
test<-data[-d,]
train<-subset(train,select=-default)

Traditional Credit Scoring

Traditional Credit Scoring Using Logistic Regression in R
m<-glm(good_bad~.,data=train,family=binomial())
# for those interested in the step function one can use m<-
step(m) for it
# I recommend against step due to well known issues with it 
choosing the optimal #variables out of sample

Calculating ROC Curve for model
There is a strong literature based showing that the most optimal credit scoring cut off 
decisions can be made using ROC curves which plot the business implications of both the 
true positive rate of the model vs. false positive rate for each score cut off point (Beling et 
al, 2005) 

#load library
library(ROCR)

#score test data set
test$score<-predict(m,type='response',test)
pred<-prediction(test$score,test$good_bad)
perf <- performance(pred,"tpr","fpr")
plot(perf)

For documentation on ROCR see Sing (Sing etal, 2005).

Calculating KS Statistic
To the dismay of optimal credit scoring cut off decision literature the KS statistic is 
heavily in use of the industry.  Hand has shown that KS can be misleading and the only 
metric which matters should be the conditional bad rate given the loan is approved 
(Hand, 2005).

That said due to prevalence of KS we show how to compute it in R as it might be needed 
in work settings.  The efficient frontier trade off approach although optimal seems to not 
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appeal to executives as making explicit and forced trade offs seems to cause cognitive 
dissonance.  For some reason people in the industry are entrenched on showing 1 number 
to communicate models whether it is KS or FICO etc.

#this code builds on ROCR library by taking the max delt 
#between cumulative bad and good rates being plotted by 
#ROCR
max(attr(perf,'y.values')[[1]]-attr(perf,'x.values')[[1]])

KS is the maximum difference between the cumulative true positive and cumulative false 
positive rate.  The code above calculates this using the ROC curve.

If you do not use this cut off point the KS in essence does not mean much for actual 
separation of the cut off chosen for the credit granting decision.

Calculating top 3 variables affecting Credit Score Function in R

In credit scoring per regulation lenders are required to provide the top 3 reasons 
impacting the credit decision when a loan fails to be pass the credit score (Velez, 2008).

#get results of terms in regression
g<-predict(m,type='terms',test)
#function to pick top 3 reasons
#works by sorting coefficient terms in equation
# and selecting top 3 in sort for each loan scored
ftopk<- function(x,top=3){ 

res=names(x)[order(x, decreasing = TRUE)][1:top]
paste(res,collapse=";",sep="")

}

# Application of the function using the top 3 rows
topk=apply(g,1,ftopk,top=3)
#add reason list to scored tets sample
test<-cbind(test, topk)
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Cutting Edge techniques Available in R

Using Bayesian N Using Traditional recursive Partitioning

Recursive Partitioning trees offer various benefits to credit scoring: quick, simple logic 
which can be converted into rules and credit policies, non parametric and can deal with 
interactions.  The down side of trees is that they unstable, small changes in data can lead 
to large deviations in models, and can overfit if not built using cross validation and 
pruning.  R's Rpart is one of best performing and robust tree algorithms and is 
comparable to J4.5 algorithm in java (Schauerhuber et al, 2007)

The fact that Rpart uses out of sample data to build and fit the tree makes it a very strong 
implementation (Therneau et al, 1997).

In an important study of logistic regression vs. tree algorithms Perlich et al show that 
high signal to noise data favors logistic regression while high separation favors tree 
algorithms and also 'apparent superiority of one method over another on small data sets' 
does not hold out over large samples' (Perlich et al, 2003).  Bagging helps improve 
recursive partitioning. Using random forests is strongly recommended in lieu of trees or 
model based recursive partitioning but for simple needs the decision tree is still a 
powerful technique.

Trees can be used to clean variables, find splits in cut offs of other variables, break data 
in segments, and offer simple insights.  Also it is possible to generate a large number of 
trees which perform equivalently but may look vastly different.  They are perfect for 
generating straw credit policies for rule based systems for quick and dirty needs.

In terms of modeling rare events like fraud or low default credit portfolios using prior 
probabilities to configure trees can help improve performance. In particular trying 80/20, 
90/10, 60/40, 50/50 type priors seems to be a quick and effective heuristic approach to 
getting high performing trees.  

The following code builds decision trees and plots them and compares the tree with and 
without priors.  As you can see the tree with priors performs better in this case.

The section then concludes with Graham Williams’ code to convert trees into rules for 
rule based systems.

#load tree package
library(rpart)

fit1<-rpart(good_bad~.,data=train)
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plot(fit1);text(fit1);
#test$t<-predict(fit1,type='class',test)

Plot of Tree without Priors

#score test data 
test$tscore1<-predict(fit1,type='prob',test)
pred5<-prediction(test$tscore1[,2],test$good_bad)
perf5 <- performance(pred5,"tpr","fpr")

#build model using 90% 10% priors 
#with smaller complexity parameter to allow more complex 
trees
# for tuning complexity vs. pruning see Thernau 1997
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fit2<-
rpart(good_bad~.,data=train,parms=list(prior=c(.9,.1)),cp=.
0002)
plot(fit2);text(fit2);

The tree shows that checking, history, and affordability appear to segment the loans well 
into different risk categories.

Plot of Tree with Priors and Greater Complexity

This tree built using weights for priors fits the data better and shows that loan purpose 
and affordability along with checking make better splits for segmenting data.

test$tscore2<-predict(fit2,type='prob',test)
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pred6<-prediction(test$tscore2[,2],test$good_bad)
perf6<- performance(pred6,"tpr","fpr")

Comparing Complexity and out of Sample Error

#prints complexity and out of sample error
printcp(fit1)
#plots complexity vs. error
plotcp(fit1)

#prints complexity and out of sample error
printcp(fit2)
#plots complexity vs. error
plotcp(fit2)

For more details on tuning trees and plots see Thernau 1997 and Williams’ excellent 
book on Data Mining.  As Rpart uses error rates based on cross validation they are 
unbiased and accurate measures of performance.

Compare ROC Performance of Trees
plot(perf5,col='red',lty=1,main='Tree vs Tree with Prior 
Prob'); 
plot(perf4, col='green',add=TRUE,lty=2);
legend(0.6,0.6,c('simple tree','tree with 90/10 
prior'),col=c('red','green'),lwd=3)
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Performance Of Tree with and Without Priors

The ROC plot shows how the tree built using prior weights outperforms the regular tree 
by significant degree at most points.

Converting Trees to Rules

This section uses a slightly modified version of Graham Williams’ function from his 
excellent Desktop Data Mining Survival Guide.  The function code is in the appendix of 
this document.

I particularly find the rule format more usable as Tree plots are confusing, 
counterintuitive and hard to read.
#print rules for all classes
list.rules.rpart(fit1)
list.rules.rpart(fit2)

#custom function to only print rules for bad loans
listrules(fit1)
listrules(fit2)

(See appendix for code for both functions)
Sample output of select rules:

 Rule number: 16 [yval=bad cover=220 N=121 Y=99 (37%) prob=0.04]
   checking< 2.5
   afford< 54
   history< 3.5
   coapp< 2.5

 Rule number: 34 [yval=bad cover=7 N=3 Y=4 (1%) prob=0.06]
   checking< 2.5
   afford< 54
   history< 3.5
   coapp>=2.5
   age< 27
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 Rule number: 18 [yval=bad cover=50 N=16 Y=34 (8%) prob=0.09]
   checking< 2.5
   afford< 54
   history>=3.5
   job>=2.5

The rules show that loans with low checking, affordability, history, and no co-applicants 
are much riskier.

 For other more robust recursive partitioning see Breiman’s Random Forests and Zeleis 
and Hothorn’s conditional inference trees and model based recursive partitioning which 
allows econometricians the ability to use theory to guide the development of tree logic 
(2007).

Bayesian Networks in Credit Scoring

The ability to understand the relationships between credit scoring variables is critical in 
building sound models.  Bayesian Networks provide a powerful technique to understand 
causal relationships between variables via graphical directed graphs showing 
relationships among variables.  The lack of causal analysis in econometric papers is an 
issue raised by Pearl and discussed at length in his beautiful work on causal inference 
(Pearl, 200). The technique treats the variables are random variables and uses markov 
chain monte carlo methods to assess relationships between variables.  It is 
computationally intensive but another important tool to have in the credit scoring tool kit.

For literature on the applications of Bayesian networks to credit scoring please see 
Baesens et al(2001) and Chang et al (2000).

For details on Bayesian network Package see the deal package (Bøttcher & Dethlefsen, 
2003).

Bayesian Network Credit Scoring in R
#load library
library(deal)

  #make copy of train
 ksl<-train
 #discrete cannot inherit from continuous so binary 
good/bad must be converted to numeric for deal package
 ksl$good_bad<-as.numeric(train$good_bad)

#no missing values allowed so set any missing to 0
# ksl$history[is.na(ksl$history1)] <- 0 
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#drops empty factors  
# ksl$property<-ksl$property[drop=TRUE]

ksl.nw<-network(ksl)
ksl.prior <- jointprior(ksl.nw)

#The ban list is a matrix with two columns. Each row 
contains the directed edge
#that is not allowed.
#banlist <- matrix(c(5,5,6,6,7,7,9,8,9,8,9,8,9,8),ncol=2)
## ban arrows towards Sex and Year
#     [,1] [,2]
#[1,]    5    8
#[2,]    5    9
#[3,]    6    8
#[4,]    6    9
#[5,]    7    8
#[6,]    7    9
#[7,]    9    8
# note this a computationally intensive procuredure and if 
you know that certain variables should have not 
relationships you should specify
# the arcs between variables to exclude in the banlist 
ksl.nw <- learn(ksl.nw,ksl,ksl.prior)$nw
#this step appears expensive so reset restart from 2 to 1 
and degree from 10 to 1
result <- 
heuristic(ksl.nw,ksl,ksl.prior,restart=1,degree=1,trace=TRU
E)
thebest <- result$nw[[1]]
savenet(thebest, "ksl.net")
print(ksl.nw,condposterior=TRUE)
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Bayesian Network of German Credit Data

Using a Bayesian network diagram shows in a simple manner various important 
relationships in the data.  For example one can see that affordability, dependents, marital 
status, and employment status all have causal effects on the likelihood of the loan 
defaulting as expected.  The relationship between home ownership and savings also 
becomes clearer.  

Using Traditional recursive Partitioning

Recursive Partitioning trees offer various benefits to credit scoring: quick, simple logic 
which can be converted into rules and credit policies, non parametric and can deal with 
interactions.  The down side of trees is that they unstable, small changes in data can lead 
to large deviations in models, and can overfit if not built using cross validation and 
pruning.  R's Rpart is one of best performing and robust tree algorithms and is 
comparable to J4.5 algorithm in java (Schauerhuber etal, 2007)

The fact that Rpart uses out of sample data to build and fit the tree makes it a very strong 
implementation (Therneau etal, 1997).

In an important study of logistic regression vs. tree algorithms Perlich etal show that high 
signal to noise data favors logistic regression while high speration favors tree algorithms 
and also 'apparent superiority of one method over another on small data sets' does not 
hold out over large samples' (Perlich etal, 2003).  Although bagging helps improve 
recursive paritioning Using random forests is strongly recommended in lieu of trees or 
model based recursive partitioning but for simple needs the decision tree is still a 
powerful technique.
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Trees can be used to clean variables, find splits in cut offs of other variables, break data 
in segments, and offer simple insights.  Also it is possible to generate a large number of 
trees which perform equivalently but may look vastly different.  They are perfect for 
generatin straw credit policies for rule based systems for quick and dirty needs.

In terms of modeling rare events like fraud or low default credit portfolios using prior 
probabilities to configure trees can help improve performance. In particular trying 80/20, 
90/10, 60/40, 50/50 type priors seems to be a quick and effective hueristic approach to 
getting high performing trees.  

The following code builds decision trees and plots them and compares the tree with and 
without priors.  As you can see the tree with priors performs better 
in this case.

The section then concludes with using Graham William’s  based code to convert trees 
into rules for rule based systems.

#load tree package
library(rpart)

fit1<-rpart(good_bad~.,data=train)
plot(fit1);text(fit1);
#test$t<-predict(fit1,type='class',test)

Plot of Tree without Priors
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#score test data 
test$tscore1<-predict(fit1,type='prob',test)
pred5<-prediction(test$tscore1[,2],test$good_bad)
perf5 <- performance(pred5,"tpr","fpr")

#build model using 90% 10% priors 
#with smaller complexity parameter to allow more complex trees
# for tuning complexity vs. pruning see Thernau 1997
fit2<-rpart(good_bad~.,data=train,parms=list(prior=c(.9,.1)),cp=.0002)
plot(fit2);text(fit2);

Plot of Tree with Priors and Greater Complexity

test$tscore2<-predict(fit2,type='prob',test)
pred6<-prediction(test$tscore2[,2],test$good_bad)
perf6<- performance(pred6,"tpr","fpr")

Comparing Complexity and out of Sample Error

#prints complexity and out of sample error
printcp(fit1)



Credit Scoring in R 17 of 45

#plots complexity vs. error
plotcp(fit1)

#prints complexity and out of sample error
printcp(fit2)
#plots complexity vs. error
plotcp(fit2)

For more details on tuning trees and plots see Thernau 1997 and Williams’s excellent 
book on Data Mining.  As Rpart uses error rates based on cross validation they are 
unbiased and accurate measures of performance.

Compare ROC Performance of Trees
plot(perf5,col='red',lty=1,main='Tree vs Tree with Prior Prob'); 
plot(perf4, col='green',add=TRUE,lty=2);
legend(0.6,0.6,c('simple tree','tree with 90/10 prior'),col=c('red','green'),lwd=3)

Performance Of Tree with and Without Priors
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Converting Trees to Rules

This section uses a slightly modified version of Graham William’s function from his 
excellent Desktop Data Mining Survival Guide.  The function code is in the appendix.

I particularly find the rule format more usable as Tree plots are confusing and 
counterintuitive and hard to read.
#print rules for all classes
list.rules.rpart(fit1)
list.rules.rpart(fit2)

#custom function to only print rules for bad loans
listrules(fit1)
listrules(fit2)
(See appendix for code for both functions)
Sample output of select rules:

 Rule number: 16 [yval=bad cover=220 N=121 Y=99 (37%) prob=0.04]
   checking< 2.5
   afford< 54
   history< 3.5
   coapp< 2.5

 Rule number: 34 [yval=bad cover=7 N=3 Y=4 (1%) prob=0.06]
   checking< 2.5
   afford< 54
   history< 3.5
   coapp>=2.5
   age< 27

 Rule number: 18 [yval=bad cover=50 N=16 Y=34 (8%) prob=0.09]
   checking< 2.5
   afford< 54
   history>=3.5
   job>=2.5

 For other more robust recursive partitioning see Breiman’s Random Forests and  Zeleis 
and Hothorn’s conditional inference trees and model based recursive partitioning which 
allows econometricians the ability to use theory to guide the development of tree logic 
(2007).

Conditional inference Trees 
Conditional inference Trees are the next generation of Recursive Partitioning 

methodology and over comes the instability and biases found in traditional recursive 
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partitioning like CARTtm and CHAID.   Conditional Inference trees offer a concept of 
statistical significance based on bonferroni metric unlike traditional tree methods like 
CHAID.  Conditional inference trees perform as well as Rpart and are robust and stable 
with statistically significant tree partitions being selected (Hothorn etal, 2007) .

#conditional inference trees corrects for known biases in chaid and cart
library(party)
cfit1<-ctree(good_bad~.,data=train)
plot(cfit1);

Conditional inference Tree Plot

ctree plot shows the distribution of classes under each branch. 

resultdfr <- as.data.frame(do.call("rbind", treeresponse(cfit1, newdata = test)))

test$tscore3<-resultdfr[,2]

pred9<-prediction(test$tscore3,test$good_bad)
perf9 <- performance(pred9,"tpr","fpr")



Credit Scoring in R 20 of 45

plot(perf5,col='red',lty=1,main='Tree vs Tree with Prior Prob vs Ctree'); 
plot(perf6, col='green',add=TRUE,lty=2);
plot(perf9, col='blue',add=TRUE,lty=3);
legend(0.6,0.6,c('simple tree','tree with 90/10 
prior','Ctree'),col=c('red','green','blue'),lwd=3)

Performance of Trees vs. Ctrees

Using Random Forests
Given the known issues of instability of traditional recursive partitioning techniques 
Random Forests offer a great alternative to traditional credit scoring and offer better 
insight into variable interactions than traditional logistic regression

library(randomForest)
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arf<-
randomForest(good_bad~.,data=train,importance=TRUE,proximit
y=TRUE,ntree=500, keep.forest=TRUE)
#plot variable importance
varImpPlot(arf)

testp4<-predict(arf,test,type='prob')[,2]
pred4<-prediction(testp4,test$good_bad)
perf4 <- performance(pred4,"tpr","fpr")

#plotting logistic results vs. random forest ROC
#plotting logistic results vs. random forest ROC
plot(perf,col='red',lty=1, main='ROC Logistic Vs. RF'); 
plot(perf4, col='blue',lty=2,add=TRUE); 
legend(0.6,0.6,c('simple','RF'),col=c('red','blue'),lwd=3)

Using Random Forests to Improve Logistic Regression

Random forests are able detect interactions between variables which can add predictive 
value to credit scorecards.  It is important to realize the financial affordability variables 
interactions are important to explore, as affordability as a construct is theoretically sound 
and it makes sense to see interactions with affordability data and other credit scorecard 
variables.  Affordability in terms of free cash flows, liquid and liquefiable assets, and 
potential other borrowings comprise the ability of borrowers to pay back the loan 
(Overstreet et al, 1996).  All ratios such as expense ratio, Loan to Value, and months 
reserves are interaction terms.  Once one realizes this it makes sense to create and test 
interaction terms to add to the model using the affordability variables available.  Using 
these terms in random forests and testing variable importance allows the most important 
interaction terms to be narrowed down and then it is a matter of testing various regression 
and variable groups to isolate the best performing interaction terms (Breiman, 2002).   As 
the wholesale inclusion of interaction terms can lead to overfit (Gayler, 1995) the ability 
to narrow down a list of meaningful interaction terms is a valuable feature of random 
forests.  Although this process can be automated, to date I have followed this approach 
manually.  This would be a useful extension to have in R.  For detailed analysis of issues 
with traditional scorecards and mixed results reported in the credit literature see Sharma 
etal 2009.
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Using Random Forests Variable Importance Plot

#plot variable importance
varImpPlot(arf)

The variable importance plot lists variables in terms of importance using the decrease in 
accuracy metric, of loss of predictive power if the variable is dropped, vs. the importance 
in terms of Gini index, a measure of separation of classes.  (See Strobl for the new and 
unbiased random forest variable importance metrics)

Although this process can be automated, to date I have followed this 
approach manually.  Automating this process would be very easy 
in R.Using Random Forests Conditional Variable Importance 

Recently Strobl etal have shown that Variable Importance measures can be biased 
towards certain variables and have developed an unbiased conditional Variable 
Importance measure (Strobl etal, 2009).

library(party)
set.seed(42)
crf<-cforest(good_bad~.,control = cforest_unbiased(mtry = 2, ntree = 50), data=train)
varimp(crf)
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Cutting Edge Technique:  Comparing Variable Important Sorted by Conditional 
Random Forests and traditional Forests Shows Which Variables Matter More

In this data for the top 5-6 variables the results stay the same.  Traditional variable 
importance is more computationally efficient than conditional variable importance but 
can lead to some biases (Strobl etal, 2009).  IN contrast the cforest package uses unbiased 
recursive partitioning based on conditional inference to produce truly unbiased variable 
importance, which can vary depending on the data set (Strobl etal, 2007).

Strobl etal recommends the following when using variable importance in Random 
Forests:

If all predictor variables are of the same type(for example: all continuous 
or all unordered categorical with the same number of categories), use 
either randomForest (randomForest) or cforest (party). 

While randomForest is computationally faster, cforest is safe even for
variables of different types.

For predictor variables of the same type, the Gini importance 
importance(obj,type = 2) or the permutation importance importance(obj, 
type = 1) available for randomForest and the permutation importance 
varimp(obj) available for cforest are all adequate importance measures.

If the predictor variables are uncorrelated but of different types (for 
example: different scales of measurement, different numbers of 
categories), use cforest (party) with the default option controls = 
cforest_unbiased and the permutation importance varimp(obj).

(Stroble etal, 2009).

Improving Logit Using Rand Forests
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Using the approach described above of testing and trying interaction terms based on 
affordability and based on random forest variable importance measures one can improve 
logistic regression, using out of sample testing.  The resulting model for the credit scoring 
data is as follows:

#model based on trial and error based on random forest 
variable importance
m2<-glm(good_bad~.+history:other+history:employed 
+checking:employed+checking:purpose,data=train,family=binom
ial())

test$score2<-predict(m2,type='response',test)
pred2<-prediction(test$score2,test$good_bad)
perf2 <- performance(pred2,"tpr","fpr")
plot(perf2)

#plotting logistic results vs. random forest ROC
plot(perf,col='red',lty=1, main='ROC Logistic Vs. RF'); 
plot(perf2, col='orange',lty=2,add=TRUE); 
plot(perf4, col='blue',lty=3,add=TRUE); 
legend(0.6,0.6,c('simple','logit w 
interac','RF'),col=c('red','orange','blue'),lwd=3)

Performance of Using Random Forests to Improve Logistic regression
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As you can see using the logistic regression with interaction terms improves the 
performance of logistic regression close to the order of Random Forests.  The important 
thing to keep track of is trying and testing the interactions out of sample as adding too 
many interaction terms can lead to overfit.  I would like to call the process of using 
affordability interactions using Random Forests and tuning logistic regression the Sharma 
method.

The German credit data is small but in larger commercial databases this approach will be 
less likely to overfit and requires judgment to oversee.  Going to the trouble of using 
Random Forests and affordability related interactions if done properly can improve 
model performance by 5-10% in my experience.  This can be a difference of millions of 
dollars on a multi-billion dollar credit risk portfolio.  As such the trade off of exploring 
interaction terms to complexity is worthwhile, especially if you end up with a more 
accurate and well specified model.

It is well known that credit variables have strong multi-collinearity and as such p values 
in regression can be misleading.  Random Forest Variable Importance gives credit 
modelers an invaluable tool to safely explore important variable interactions in a well 
contained and manageable way.

Calculating Area under the Curve

The ROCR package has a function to calculate area under the Receiver operating curve. 
The AUC (area under the ROC curve) is another way to measure predictive power of 
models but as cautioned by David Hand it may mislead.  One useful suggestion from 
Hand is to test out of sample and out of time and calibrate cut offs using changing date 
over time to calibrate scorecard cut offs.

# the following line computes the area under the curve for 
# models
#simple model
performance(pred,"auc")
#random forest
performance(pred2,"auc")
#logit plus random forest interaction of affordability term
performance(pred4,"auc")

Comparing the methods discussed here shows that improving logit using random forests 
yielded the best results on the out of sample data.  On larger data sets improvements on 
the order of 5-10% in model performance have been noted by the author.
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Cross Validation 
As promulgated by John Maindonald using cross validation results based on sampling 
can provide more robust measures of accuracy (Maindonald, 2007).

#load Data Analysis And Graphics Package for R (DAAG) 
library(DAAG)
#calculate accuracy over 100 random folds of data for 
simple logit
h<-CVbinary(obj=m, rand=NULL, nfolds=100, 
print.details=TRUE)
#calculate accuracy over 100 random folds of data for logit 
+affordability interactions
g<-CVbinary(obj=m2, rand=NULL, nfolds=100, 
print.details=TRUE)

Cutting Edge techniques: Party Package(Unbiased Non parametric 
methods-Model Based Trees)

Strobl et al have shown that bias in random forests can be improved and corrected using 
conditional inference random forests using the Party package in R (Strobl et al, 2009). 
Also other powerful non parametric models which can use theory to drive the recursive 
partitioning and combining it with logistic regression and other models after segmenting 
data proves to be an important area which Model based Recursive Partitioning work has 
addressed (Zeleis, Hothorn and Hornik, 2006). This approach promises clarity and 
understanding expected in consumer credit scoring and adds more robust mechanisms for 
building recursive partitioning tree logic.  

Model based trees work by ‘fitting a parametric model to data, testing parameter 
instability over a set of partitioning variables supplied by the modeler and if there is 
overall parameter instability the tree model is split with the parameter with highest 
instability and this is repeated recursively’ (Zeleis et al, 2006).  The segmentation of 
using tree models, which are unstable without theory based segmentation, can lead to 
suboptimal models.  As opposed to traditional segmentation (for e.g. see TransUnion 
White Paper, 2006 in references) the Model based trees allow econometrically based non 
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parametric tree to be built.  From a practical point of view this allows one to control the 
splits in more manageable way that trying a few split at a time in traditional trees to force 
‘more sensible’ variables from the point of view of the client or modeler as the basis for 
splits and segmentation.

#model based recursive paritioning
library(party)
model<-mob(good_bad~afford | 
amount+other+checking+duration+savings+marital+coapp+proper
ty+resident+amount,data=train, 
model=glinearModel,family=binomial())
 plot(model)

Plot of Model based Tree with Logistic Regression

The graph at the end nodes shows how the affordability variables vary with good and bad 
loans based on the logistic regression built under each segment.  Note how in each 
segment the distributions of affordability variable under the logistic regression built are 
different.  This approach easily allows for the advantage of segment based scoring which 
has been heuristic and ad hoc (Kowalczyk, 2003).

test$mobscore<-predict(model, newdata = test, type = 
c("response"))
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pred7<-prediction(test$mobscore,test$good_bad)
perf7 <- performance(pred7,"tpr","fpr")

plot(perf5,col='red',lty=1,main='Tree vs Tree with Prior 
Prob vs. Model Based Tree with Glm'); 
plot(perf4, col='green',add=TRUE,lty=2);
plot(perf7, col='orange',add=TRUE,lty=3);
legend(0.6,0.6,c('simple tree','tree with 90/10 prior', 
'Model based tree with 
logit'),col=c('red','green','orange'),lwd=3)

Performance of Model based Tree vs. Other trees

The Party package offers conditional inference trees, unbiased random forest variable 
importance and model based trees (Zelies etal, 2006).  For the scope of this guide we 
review Model based Trees as they have benefit of combining unbiased recursive 
partitioning trees with logistic regression models (Zeileis, 2006).  At this stage in my 
experience using the techniques I found them to be computationally expensive in the 
current form of the package but it is an important project for the future of credit scoring. 
Also using glm with Model trees can lead to failure to converge error common in logit as 



Credit Scoring in R 29 of 45

well.  To understand with and play with all the options in MOB trees see the Party 
Package (2006).

Appendix of Useful Functions

Div
#function to divide to create interaction terms without divide by zero
div<-function(a,b) ifelse(b == 0, b, a/b)

List rules based on Rattle code (source 
http://www.togaware.com/datamining/survivor/Convert_Tree.html )
list.rules.rpart <- function(model)
{
  if (!inherits(model, "rpart")) stop("Not a legitimate rpart tree")
  #
  # Get some information.
  #
  frm     <- model$frame
  names   <- row.names(frm)
  ylevels <- attr(model, "ylevels")
  ds.size <- model$frame[1,]$n
  #
  # Print each leaf node as a rule.
  #
  for (i in 1:nrow(frm))
  {
    if (frm[i,1] == "<leaf>")
    {
      # The following [,5] is hardwired - needs work!
      cat("\n")
      cat(sprintf(" Rule number: %s ", names[i]))
      cat(sprintf("[yval=%s cover=%d (%.0f%%) prob=%0.2f]\n",
                  ylevels[frm[i,]$yval], frm[i,]$n,
                  round(100*frm[i,]$n/ds.size), frm[i,]$yval2[,5]))
      pth <- path.rpart(model, nodes=as.numeric(names[i]), 
print.it=FALSE)
      cat(sprintf("   %s\n", unlist(pth)[-1]), sep="")
    }
  }
}

http://www.togaware.com/datamining/survivor/Convert_Tree.html
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My modified version of the function needs to be tweaked depending on the data set.  If 
the predictor variable is bad then following function will only print rules which classify 
bad loans.  If your data has a different value then that line in the code needs to be 
changed for your use.

listrules<-function(model)
{

  if (!inherits(model, "rpart")) stop("Not a legitimate 
rpart tree")
  #
  # Get some information.
  #
  frm     <- model$frame
  names   <- row.names(frm)
  ylevels <- attr(model, "ylevels")
  ds.size <- model$frame[1,]$n
  #
  # Print each leaf node as a rule.
  #
  for (i in 1:nrow(frm))
  {
    if (frm[i,1] == "<leaf>" & ylevels[frm[i,]$yval]=='bad')
    {
      # The following [,5] is hardwired - needs work!
      cat("\n")
      cat(sprintf(" Rule number: %s ", names[i]))
      cat(sprintf("[yval=%s cover=%d N=%.0f Y=%.0f (%.0f%%) 
prob=%0.2f]\n",
                  ylevels[frm[i,]$yval], frm[i,]$n, 
formatC(frm[i,]$yval2[,2], format = "f", digits = 2),
 formatC(frm[i,]$n-frm[i,]$yval2[,2], format = "f", digits 
= 2),
                  round(100*frm[i,]$n/ds.size), frm[i,]
$yval2[,5]))
      pth <- path.rpart(model, nodes=as.numeric(names[i]), 
print.it=FALSE)
      cat(sprintf("   %s\n", unlist(pth)[-1]), sep="")
    }
  }
}
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Appendix: German Credit Data

http://ocw.mit.edu/NR/rdonlyres/Sloan-School-of-Management/15-062Data-
MiningSpring2003/94F99F14-189D-4FBA-91A8-D648D1867149/0/GermanCredit.pdf 

Variable Type Code Description
1

OBS#
Observation No.
Categorical

2
CHK_ACCT
Checking account status
Categorical
0 : < 0 DM
1: 0 < ...< 200 DM
2 : => 200 DM
3: unknown

3
DURATION
Duration of credit in months
Numerical

4
HISTORY
Credit history
Categorical
0: no credits taken
1: all credits at this bank paid back duly
2: existing credits paid back duly till now
3: delay in paying off in the past
4: critical account

5
NEW_CAR
Purpose of credit
Binary
car (new) 0: No, 1: Yes

6
USED_CAR
Purpose of credit
Binary
car (used) 0: No, 1: Yes

7
FURNITURE
Purpose of credit
Binary
furniture/equipment 0: No, 1: Yes

8
RADIO/TV
Purpose of credit

http://ocw.mit.edu/NR/rdonlyres/Sloan-School-of-Management/15-062Data-MiningSpring2003/94F99F14-189D-4FBA-91A8-D648D1867149/0/GermanCredit.pdf
http://ocw.mit.edu/NR/rdonlyres/Sloan-School-of-Management/15-062Data-MiningSpring2003/94F99F14-189D-4FBA-91A8-D648D1867149/0/GermanCredit.pdf
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Binary
radio/television 0: No, 1: Yes

9
EDUCATION
Purpose of credit
Binary
education 0: No, 1: Yes

10
RETRAINING
Purpose of credit
Binary
retraining 0: No, 1: Yes

11
AMOUNT
Credit amount
Numerical

12
SAV_ACCT
Average balance in savings account
Categorical
0 : < 100 DM
1 : 100<= ... < 500 DM
2 : 500<= ... < 1000 DM
3 : =>1000 DM
4 : unknown

13
EMPLOYMENT Present employment since
Categorical
0 : unemployed
1: < 1 year
2 : 1 <= ... < 4 years
3 : 4 <=... < 7 years
4 : >= 7 years

14
INSTALL_RATE Installment rate as % of disposable
income
Numerical

15
MALE_DIV
Applicant is male and divorced
Binary
0: No, 1: Yes

16
MALE_SINGLE
Applicant is male and single
Binary
0: No, 1: Yes

17
MALE_MAR
Applicant is male and married or widower Binary
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0: No, 1: Yes
Page 2
Var. # Variable Name

Description
Variable Type Code Description

18
CO-APPLICANT Application has a co-applicant
Binary
0: No, 1: Yes

19
GUARANTOR
Applicant has a guarantor
Binary
0: No, 1: Yes

20
TIME_RES
Present resident since - years
Categorical
0: <= 1 year
1<…<=2 years
2<…<=3 years
3:>4years

21
REAL_ESTATE
Applicant owns real estate
Binary
0: No, 1: Yes

22
PROP_NONE
Applicant owns no property (or unknown) Binary
0: No, 1: Yes

23
AGE
Age in years
Numerical

24
OTHER_INSTALL Applicant has other installment plan credit Binary
0: No, 1: Yes

25
RENT
Applicant rents
Binary
0: No, 1: Yes

26
OWN_RES
Applicant owns residence
Binary
0: No, 1: Yes

27
NUM_CREDITS Number of existing credits at this bank
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Numerical
28

JOB
Nature of job
Categorical
0 : unemployed/ unskilled - non-resident
1 : unskilled - resident
2 : skilled employee / official
3 : management/ self-employed/highly
qualified employee/ officer

29
NUM_DEPEND Number of dependents
Numerical

30
TELEPHONE
Applicant has phone in his or her name Binary
0: No, 1: Yes

31
FOREIGN
Foreign worker
Binary
0: No, 1: Yes

32
RESPONSE
Fulfilled terms of credit agreement
Binary
0: No, 1: Yes
Binary
0: No, 1: Yes

Sample of Full R code in One Shot 
(in case one wants to copy paste and run all the code at once)

data<-read.csv("C:/Documents and Settings/GermanCredit.csv")
data$afford<-data$checking* 
data$savings*data$installp*data$housing

#code to convert variable to factor
data$property <-as.factor(data$property)
#code to convert to numeric
data$age <-as.numeric(data$age)
#code to convert to decimal
data$amount<-as.double(data$amount)
data$amount<-as.factor(ifelse(data$amount<=2500,'0-
2500',ifelse(data$amount<=5000,'2600-5000','5000+')))

d = sort(sample(nrow(data), nrow(data)*.6))
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#select training sample
train<-data[d,]
test<-data[-d,]
train<-subset(train,select=-default)

#m<-
glm(good_bad~.*(checking+amount),data=train,family=binomial
())
#m<-step(m)

m<-glm(good_bad~.,data=train,family=binomial())
#m<-glm(good_bad~(checking)*.,data=train,family=binomial())
#m<-
glm(good_bad~checking:duration+.,data=train,family=binomial
())
#m<-glm(good_bad~.+history:other+history:employed 
+checking:employed+checking:purpose,data=train,family=binom
ial())

library(ROCR)
#score test data set
test$score<-predict(m,type='response',test)
pred<-prediction(test$score,test$good_bad)
perf <- performance(pred,"tpr","fpr")
plot(perf)

max(attr(perf,'y.values')[[1]]-attr(perf,'x.values')[[1]])

#get results of terms in regression
g<-predict(m,type='terms',test)
#function to pick top 3 reasons
ftopk<- function(x,top=3){ 

res=names(x)[order(x, decreasing = TRUE)][1:top]
paste(res,collapse=";",sep="")

}

# Application of the function using the top 3 rows
topk=apply(g,1,ftopk,top=3)
# Result
#add reason list to scored tets sample
test<-cbind(test, topk)
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library(randomForest)
arf<-
randomForest(good_bad~.,data=train,importance=TRUE,proximit
y=TRUE,ntree=500, keep.forest=TRUE)
#plot variable importance
varImpPlot(arf)

testp4<-predict(arf,test,type='prob')[,2]
pred4<-prediction(testp4,test$good_bad)
perf4 <- performance(pred4,"tpr","fpr")

m2<-glm(formula = good_bad ~ checking + duration + history 
+ purpose + 
    amount + savings + employed + installp + marital + 
coapp + 
    age + other + depends + telephon + foreign + 
checking:amount + 
    checking:duration + duration:amount + #checking:purpose 
+ 
    purpose:amount + checking:savings + checking:employed + 
checking:coapp + 
    amount:age + checking:other + amount:other + 
amount:depends + 
    amount:telephon, family = binomial(), data = train)
#m2<-glm(good_bad~.+history:other+history:employed 
+checking:employed+checking:purpose,data=train,family=binom
ial())

m2<-glm(good_bad~.+history:other+history:employed 
+checking:employed+checking:purpose,data=train,family=binom
ial())

#m2<-glm(good_bad~.*afford,data=train,family=binomial())

test$score2<-predict(m2,type='response',test)
pred2<-prediction(test$score2,test$good_bad)
perf2 <- performance(pred2,"tpr","fpr")
plot(perf2)

#plotting logistic results vs. random forest ROC
plot(perf,col='red',lty=1, main='ROC Logistic Vs. RF'); 
plot(perf2, col='orange',lty=2,add=TRUE); 
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plot(perf4, col='blue',lty=3,add=TRUE); 
legend(0.6,0.6,c('simple','logit w 
interac','RF'),col=c('red','orange','blue'),lwd=3)

performance(pred,"auc")
performance(pred2,"auc")
performance(pred4,"auc")

library(DAAG)
h<-CVbinary(obj=m, rand=NULL, nfolds=100, 
print.details=TRUE)
g<-CVbinary(obj=m2, rand=NULL, nfolds=100, 
print.details=TRUE)

library(rpart)

fit1<-rpart(good_bad~.,data=train)
plot(fit1);text(fit1);
#test$t<-predict(fit1,type='class',test)

test$tscore1<-predict(fit1,type='prob',test)

pred5<-prediction(test$tscore1[,2],test$good_bad)
perf5 <- performance(pred5,"tpr","fpr")

fit2<-
rpart(good_bad~.,data=train,parms=list(prior=c(.9,.1)),cp=.
0002)
plot(fit2);text(fit2);

test$tscore2<-predict(fit2,type='prob',test)

pred6<-prediction(test$tscore2[,2],test$good_bad)
perf6<- performance(pred6,"tpr","fpr")

plot(perf5,col='red',lty=1,main='Tree vs Tree with Prior 
Prob'); 
plot(perf6, col='green',add=TRUE,lty=2);
legend(0.6,0.6,c('simple tree','tree with 90/10 
prior'),col=c('red','green'),lwd=3)
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listrules<-function(model)
{

  if (!inherits(model, "rpart")) stop("Not a legitimate 
rpart tree")
  #
  # Get some information.
  #
  frm     <- model$frame
  names   <- row.names(frm)
  ylevels <- attr(model, "ylevels")
  ds.size <- model$frame[1,]$n
  #
  # Print each leaf node as a rule.
  #
  for (i in 1:nrow(frm))
  {
    if (frm[i,1] == "<leaf>" & ylevels[frm[i,]$yval]=='bad')
    {
      # The following [,5] is hardwired - needs work!
      cat("\n")
      cat(sprintf(" Rule number: %s ", names[i]))
      cat(sprintf("[yval=%s cover=%d N=%.0f Y=%.0f (%.0f%%) 
prob=%0.2f]\n",
                  ylevels[frm[i,]$yval], frm[i,]$n, 
formatC(frm[i,]$yval2[,2], format = "f", digits = 2),
 formatC(frm[i,]$n-frm[i,]$yval2[,2], format = "f", digits 
= 2),
                  round(100*frm[i,]$n/ds.size), frm[i,]
$yval2[,5]))
      pth <- path.rpart(model, nodes=as.numeric(names[i]), 
print.it=FALSE)
      cat(sprintf("   %s\n", unlist(pth)[-1]), sep="")
    }
  }
}

listrules(fit1)
listrules(fit2)

library(deal)

  #make copy of train
 ksl<-train
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 #discrete cnnot inherit from continuous so binary good/bad 
must be converted to numeric for deal package
 ksl$good_bad<-as.numeric(train$good_bad)

#no missing values allowed so set any missing to 0
# ksl$history[is.na(ksl$history1)] <- 0 

#drops empty factors  
# ksl$property<-ksl$property[drop=TRUE]

ksl.nw<-network(ksl)
ksl.prior <- jointprior(ksl.nw)

#The ban list is a matrix with two columns. Each row 
contains the directed edge
#that is not allowed.
#banlist <- matrix(c(5,5,6,6,7,7,9,8,9,8,9,8,9,8),ncol=2)
## ban arrows towards Sex and Year
#     [,1] [,2]
#[1,]    5    8
#[2,]    5    9
#[3,]    6    8
#[4,]    6    9
#[5,]    7    8
#[6,]    7    9
#[7,]    9    8

# note this a computationally intensive procuredure and if 
you know that certain variables should have not 
relationships you should specify
# the arcs between variables to exclude in the banlist 

ksl.nw <- learn(ksl.nw,ksl,ksl.prior)$nw
#this step appears expensive so reset restart from 2 to 1 
and degree from 10 to 1
result <- 
heuristic(ksl.nw,ksl,ksl.prior,restart=1,degree=1,trace=TRU
E)
thebest <- result$nw[[1]]
savenet(thebest, "ksl.net")
print(ksl.nw,condposterior=TRUE)

#conditional inference trees corrects for known biases in chaid and cart
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library(party)
cfit1<-ctree(good_bad~.,data=train)
plot(cfit1);

resultdfr <- as.data.frame(do.call("rbind", treeresponse(cfit1, newdata = test)))

test$tscore3<-resultdfr[,2]

pred9<-prediction(test$tscore3,test$good_bad)
perf9 <- performance(pred9,"tpr","fpr")

plot(perf5,col='red',lty=1,main='Tree vs Tree with Prior Prob vs Ctree'); 
plot(perf6, col='green',add=TRUE,lty=2);
plot(perf9, col='blue',add=TRUE,lty=3);
legend(0.6,0.6,c('simple tree','tree with 90/10 
prior','Ctree'),col=c('red','green','blue'),lwd=3)

library(party)
set.seed(42)
crf<-cforest(good_bad~.,control = cforest_unbiased(mtry = 2, ntree = 50), data=train)
varimp(crf)

#note to use conditional functionality the 9.999 version of Party is needed and R .=2.9 
varimp(crf, conditional=true)
# note this feature currently requires even for small data set  a lot computational 
resources and memory

Why this is still cutting edge?
This requires a great deal of memory; for a small data set it can take up to 3 gig
Also variables with too many levels bog down conditional variable importance.
Regardless this is an important development and look to future versions of the package or 
more efficient and scalable implementations.  If you have computing resources available 
then using a more accurate measure like conditional variable importance is advisable.

#model based recursive paritioning
library(party)
model<-mob(good_bad~afford | 
amount+other+checking+duration+savings+marital+coapp+proper
ty+resident+amount,data=train, 
model=glinearModel,family=binomial())
 plot(model)
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test$mobscore<-predict(model, newdata = test, type = 
c("response"))
pred7<-prediction(test$mobscore,test$good_bad)
perf7 <- performance(pred7,"tpr","fpr")

plot(perf5,col='red',lty=1,main='Tree vs Tree with Prior 
Prob vs. Model Based Tree with Glm'); 
plot(perf6, col='green',add=TRUE,lty=2);
plot(perf7, col='orange',add=TRUE,lty=3);
legend(0.6,0.6,c('simple tree','tree with 90/10 prior', 
'Model based tree with 
logit'),col=c('red','green','orange'),lwd=3)
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