
 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

1 

 

 

 

Statistics Using R  

with Biological Examples 

 

Kim Seefeld, MS, M.Ed.* 

Ernst Linder, Ph.D. 

 

University of New Hampshire, Durham, NH 

Department of Mathematics & Statistics 

 

*Also affiliated with the Dept. of Nephrology and the 
Biostatistics Research Center, Tufts-NEMC, Boston,MA. 

 

 



 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

2 

Preface 

 

This book is a manifestation of my desire to teach researchers in biology  a bit 

more about statistics than an ordinary introductory course covers and to 

introduce the utilization of R as a tool for analyzing their data.  My goal is to 

reach those with little or no training in higher level statistics so that they can do 

more of their own data analysis, communicate more with statisticians, and 

appreciate the great potential statistics has to offer as a tool to answer biological 

questions.  This is necessary in light of the increasing use of higher level 

statistics in biomedical research. I hope it accomplishes this mission and 

encourage its free distribution and use as a course text or supplement. 

I thank all the teachers, professors, and research colleagues who guided my own 

learning – especially those in the statistics and biological research departments 

at the University of Michigan, Michigan State University, Dartmouth Medical 

School, and the University of New Hampshire. I thank the Churchill group at the 

Jackson labs to invite me to Bar Harbor while I was writing the original 

manuscript of this book.  I especially thank Ernst Linder for reviewing and 

working with me on this manuscript, NHCTC for being a great place to teach, 

and my current colleagues at Tufts-NEMC.   

I dedicate this work to all my students – past, present and future  – both those 

that I teach in the classroom and the ones I am “teaching” through my writings.  

I wish you success in your endeavors and encourage you never to quit your 

quest for answers to the research questions that interest you most.   

K Seefeld, May 2007  
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1 

Overview 

The coverage in this book is very different from a traditional introductory 

statistics book or course (of which both authors have taught numerous times).  

The goal of this book is to serve as a primer to higher level statistics for 

researchers in biological fields. We chose topics to cover from current 

bioinformatics literature and from available syllabi from the small but growing 

number of courses titled something like “Statistics for Bioinformatics”.  Many 

of the topics we have chosen (Markov Chains, multivariate analysis) are 

considered advanced level topics, typically taught only to graduate level 

students in statistics.  We felt the need to bring down the level that these topics 

are taught to accommodate interested people with non-statistical background.  In 

doing so we, as much as possible, eliminated using complicated equations and 

mathematical language.  As a cautionary note, we are not hoping to replace a 

graduate level background in statistics, but we do hope to convey a conceptual 

understanding and ability to perform some basic data analysis using these 

concepts as well as better understand the vocabulary and concepts frequently 

appearing in bioinfomatic literature.  We anticipate that this will inspire further 

interest in statistical study as well as make the reader a more educated consumer 

of the bioinformatics literature, able to understand and analyze the statistical 

techniques being used.  This should also help open communication lines 

between statisticians and researchers. 

We (the authors) are both teachers who believe in learning by doing and feel 

there would be little use in presenting statistical concepts without providing 

examples using these concepts. In order to present applied examples, the 

complexity of data analysis needed for bioinformatics requires a sophisticated 

computer data analysis system.  It is not true, as often misperceived by 

researchers, that computer programming languages (such as Java or Perl) or 

office applications (such as spreadsheets or database applications) can replace a 
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statistical applications package.  The majority of functionality needed to perform 

sophisticated data analysis is found only in specialized statistical software.  We 

feel very fortunate to be able to obtain the software application R for use in this 

book.  R has been in active, progressive development by a team of top-notch 

statisticians for several years.  It has matured into one of the best, if not the best, 

sophisticated data analysis programs available. What is most amazing about R is 

that it completely free, making it wonderfully accessible to students and 

researchers.   

The structure of the R software is a base program, providing basic program 

functionality, which can be added onto with smaller specialized program 

modules called packages. One of the biggest growth areas in contributed 

packages in recent years has come from bioinformatics researchers, who have 

contributed packages for QTL and microarray analysis, among other 

applications. Another big advantage is that because R is so flexible and 

extensible, R can unify most (if not all) bioinformatics data analysis tasks in one 

program with add-on packages.  Rather than learn multiple tools, students and 

researchers can use one consistent environment for many tasks. It is because of 

the price of R, extensibility, and the growing use of R in bioinformatics that R 

was chosen as the software for this book.   

The “disadvantage” of R is that there is a learning curve required to master its 

use (however, this is the case with all statistical software).  R is primarily a 

command line environment and requires some minimal programming skills to 

use.  In the beginning of the book we cover enough ground to get one up and 

running with R..  We are assuming the primary interest of the reader is to be an 

applied user of this software and focus on introducing relevant packages and 

how to use the available existing functionality effectively.  However, R is a fully 

extensible system and as an open source project, users are welcome to contribute 

code.  In addition, R is designed to interface well with other technologies, 

including other programming languages and database systems.  Therefore R will 

appeal to computer scientists interested in applying their skills to statistical data 

analysis applications. 

Now, let’s present a conceptual overview of the organization of the book. 

The Basics of R (Ch 2 – 5) 

This section presents an orientation to using R.  Chapter 2 introduces the R 

system and provides guidelines for downloading R and obtaining and installing 

packages.  Chapter 3 introduces how to work with data in R, including how to 

manipulate data, how to save and import/export datasets, and how to get help.  

Chapter 4 covers the rudimentary programming skills required to successfully 

work with R and understand the code examples given in coming chapters.  

Chapter 5 covers basic exploratory data analysis and summary functionality and 

outliners the features of R’s graphics system. 
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Probability Theory and Modeling (Ch 6-9) 

These chapters are probably the most “theoretical” in the book.  They cover a lot 

of basic background information on probability theory and modeling.  Chapters 

6-8 cover probability theory, univariate, and multivariate probability 

distributions respectively.   Although this material may seem more academic 

than applied, this material is important background for understanding Markov 

chains, which are a key application of statistics to bioinformatics as well as for a 

lot of other sequence analysis applications.  Chapter 9 introduces Bayesian data 

analysis, which is a different theoretical perspective on probability that has vast 

applications in bioinformatics.  

Markov Chains (Ch 10-12) 

Chapter 10 introduces the theory of Markov chains, which are a popular method 

of modeling probability processes, and often used in biological sequence 

analysis.  Chapter 11 explains some popular algorithms – the Gibbs sampler and 

the Metropolis Hastings algorithm – that use Markov chains and appear 

extensively in bioinformatics literature.   BRugs is introduced in Chapter 12 

using applied genetics examples. 

Inferential Statistics (Ch 13-15) 

The topics in these chapters are the topics covered in traditional introductory 

statistics courses and should be familiar to most biological researchers.  

Therefore the theory presented for these topics is relatively brief.  Chapter 13 

covers the basics of statistical sampling theory and sampling distributions, but 

added to these basics is some coverage of bootstrapping, a popular inference 

technique in bioinformatics.  Chapter 14 covers hypothesis testing and includes 

instructions on how to do most popular test using R.  Regression and ANOVA 

are covered in Chapter 15 along with a brief introduction to general linear 

models.  

Advanced Topics (Ch 16-17) 

Chapter 16 introduces techniques for working with multivariate datasets, 

including clustering techniques. It is hoped that this book serves as a bridge to 

enable biological researchers to understand the statistical techniques used in 

these packages. 
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2  

The R Environment 

This chapter provides an introduction to the R environment, including an 

overview of the environment, how to obtain and install R, and how to work with 

packages. 

About R  

R is three things: a project, a language, and a software environment.  As a 

project, R is part of the GNU free software project (www.gnu.org), an 

international effort to share software on a free basis, without license restrictions.  

Therefore, R does not cost the user anything to use. The development and 

licensing of R are done under the philosophy that software should be free and 

not proprietary.  This is good for the user, although there are some 

disadvantages.  Mainly, that “R is free software and comes with ABSOLUTELY 

NO WARRANTY.” This statement comes up on the screen every time you start 

R.  There is no quality control team of a software company regulating R as a 

product. 

The R project is largely an academic endeavor, and most of the contributors are 

statisticians. The R project started in 1995 by a group of statisticians at 

University of Auckland and has continued to grow ever since.  Because statistics 

is a cross-disciplinary science, the use of R has appealed to academic 

researchers in various fields of applied statistics.  There are a lot of niches in 

terms of R users, including: environmental statistics, econometrics, medical and 

public health applications, and bioinformatics, among others.  This book is 

mainly concerned with the base R environment, basic statistical applications, 

and the growing number of R packages that are contributed by people in 

biomedical research. 
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The URL for the R project is http://www.r-project.org/. Rather than repeat its 

contents here, we encourage the reader to go ahead and spend some time reading 

the contents of this site to get familiar with the R project. 

As a language R is a dialect of the S language, an object-oriented statistical 

programming language developed in the late 1980’s by AT&T’s Bell labs.  The 

next chapter briefly discusses this language and introduces how to work with 

data objects using the S language. 

The remainder of this chapter is concerned with working with R as a data 

analysis environment.  R is an interactive software application designed 

specifically to perform calculations (a giant calculator of sorts), manipulate data 

(including importing data from other sources, discussed in Chapter 3), and 

produce graphical displays of data and results.  Although it is a command line 

environment, it is not exclusively designed for programmers. It is not at all 

difficulty to use, but it does take a little getting used to, and this and the three 

subsequent chapters are geared mainly toward getting the user acquainted with 

working in R. 

Obtaining and Installing R 

The first thing to do in order to use R is to get a copy of it.  This can be done on 

the Comprehensive R Archive Network, or CRAN, site, illustrated in Figure 2-1.   

 

Figure 2-1 
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The URL for this site is www.cran.r-project.org.  This site will be referred to 

many times (and links to the www.r-project.org site directly through the R 

homepage link on the left menu screen) and the user is advised to make a note of 

these URLs.  The archive site is where you can download R and related 

packages, and the project site is source of information and links that provide 

help (including links to user groups).  

On the top of the right side of the page shown in Figure 2-1 is a section entitled 

“Precompiled Binary Distributions”, this means R versions you can download 

which are already compiled into a program package.  For the technologically 

savvy you can also download R in a non-compiled version and compile it 

yourself (something we will not discuss here) by downloading source code.   

In this sections are links to download R for various operating systems, if you 

click on the Windows link for example; you get the screen depicted in Figure 2-

2. 

 

Figure 2-2 

If you click on “base” (for base package, something discussed in the Packages 

section later in this chapter) you get the screen in Figure 2-3.  The current 

version of R is available for download as the file with filename ending in *.exe 

(executable file, otherwise known as a program). R is constantly being updated 

and new versions are constantly released, although prior versions remain 

available for download.  
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Figure 2-3 

After downloading, the program needs to be installed. Installation is initiated by 

clicking on the “*.exe” icon (* is the filename of the current version) created 

and following the series of instructions presented in dialog boxes, which include 

accepting the user license and whether you want documentation installed.  After 

installation the R program will be accessible from the Windows Start-Programs 

menu system, as well as an installed program in Program Files.   

Installation for Mac and Linux systems follows similar steps.  Although this 

book uses Windows in examples, the operating system used should not make a 

difference when using R and all examples should work under other operating 

systems. 

Exploring the Environment 

When you start up R the screen will look like Figure 2-4.  The environment is 

actually quite plain and simple.  There is a main application window and within 

it a console window.  The main application contains a menu bar with six menus 

and toolbar with eight icons for basic tasks. 
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Figure 2-4 

Let’s explore some of the features of the R environment. 

The Command Line 

The command line is where you interact with R.  This is designated in red and 

has a “>” symbol.  At the command line you type in code telling R what to do.  

You can use R as calculator to perform basic mathematical operations.  Try 

typing some basic arithmetic tasks at the command line.  Hit enter and R will 

compute the requested result: 

> 2+9 

[1] 11 

> 7*8 

[1] 56 

More than one line of code can be entered at the command line.  Subsequent 

lines after the first line are designated by a “+” symbol.  For example if you use 

an opening parenthesis and then hit enter you will get a “+” symbol and can 

continue writing code on the next line: 

> 2*( 

+ 4+6) 

[1] 20 

If you enter something incorrect, or that R does not understand, you will get an 

error message rather than a result: 

> what 

Error: Object "what" not found  
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The Menu Bar 

The menu bar in R is very similar to that in most Windows based programs. It 

contains six pull down menus, which are briefly described below.  Much of the 

functionality provided by the menus is redundant with those available using 

standard windows commands (CTRL+C to copy, for example) and with 

commands you can enter at the command line.  Nevertheless, it is handy to have 

the menu system for quick access to functionality. 

File 

The file menu contains options for opening, saving, and printing R documents, 

as well as the option for exiting the program (which can also be done using the 

close button in the upper right hand corner of the main program window).  The 

options that begin with “load” (“Load Workspace and “Load History”) are 

options to open previously saved work.  The next chapter discusses the different 

save options available in some detail as well as what a workspace and a history 

are in terms of R files.  The option to print is standard and will print the 

information selected.   

Edit 

The edit menu contains the standard functionality of cut, copy and paste, and 

select all.  In addition there is an option to “Clear console” which creates a blank 

workspace with only a command prompt (although objects are still in working 

memory), which can essentially clean a messy desk.  The “Data editor” option 

allows you to access the data editor, a spreadsheet like interface for manually 

editing data discussed in depth in the next chapter.  The last option on the edit 

menu is “GUI preferences” which pops up the Rgui configuration editor, 

allowing you to set options controlling the GUI, such as font size and 

background colors. 

Misc 

The Misc menu contains some functionality not categorized elsewhere.  The 

most notable feature of this menu is the first option c which can also be accessed 

with the ESC key on your keyboard.  This is your panic button should you have 

this misfortune of coding R to do something where it gets stuck, such as 

programming it in a loop which has no end or encountering some other 

unforeseeable snag.  Selecting this option (or ESC) should get the situation 

under control and return the console to a new command line. Always try this 

before doing something more drastic as it will often work. 

The other functionality provided by Misc is listing and removing objects.  We 

will discuss working with objects in the next chapter.   
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Packages 

The packages menu is very important, as it is the easiest way to load and install 

packages to the R system.  Therefore the entire section following this is devoted 

to demonstrating how to use this menu. 

Windows 

The Windows menu provides options for cascading, and tiling windows.  If 

there is more than one window open (for example, the console and a help 

window) you can use the open Windows list on the bottom of this menu to 

access the different open windows. 

Help 

The Help menu directs you to various sources of help and warrants some 

exploration. The first option, called “Console” pops up a dialog box listing a 

cheat sheet of “Information” listing various shortcut keystrokes to perform tasks 

for scrolling and editing in the main console window.   

The next two options provide the FAQ (Frequently Asked Questions) HTML 

documents for R and R for the operating system you are using.  These should 

work whether or not you are connected to the Internet since they are part of the 

program installation.  The FAQ documents provide answers to technical 

questions and are worth browsing through.   

The next section on the help menu contains the options “R language (standard)”, 

“R language (HTML)”, and “Manuals”.  “R language (standard) pops up the 

help dialog box in Figure 2-5. This will popup the help screen for the specified 

term, provided you enter a correct term (which can be hard if you don’t know 

ahead of time what you’re looking for).  This can also be accomplished using 

the help () command, as we will see in the next chapter. 

 

Figure 2-5 

The menu option “R language (HTML)” will produce some HTML based 

documents containing information and links to more documentation.  This 

should be available off-line as part of the R installation.  The next option 

“Manuals” provides a secondary menu with several pdf files of R documents.   
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The remaining options on the Help menu are “Apropos” and “About”.  

“Apropos” pops up a dialog box similar to the help box depicted in Figure 2-5 

but that you only need to enter a partial search term to search R documents.  

“About” pops up a little dialog box about R and the version you are using. 

One of the most difficult tasks in R is finding documentation to help you.  R is 

actually very extensively documented and only a fraction of this documentation 

is available directly using the help menu. However, much of the documentation 

is technical rather than tutorial, and geared more toward the programmer and 

developer rather than the applied user.  More about getting help is discussed in 

the next chapter. 

The Toolbar 

Below the menu bar is the toolbar, depicted in Figure 2-5.  This provides quick 

access icons to the main features of the menu bar.  If you scroll over the icons 

with your mouse slowly you will get rollover messages about the feature of each 

icon.  The stop icon can be useful as a panic button providing the same 

functionality as the Misc menu’s “Stop current computation” option. 

 

Figure 2-5 

Packages 

The basic R installation contains the package base and several other packages 

considered essential enough to include in the main software installation. Exact 

packages included may vary with different versions of R.  Installing and loading 

contributed packages adds additional specialized functionality.  R is essentially a 

modular environment and you install and load the modules (packages) you need.   

You only need to install the packages once to you system, as they are saved 

locally, ready to be loaded whenever you want to use them.  However  

The easiest way to install and load packages is to use the Packages menu, 

although there are equivalent commands to use as well if you prefer the 

command line approach. 

Installing Packages 

In order to use an R package, it must be installed on your system.  That is you 

must have a local copy of the package.  Most packages are available from the 

CRAN site as contributed packages, and can be directly downloaded in R. In 
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order to do this, select “Install package from CRAN” from the Packages menu.  

You must be connected to tine Internet to use this option, and when you do so 

the connection will return a list of packages in a dialog box like that in Figure 2-

6 listing available packages: 

 

Figure 2-6 

Select the package of interest and OK, and R will automatically download the 

package to your computer and put it in the appropriate directory to be loaded on 

command. 

Some packages are not available directly from the CRAN site.  For these 

packages download them to an appropriate folder on your computer from their 

source site.  To install them select the “Install package from local zip file” 

option on the packages menu and R will put them in the appropriate directory. 

Loading Packages 

Whenever you want to use an R package you must not only have installed 

locally you must also load the package during the session you are using it.  This 

makes R more efficient and uses less overhead than if all installed packages are 

loaded every time you use R, but makes the use do a little more work. 

To load an installed package, select the “Load package” option from the 

packages menu.  This produces another dialog box very similar to Figure 2-7, 

only this time the list of packages includes only those packages which are 
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installed locally.  Select the package to load and you should be all set to use the 

features of that package during the current work session.  Load packages 

become unloaded when you quit R and are NOT saved when you save your 

workspace or history (discussed in the next chapter).  Even if you open previous 

work in R you will still need to reload packages you are using the features of. 

R vs. S-Plus 

The other major implementation of the S language, which is a popular statistical 

application, is a commercial package called S-Plus.  This is a full commercial 

product, and is supported by the company that makes it, called Insightful 

(www.insightful.com).  There is a demo version of S-Plus available for 

evaluation purposes.  

R and S-Plus are almost identical in their implementation of the S language.  

Most code written with R can be used with S-Plus and vice versa.  Where R and 

S-Plus differ is in the environment.  S-Plus is a GUI based application 

environment that has many features that allow for data analysis to be more menu 

and pop-up dialog box assisted, requiring less coding by the user.  On the other 

hand, the S-Plus environment has a heavier overhead, and many times code will 

run more efficiently in R as a consequence.  

R and Other Technologies 

Although not a topic that will be covered in this book, it is of interest to note that 

R is not an isolated technology, and a significant part of the R project involves 

implementing methods of using R in conjunction with other technologies.  There 

are many packages available that contain functionality to R users in conjunction 

with other technologies available from the CRAN site.  For example, the 

package ROracle provides functionality to interface R with Oracle databases, 

and package XML contains tools for parsing XML and related files.  Interested 

users should explore these options on the R websites. 
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3  

Basics of Working with R 

This chapter introduces the foundational skills you need to work in R.  These 

include the ability to create and work with data objects, controlling the 

workspace, importing and saving files, and how and where to get additional 

help.   

Using the S Language 

R is based on a programming language known as S.  R is both an 

implementation of the S language that can be considered a language on its own, 

and a software system.  There are some differences in language that are not 

noticeable by the applied user and are not discussed here.   

The S language (and R language, if you consider them distinct languages, which 

is a debatable issue) was specifically designed for statistical programming.  It is 

considered a high level object-oriented statistical programming language, but is 

not very similar to object-oriented languages such as C++ and Java.  There is no 

need to know anything about object-oriented programming, other than the 

general idea of working with objects, in order to be an effective applied user of 

R. 
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The abstract concepts used in object-oriented languages can be confusing. 

However for our purposes, the concept of an object is very easy.  Everything is 

an object in R and using R is all about creating and manipulating objects.  We 

are concerned with two types of objects: function objects and data objects. Data 

objects are variable-named objects that you create to hold data in specified 

forms, which are described in detail in this chapter.  Function objects are the 

objects that perform tasks on data objects, and are obtained as part of the R base 

system, part of an imported package, or can be written from scratch.  We 

immediately start working with function objects in this chapter, but the next 

chapter covers them in more depth, including some basics of writing your own 

functions.  Function objects perform tasks that manipulate data objects, usually 

some type of calculation, graphical presentation, or other data analysis. In 

essence, R is all about creating data objects and manipulating these data objects 

using function objects. 

Structuring Data With Objects 

In R the way that you work with data is to enter data (either directly or indirectly 

by importing a file) and in doing so, you are creating a data object.  The form of 

the data object you create depends on your data analysis needs, but R has a set 

of standard data objects for your use.  They are: scalars, vectors, factors, 

matrices and arrays, lists, and data frames.  The different types of data objects 

handle different modes of data (character, numeric, and logical T/F) and format 

it differently.   The first part of this section briefly explains what these different 

types of data objects are and when to use which object.  The second part of this 

section deals with some general tasks of working with data objects that are of 

general use. 

All data objects generally have three properties.  First they have a type (scalar, 

vector, etc).  Second, they have values (your data) that have a data mode.  

Finally, they generally are assigned a variable name (that you supply, using the 

assignment operator).  Sometimes you will work only transiently with data 

objects, in which case you do not need to name them.  But you should always 

provide a descriptive variable name of a data object you are going to perform 

further manipulations on.  With few exceptions R will allow you to name your 

variables using any name you like. 

Types of Data Objects in R 

Scalars 

The simplest type of object is a scalar.  A scalar is an object with one value.  To 

create a scalar data object, simply assign a value to a variable using the 

assignment operator “<-”.  Note the equals sign is not the assignment operator in 

R and serves other functionality. 
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For example to create scalar data objects x and y: 

> #create scalar data object x with value 5 

> x<-5 

> #create scalar data object y with value 2 

> y<-2 

With scalar data objects of numeric mode, R is a big calculator.  You can 

manipulate scalar objects in R and perform all sorts of algebraic calculations. 

> #some manipulations on scalar objects x and y 

> z<-x+y 

> z 

[1] 7 

> x-y 

[1] 3 

> x*y+2 

[1] 12 

Of course data can also be logical or character mode.  Logical data can be 

entered simply as T or F (no quotes). 

> correctLogic<-T 

> correctLogic 

[1] TRUE 

> incorrectLogic<-"T" 

> incorrectLogic 

[1] "T" 

Character data should always be enclosed with quotations (either single or 

double quotes will do). 

> single<-'singleQuote' 

> double<-"doubleQuote" 

> single 

[1] "singleQuote" 

> double 

[1] "doubleQuote" 

#You will get an error if you enter character data with no quotes at all 

> tryThis<-HAHA 

Error: Object "HAHA" not found 

The function “mode (variable name)” will tell you the mode of a variable. 

> mode(x) 

[1] "numeric" 

> mode(correctLogic) 

[1] "logical" 

> mode(incorrectLogic) 

[1] "character" 

Vectors 

Of course the power of R lies not in its ability to work with simple scalar data 

but in its ability to work with large datasets.  Vectors are the data objects 

probably most used in R and in this book are used literally everywhere. A vector 

can be defined as a set of scalars arranged in a one-dimensional array.  
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Essentially a scalar is a one-dimensional vector.  Data values in a vector are all 

the same mode, but a vector can hold data of any mode. 

Vectors may be entered using the c () function (or “combine values” in a vector) 

and the assignment operator like this: 

> newVector<-c(2,5,5,3,3,6,2,3,5,6,3) 

> newVector 

 [1] 2 5 5 3 3 6 2 3 5 6 3 

 Vectors may also be entered using the scan () function and the assignment 

operator.  This is a good way to enter data easily as you can past in unformatted 

data values from other documents.   

> scannedVector<-scan() 

1: 2 

2: 3 

3: 1 

4: 3 

5: 53 

To stop the scan simply leave an entry blank and press enter. 

6:  

Read 5 items 

Another way to make a vector is to make it out of other vectors: 

> v1<-c(1,2,3) 

> v2<-c(4,5,6) 

You can perform all kinds of operations on vectors, a very powerful and useful 

feature of R, which will be used throughout this book. 

> z<-v1+v2 

> z 

[1] 5 7 9 

Note that if you perform operations on vectors with different lengths (not 

recommended) then the vector with the shorter length is recycled to the length of 

the longer vector so that the first element of the shorter vector is appended to the 

end of that vector (a way of faking that it is of equal length to the longer vector) 

and so forth.  You will get a warning message, but it does let you perform the 

requested operation: 

> x1<-c(1,2,3) 

> x2<-c(3,4) 

> x3<-x1+x2 

Warning message:  

longer object length 

        is not a multiple of shorter object length in: x1 + x2 

> x3 

[1] 4 6 6 

You can also create a vector by joining existing vectors with the c () function: 

> q<-c(v1,v2) 

> q 
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[1] 1 2 3 4 5 6 

 

Vectors that have entries that are all the same can easily be created using the 

“rep” (repeat) function: 

> x<-rep(3,7) 

> x 

[1] 3 3 3 3 3 3 3 

> charvec<-rep("haha",4) 

> charvec 

[1] "haha" "haha" "haha" "haha" 

Factors 

A factor is a special type of character vector.  In most cases character data is 

used to describe the other data, and is not used in calculations.  However, for 

some computations qualitative variables are used.  To store character data as 

qualitative variables, a factor data type is used.  Although most coverage in this 

book is quantitative, we will use qualitative or categorical variables in some 

chapters in this book, notably in experimental design. 

You may create a factor by first creating a character vector, and then converting 

it to a factor type using the factor () function: 

> settings<-c("High","Medium","Low") 

> settings<-factor(settings) 

Notice that this creates “levels” based on the factor values (these are the values 

of categorical variables). 

> settings 

[1] High   Medium Low    

Levels: High Low Medium 

Matrices and Arrays 

Matrices are collections of data values in two dimensions. In mathematics 

matrices have many applications, and a good course in linear algebra is required 

to fully appreciate the usefulness of matrices.  An array is a matrix with more 

than two dimensions.  Formatting data as matrices and arrays provides an 

efficient data structure to perform calculations in a computationally fast and 

efficient manner. 

To declare a matrix in R, use the matrix () function, which takes as arguments a 

data vector and specification parameters for the number of rows and columns.  

Let’s declare a simple 2 by 2 matrix. 

> mat<-matrix(c(2,3,1,5),nrow=2,ncol=2) 

> mat 

     [,1] [,2] 

[1,]    2    1 

[2,]    3    5 
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This book makes no assumption of knowledge of matrix mathematics, and when 

matrices and arrays are used in applied examples, appropriate background 

information will be provided.  Typically the data in an array or matrix is 

numerical. 

Specially structured matrices can also be easily created. For example, creating a 

2 by 3 matrix consisting of all ones can be done as follows: 

> onemat<-matrix(1,nrow=2,ncol=3) 

> onemat 

     [,1] [,2] [,3] 

[1,]    1    1    1 

[2,]    1    1    1 

If you create a matrix with a set of numbers, for example 7 numbers, and you 

specify it to have a set number of columns, for example 3 columns, R will cycle 

through the numbers until it fills all the space specified in the matrix, giving a 

warning about unequal replacement lengths: 

> matrix(c(1,2,3,4,5,6,7),ncol=3) 

     [,1] [,2] [,3] 

[1,]    1    4    7 

[2,]    2    5    1 

[3,]    3    6    2 

Warning message:  

Replacement length not a multiple of the elements to replace in matrix(...)  

Lists 

Lists are the “everything” data objects.  A list, unlike a vector, can contain data 

with different modes under the same variable name and encompass other data 

objects. Lists are useful for organizing information. Creating a list is very 

simple; just use the list () function to assign to a variable the list values.  Note 

that list values are indexed with double bracket sets such as [[1]] rather than 

single bracket sets used by other data objects. 

> myList<-list(5,6,"seven", mat) 

> myList 

[[1]] 

[1] 5 

 

[[2]] 

[1] 6 

 

[[3]] 

[1] "seven" 

 

[[4]] 

     [,1] [,2] 

[1,]    2    1 

[2,]    3    5 
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Data Frames 

Data frames are versatile data objects you can use in R.  You can think of a data 

frame object as a being somewhat like a spreadsheet.  Each column of the data 

frame is a vector.  Within each vector, all data elements must be of the same 

mode.  However, different vectors can be of different modes.  All vectors in a 

data frame must be of the same length.  We will use data frames frequently in 

this book. 

To create a data frame object, let’s first create the vectors that make up the data 

frame (genome size data from www.ornl.gov).: 

> organism<-c("Human","Mouse","Fruit Fly", "Roundworm","Yeast") 

> genomeSizeBP<-c(3000000000,3000000000,135600000,97000000,12100000) 

> estGeneCount<-c(30000,30000,13061,19099,6034) 

Now, with three vectors of equal length we can join these in a data frame using 

the function data.frame () with the vectors we want as the arguments of this 

function.  Note that the format here is “column name”=”vector to add” and the 

equals (not assignment) operator is used.  We are naming columns not creating 

new variables here.  Here, the variable names are used as column names, but 

you could rename the columns with names other than the variable names if you 

like. 

> comparativeGenomeSize<-

data.frame(organism=organism,genomeSizeBP=genomeSizeBP, 

+ estGeneCount=estGeneCount) 

 

 

> comparativeGenomeSize 

   organism genomeSizeBP estGeneCount 

1     Human    3.000e+09        30000 

2     Mouse    3.000e+09        30000 

3 Fruit Fly    1.356e+08        13061 

4 Roundworm    9.700e+07        19099 

5     Yeast    1.210e+07         6034 

Working with Data Objects 

Once you have created a data object, you will often want to perform various 

tasks.  This section discusses some common tasks to access and modify existing 

data objects. Mainly our focus here is on vectors and data frames, since these 

will be the data objects heavily utilized in this book, but similar techniques can 

be applied to other data objects. 

Working with Vectors 

In order to be able to work with a specific element in a data object, first you 

need to be able to identify that specific element.  With vectors this is fairly easy.  

Every element in a vector is assigned an index value in the order in which 

elements were entered.  This index starts with 1, not zero.  To address a specific 
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element in a vector, enter the name of the vector and the element of interest in 

brackets: 

> y<-c(9,2,4) 

> y[2] 

[1] 2 

If you are not certain exactly where your value of interest is but have an idea of 

the range of indexes it may be in, you can look at selected index values of your 

vector using as set of numbers written in the form [start: finish] 

> z<-c(1,2,3,4,12,31,2,51,23,1,23,2341,23,512,32,312,123,21,3) 

> z[3:7] 

[1]  3  4 12 31  2 

You can overwrite a value by re-assigning a new value to that place in the 

vector: 

> z[3]<-7 

> z[3:7] 

[1]  7  4 12 31  2 

To organize your data, function sort will sort your data from smallest to largest 

(additional functional parameters possible to do other ordering) and function 

order will tell you which elements correspond to which order in your vector. 

> sort(z) 

 [1]    1    1    2    2    3    3    4   12   21   23   23   23   31   32   

51 

[16]  123  312  512 2341 

> order(z) 

 [1]  1 10  2  7  3 19  4  5 18  9 11 13  6 15  8 17 16 14 12 

You may want to extract only certain data values from a vector. You can extract 

subsets of data from vectors in two ways.  One is that you can directly identify 

specific elements and assign them to a new variable. The second way is that you 

can create a logical criterion to select certain elements for extraction.  

Illustrating both of these: 

> #extracting specific elements 

> z3<-z[c(2,3)] 

> z3 

[1] 2 7 

> #logical extraction, note syntax 

> z100<-z[z>100] 

> z100 

[1] 2341  512  312  123 

Sometimes, if you are coding a loop for example, you may need to know the 

exact length of your vector.  This is simple in R using the length () function: 

> length(z) 

[1] 19 
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Working with Data Frames  

Because a data frame is a set of vectors, you can use vector tricks mentioned 

above to work with specific elements of each vector within the data frame.  To 

address a specific vector (column) in a data frame, use the “$” operator with the 

specified column of the data frame after the “$”. 

> x<-c(1,3,2,1) 

> y<-c(2,3,4,1) 

> xy<-data.frame(x,y) 

> xy 

  x y 

1 1 2 

2 3 3 

3 2 4 

4 1 1 

> #use q to create new vector extracting x column of dataframe xy 

> q<-xy$x 

> q 

[1] 1 3 2 1 

To address a specific element of a data frame, address that vector with the 

appropriate index: 

> xy$x[2] 

[1] 3 

Commonly you will want to add a row or column to the data frame.  Functions 

rbind, for rows, and cbind, for columns, easily perform these tasks.  Note these 

functions work for matrices as well. 

> #create and bind column z to  

> z<-c(2,1,4,7) 

> xyz<-cbind(xy,z) 

> xyz 

  x y z 

1 1 2 2 

2 3 3 1 

3 2 4 4 

4 1 1 7 

> #create and bind new row w 

> w<-c(3,4,7) 

> xyz<-rbind(xyz,w) 

> xyz 

  x y z 

1 1 2 2 

2 3 3 1 

3 2 4 4 

4 1 1 7 

5 3 4 7 

There are many ways to work with data in data frames; only the basics have 

been touched on here.  The best way to learn these techniques is to use them, 

and many examples of the use of data objects and possible manipulations will be 

presented in this book in the examples presented. 
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Checking and Changing Types 

Sometimes you may forget or not know what type of data you are dealing with, 

so R provides functionality for you to check this.  There is a set of “is.what” 

functions, which provide identification of data object types and modes.  For 

example: 

> x<-c(1,2,3,4) 

> #checking data object type 

> is.vector(x) 

[1] TRUE 

> is.data.frame(x) 

[1] FALSE 

 

> #checking data mode 

> is.character(x) 

[1] FALSE 

> is.numeric(x) 

[1] TRUE 

Sometimes you may want to change the data object type or mode.  To do this R 

provides a series of “as.what” functions where you convert your existing data 

object into a different type or mode. Don’t forget to assign the new data object 

to a variable (either overwriting the existing variable or creating a new one) 

because otherwise the data object conversion will only be transient. 

To change data object types, you may want to convert a vector into a matrix: 

> y<-as.matrix(x) 

> y 

     [,1] 

[1,]    1 

[2,]    2 

[3,]    3 

[4,]    4 

You can also use the “as.what” functionality to change the mode of your data. 

For example, you may want to change a numerical vector to a character mode 

vector. 

> z<-as.character(x) 

> z 

[1] "1" "2" "3" "4" 

R is smart enough to try catching you if you try to do an illogical conversion, 

such as convert character data to numeric mode. It does do the conversion but 

the data is converted to NA values. 

> words<-c("Hello", "Hi") 

> words 

[1] "Hello" "Hi"    

> as.numeric(words) 

[1] NA NA 

Warning message:  

NAs introduced by coercion  
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Missing Data 

Anyone working with empirical data sooner or later deals with a data set that has 

missing values.  R treats missing values by using a special NA value.  You 

should encode missing data in R as NA and convert any data imports with 

missing data in other forms to NA as well, assuming you are not using a 

numerical convention (such as entering 0’s). 

> missingData<-c(1,3,1,NA,2,1) 

> missingData 

[1]  1  3  1 NA  2  1 

If computations are performed on data objects with NA values the NA value is 

carried through to the result. 

> missingData2<-missingData*2 

> missingData2 

[1]  2  6  2 NA  4  2 

If you have a computation problem with an element of a data object and are not 

sure whether that is a missing value, the function is.na can be used to determine 

if the element in question is a NA value. 

> is.na(missingData[1]) 

[1] FALSE 

 

> is.na(missingData[4]) 

[1] TRUE 

Controlling the Workspace 

This section describes some basic housekeeping tasks of listing, deleting, and 

editing existing objects.  Then there is discussion of the different ways of saving 

your workspace. 

Listing and Deleting Objects in Memory 

When working in R and using many data objects, you may lose track of the 

names of the objects you have already created.  Two different functions ls() and 

objects() have redundant functionality in R to list the current objects in current 

workspace memory. 

> ls() 

[1] "q"  "v1" "v2" "x1" "x2" "x3" "z"  

> objects() 

[1] "q"  "v1" "v2" "x1" "x2" "x3" "z"  

Sometimes you will want to remove specific objects from the workspace.  This 

is easily accomplished with the remove function, rm(object) with the object 

name as the argument. 

> rm(q) 
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> ls() 

[1] "v1" "v2" "x1" "x2" "x3" "z"  

> rm(v1, z) 

> ls() 

[1] "v2" "x1" "x2" "x3"  

Editing data objects 

R has a built in data editor which you can use to edit existing data objects.  This 

can be particularly helpful to edit imported files easily to correct entries or if you 

have multiple data entries to edit beyond just simple editing of a particular entry.  

The data editor has a spreadsheet like interface as depicted in Figure 3-1, but has 

no spreadsheet functionality.    

  

Figure 3-1 

To use the data editor, use the data.entry function with the variable being edited 

as the argument: 

> x<-c(3,1,3,5,12,3,12,1,2,3,5,7,3,1,3) 

> data.entry(x) 

All changes made using the data editor are automatically saved when you close 

the data editor. Using the Edit menu option “Data editor”, which brings up a 

dialog box asking which object to edit, is an alternative way to access the data 

editor. 
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Saving your work  

R has a few different options for saving your work: save to file, savehistory, and 

save workspace. Save to file saves everything, savehistory saves commands and 

objects and save image just saves the objects in the workspace. Let’s explain a 

little more about these and how to use them. 

Save to file 

Save to file is an option available under the file menu.  This option saves 

everything – commands and output – to a file and is the most comprehensive 

method of saving your work.  This option produces a save as dialog box, making 

saving the file in a specific directory easy.  It produces a text file format 

viewable in a text editor or word processor or custom specified file type using 

the all files option and typed in file type.  This method of saving is most familiar 

and simplest, but sometimes you may not want to save everything, particularly 

when you have large amounts of output and only want to save commands or 

objects. 

Savehistory 

This history of what you did in a session can be saved in a *.Rhistory file using 

the savehistory function.  This will save everything typed into the command line 

prior to the savehistory() function call in the session without R formatting or 

specific output (versus Save to file which includes all output and formatting). 

> x<-c(1,2,3,4,5) 

> x 

[1] 1 2 3 4 5 

> savehistory(file="shortSession.Rhistory") 

This creates a *.Rhistory file in the main R directory (C:\Program Files\R\* 

where * is the current version of R) unless otherwise specified.  This file should 

be readable by a text editor, such as notepad, as in Figure 3-2. 

 

Figure 3-2 
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Saving workspace image 

The option to save the workspace saves only the objects you have created, not 

any output you have produced using them.  The option to save the workspace 

can be performed at any time using the save.image () command (also available 

as “Save Workspace” under the file menu) or at the end of a session, when R 

will ask you if you want to save the workspace. 

> x<-c(1,2,3,4,5) 

> x 

[1] 1 2 3 4 5 

> save.image() 

This creates an R workspace file.  It defaults to having no specific name (and 

will be overwritten the next time you save a workspace with no specific name), 

but you can do save.image(filename) if you want to save different workspaces 

and name them. 

Note that R will automatically restore the latest saved workspace when you 

restart R with the following message 

[Previously saved workspace restored] 

To intentionally load a previously saved workspace use the load command (also 

available under the file menu as “Load Workspace”). 

> load("C:/Program Files/R/rw1062/.RData") 

> x 

[1] 1 2 3 4 5 

Importing Files 

We have seen that entering data can be done from within R by using the scan 

function, by directly entering data when creating a data object, and by using the 

data editor.  What about when you have a data file that you want to import into 

R, which was made in another program?  This section touches on the basics of 

answering these questions.  

It is of note here that there is a manual available for free on the R site and on the 

R help menu (if manuals were installed as part of the installation) called “R Data 

Import/Export” which covers in detail the functionality R has to import and 

export data. Reading this is highly recommended to the user working 

extensively with importing or exporting data files.  This manual covers 

importing data from spreadsheets, data, and networks.  

The first thing to do before importing any file is to tell R what directory your file 

is in.  Do this by going under the File menu and choosing the “Change dir” 

option”, which produces the dialog box illustrated in Figure 3-3.  Type in or 

browse to the directory of your data file and press the OK button. 



 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

30 

 

Figure 3-3 

Importing using the function read. *() 

The most convenient form to import data into R is to use the read functions, 

notably read.table().  This function will read in a flat file data file, created in 

ASCII text format.  In Notepad you can simply save such a file as a regular text 

file (extension *.txt). Many spreadsheet programs can save data in this format.  

Figure 3-4 gives an example of what this format should look like in Notepad: 

 

Figure 3-4 

Using read.table with arguments of file name and header=T (to capture column 

headings), such a file can easily be read in R as a data frame object: 

> sizeTime<-read.table("sizeTime.txt",header=T) 

> sizeTime 

  Size Time.min. 

1   45       289 

2   32       907 

3   23       891 

4   21       379 

5   49       901 

There are some additional read function variants.  Notably read.csv() which will 

read comma delineated spreadsheet file data, which most spreadsheets can save 

files as. 



 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

31 

Importing with scan () 

The scan function can be used with an argument of a file name to import files of 

different types, notably text files (extension *.txt) or comma separated data files 

(extension *.csv).  Data from most spreadsheet programs can be saved in one or 

both of these file types.  Note that scan() tends to produce formatting problems 

when reading files much more often than read and is not recommended for 

importing files. 

 Package foreign 

Also of note is an R package called foreign.  This package contains functionality 

for importing data into R that is formatted by most other statistical software 

packages, including SAS, SPSS, STRATA and others.  Package foreign is 

available for download and installation from the CRAN site. 

Troubleshooting Importing 

Finally, sometimes you may have data in a format R will not understand.  

Sometimes for trouble imports with formatting that R cannot read, using scan () 

or the data editor to enter your data may be a simple and easy solution.   Another 

trick is to try importing the data into another program, such as a spreadsheet 

program, and saving it as a different file type.  In particular saving spreadsheet 

data in a text (comma or tab delineated) format is simple and useful.  Caution 

should be used as some spreadsheet programs may restrict the number of data 

values to be stored. 

Getting Help 

Virtually everything in R has some type of accessible help documentation.  The 

challenge is finding the documentation that answers your question.  This section 

gives some suggestions for where to look for help. 

Program Help Files 

The quickest and most accessible source of help when using R is to use the on-

line help system that is part of R.  This includes on-line documentation for the R 

base packages, as well as on-line documentation for any loaded packages.  

Finding help when you know the name of what it is your asking for help on is 

easy, just use the help function with the topic of interest as the argument of the 

help function.  For example to get help on function sum: 

> help(sum) 

This produces a help file as depicted in Figure 3-5. 
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Figure 3-5 

As an alternative to calling the help function you can just put a question mark in 

front of the topic of interest: 

> ?sum 

If you don’t know the exact name of what you’re looking for, the apropos() 

function can help. To use this function type in a part of the word you are looking 

for using quotes as the function argument.  The result of calling apropos is that 

you will get a list of everything that matches that clue, as in Figure 3-6 for 

apropos(“su”),  and you can then do a help search on your term of interest. 
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Figure 3-6 

Note that on-line help is especially useful for describing function parameters, 

which this book will not discuss in great detail because many functions in R 

have lots of optional parameters (read.table for example has about 12 different 

optional parameters).  The reader should be comfortable with looking up 

functions using help to get detailed parameter information to use R functions to 

suit their needs. 

Documents 

The R system and most packages are fairly well documented, although the 

documentation tends to be technical rather than tutorial.  The R system itself 

comes with several documents that are installed as part of the system 

(recommended option).  These are under the “Manuals” option on the “Help” 

menu. 

In addition to manuals that cover R in general, most packages have their own 

documents.  R has a system where package contributors create pdf files in 

standard formats with explain the technical details of the package, including a 

description of the package and its functionality.  These documents also generally 

list the name and contact information for the author(s) of the package.  These 

documents are available from the “Package Sources” section of the CRAN site 

(cran.r-project.org) where the relevant package is listed and are always listed as 

Reference Manual, although they save with a file name corresponding to the 
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package name.  They can be downloaded and saved or viewed on-line using a 

web browser that reads pdf files. 

Books 

There are several books written that are about or utilize R.  In addition, there are 

several books that cover the related topics of S and S-Plus.  These are included 

in the resource section at the end of the book. 

On-line Discussion Forums 

One of the best sources of help if you have a specific question is the on-line 

discussion forums where people talk about R.  These forums serve as “technical 

support” since R is open source and has no formal support system.  There are 

usually many well-informed users who regularly read these discussion lists.  A 

guide to such lists is found at www.r-project.org as depicted in Figure 3-7.  In 

addition many other forums exist on the web where questions about R may be 

posted. 

 

Figure 3-7 
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4 

Programming with R 

The goal of this chapter is for the reader to become acquainted with the basics of 

programming in R – using correct syntax, using logical statements, and writing 

function.  This should empower the reader with a minimal set of programming 

skills required to effectively use R.  No prior programming knowledge is 

assumed, however this would be helpful as many of the programming 

techniques R are similar to those of other high-level programming languages.  

Variables and Assignment 

The foundation of programming is using variables and assigning values to those 

variables.  We have already seen in the previous chapter numerous examples of 

using the assignment operator “<-“to assign a value to a variable.  Most of what 

we did in the previous chapter involved creating data objects and assigning the 

values and type of data object to a variable.  This chapter will assign the results 

of function calls to variables as well. 

Syntax 

R is not incredibly fussy as far as syntax goes in comparison to other high-level 

languages.  There are almost no restrictions on variable names, although you 

should use descriptive names whenever possible.  As far as punctuation is 

concerned, semicolons are required to separate statements if they are typed on a 

single line, but are not required if statements are written on separate lines.   

> x <- 5; y <- 7  # Same as the following two lines 

> x <- 5 
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> y <- 7 

In R there is a great deal of room for personal style in terms of how you write 

your code.  In particular you may insert spaces wherever you please.  This is 

useful for making code look nice and easy to analyze. 

> x<-y^2/5   # Same as the following 

> x <- y^2 / 5 

For most tasks there are many correct ways to achieve the goal 

One standard however is comments, which are always written starting with “#” 

# This is a comment   

Many comments are written throughout the text.   

Another important thing to note is that R is always case sensitive.  This means 

that lower case letters have a different meaning from upper case letters.  The 

word MyVariable is not the same as myvariable, and the two would be treated 

separately if used to hold variables as illustrated below: 

> MyVariable<-5 

> MyVariable 

[1] 5 

> myvariable 

Error: Object "myvariable" not found 

If you get the error object not found message (as above) and you are sure you 

created a variable of that name, check the case (or do an ls() to check all current 

objects in the workspace). 

Arithmetic Operators 

The basic arithmetic operators are listed in Table 4-1.  The usual algebraic rules 

of precedence apply (multiplication and division take precedence over addition 

and subtraction).  Use parenthesis “( )” to separate operations of priority out.  Do 

not use bracket sets “[ ]” or “{}” as these are for other purposes in R.  Using 

arithmetic operators is very simple, and operations can be performed directly on 

numbers or on variables.  Some trivial examples are listed below: 

> 2+4 

[1] 6 

> y<-0 

> x<-4 

> x*y^2 

[1] 0 

> x^4 

[1] 256 

> z<-5 

> (x+y)*z/x 

[1] 5 
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Table 4-1: Arithmetic Operators 

Operator Functionality 

+ Addition 

- Subtraction 

* Multiplication 

/ Division 

^ Raised to a power 

Logical and Relational Operators 

Logical and relational operators are used when you want to selectively execute 

code based on certain conditions. Table 4-3 lists the commonly used logical and 

relational operators.   Using logical and relational operators is a form of flow 

control to determine the action the program will take.  Essentially flow control 

of a program can be thought of as being in three layers – order (sequence of 

code written), selection (use of logical and relational operators), and repetition 

(or looping).  Order is self-explanatory, selection is discussed in this section, and 

repetition is covered in the next section. 

Table 4-3: Logical and Relational Operators 

Operator Functionality 

& And 

| Or 

! Not 

== Equal to 

!= Not equal to 

< Less than 

> Greater than 

<= Less than or equal to 

>= Greater than or equal 

to 
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Usually logical and relational operators are used with conditional programming 

statements if and else.  The if statement can be used alone or with the else 

statement.  The form of the if statement is: 

if (condition is true) 

 then do this 

The condition in parenthesis usually will use a relational operator to determine if 

the condition is true. When the if statement is used alone, and the condition in 

parenthesis is not true then nothing happens.  For example: 

> x<-6 

> y<-2 

> #if x is less than or equal to y then add them to get z 

> if(x<=y)z<-x+y 

> #condition is not true so nothing happens 

> z 

Error: Object "z" not found 

> #if the reverse relational operator is used 

> #then the condition is true and z is assigned x+y 

> if(x>=y)z<-x+y 

> z 

[1] 8 

To get something to happen if the condition in parenthesis is not true, use if in 

conjunction with else to specify an alternative.  Note that there is not a condition 

in parenthesis after the else statement.  In this case the code following else will 

execute as long as the if condition is not true. 

if (condition is true) 

 then do this 

else  

 do this 

For example: 

> q<-3 

> t<-5 

> # if else conditional statement written on one line 

> if(q<t){w<-q+t} else w<-q-t 

> w 

[1] 8 

Note the use of {} brackets around some of the code.  These curly bracket sets 

are frequently used to block sections of code, and will indicate code continues 

on the next line.  This code can also be written: 

> if(q<t){ 

+ w<-q+t 

+ }else  

+ w<-q-t 

This separates the code onto different lines, which is unnecessary for this simple 

case but with longer code it becomes unwieldy to write all the code on one line. 
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The logical operators, &, |, and ! can be used to add additional selection criteria 

to a selection statement.    

For example if you want to simultaneously select based on two criteria you can 

use the and (&) operator or the or (|) operator: 

> a<-2 

> b<-3 

> c<-4 

 

> #Using and to test two conditions, both true 

> if(a<b & b<c) x<-a+b+c 

> x 

[1] 9 

 

> #Using and to test two conditions, one is false 

> if(a>b & b<c) y<-a-b-c 

> y 

Error: Object "y" not found 

 

> #Using or to test two conditions, both false 

> if(a==b | a>c) z<-a*b*c 

> z 

Error: Object "z" not found 

 

> #Using or to test two conditions, one true 

> if(a<b | a>c) z<-a*b*c 

> z 

[1] 24 

The not operator (!) is used for many purposes including selecting based on 

inequality (“not equal to”): 

> w<-2 

> #  

> if(w!=3)v<-w 

> v 

[1] 2 

 

> #  

> if(w!=2)u<-w 

> u 

Error: Object "u" not found 

Looping 

Control by repetition, or looping, allows you to efficiently repeat code without 

having to write the same code over and over.  In R two common looping 

expressions are while and for. 

The while loop repeats a condition while the expression in parenthesis holds true 

and takes the form  
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while (condition controlling flow is true) 

 perform task 

For example suppose we want to execute adding 1 to the variable x while x<=5: 

 

> x<-0 

> while(x<=5){x<-x+1} 

> x 

[1] 6 

Note that x=6 at the end because the loop is still true at the beginning of the loop 

when x=5. 

For loops are used to iterate through a process a specified number of times.  A 

counter variable (usually designated by a lowercase letter  ”i”) is used to count 

how many times the loop is executed: 

for (i in start:finish) 

 execute task 

As an example, if you want to initialize a vector with values you can loop 

through it to assign the values: 

> y<-vector(mode="numeric") 

> for(i in 1:10){ 

+ y[i]<-i} 

> y 

 [1] 1 2 3 4 5 6 7 8 9 10 

For loops can also be nested (one inside the other) to initialize matrices or 

perform similar tasks: 

> z<-matrix(nrow=2,ncol=4) 

 

> for(i in 1:2){ 

+ for(j in 1:4) z[i,j]<-i+j} 

> z 

 

     [,1] [,2] [,3] [,4] 

[1,]    2    3    4    5 

[2,]    3    4    5    6 

Subsetting with Logical Operators 

Although they are handy for doing simple repetitive tasks, for loops are not used 

as often in R as they are in other languages and are not recommended because 

they tend to be memory intensive, which can cause problems.  Looping through 

10,000 matrix data objects, for example, may not be a good idea.  Fortunately R 

provides powerful alternatives to looping in the form of subsetting with logical 

operators.  Subsetting is available for vectors, matrices, data frames and arrays 

using the [,] brackets.  
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Subsetting with logical operators is based on the following simple fact: Every 

logical statement produces one of the outcomes TRUE or FALSE.  For example:  

> x <- 7 ; y <- 3 

> x > y 

[1]  TRUE 

> x < y 

[1]  FALSE 

Logical operators applied to vectors, matrices etc. will result in an object of the 

same dimension consisting of entries TRUE or FALSE depending on whether 

the statement is true for the particular element. For example: 

> x <- 1:6 

> y <- rep(4,6) 

> x > y 

[1] FALSE FALSE FALSE FALSE  TRUE  TRUE 

> x <= y 

[1]  TRUE  TRUE  TRUE  TRUE FALSE FALSE 

> x == y 

[1] FALSE FALSE FALSE  TRUE FALSE FALSE 

If we use the outcomes of a logical vector statement for subsetting a vector, only 

the elements where the outcomes are equals TRUE will be selected. 

> # Select the elements of the vector (11:16) where x <= y 

> (11:16)[x <=y ]    

[1] 11 12 13 14 

> # Select the elements of the vector (11:16) where x = y 

> (11:16)[x == y] 

[1] 14 

Similar statements apply to matrices, data frames and arrays such as: 

> A <- matrix(1:6,nrow=2) 

> A 

     [,1] [,2] [,3] 

[1,]    1    3    5 

[2,]    2    4    6 

 

> A > 3 

      [,1]  [,2] [,3] 

[1,] FALSE FALSE TRUE 

[2,] FALSE  TRUE TRUE 

An interesting way of “grabbing” elements out of a matrix is by subsetting as 

follows.  Note that the result is a vector of elements. 

> A[A > 3] 

[1] 4 5 6 

Functions 

A function is a module of code that performs a specific task.  Functions are 

called by another line of code that sends a request to the function to do 
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something or return a variable.  The function call may or may not pass 

arguments to the function.  A function takes the general form 

functionName<-function(arg1, arg2…){ 

 do this } 

Note that the assignment operator assigns the function to the function name.  An 

alternative to this is to user an underline “functionName_function()” which you 

will see as well, although this may be deprecated in the most recent version.  

The functionName is a variable and creates an object.  The word function is 

always explicitly used to define the variable as a function object. 

The ”do this” task is performed and/or the value is returned to the calling code. 

You should write functions when you have a repetitive task to do. This sections 

looks at using existing functions, and then at how to write functions.  

Throughout this book functions are used extensively. 

Using Existing Functions  

Even in the base package (with no additional packages installed) R supplies a 

large number of pre-written functions for you to use. Additional packages are 

filled with additional functions, usually with related functions for related tasks 

packaged together. The simplest functions are functions that perform basic 

mathematical tasks.  Some selected mathematical functions for common 

operations are listed in Table 4-2.  R has functionality pre-written for virtually 

any standard mathematical tasks. Table 4-2 

Function Operation Performed 

sqrt(x) Square root of x 

abs(x) Absolute value 

sin(x), tan(x), cos(x) Trigonometric functions 

exp(x) Exponential 

log(x) Natural logarithm 

log10(x) Base 10 logarithm 

ceiling(x) Closest integer not less than x 

floor(x) Closest integer not greater x 

round(x) Closest integer to the element  
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To use base package functions, simply call the function (these are always 

installed when you run R): 

> z<-c(1,2,3,4,5,6) 

> sum(z) 

[1] 21 

If you plan on using the results of the function call for other calculations, you 

should assign the result to a variable: 

> y<-sum(z) 

> y 

[1] 21 

To use functions from packages, always remember you have to have the 

package installed and loaded in order to use its functions!  

Writing Functions 

With R, you should always do some research before writing a complex 

statistical procedure function.  Chances are, if it’s a standard procedure, the 

functionality has already been written.  Use the on-line resources and mailing 

list of the R community to search for what you need.  If you do write novel 

functionality that may be of use to others, consider contributing it to the R 

community as a small package. 

However, there will be many times you will want to write a task-oriented 

function to do some simple routine manipulations. Let’s return to the data frame 

from the last chapter with data on gene counts and genome sizes for selected 

organisms: 

comparativeGenomeSize 

   organism genomeSizeBP estGeneCount 

1     Human    3.000e+09        30000 

2     Mouse    3.000e+09        30000 

3 Fruit Fly    1.356e+08        13061 

4 Roundworm    9.700e+07        19099 

5     Yeast    1.210e+07         6034 

Let’s add a column to this data frame calculating base pairs per gene.  To do 

this, let’s write function that takes as arguments the genome size and estimated 

gene count information, and calculates from this the estimated bp per gene: 

> #function geneDensity simply calculates bp per gene 

> geneDensity<-function(bp,genes){ 

+ bp/genes} 

 

> #pass data frame columns to function geneDensity 

> #storing results in variable bpPerGene 

> bpPerGene<-geneDensity(comparativeGenomeSize$genomeSizeBP, 

+ comparativeGenomeSize$estGeneCount) 

> #result of function computation 

> bpPerGene 

[1] 100000.000 100000.000  10382.053   5078.800   2005.303 
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To round the numbers to the nearest integer we can call round, one of the simple 

math functions from Table 4-2: 

> bpPerGene<-round(bpPerGene) 

> bpPerGene 

[1] 100000 100000  10382   5079   2005 

Next, to create a new data frame with all the information we can use techniques 

of data frame manipulation from the previous chapter: 

> comparativeGenomes<-cbind(comparativeGenomeSize,bpPerGene) 

> comparativeGenomes 

   organism genomeSizeBP estGeneCount bpPerGene 

1     Human    3.000e+09        30000    100000 

2     Mouse    3.000e+09        30000    100000 

3 Fruit Fly    1.356e+08        13061     10382 

4 Roundworm    9.700e+07        19099      5079 

5     Yeast    1.210e+07         6034      2005 

This book is filled with additional examples of task-oriented functions and you 

should readily become fluent in their use. 

Package Creation 

One of the most important features of R is that it allows the user to create 

packages and contribute these to the R community for others to use.  The 

discussion of how to create packages is beyond our coverage here.  However, 

the document “Writing R Extensions” covers the process of creating a package 

(which is not technically difficult).  This document is available as part of the 

(optional installation) help files with the program or by download from the 

CRAN site. 



 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

45 

5  

Exploratory Data Analysis and 
Graphics 

This chapter presents some rudimentary ways to look at data using basic 

statistical summaries and graphs.  This is an overview chapter that presents 

basics for topics that will be built on throughout this book.   

Exploratory Data Analysis 

This section covers ways to quickly look at and summarize a data set using R.  

Much of this material should be familiar to anyone who studied introductory 

statistics.   

Data Summary Functions in R 

Table 5-1 lists many of the basic functions in R that are used to summarize data.  

Notice that usually, the function name is what you would expect to be in most 

cases, as R is designed to be rather intuitive.  For example, the function to find 

the mean (or average value) of a data vector x is simply mean(x).   

For functions not listed in table 5-1, try help and the expected name or using the 

apropos() function with part of the expected name to find the exact function call.  

It will probably be what you expect it to be. Most of the functions in table 5-1 do 

not have additional parameters, and will work for a data vector, matrix or data 

frame. 
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Table 5-1: Some Data Summary Functions 

Function name Task performed 

sum(x) Sums the elements in x 

prod(x) Product of the elements in x 

max(x) Maximum element in x 

min(x) Minimum element in x 

range(x) Range (min to max) of elements in x 

length(x) Number of elements in x 

mean(x) Mean (average value) of elements in x. 

median(x) Median (middle value) of elements in 

x 

var(x) Variance of elements in x 

sd(x) Standard deviation of element in x 

cor(x,y) Correlation between x and y 

quantile(x,p) The p
th

 quantile of x 

cov(x,y) Covariance between x and y 

 Let’s apply some of these functions using an example.   

> x<-c(0.5,0.2,0.24,0.12,0.3,0.12,0.2,0.13,0.12,0.12,0.32,0.19) 

> sum(x) 

[1] 2.56 

> prod(x) 

[1] 2.360122e-09 

> max(x) 

[1] 0.5 

> min(x) 

[1] 0.12 

> range(x) 

[1] 0.12 0.50 

> length(x) 

[1] 12 

> mean(x) 

[1] 0.2133333 

> median(x) 

[1] 0.195 

> var(x) 
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[1] 0.01313333 

> sd(x) 

[1] 0.1146008 

Often, you will use these basic descriptive functions as part formulas for other 

calculations.  For example, the standard deviation (supposing we didn’t know it 

had its own function) is the square root of the variance and can be calculated as: 

> sd<-var(x)^0.5 

> sd 

[1] 0.1146008 

The summary() Function 

Suppose we have an enzyme that breaks up protein chains, which we’ll call 

ChopAse.  Suppose we have three varieties of this enzyme, made by three 

companies (producing the same enzyme chemically but prepared differently).  

We do some assays on the same 200 amino acid protein chain and get the 

following results for digestion time based on variety: 

> ChopAse 

  varietyA timeA varietyB timeB varietyC timeC 

1        a  0.12        b  0.12        c  0.13 

2        a  0.13        b  0.14        c  0.12 

3        a  0.13        b  0.13        c  0.11 

4        a  0.12        b  0.15        c  0.13 

5        a  0.13        b  0.13        c  0.12 

6        a  0.12        b  0.13        c  0.13 

Based on this data and the way it is presented it is difficult to determine any 

useful information about the three varieties of Chopase and how they differ in 

activity.  Here is a case where using the summary function can be very useful as 

a screening tool to look for interesting trends in the data.  

The summary function simultaneously calls many of the descriptive functions 

listed in Table 5-1, and can be very useful when working with large datasets in 

data frames to present quickly some basic descriptive statistics, as in the 

ChopAse example: 

> summary(ChopAse) 

 varietyA     timeA       varietyB     timeB        varietyC     timeC        

 a:6      Min.   :0.120   b:6      Min.   :0.1200   c:6      Min.   :0.1100   

          1st Qu.:0.120            1st Qu.:0.1300            1st Qu.:0.1200   

          Median :0.125            Median :0.1300            Median :0.1250   

          Mean   :0.125            Mean   :0.1333            Mean   :0.1233   

          3rd Qu.:0.130            3rd Qu.:0.1375            3rd Qu.:0.1300   

          Max.   :0.130            Max.   :0.1500            Max.   :0.1300   

This gives some quick quantitative information about the dataset without having 

to break up the data frame or do multiple function calls. For example the mean 

for variety B appears higher then the mean time for varieties A or C.  This may 

be statistically significant, and this observation can be utilized for statistical 

testing of differences (such as those covered in Chapter 13).   



 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

48 

Working with Graphics 

Of course, it is often most interesting to present data being explored in a 

graphical format.  R supports a variety of graphical formats in the base package, 

and numerous other packages provide additional graphics functionality. This 

section focuses on understanding the graphics environment in R and how to 

control features of the graphics environment.  Some basic graph types are 

introduced, however many more examples of graphs are introduced in various 

chapters in a more specialized context. 

Graphics Technology in R 

At startup, R initiates a graphics device drive.  This driver controls a special 

graphics window for the display of graphics.  To open this window without 

calling graphics, use the function call windows() (for Windows operating 

systems, it is x11() on Unix, and macintosh() on Mac O/S). 

Commands for using graphics in R can be categorized into three types: high-

level plotting functions, low-level plotting functions, and graphical parameter 

functions. Let’s look at each of these types of plotting commands. 

High-Level Plotting Functions 

High-level plotting functions create a new plot on the graphics device.  The 

simplest high level plotting function is plot(), as illustrated below  

> x<-c(1,2,3,4,5,6,7,8) 

> y<-c(1,2,3,4,5,6,7,8) 

> plot(x,y) 

This produces the simple graph in Figure 5-1.  Plot also works with only one 

argument, ex: plot(x), except in this case the plot would be of the values of 

vector x on the y-axis and the indices of value x on the x- axis (which would 

appear identical to Figure 5-1 in this case, try it!).  Plot is a generic function and 

has a diverse set of optional arguments.  For example, if you type in help (plot) 

you get the help screen shown in Figure 5-2.  Under the usage section is the list 

of the function and most of the parameters, which are described in more detail in 

the arguments section of help below.  Note there are parameters for labeling the 

x and y axises, main for a main title, and parameters for controlling the axis 

lengths (for example, we could have included a y range from 0 to 20 if we 

wanted).  These parameter arguments are pretty standard for most of the high 

level plotting functions in R. Unless specified all the arguments are set to 

defaults, such as those utilized in Figure 5-1. 
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Figure 5-1 

 

Figure 5-2 

For example, suppose we want to make a little fancier plot than the one in 

Figure 5-1 and use some of the parameters available: 

> plot(x,y,xlim=range(0:10),ylim=range(0:10),type='b',main="X vs Y") 

This changes the x and y ranges on the graph from 1 to 8, to 0 to 10.  It also 

changes the type of plot from the default of points, to both points and lines.  In 

addition it adds the main title to the graph “X vs Y”. 
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Figure 5-3 

Table 5-2 lists other selected high-level plotting functions: 

Table 5-2:  Selected High-Level Plotting Functions 

Function name Plot produced 

boxplot(x) “Box and whiskers” plot 

pie(x) Circular pie chart 

hist(x) Histogram of the frequencies of x 

barplot(x) Histogram of the values of x 

stripchart(x) Plots values of x along a line 

dotchart(x) Cleveland dot plot 

pairs(x) For a matrix x, plots all bivariate pairs  

plot.ts(x) Plot of x with respect to time (index values of the 

vector unless specified) 

contour(x,y,z) Contour plot of vectors x and y, z must be a matrix of 

dimension rows=x and columns=y 

image(x,y,z) Same as contour plot but uses colors instead of lines 

persp(x,y,z) 3-d contour plot 
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Rather than illustrate further examples here, virtually all of the high-level 

plotting functions in Table 5-2 are utilized in coming chapters of this book. 

Low-Level Plotting Functions 

Low-level plotting functions add additional information to an existing plot, such 

as adding lines to an existing graph. Note that there is some redundancy of low-

level plotting functions with arguments of high-level plotting functions.  For 

example, adding titles can be done as arguments of a high-level function 

(main=””, etc) or as a low-level plotting function (title(main=””), etc). 

For example, let’s return to Figure 5-1.  We could add to this plot in several 

ways using low-level plotting functions.  Let’s add a title, some text indicating 

the slope of the line and a line connecting the points. 

> text(4,6,label="Slope=1") 

> title("X vs Y") 

> lines(x,y) 

This embellishes the plot in Figure 5-1 to become the plot in Figure 5-4. 

 

Figure 5-4 

Table 5-3 lists additional low-level plotting functions.  Note that most of these 

work not just with plot () but with the other high-level plotting functions as well.  

If you are working with multiple plots (as we shall soon see how to do) on one 

graphics window, the low-level plotting function used will apply to the most 

recently added plot only so you should write your code in the appropriate order. 
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Table 5-3:  Selected Low-Level Plotting Functions 

Function name Effect on plot 

points(x,y) Adds points 

lines(x,y) Adds lines 

text(x, y, label=””) Adds text (label=”text”) at coordinates 

(x,y) 

segments(x0,y0,x1,y1) Draws a line from point (x0,y0) to point 

(x1,y1) 

abline(a,b) Draws a line of slope a and intercept b; 

also abline(y= ) and abline(x= ) will draw 

horizontal and vertical lines respectively. 

title(“”) Adds a main title to the plot; also can add 

additional arguments to add subtitles 

rug(x) Draws the data on the x-axis with small 

vertical lines 

rect(x0,y0,x1,y1) Draws a rectangle with specified limits 

(note –good for pointing out a certain 

region of the plot) 

legend(x,y,legend=,…) Adds a legend at coordinate x,y; see 

help(legend) for further details 

axis() Adds additional axis to the current plot 

Graphical Parameter Functions 

Graphical parameter functions can be categorized into two types: those that 

control the graphics window and those that fine-tune the appearance of graphics 

with colors, text, fonts, etc.  Most of these can be controlled with a function in 

the base package called par(), which can be used to access and modify settings 

of the graphics device. 

par() is a very important graphics function, and it is well worth the time to read 

the help document for par, pictured in Figure 5-5.  The settings changed by par 

remain in effect in the current workspace until they are explicitly changed. 
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Figure 5-5: Par() function help 

One of the most common tasks you will want to do with par is to split the 

graphics screen to display more than one plot on the graphic device at one time. 

You can do this with either the mfrow or mfcol parameters of the par function.  

Both mfrow and mfcol takes arguments (rows, columns) for the number of rows 

and columns respectively.  Mfrow draws the plots in row order (row 1 column 1, 

row 1 column 2, etc) whereas mfcol draws plots in column order (row 1 column 

1, row 2 column 1). 

Graphics parameters also control the fine-tuning of how graphics appear in the 

graphics window.  Table 5-4 lists some of the basic graphical parameters.  Most 

of these parameters can be implemented as parameters of par, in which case they 

are implemented in all graphs in a graphics window, or as parameters of high or 

low level plotting functions, in which case they only affect the function 

specified. 

Let’s look at an example that utilizes some of par’s functionality using data from 

NCBI on numbers of base pairs and sequences by year.   

> NCBIdata 

   Year   BasePairs Sequences 

1  1982      680338       606 

2  1983     2274029      2427 

3  1984     3368765      4175 

4  1985     5204420      5700 

5  1986     9615371      9978 

… 

20 2001 15849921438  14976310 

21 2002 28507990166  22318883 
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Table 5-4: Selected Graphical Parameters 

Parameter Specification 

bg Specifies (graphics window) background color 

col Controls the color of symbols, axis, title, etc 

(col.axis, col.lab, col.title, etc) 

font Controls text style (0=normal, 1-=italics, 2=bold, 

3=bold italics) 

lty Specifies line type (1:solid, 2:dashed, 3: dotted, 

etc) 

lwd Controls the width of lines 

cex Controls the sizing of text and symbols 

(cex.axis,cex.lab,etc) 

pch Controls the type of symbols, etiher a number 

from 1 to 25, or any character within “” 

Using the NCBI data, let’s plot base pairs by year plot and sequences by year 

plot on the same graphics window: 

> #Convert Base Pair Data to Millions 

> MBP<-NCBIdata$BasePairs/1000000 

 

> #Convert Sequence Data to Thousands 

> ThousSeq<-NCBIdata$Sequences/1000 

 

> #Set par to have a 2-column (2 graph) setup 

> #Use cex to set label sizes 

> par(mfcol=c(1,2),cex.axis=0.7,cex.lab=1) 

 

> #Plot base pair data by year 

> plot(NCBIdata$Year,MBP,xlab="Year",ylab="BP in Millions", 

+  main="Base Pairs by Year") 

 

> #Add line to plot, color blue  

> lines(NCBIdata$Year,MBP,col="Blue") 

 

> #Similarily, plot sequence data and line 

> plot(NCBIdata$Year,ThousSeq,xlab="Year",ylab="Seq. in Thousands", 

+ main="Sequences by Year") 

> lines(NCBIdata$Year,ThousSeq,col="red") 

The resulting plot is shown in Figure 5-6. 
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Figure 5-6 

Another way to represent this data might be to use barplots, as illustrated in 

Figure 5-7. 

> #Code for Figure 5-7 

> par(mfcol=c(2,1),cex.axis=0.6,cex.lab=0.8) 

> barplot(NCBIdata$BasePairs,names.arg=NCBIdata$Year, 

+ col=grey,xlab="Years",ylab="Base Pairs",main="Base Pairs by Year") 

> barplot(NCBIdata$Sequences,names.arg=NCBIdata$Year, 

+ col=grey,xlab="Years",ylab="Sequences",main="Sequences by Year") 

 

Figure 5-7 
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As illustrated with the plots in Figures 5-6 and 5-7, even relatively simple plots 

in R can require quite a few lines of code and use various parameters.  Most of 

the graphical examples in this book – and there are many of them - will use the 

simplest plotting code possible to illustrate examples, since our focus is on 

understanding techniques of data analysis.  However, the graphic code in R can 

be as complicated as you wish, and only a snapshot of R’s full graphic 

capabilities have been presented here.  R allows for the user to code virtually 

every detail of a graph.  This may seem complicated, but it is a useful capability.  

With a little practice, you can code R to produce custom, publication quality 

graphics to effectively illustrate almost any data analysis result.   

Saving Graphics 

Notice that when the graphics window is active the main menu is different, as 

illustrated in Figure 5-8.  On the File menu there are many options for saving a 

graphic, including different graphical formats (png, bmp, jpg) and other formats 

(metafile, postscript,pdf).  You could also use command line functionality to 

save, but using the options under the File menu is easier and pops up a save as 

dialog box allowing you to choose the directory you are saving the graphic file 

to. 

 

Figure 5-8 

Another option to save a graphic is to simply right mouse click on the graphic, 

which will produce a pop up menu with options to copy or save the graphic in 

various formats as well as to directly print the graphic. In a Windows 
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environment the copy options are as a bitmap or metafile, and the save options 

are as metafile or postscript. 

Additional Graphics Packages 

R has available many packages that add graphical capabilities, enhancing 

graphic capabilities available in the base package.  This section presents some 

selected graphics packages that may be of interest, all of which should be 

available from the CRAN site. 

mimR 

mimR is a package that provides an R interface to a program called MIM.  MIM 

is a software package, which is useful for creating graphical models, including 

directed and chain graphs.  Although MIM is a commercial package, there is a 

free student edition available with limited functionality.  We will see in coming 

chapters that these types of models, which are popular among computer 

scientists, are useful in advanced statistical modeling, such as Bayesian statistics 

and Markov Chain Monte Carlo modeling. 

scatterplot3d 

scatterplot3d is a valuable package that adds functionality that the base package 

lacks, that of producing effective 3d plots.  It is also relatively simple for the 

beginner to use and contains one function scatterplot3d() with many flexible 

parameter options which create many different 3d plots, such as the demo plot in 

Figure 5-9.   
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Figure 5-9 

grid 

Grid is a sophisticated and very useful R package, which provides a “rewrite of 

the graphics layout capabilities” (from package description on CRAN site).  It 

works with base package functionality and adds some better capabilities for 

graphics in R.  Some added functionality available with this package includes: 

allowing interactive editing of graphs, improving axis labeling capabilities, and 

primitive drawing capabilities.   

lattice 

The package lattice is quite sophisticated and contains extensive functionality 

for advanced graphics based on what are referred to often as Trellis graphics 

(the specific type used in other versions of S).  This type of graphics is very 

useful for applications in multivariate statistics as they allow for presenting 

many graphs together using common x- and y-axis scales which is a visually 

effective way for doing comparisons between groups or subgroups.  Cleveland 

(1993) presents the original foundation for this type of graphic. Figure 5-10 

presents one of the demonstrations of a type of plot available in the lattice 

package. 
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Figure 5-10 
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6  

Foundations of Probability 
Theory 

Aristotle         The probable is what usually happens.  

Cicero         Probability is the very guide of life 

Democritus    Everything existing in the universe is the fruit of chance. 

Probability is a mathematical language and framework that allows us to make 

statistical statements and analyze data.  Probability focuses on the description 

and quantification of chance or random events.  Understanding probability is 

key to being able to analyze data to yield meaningful and scientifically valid 

conclusions.   

This chapter introduces some fundamentals of probability theory, beginning 

with an overview of the two schools of thought concerning how to think about 

probability.  After this, some concepts of probability are introduced and finally, 

we begin the study of probability distributions. The contents of this chapter 

serve as an important foundation for subsequent chapters. 

Two Schools of Thought 

Most people who have formally studied probability are familiar with the more 

traditional way of thinking about probability.  However it is important to note 

early on that there are two major approaches to understanding probability and 

statistics.  The second, and less familiar (rarely incorporated into high school 

and college introductory courses), approach is of increasing importance in 

biological applications. 
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The most familiar way of thinking about probability is within a framework of 

repeatable random experiments.  In this view the probability of an event is 

defined as the limiting proportion of times the event would occur given many 

repetitions. A good example of this frequentist definition of probability is 

defining the probability of a coin landing on heads by measuring the proportion 

of times a fair coin lands on its head out of the total times it is tossed. 

Application of the frequentist approach is limited to scenarios where frequent 

repetitions of the same random experiment are possible.  Within the frequentist 

paradigm, applying probability theory to a novel scenario, with no clear 

sampling frame for repetitions of the same experiment, is virtually impossible.  

The second way of thinking about probability allows the incorporation of an 

investigator’s intuitive reasoning.  Instead of exclusively relying on knowledge 

of the proportion of times an event occurs in repeated sampling, this approach 

allows the incorporation of subjective knowledge, such as historical information 

from similar experiments as the one under study, information from experiments 

related to the one under study, an educated guess about outcomes, or even, 

subjective beliefs of the investigator related to the problem under study.  These 

so-called prior probabilities are then updated in a rational way after data are 

collected. The common name for this approach is Bayesian statistics, named 

after Sir Thomas Bayes, a nonconformist English minister who lived from 1702-

1761.  Bayes never published his work in his lifetime, but other mathematicians 

followed up on his work, resulting in the publication and promotion of his ideas.   

Bayesian statistics has experienced explosive growth in recent years, with many 

applications in areas of science, economics, engineering and other fields.  Until 

recently Bayesian statistics was largely theoretical and mathematically complex.  

However, powerful computers and software packages such as R are now 

common and Bayesian statistics theory is now commonly applied in the 

development of powerful algorithms and models that process data in new ways.  

Many of these algorithms and models have applications in bioinformatics, and 

some of these will be introduced in this book. 

The two approaches are based on the same basic rules of probability.  

Understanding both, classical (or frequentist) and Bayesian statistics requires 

knowledge of the theory and methods of probability and probability models.  

Bayesian statistics essentially expands frequentist statistics by combining the 

interpretations of probability, thus increasing applicability of statistics to 

scenarios either not accessible by frequentist statistics or better served by the 

more complex analysis Bayesian statistics has to offer.   

This chapter reviews the essentials of probability and serves as a conceptual 

foundation for much of the material in the subsequent chapters of this section 

and for various other chapters in this book.  Chapter 7 covers specific univariate 

(one-variable) probability models commonly used and chapter 8 covers some 

more advanced probability topics and multivariate probability models. Chapter 9 

specifically introduces Bayesian theory and approaches to modeling. For a more 

in-depth coverage of frequentist probability theory the reader is referred to read 
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a text on probability such as Sheldon Ross’s “A First Course in Probability” or 

other recommended references listed in the appendix. 

Essentials of Probability Theory 

Probability theory is based on the idea of studying random, or chance, outcomes 

of an experiment.   A keyword here is random.  Random means the outcomes of 

the event are not fixed in advanced, and hence when the same experiment is 

repeated the results will likely be somewhat different, resulting in some 

variability in the response.  Randomness is an essential concept in most of 

statistics.  The word experiment is used broadly, and is not limited to planned 

scientific experiments. 

To analyze an experiment in terms of probability, first the set of outcomes of a 

random experiment must be defined.  Then, probabilities can be assigned to 

outcomes of the experiment.  This is best explained by an example.  Suppose the 

experiment is one roll of a standard, six-sided die.  The set of all possible 

outcomes is defined by the set of numbers that represent the number of dots on 

the face of the die that turns up as a result of the die roll. In the case of a 

standard 6-sided die the set is {1,2,3,4,5,6}.  This set, containing all possible 

outcomes of the experiment, is known as the sample space.  A subset of the 

sample space is defined to be an event.  It is to events that probabilities are 

assigned.   

For the sample space {1,2,3,4,5,6} different events can be defined. An event 

may be a single outcome, or a subset containing multiple outcomes.  For 

example, the event could be that the die lands with one dot up.  Because in this 

example all possible outcomes are equally likely and there are six possibilities, 

the probability for this event is 1/6.  Another event could be the event that the 

die lands on an even number, which corresponds to the subset {2,4,6}.  In this 

case the probability of the event is ½.   

Set Operations 

Since the sample space is defined by the set of possible outcomes, it should be 

clear that probability relies on basic operations of set theory. These basic 

operations provide a logical framework for understanding how events relate in 

the sample space. It is helpful to review these here. 

Set theory makes use of Venn diagrams, as depicted in Figure 6-1.  The entire 

diagram represents the sample space, and any sub-area, such as a circle 

represents a particular event. 
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Entire
sample space

Circle
represents an

event

 

Figure 6-1: Basic Venn Diagram 

Set Operation 1: Union  

The union of two events, A and B, in the same sample space, is the event that 

either A or B occurs or both occur.  In casual wording the union can be referred 

to as “A or B occurs” or “at least one of the events A and B occurs”.   

Mathematically the statement for a union is A ∪ B.  The union of A and B is 

depicted in Figure 6-2. 

A B

A∪B  

Figure 6-2: Union of Two Events 

Set Operation 2: Intersection 

The intersection of two events in the same sample space, A and B, is the event 

that contains all outcomes that are common to both A and B. In casual wording 

an intersection can be referred to as “both events A and B occur”.   

Mathematically the statement for an intersection is A ∩ B.  Later in chapter 8 

we will discuss joint probabilities and joint distributions where the concept of 

intersection plays a key role. The intersection of A and B is depicted in the Venn 

diagram in Figure 6-3. 
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A B

A∩B
 

Figure 6 -3: Venn Diagram of the Intersection of Two Events 

Set Operation 3: Complement 

The complement of event A, depicted below and represented mathematically as 

Ac, is the event that A does not occur.  The complement of A consists of all 

outcomes in the sample space that are not in A, as illustrated in Figure 6-4.   It is 

a favorite statistical trick that if the probability of event A is complicated to 

calculate, it is sometimes easier to calculate instead the probability of the 

complement of A (which equals 1 minus the probability of event A). 

AC

A

 

Figure 6-4: Venn Diagram of the Complement of an Event 

Disjoint Events 

Two events, A and B, in the same sample space, are disjoint if their intersection 

contains no elements.  In other words, the intersection of A and B is the empty 

(or null) set, denoted by ∅, as depicted in Figure 6-5.  To put the definition in 

plain English, disjoint events are events that have nothing in common with each 

other. Disjoint events are said to be mutually exclusive, and the terms disjoint 

and mutually exclusive are interchangeable.  As a cautionary note, although the 

terms disjoint and mutually exclusive mean the same thing, these terms should 

not be interchanged with the term independence, which has a completely 

different meaning, to be discussed in chapter 8. 
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Α∩Β=∅

A B

 

Figure 6-5: Intersection of Disjoint Events is the Null Set 

The Fundamental Rules of Probability 

Some simple rules (axioms) are used in probability to guarantee a consistent 

notion of how probability represents the chance of events related to random 

experiments.  Axioms are statements of assumed truth, which do not require 

proof, and serve as the foundation for proving theorems. 

Rule 1: Probability is always positive  

Probability is always positive and the concept of negative probability does not 

exist.  The values of probability of an event A, denoted P (A), must range from 

zero to one, reflecting the concept of probability as a measure of proportion.   

For an event to have probability equal to zero, it means the event is impossible.  

For an event to have probability equal one, it means the event is certain. 

Rule 2: For a given sample space, the sum of 

probabilities is 1 

For a simple example, consider the sample space of the experiment of picking a 

nucleotide at random from the four possible nucleotides.  For this experiment 

the sample space is {A, T, C, G}, as depicted in Figure 6-6, and, assuming equal 

frequencies of all four nucleotides, P (A)=P (T)=P(C)=P (G)=1/4.  Thus, the 

sum of all probabilities for this sample space is one. 

Sample Space = 4 Nucleotides

TC
G

A

 

Figure 6-6: Sample Space for 4 Nucleotides  
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For each event in a sample space where the outcomes have equal probability of 

occurring,  the probability of an event equals the frequency of the event over the 

total events in the sample space.  If the sample space contains 6 nucleotides {G, 

C, A, T, A, C} as depicted in Figure 6-7, then P (A)=P (C) = 1/3 and P (T)=P 

(G)=1/6.  But the sum of events in the sample space is still 1; the probabilities of 

individual nucleotides are changed to reflect the composition of events in the 

sample space. 

Sample Space = 6 Nucleotides

T

A
G

CC

A

 

Figure 6-7:Sample Space for 6 Nucleotides 

This axiom is also what allows the calculation of the complement of an event.  

Suppose in the 4-nucleotide example that only P (A) is known and we want to 

calculate the probability of any other nucleotide (which is the event of the 

complement of A). Using the formula P (Ac) = 1-P (A) this is a trivial task, for 

example if P (A) is 0.25, then P (Ac) =1-0.25 or 0.75. Figure 6-8 depicts the 

complement of A in the shaded out area. 

TC
G

A

Ac=1-P(A)

 

Figure 6-8:The Complement of A is everything in the Sample 

Space Except the Event A 

Rule 3: For disjoint (mutually exclusive) events, P 

(A ∪ B)=P (A) + P (B) 

In the case of disjoint events, there is no intersection of events, so the probability 

of their unions is simply the sum of their probabilities.  For a sample space 

consisting of two disjoint events, the calculation of total probability is trivial 

(P(A)+P(B)=1).  However, many sample spaces consist of many possible 
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outcomes (theoretically up to infinity, but denoted below as n).   In this case, if 

the outcomes are disjoint events, then the probability of all events can be 

represented by  

P (E1) )()...()( EnP3EP2EP ∪∪∪  = P (E1) + P (E2) + P (E3) +. …+P (E 

n) 

Or, in shorthand notation  












=
Υ
n

1i

EiP = ∑
=

n

1i

EiP )(  

For events that are not disjoint, the calculation of P(A U B) must take into 

account the area of intersection for the events, and is calculated as P (A U B)=P 

(A)+P (B)-P (A∩B), subtracting the area of intersection (which otherwise would 

be double counted).  For more than 2 events that are not disjoint this calculation 

becomes more complicated as it is necessary to count any regions of intersection 

only once. 

Counting 

It is also helpful to review here the methods of counting, and how R can be used 

as a tool for helping out with count calculations.    Many times in probability 

you will need to be able to quantify things before assigning probabilities and 

applying counting methods is essential to doing this. The mathematical theory of 

counting is called combinatorial analysis. 

The Fundamental Principle of Counting 

The fundamental principle of counting (alternatively known as the 

multiplication principle), applied to two experiments, is that if the number of 

outcomes of experiment 1 is m, and then number of outcomes of experiment 2 is 

n, then the total number of outcomes for the two experiments is m * n. 

For example, suppose the number of alleles possible for gene A is 3.  In 

probability terms this can be considered as the number of outcomes of 

experiment 1 where the experiment is the choice of alleles for gene A.  And 

suppose the number of alleles for gene B is 5 (outcomes of experiment 2).  The 

total number of outcomes for these two experiments is 3*5 or 15, which is the 

number of possible combined outcomes of gene A and gene B.   

The fundamental principle of counting can be applied to multiple experiments 

by extension of the two-experiment scenario.  If k experiments have outcomes 
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n1, n2, n3…nk, then together the k experiments have a total of n1*n2*n3*…*nk 

possible outcomes. 

For example, suppose a protein complex consists of 5 proteins encoded by 5 

different genes.  Suppose for protein 1 there are 4 genetic alleles, for protein 2 

there are 2 genetic alleles, for protein 3 there are 9 genetic alleles, for protein 4 

there are 11 alleles, and for protein 5 there are 6 alleles.  How many different 

genetic alleles are involved in this protein complex?  The answer is a 

straightforward multiplication of the number of alleles involved in all 5 proteins, 

which equals 4*2*9*11*6 for a total of 4752 possible combinations of alleles 

involved in this 5 protein complex. 

Permutations (Order is Important) 

When picking distinct objects and arranging them there are two scenarios to 

consider: order important and order unimportant.  For example, let’s pick the 

letters a, b, and c.  We can pick three letters and count the number of unique 

ways we can arrange them (order important).  In this case order is important and 

the results is the six combinations: abc, acb, bca, bac, cab, and cba.  There are a 

total of 3!=3*2*1=6 possible permutations of arranging three distinct letters in 

groups of 3. Note the use of the factorial notation and recall that in general n! 

=n*(n-1)*…*1 

A permutation of objects occurs when objects are arranged so that order is 

important. Mathematically the formula for a permutation or an arrangement of r 

out of n distinct objects (order is important) is: 

)!(

!
,

rn

n
rPn

−
=  

Combinations (Order is Not Important) 

What about the case where order is not important?  For example, in the case of 

the letters a, b, c what if all we want to know is how many ways we can select 2 

out of 3 letters, regardless of order?  In this case the answer is 3 because it 

doesn’t matter whether the order of the letters is ab or ba or any of the other 

combinations of two letters. 

A combination of objects occurs when objects are selected and order of 

arrangements is not important.  Mathematically the formula for a combination of 

selecting r out of n distinct objects (order unimportant) is: 

)!(!

!
,

rnr

n
rCn

−
=  
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Note that the number of permutations is related to the number of combinations 

of objects by the following relationship: 

r,Cn!rr,Pn =  

Using permutations and combinatorial calculations, probabilities in a sample 

space where all outcomes are equally likely can be found as the number of 

outcomes that define a particular event over the total number of possible 

outcomes in a sample space.   

Counting in R 

In R, combinations can be calculated using the choose () function.  The choose 

function calculates the combinatorial of the parameters it is given. Choose (n, r), 

with parameter n and r, calculates Cn,r.  For example: 

> #calculate number of combinations of  

> #choosing 3 nucleotides from 4 

> choose(4,3) 

[1] 4 

Introducing the Gamma function 

The ! operator is the logical sign for negation in R and is not used for factorial 

calculations.  This makes factorial calculations in R not so simple as coding 

“n!”. Something else to use when calculating complicated counting tasks in R is 

the gamma function.  The gamma function is a mathematical relationship 

defined by the following formula: 

t
0

1x etx −∞ −
∫=Γ )( dt   (x>0) 

The Greek letter capital gamma is used in )(xΓ .  Of course, in the formula 

written above this seems mathematically complex and exotic, and unless you’re 

a big calculus fan you probably have no interest in evaluating it per se.  

However, the gamma function has a nice identity which can be evaluated for any 

a positive number n: 

)!()( 1nn −=Γ  

In other words, gamma of n is equal to (n-1) factorial.  This can be handy in 

calculating permutations and combinations in R where you can use the function 

gamma (x) where x is the value of the factorial you want to calculate plus 1.  For 

example, to calculate 4! which is equal to 4*3*2*1, you can use gamma (5) in R, 

as below: 
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> #gamma of n+1 calculates n! 

> #to calculate 4! use gamma(5) 

> gamma(5) 

[1] 24 

Gamma functions can be used together to perform any permutation or 

combinatorial counting procedure.  For example, to calculate the numbers of 

unique 8-mer peptide arrangements taken from the 20 amino acids (order is 

important here so it is a permutation), simply use the formula translating the 

permutation into an equation of gamma functions as follows: 

)(

)(

!

!

)!(

!

)!(

!
,

13

21

12

20

820

20

rn

n
rPn

Γ

Γ
==

−
=

−
=  

In R this can simply be calculated as: 

> gamma(21)/gamma(13) 

[1] 5079110400 

Thus there are 5,079,110,400 possible permutations of 8 unique amino acids. 

Although the gamma function may seem strange at first (and is not typically 

taught in lower-end mathematics courses), it is good to become familiar with the 

gamma function.  The gamma function is involved in several continuous 

probability distributions (discussed later in this chapter) including the gamma 

distribution, the beta distribution and the Chi-Square distribution.  Bayesian 

statistics makes use of these distributions and they are heavily used in 

bioinformatics applications. 

Modeling Probability 

Statistics in its mathematical formulation makes extensive use of models to 

represent relationships between variables. Models are written out in the form of 

equations.  Perhaps the most familiar simple mathematical model is the linear 

relationship between a independent variable x and the dependent variable, y.  In 

this case the model is: 

y=mx + b 

where m is the slope of the line and b is the y-intercept of the line.  Another way 

to represent this is to consider y as a function of x, written f(x) so that: 

f(x)=mx + b 

The outcomes of an experiment are also modeled mathematically in a 

probability model.  Probability models provide a way to structure and organize 
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the distribution of data that are the outcomes of an experiment.  The next two 

chapters cover standard probability models commonly used in bioinformatics 

applications.  The remainder of this chapter is devoted to several concepts 

important in understanding probability models: random variables, discrete 

versus continuous variables, probability distributions and densities, parameters, 

and univariate versus multivariate statistics.   

Random Variables 

Probability is based on observing random outcomes of an experiment. To model 

these outcomes using mathematical functions, we use variables called “random 

variables”.  Random variables assign a numerical value to each outcome of an 

experiment.   

For example, consider the RNA sequence below: 

AUGCUUCGAAUGCUGUAUGAUGUC 

In this sequence there are 5 A’s, 9 U’s, 6 G’s, and 4 C’s with a total of 24 

residues.  To model this sequence, the random variable X can be used where X 

represents the nucleotide residues.  Because there are advantages to working 

with quantitative information, when the data is described qualitatively a random 

variable is used to assign a number to the non-numerical outcomes. For this 

experiment let’s assign the random variable values representing A as 0, C as 1, 

G as 2 and U as 3.  A small letter represents the outcome of the random variable, 

so little x can be used here. So, in probability terms, the model represented using 

the random variable X for this experiment is given in Table 6-1. 

Table 6-1: Using Random Variable X to Quantitatively Model 

Residues in a Particular RNA Sequence 

Residue Value of X (=x) P (X=x) 

A 0 5/24=0.208 

C 1 4/24=0.167 

G 2 6/24=0.25 

U 3 9/24=0.375 

If the experiment is to count the frequency of each nucleotide in another 

sequence of RNA, the values of the random variable will be the same but the 

probabilities of the random variable assuming that value will be slightly 

different reflecting the different trials of the experiment. Understanding this 

simple model (which does not even use an equation!) is key to understanding 

more complicated models.  Probability models simply use random variables to 

represent the outcome of an experiment whether it is a simple experiment (as 

above) or a much more complicated experiment with many outcomes.   
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Discrete versus Continuous Random Variables 

Random variables can be discrete or continuous.  Discrete random variables are 

used when the set of possible outcomes (sample space) for an experiment is 

countable.  Although many discrete random variables define sample spaces with 

finite numbers of outcomes, countable does not mean finite. The outcomes can 

be countably infinite (the integers are countably infinite because they are 

discrete and go on forever). Examples of experimental outcomes that are 

modeled with discrete random variables include numbers of people standing in a 

line, number of A’s in a nucleotide sequence, and the number of mutations, 

which occur during a certain time interval. 

A random variable that is not discrete but can assume any value, usually within 

a defined interval, is defined as a continuous random variable. Measurable 

quantities are generally modeled with continuous random variables.  Examples 

of experimental outcomes that can be modeled with continuous random 

variables are: height, weight, intensity of a signal, and time required for a 

radioactive substance to decay.  

Because much of the information bioinformatics deals with is discrete data 

(sequence information is usually analyzed using discrete random variables) the 

emphasis of this book is on this type of data. However continuous random 

variables are not ignored and play an important role in some areas of 

bioinformatics, especially in Bayesian statistics and in microarray analysis. 

Probability Distributions and Densities 

Now with an understanding of the concept of a random variable, whether 

discrete or continuous, we can talk about probability models.  In general terms, 

probability models are assumed forms of distributions of data.  A probability 

model fits the data and describes it. Sometimes the fit is empirical such as the 

example above.  Often the data is fit to a distribution of known form (to be 

discussed in the next two chapters) such as a beta or gamma distribution, other 

times in more complex scenarios the data is fixed to a distribution that is a 

mixture of known forms.   

Every random variable has an associated probability distribution function.  This 

function is called a probability mass function in the case of a discrete random 

variable or probability density function in the case of a continuous random 

variable.  The distribution function is used to model how the outcome 

probabilities are associated with the values of the random variable. In addition 

all random variables (discrete and continuous) have a cumulative distribution 

function, or CDF.  The CDF is a function giving the probability that the random 

variable X is less than or equal to x, for every value x, and models the 

accumulated probability up to that value. 
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For simple discrete random variables, the associated probability distributions 

can be described using a table to “model” the probability as above for the RNA 

analysis example, or alternatively a graph can be used. In R a simple histogram 

(show in Figure 6-9) can be used to model the probability distribution function 

for this example. 

> X<-c(0,1,2,3) 

> Prob<-c(0.208,0.167,0.25,0.375) 

> N<-c (‘A’, ‘C’, ‘G’, ‘U’) 

> barplot(Prob,names=N,ylab="Probability", main="RNA Residue Analysis") 
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Figure 6-9: Histogram Illustrating the Probability Mass 

Function for RNA Residue Example 

To find the cumulative distribution value for this example, simply add up the 

probabilities for each value of X for 0,1,2,3 and the value the CDF is the 

probability that random variable X assumes that or a lesser value. For example if 

X equals 2, the CDF is the probability that X=2 or X=1 or X=0.  To calculate 

this simply total the values for P(X=2) plus P(X=1) plus P( X=0).  For our RNA 

residue example, the calculations for the CDF are shown in Table 6-2. 

Table 6-2: Probability Distribution and Cumulative 

Probability Distribution for RNA Residue Analysis Example  

Residue Value of X (=x) P (X=x) F(x)= P(X ≤  

x) 

A 0 5/24=0.208 0.208 

C 1 4/24=0.167 0.375 

G 2 9/24=0.375 0.625 

U 3 6/24=0.25 1 
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To visually analyze the CDF, a simple step graph of this CDF can be done in R 

by adding the commands below to the previous code. Figure 6-10 shows the plot 

produced. 

>  CumProb<-c(0.208, 0.375, 0.625, 1) 

> plot(X,CumProb,xlim=range(0,1,2,3,4), main="RNA Residue Analysis CDF", 

xlab="X=", type="S") 
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Figure 6-10:  Cumulative Distribution Function for RNA 

Residue Analysis 

Note the step shape of this CDF is characteristic of a discrete random variable 

and illustrates that the cumulative probability starts at 0 and stops at 1, thus 

obeying the basic laws of probability. 

In the case of a continuous random variable, the model for how probability is 

distributed is called a probability density function and is denoted by f(x).  For 

continuous values, probabilities are not assigned to specific discrete 

experimental outcomes but are instead assigned to intervals of values.  There is 

no assigned probability that X=1 when X is a continuous random variable.  

Instead there is a probability assigned with an interval of values surrounding X, 

although that interval can be of values which are VERY close to X but not quite 

exactly X.  Using a little calculus, the probability for a continuous random 

variable is: 

dxxfbxaP
b
a

)()( ∫=<<  

This is also the “area under the curve” on the interval [a, b], which is part of the 

reason why the function is called a “density” function rather than a distribution 

function as in the discrete case.  For a continuous random variable the CDF is 

just like for a discrete random variable except the graph will be continuous (not 
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step) and the F (x) is the interval from negative infinity (or wherever x is 

defined) to the value of x.   

Empirical CDFs and Package stepfun 

A simple method for drawing preliminary conclusions from data about an 

underlying probability model is the plotting of the empirical CDF.  For 

calculating the empirical CDF from n data values we assign a probability of 1/n 

to each outcome and then plot the CDF to this set of probabilities. A useful R 

package when working with empirical data, particularly discrete data, to 

determine and plot empirical CDF is a package called stepfun.  This package 

contains functions that will easily generate an empirical CDF given any data 

vector, and also contains functions to create CDF plot easily. 

For example, suppose we collect data on how many times we spot the sequence 

ATC in 10 randomly chosen 100 base pair DNA stretches and get 

(2,4,2,1,3,4,2,1,3,5) as the result and went to obtain an empirical CDF for the 

distribution of this data. The data can simply be entered and the plot stepfun 

function used to easily generate a CDF plot, as depicted in Figure 6-11.  Stepfun 

makes plotting CDF’s and related graphs much easier. 

> x<-c(2,4,2,1,3,4,2,1,3,5) 

> plot.stepfun(x) 
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Figure 6-11: CDF Plot Example Produced Using Stepfun 

Parameters 

The most general definition of a parameter is “some constant” involved in a 

probability distribution, which although vague is actually a good definition. 

Random variables define the data in a probability model.  Parameters serve to 
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mathematically frame how a probability model fits.  Standard probability 

models use parameters extensively. 

Parameters represent characteristics of the model they are used in and usually 

are classified as different types, such as shape, scale and location, discussed 

below in more detail.  Some distributions have all three types of parameters, 

some have one and some have two.  In some cases parameters serve hybrid 

functionality.  Probability models (including those that we will introduce in the 

next two chapters) can be viewed as families of distributions that have certain 

mathematical forms defined by a function that includes which parameters they 

have. Changing the value of the parameter while utilizing the same 

mathematical model for the distribution will form different family members with 

distinctly appearing distributions. Fitting a distribution is an art and science of 

utmost importance in probability modeling.  The idea is you want a distribution 

to fit your data model “just right” without a fit that is “overfit”.  Over fitting 

models is sometimes a problem in modern data mining methods because the 

models fit can be too specific to a particular data set to be of broader use. 

Shape Parameters 

To look at shape parameters, it is best to illustrate with an example.  Figure 6-12 

is an R generated plot of four probability density models, all of which are 

gamma densities (a family of continuous probability densities to be discussed 

later).  The same data is used but modeled using different values for the shape 

parameter for this distribution (with all other parameters constant).  Notice that 

changing the shape parameter changes how the model fits the data. Families of 

distributions such as the gamma family are particularly useful in modeling 

applications since they are flexible enough to model a variety of data sets by 

using different parameter values. 
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Figure 6-12: Altering a Shape Parameter with Other 

Parameters Held Constant 

Scale Parameters 

A second type of parameter is a scale parameter.  Scale parameters do not 

change the shape of a distribution but change how spread out the distribution is.  

As an illustration, the plot in Figure 6-13 is also of the gamma family of 

distributions and uses the same data as the prior illustration.  All plots in the 

figure use shape parameter 2 but use different scale parameters, as indicated on 

the plots.  Although it may not initially appear so, the plots are the same shapes. 

Note that higher values for the scale parameter result in the shape of the 

distribution being increasingly spread out. 
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Figure 6-13: Altering a Scale Parameter with Other 

Parameters Held Constant  

Location Parameters 

The final type of parameter discussed here is the location parameter.  The 

location parameter specifies where the graph lies along the horizontal (x) axis.  

Changing the location parameter translates the graph along the horizontal axis 

either to the left or to the right. 

To illustrate this perhaps the easiest example uses the normal distribution, or the 

familiar bell curve.  The normal distribution is a continuous probability density 

function that has some nice properties and is frequently used and especially well 

studied in most introductory statistics courses.  One of those nice properties is 

that the mean of the distribution corresponds to the location parameter (and the 

standard deviation corresponds to the scale parameter).  You may wonder that 

since the normal is such a nice model, why do we need all these other models?  

The answer is that in reality data are not often normally distributed and in 

probability many different types of models exist to model many different types 

of distributions of data.   

Shifting the location parameter of the normal distribution shifts where the center 

of the distribution lies. This is illustrated in Figure 6-14 using two plots, one of 

which has mean (location parameter) 0 and the other mean (location parameter) 

4. All other parameters are constant. 
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Figure 6-14: The Effect of changing the Location Parameter  

Even before specific models are introduced you may be wondering how to 

choose a model to use and how to pick values of parameters.  This can be a 

complicated and tricky question.  As models are introduced it will become more 

apparent which models are used for which types of data. The determination of 

parameter values is done in different ways.  Sometimes the parameters can be 

determined from the data, as is the case of the mean and standard deviation of 

normally distributed data.  Sometimes R can be used as a tool to help in 

selecting parameter values for a distribution by computing parameters or by 

graphically looking at the data.  Other times more sophisticated statistical 

methods are used, the techniques of which are beyond the scope of this book and 

consultation with a statistician is advised. 

Univariate versus Multivariate Statistics 

The models introduced in the next are all univariate models, meaning that there 

is only one random variable on which data is measured and one outcome 

probability measure associated with that random variable in the model. Often 

many random variables are measured at the same time. To model how multiple 

random variables affect an outcome of an experiment a more complicated 

branch of statistics, multivariate statistics, is used.  To compare these, suppose 

you are examining the annealing temperature of a DNA PCR primer.  Univariate 

statistics would look how the percentage of one nucleotide affected annealing 

temperature whereas multivariate statistics would take into consideration how 

the composition of all four nucleotides and perhaps environmental conditions 

such as salt concentration affected annealing temperature and other factors. 

Chapter 7 introduces some standard univariate models, and select multivariate 

models are introduced in Chapter 8. 
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7 

Univariate Distributions 

Different random variables have different probability distributions.  Technically 

there are infinitely many possible probability distributions, but some common 

forms appear over and over again in practical applications.  This chapter 

discusses some of the common discrete and continuous univariate distributions 

commonly often encountered in modeling data in biological applications. 

Univariate Discrete Distributions 

Univariate discrete distributions are standard probability models that utilize a 

discrete random variable to define the outcomes of an experiment.  Presented 

here are two models frequently used in analyzing biological data: the binomial 

model and the related Poisson model. 

The Binomial Distribution 

The foundation for the binomial distribution is the Bernoulli random variable.  A 

Bernoulli random variable arises in an experiment where there are only two 

outcomes, generally referred to as “success” and “failure”.   For the success 

outcome the value of the random variable is assigned the value 1, and for the 

failure outcome the value of the random variable is assigned the value 0.  The 

probability of success is a value p, a proportion between 0 and 1.  The 

probability of failure (using the law that probability adds to 1 and that the 

complement probability is 1-probablity of all other events) is 1-p. 
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For a one trial experiment the probability distribution function for a Bernoulli 

experiment is trivial and the distribution of a Bernoulli random variable can be 

written as follows: 

x1x )p1(p)x(p −−=  

where x can take either of the value 0 or 1. 

Let’s consider the case of having a child and use a Bernoulli random variable to 

represent whether the child has blue eyes.  Let’s assume the probability of the 

child having blue eyes is 0.16 (not empirically verified!) and this is the 

“success” outcome.  For this experiment the distribution of the random Bernoulli 

variable X is given in Table 7-1. 

Table 7-1: Distribution of outcomes of a Bernoulli Trial 

Outcome Random 

Variable X =x 

P(X=x) Probability of 

outcome 

Blue eyes 1 p 0.16 

Not blue eyes 0 1-p 0.84 

What about if you really want a blue-eyed child, so you have 10 children and 

you want to know the probability that k out of the 10 have blue eyes?  This is a 

more complicated question.  Each outcome of having a child is independent of 

other children – meaning whether the first child had blue eyes has no statistical 

influence on the second child having blue eyes.  Independence will be discussed 

in more detail in the next chapter.  

In order to answer this you want to create a model for how many of 10 children 

will have blue eyes based on the probability that a given child has blue eyes is 

0.16.  Such a model is called a binomial model.  Using the Bernoulli probability 

distribution function equation above we can extend it to work for more than one 

trial by changing the exponents to n=the number of trials and k=the number of 

successes as follows: 

knk )p1(p −−  

Note this is not a probability distribution function anymore, as it will only model 

the probability of a particular sequence of n=10 children k of which have blue 

eyes. For example if k=3, n=10, the above represents the probability of a 

sequence such as {1,0,0,0,1,1,0,0,0,0}, where as indicated 1 denotes “blue eyes” 

and 0 denotes “not blue eyes”.  But when there are 10 children, the blue-eyed 

children can be any one of the 10 children.  Using the counting method of 

combinations discussed in the previous chapter (formula below) we note that the 

number of such sequences with k ones and n-k zeros is 
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)!(!

!
,

knk

n
kCn

−
=  

Remember that for a series of 10 children, one blue-eyed child could be 

positioned in 10 different ways (the blue eyed child could be first of 10, second 

of 10, etc.), corresponding to a combination of 

10
)!9(1

!10
C 1,10 ==  

In order to model the correct probability of observing 1 child of 10 children with 

blue eyes, the probability distribution function needs to account for the 10 

different arrangements of children, so the proper way to write the probability 

distribution is  

)n trialsin  successesk (P)k(p = = 








k

n
knk )p1(p −−

 

Note 








k

n
=

)!kn(!k

!n
k,Cn

−
=  is another popular notation used for the number 

of combinations of k out of n distinct objects.  This symbol is commonly 

described as “n choose k” and is also called the “binomial coefficient” in some 

contexts. 

 Of course to make this a distribution function we want to calculate not only the 

probability of having 1 in 10 children with blue eyes, but the whole distribution 

of how many kids (0,1,2…10) in 10 will have blue eyes.  This is tedious to do 

by hand and hence using R comes in handy.   

In R the binomial distribution is the function dbinom.  In R, all probability 

distributions (or densities in the case of continuous random variables) use the 

letter d as the first letter in the function and then part or the entire name of the 

distribution for the rest of the function name. dbinom takes as parameter 

arguments binom(x, size, prob) where x= the vector of k values to be used, size 

is the total number of trials (n), and prob is the probability of success on each 

trial. 

Using some simple commands in R to generate the probability values for the 

binomial distribution for the number of children in 10 with blue eyes using p 

=0.16  

> x<-0:10 

> y<-dbinom(0:10,10,0.16) 

> data.frame("Prob"=y,row.names=x) 
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we obtain the following: 

Prob 

0   1.749012e-01 

1   3.331452e-01 

2   2.855530e-01 

3   1.450428e-01 

4   4.834760e-02 

5   1.105088e-02 

6   1.754108e-03 

7   1.909233e-04 

8   1.363738e-05 

9   5.772436e-07 

10 1.099512e-08 

Thus given p=0.16, the probability of 0 in 10 children with blue eyes is 0.175; 

the probability of one with blue eyes child is 0.333 and so forth.   

Of course, writing out tables of probability as above is only practical for simple 

scenarios and in most cases a graphical model for the probability distribution 

will be used.  To get a graphical model in R for the same distribution above, 

simply use the plot command and put the binomial function call right in the plot 

function call as follows: 

> plot(0:10,dbinom(0:10,10,0.16),,type='h',xlab="",ylab="Probability", 

sub="Number of kids with blue eyes") 

Figure 7-1 illustrates the graphic model of the probability distribution function 

for this example. 

 

Figure 7-1: Example of a Binomial Distribution, p=0.16 

Note that this distribution is pretty skewed toward lower values of the random 

variable (X=number of kids with blue eyes) because the value of p is 0.16.  The 

graph should seem reasonable given the value of p.  What if the value of p is 

changed?  



 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

84 

Let’s re-run this example with probabilities that a child has blue eyes is 0.05, 

0.2, 0.5, and 0.8 and see how this changes the distribution.   

 

> par(mfrow=c(2,2)) 

> plot(0:10,dbinom(0:10,10,0.05),type='h',xlab="",ylab="Prob", sub="p=0.05") 

> plot(0:10,dbinom(0:10,10,0.2),type='h',xlab="",ylab="Prob", sub="p=0.2") 

> plot(0:10,dbinom(0:10,10,0.5),type='h',xlab="",ylab="Prob", sub="p=0.5") 

> plot(0:10,dbinom(0:10,10,0.8),type='h',xlab="",ylab="Prob", sub="p=0.8") 

 

Figure 7-2: Illustrating the Effect of Changing the Value of p 

in the Binomial Distribution 

Notice in Figure 7-2 how the larger p shifts the distribution more toward higher 

values of the random variable.  This should make sense because a higher p 

makes it more likely a child will have blue eyes and therefore more children in 

10 will have blue eyes, as represented by the shift of the graphical models with 

higher p.  Note also for p=0.5 that the distribution is symmetric.  This is always 

the case for a binomial distribution with p=0.5 since it equally likely that success 

or failure occurs. 

So far we have only considered the probability distribution function for the 

binomial, but what about the cumulative distribution function?  Recall that this 

is the function which models the total probability up to and including a certain 

value of the random variable X=x. 

This is easy to do in R using the pbinom distribution function, which takes the 

same parameters as the dbinom.  In fact we can use the same code as above to 

get plots of the CDF of the binomial for the example above changing only the 
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type of the plot to ‘s’ for step and change the function used from dbinom to 

pbinom: 

> par(mfrow=c(2,2)) 

> plot(0:10,pbinom(0:10,10,0.05),type='s',xlab="",ylab="Prob", sub="p=0.05") 

> plot(0:10,pbinom(0:10,10,0.2),type='s',xlab="",ylab="Prob",sub="p=0.2") 

> plot(0:10,pbinom(0:10,10,0.5),type='s',xlab="",ylab="Prob",sub="p=0.5") 

> plot(0:10,pbinom(0:10,10,0.8),type='s',xlab="",ylab="Prob",sub="p=0.8") 

 

Figure 7-3: Binomial CDFs Using Different Values of p 

The pattern of cumulative probability for binomials produced using different 

values of p is illustrated in Figure 7-3.  When p is small (as in 0.05) the 

cumulative probability reaches 1 quickly whereas a large value of p results in 

the cumulative probability not reaching 1 until the higher range of values for the 

random variable. 

If all you need is a simple calculation for one value in R all you need to do is 

enter the appropriate function and relevant parameter values.  For example, 

suppose you want to know the probability that (exactly) 4 kids in 10 will have 

blue eyes when p=0.5.  Simply use the dbinom function in R as follows and it 

calculates this value for you: 

> dbinom(4,10,0.5) 

[1] 0.2050781 

Thus, the chance of 4 in 10 kids with blue eyes is 0.205 or 20.5% with p=0.5, 

which should make sense based on earlier graphical models. 
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The binomial distribution is an important model and one of the simplest to 

understand.   Several other distributions are related to the binomial and also 

based on Bernoulli random variables (success or failure experiments).  The 

geometric distribution (dgeom, pgeom in R) considers the random variable X as 

the number of failures before the first success.  The negative binomial 

distribution (dnbinom, pnbinom in R) considers X as a measure of the number of 

failures before the rth success. A multivariate version of the binomial, the 

multinomial distribution, will be introduced in the next chapter.  The example 

used with the binomial could easily have been modeled using one of the related 

distributions.  For example, the geometric could be used to model the number of 

children born before the first child with blue eyes.  In many cases when you 

have data to model you have some choices how to model it based on choice of 

random variable measurement outcome and choice of distribution used.   

The Poisson Distribution 

The next discrete univariate distribution to be introduced is called the Poisson 

distribution, named after Simeon D. Poisson.  The Poisson is one of the most 

utilized discrete probability distributions.  Mathematically the Poisson is 

actually a limiting case of the binomial, the details of which will not be dealt 

with here but can be found in most mathematical probability books. 

The Poisson has many applications, including numerous applications in biology.  

In general, the Poisson is used to model the counts of events occurring randomly 

in space or time.  Simple real world examples which may use a Poisson model 

include the number of typing errors on a page, the number of accidents 

occurring at an intersection in a given time period and the number of discarded 

products made by a manufacturing process.  In bioinformatics some examples 

where the Poisson could be used include:  to model the instances of mutation or 

recombination in a genetic sequence, the distribution of errors produced in a 

sequencing process, the probability of random sequence matches, or in counting 

occurrences of rare DNA patterns. 

The mathematical formula for the Poisson distribution is: 

!x

e
)xX(p

xλ
==

λ−

 

Here x represents counts and thus can be any integer value ≥ 0.  Note also that in 

this equation, there is one parameter, the Greek letter lambda λ that defines the 

distribution.  In a random process (such as mutation) there will be lambda events 

per unit time interval.  Thus, lambda represents a rate.  Because of the relation of 

the Poisson to the binomial, lambda can be obtained by the relationship λ = n * 

p where p is the probability of the event occurring and n the number of trials. 

The relation holds when p is small (rare events) and the number of trials n are 

large. 
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Suppose we are using a new sequencing technique and the error rate is one 

mistake per 10,000 base pairs.   Suppose we are sequencing 2000 base pair 

regions at a time.  What is the probability of 0 mistakes using this technique?  

Of 1 mistake, 4 mistakes?  The Poisson model can be used to model these 

probabilities.  To use the Poisson, you must first calculate lambda.  In this case 

the “trial” can be considered an individual base pair, so n=2000 trials for a 2000 

base pair sequence.  The probability of “success” here is the probability of 

getting an error, where p = 1/10,000.  To calculate lambda, multiply n*p, or 

2000*(10,000) which results in a rate of 0.2 mistakes per 2000 base pairs so 

lambda is 0.2. Note it is common to adjust lambda based on n. If we were using 

5000 base pair regions to sequence at a time we would use a lambda of 0.5. 

To calculate the probability of one mistake in the 2000 base pair sequence, we 

could do this by hand with the following equation: 

!1

2.0e
)1X(p

12.0−

== =0.1637 

However, we are interested in the whole distribution of probability values for 

the random variable X = number of mistakes in the sequence and it is much 

easier to computer these in R than doing individual hand calculations.  In R the 

dpois function is used to compute Poisson distributions, and has parameters 

dpois (x, lambda) where x is the value or vector of values of the random variable 

to be calculated and lambda is the parameter. 

As we did with the binomial, first let’s generate a simple table of probabilities 

that X=x for the values of this distribution.  We have a little bit of a problem in 

that in this case, theoretically X can be anywhere from 0 (no sequence errors) to 

2000 (every bp an error).  However, knowing lambda is 0.2 (also the mean or 

expected number of errors) the number of sequence errors is not likely to exceed 

10, so the following code is used to generate the table: 

> x<-0:10 

> y<-dpois(0:10,0.2) 

> data.frame("Prob"=y,row.names=x) 

which produces the following results: 

Prob 

0   8.187308e-01 

1   1.637462e-01 

2   1.637462e-02 

3   1.091641e-03 

4   5.458205e-05 

5   2.183282e-06 

6   7.277607e-08 

7   2.079316e-09 

8   5.198290e-11 

9   1.155176e-12 

10  2.310351e-14 
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The chance of no errors (X=0) is 0.818, the chance of 1 error (X=1) is 0.163, 

etc. in a 2000 base pair sequence.  As expected, even at a value as low as 10 

there is virtually no probability left.  This can be viewed graphically as 

illustrated in Figure 7-4. 

> plot(0:10, dpois(0:10,0.2), type='h', xlab="Sequence Errors", 

ylab="Probability" ) 

 

Figure 7-4: Poisson Distribution, Lambda =0.2. 

The cumulative distribution in this case may be a bit more interesting.  The CDF 

for the Poisson uses the ppois function call with the same parameters as dpois 

discussed above. 

> plot(0:10,ppois(0:10,0.2),xlab="# Seq Errors", ylab="Cum Prob", type='s') 

 

Figure 7-5: CDF for Poisson Model of Sequencing Errors 

with Lambda=0.2. 
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As is clear from the CDF graph in Figure 7-5, the number of sequence errors 

using this method in a 2000 base pair sequence is highly unlikely to be more 

than 3.  This should leave you pretty confident the process is not going to 

produce a lot of errors (unless you are looking for more stringent reliability).  

Below R is used to find the probability of 1 or fewer, 2 or fewer and 3 or fewer 

errors in this example. 

> ppois(1,0.2) 

[1] 0.982477 

> ppois(2,0.2) 

[1] 0.9988515 

> ppois(3,0.2) 

[1] 0.9999432 

What happens to the Poisson probability distribution when the parameter is 

changed?  To examine this, let’s look at a few examples with different values for 

lambda: 

> par(mfrow=c(2,2)) 

> plot(0:10,dpois(0:10,0.5),xlab="",ylab="Prob",type='h',main="Lambda 0.5") 

> plot(0:10,dpois(0:10,1),xlab="",ylab="Prob",type='h',main="Lambda 1") 

> plot(0:10,dpois(0:10,2),xlab="",ylab="Prob",type='h',main="Lambda 2") 

> plot(0:10,dpois(0:10,5),xlab="",ylab="Prob",type='h',main="Lambda 5") 

 

Figure 7-6: Poisson Distributions with Different Lambda 

Values 

Not surprisingly the way the Poisson distribution changes (Figure 7-6) when 

lambda changes looks a lot like the way the binomial changes when p changes. 

Considering the relationship λ=n*p this should come as no surprise. Remember 
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that the plots above only consider X=x for the range of [0, 10] so in the case of 

λ=5 there is more of the distribution shifted to the right.  To see where the 

probability levels off to 1 similar analysis can be done looking at the cumulative 

distributions (ppois for the Poisson) as was done with the binomial. Let’s do this 

with the range X=x from 0 to 20 for all the values of lambda used in the 

previous plot. 

> par(mfrow=c(2,2)) 

> plot(0:20,ppois(0:20,0.5),xlab="",ylab="Cum Prob", type='h', main="Lambda 

0.5") 

> plot(0:20,ppois(0:20,1),xlab="",ylab="Cum Prob", type='h',main="Lambda 1") 

> plot(0:20,ppois(0:20,2),xlab="",ylab="Cum Prob", type='h',main="Lambda 2") 

> plot(0:20,ppois(0:20,5),xlab="",ylab="Cum PRob", type='h',main="Lambda 5") 

 

Figure 7-7: Poisson CDFs with Different Lambda Values 

For the lambda values 2 or less it is pretty clear from the CDF plots (Figure 7-7) 

that it is unlikely more than 10 of 2000 base pairs would contain errors. Be 

careful though– although the graph for lambda=5 appear to level off at 1 around 

x=10 there is still some significant probability of obtaining a value of X higher 

than 10, which can be analyzed by doing some additional calculations in R as is 

done below: 

> ppois(10,5) 

[1] 0.9863047 

> ppois(12,5) 

[1] 0.9979811 

> ppois(15,5) 

[1] 0.999931 

> ppois(20,5) 

[1] 1 
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This concludes discussion, for now, of discrete univariate probability 

distributions.  You should have a feel for these distributions and how to work 

with them in R.  These distributions will be used in applications in later 

chapters. 

Univariate Continuous Distributions 

Univariate Normal Distribution 

The normal distribution is the typical bell curve distribution used to characterize 

many types of measurable data such as height, weight, test scores, etc. The 

normal is also the distribution that is used to model the distribution of data that 

is sampled, as will be discussed later in this book under the topic of inferential 

statistics. Sometimes the normal distribution is called the Gaussian distribution, 

in honor of Karl Gauss.  It is a ritual that all introductory statistics students are 

saturated with details about the normal distribution, far more than will be 

covered here.  The probability density equation for the normal distribution, 

presented below, should ring a bell of familiarity to graduates of statistics 

courses: 

22

2)x(

e
2

1
)x(f

σ

µ

πσ

−
−

=  

In the equation above, the Greek letter mu (µ) represents the mean of the 

distribution (aka: average value, expected value) and the Greek letter sigma (σ) 

represents the standard deviation of the distribution (sigma squared is the 

variance).  Mu and sigma serve as the parameters for the distribution.  For the 

normal distribution, the location and scale parameters correspond to the mean 

and standard deviation, respectively. However, this is not necessarily true for 

other distributions. In fact, it is not true for most distributions.   

One of the tricks with the normal distribution is that it is easily standardized to a 

standard scale.  If X is a continuous random variable with mean mu and standard 

deviation sigma it can be standardized by transforming X to Z where Z is a 

normally distributed variable with mean 0 and standard deviation 1 (which also 

equals the variance since 12=1).  This is useful if you have a bunch of different 

X’s and want to put them all on the same Z system so you can compare them, 

with a scoring system called Z-scores (see your favorite introductory statistics 

book for further discussion).  The transformation of X to Z is simply: 

σ

µ−
=

X
Z  



 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

92 

R contains functionality for both the probability density function and cumulative 

distribution function for the normal model in the base package.  Like previous 

distributions discussed, the command for the probability density function starts 

with “d” and is named “dnorm”.  The parameters of dnorm are the data vector of 

x’s, the mean and standard deviation.  As an example, let’s plot a normal density 

for a range of x from –10 to 10 with mean 0 and standard deviation 1: 

> x<-seq(-10,10,length=100) 

> plot(x,dnorm(x,0,1),xlab="x", ylab="f(x)", type='l', main="Normal PDF") 

This produces a nice bell shaped PDF plot depicted in Figure 7-8 

 

Figure 7-8: Univariate Standard Normal Distribution 

In discussing location parameters in the previous chapter, we looked at an 

example of changing the location parameter for the normal.  But what happens if 

we change the scale parameter?  Remember that increasing the scale parameter, 

which is the standard deviation in the case of the normal, increases how spread 

out the data are.  To look at this in R, simply change the standard deviation 

parameter of dnorm: 

> par(mfrow=c(2,1)) 

> plot(x,dnorm(x,0,2),xlab="x",ylab="f(x)", type='l', main="Normal PDF, 

scale 2") 

> plot(x,dnorm(x,0,5),xlab="x",ylab="f(x)", type='l',main="Normal PDF, scale 

5") 

The change in the scale parameter from 2 to 5 is illustrated in Figure 7-9. 
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Figure 7-9: Changing the scale parameter (standard 

deviation) in the normal distribution 

The normal also has a cumulative density function, which in R utilizes the 

pnorm function with the same parameters as dnorm. The code below computers 

some normal CDFs, using a few different scale paramters with the same mean of 

0.   

> par(mfrow=c(3,1)) 

> plot(x,pnorm(x,0,1),xlab="x",ylab="f(x)", type='l', main="Normal CDF scale 

1") 

> plot(x,pnorm(x,0,2),xlab="x", ylab="f(x)", type='l', main="Normal CDF 

scale 2") 

> plot(x,pnorm(x,0,5),xlab="x", ylab="f(x)", type='l', main="Normal CDF 

scale 5") 
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Figure 7-10: Normal Distribution CDFs with Different Scale 

Parameters 

Notice in Figure 7-10 how increasing the scale parameter (standard deviation) 

causes the CDF to increase much less precipitously, reflecting the less 

concentrated (more spread out) data distribution from the probability density. 

In inferential statistics, the normal is frequently used to answer questions with 

regard to test scores and other such measures.  For example suppose you take a 

test and score 85, which sounds great until the professor announces the mean 

score is 92 with a standard deviation of 8.  Then you begin to wonder, how 

badly did you do?  To answer this use the pnorm function in R as follows: 

> pnorm(85, mean=92,sd=8) 

[1] 0.1907870 

This means you scored better than 19.1% of the class.  You could have answered 

this question looking at the other end of the distribution as well using 1-pnorm. 

> 1-pnorm(85, mean=92, sd=8) 

[1] 0.809213 

This means that 80.9% of the class scored better than you (better luck next 

time).  Knowing the mean and standard deviation of a normal distribution makes 

such calculations easy.  And if all you have is a data set that you are assuming is 

normally distributed, you can enter your data, and then use R to find the mean 

and standard deviation.  For example, suppose you chop up a piece of DNA with 

an enzyme and get 20 fragments with sizes you measure on a gel (to the nearest 

base pair) and you guess from the gel pattern that the size of the fragments is 

normally distributed. You can record (in data vector x) and analyze your data in 

R as follows: 
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> x<-c(321, 275, 345, 347, 297, 309, 312, 371, 330, 295, 299, 365,  

+ 378, 387, 295, 322, 292, 270, 321, 277) 

> mean(x) 

[1] 320.4 

> sd(x) 

[1] 35.16787 

And now, knowing the mean and standard deviation, you have a probability 

density function normal model for this data that you can use to perform further 

statistical tests on.  It is very simple to graph this model and its CDF function 

using the code below, with results depicted in Figure 7-11. 

> par(mfrow=c(1,2)) 

> xx <- seq(200,450,by=.25) 

> plot(xx,dnorm(xx,mean(x),sd(x)),type='l',xlab="Frag Size in bp", 

ylab="f(x)",  

+ main="Restriction Fragments PDF") 

> points(x,rep(0,n)) 

> plot(xx,pnorm(xx,mean(x),sd(x)),type='l',xlab="Frag Size in bp",  

+ ylab="Cum Prob", main="Restriction Fragment CDF") 

> points(x,rep(0,n)) 
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Figure 7-11: PDF and CDF for restriction fragment data 

In addition, you now have a model you can make inferences on.  For example, 

suppose you want to know the probability of getting a fragment bigger than 400 

bp.  A simply query R computes this. 

> 1-pnorm(400,mean(x),sd(x)) 

[1] 0.01180460 

Based on the above result, there is a 1.18% chance of getting a fragment this big 

from the given distribution. 

Another useful feature in R is that all distributions have an associated quantile 

function built in, designated by a q before the distribution name code (qnorm, 

qbinom, etc). This automatically calculates what percentage of the distribution 

corresponds to the given cumulative probability regions.  For example, suppose 
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for the distribution above you want to calculate the 10th and 90th percentiles of 

the distribution.  Simply use the qnorm function in R to do this. 

> qnorm(0.10,mean(x),sd(x)) 

[1] 275.3306 

> qnorm(0.90,mean(x),sd(x)) 

[1] 365.4694 

This means that 10% of the data is 275 or fewer base pairs in size, and 90% of 

the data is 365 or fewer base pairs in size, given this distribution.  Quantiles are 

called quartiles for the 25%, 50% and 75% regions and also called percentiles on 

standardized tests.  The quantile function can be helpful for analyzing data in a 

distribution. 

Even though the normal is widely taught in statistics courses, and widely used in 

many areas of statistics, it is not the only continuous probability distribution to 

be familiar with for effective data analysis.  Many times, especially when 

dealing with physical phenomena (as opposed to humanly generated measurable 

data such as that from standardized school tests) the data will not be normally 

distributed.  For non-normally distributed continuous data modeling we now 

turn to two important families of distributions, the gamma family and the beta 

family. 

The Gamma Family 

The gamma family consists of a few related distributions including the gamma 

distribution, the exponential distribution and the Chi-Square distribution.  The 

base distribution of the family is the gamma distribution, which provides a 

versatile model for working with continuous data that may not be normally 

distributed. Popular applications of the gamma distribution are to measurements 

of time until failure, concentrations of pollutants, etc.  The gamma distribution is 

only defined for positive real numbers and it takes different forms depending on 

the parameter values.  The probability density of the gamma distribution has the 

following general form: 

β−−α

α αΓβ
= /x1ex

)(

1
)x(f

 

Before you scream and shriek and give up, thinking you cannot possibly 

understand this crazy equation, relax and realize it’s only a mathematical model 

for a probability density function.  Long gone are the days when anyone would 

hand calculate f(x) values for this equation because computer packages such as 

R are very happy to do the calculations for us. The only things in the equation 

besides the familiar mathematical terms “x” and “e” are two parameters – alpha 

(designated by the Greek letter α) and beta (designated by the Greek letter β) 

and the gamma function (introduced in the pervious chapter) where the gamma 
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function of the parameter alpha is part of the equation.  For the gamma 

distribution alpha is the shape parameter and beta is the scale parameter.   

Like all the other distributions, the probability distribution for the gamma is 

simple to use in R.  The dgamma function call takes as parameters the data 

vector and then the shape and scale parameters.   

First, let’s make a few graphs of changing the shape parameter, alpha, while 

keeping the scale parameter, beta, is constant at 1: 

> x<-seq(0,10,length=100) 

> par(mfrow=c(2,2)) 

> plot(x,dgamma(x,shape=1,scale=1), type='l',xlab="x", 

ylab="Prob",main="Shape 1") 

> plot(x,dgamma(x,shape=2,scale=1), type='l',xlab="x", 

ylab="Prob",main="Shape 2") 

> plot(x,dgamma(x,shape=5,scale=1), type='l',xlab="x", 

ylab="Prob",main="Shape 5") 

> plot(x,dgamma(x,shape=10,scale=1), type='l',xlab="x", 

ylab="Prob",main="Shape 10") 

Note in Figure 7-12 that for shape=10 the distribution shifts toward the higher 

end (and the graph doesn’t depict the entire distribution only the same x range as 

the other graphs for comparison). 

 

Figure 7-12: Gamma distributions with different shape 

parameters 
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Next, let’s look at how the gamma changes when the shape parameter, alpha, is 

held constant (at 2) and the scale parameter, beta, is changed. 

 

> x <- seq(0,30,length=100) 

> plot(x,dgamma(x,shape=2,scale=1), type='l',xlab="x", ylab="f(x)", 

+ main="Gamma pdf's") 

> lines(x,dgamma(x,shape=2,scale=2),lty=2) 

> lines(x,dgamma(x,shape=2,scale=4),lty=3) 

> lines(x,dgamma(x,shape=2,scale=8),lty=4) 

> legend(x=10,y=.3,paste("Scale=",c(1,2,4,8)),lty=1:4) 

Note that, although they might not look it, all of the graphs in Figure 7-13 are 

the same shape.  The higher scale parameter values just spread the distribution 

out.  For the higher values the distribution extends beyond the x range shown in 

the graph (but for comparison all the graphs are on the same x scale range). 

0 5 10 15 20 25 30

0
.0

0
.1

0
.2

0
.3

x

f(
x)

Scale= 1
Scale= 2
Scale= 4
Scale= 8

 

Figure 7-13: Gamma distributions with different scale 

parameters 

You may be wondering how the gamma distribution is used to model the 

distribution of a set of data.   

Suppose you are measuring survival times of an enzyme in a solution (as 

measured by some kind of assay for enzyme activity) and you get the following 

data in hours: 4.75, 3.4, 1.8, 2.9, 2.2, 2.4, 5.8, 2.6, 2.4, and 5.25.  How could you 

decide on a probability model to model the probability of the enzyme surviving 

in solution? 
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Because you know you cannot always assume data is normally distributed 

(although you often hope so) the first thing to do is to look at a plot of the data.  

There is actually a statistician’s secret tool to check whether data are normally 

distributed.  It is a plot called a Q-Q plot and what it does is line quantiles of the 

data against normal quantiles.  If the line is a straight line, the data can be 

considered normally distributed and you can use the normal probability model.   

All you have to do to run a Q-Q plot in R is enter the data and use the qqnorm 

and qqline functions. 

> x<-c(4.75, 3.4, 1.8, 2.9, 2.2, 2.4, 5.8, 2.6, 2.4, 5.25) 

> qqnorm(x) 

> qqline(x) 

Running this code produces the Q-Q plot in Figure 7-14. 

 

Figure 7-14: Q-Q plot of enzyme data 

And you know, by looking at the squiggle pattern of the data that it does not 

align nicely with the expected normal line. When you see such a nonlinear data 

pattern on a Q-Q plot you should train yourself to think that you’d probably 

better find a model other than the normal distribution to model the distribution 

of this data.  

Knowing about the flexibility of the gamma distribution, you suspect there may 

be a gamma distribution model for this data.  But how do you determine the 

alpha (shape) and beta (scale) parameters you need in order to use the gamma 

model? 

Actually it’s not too hard.  Although the scale and location parameters for the 

gamma model are not equal to the standard deviation and mean like in the 

normal case, there is a mathematical relationship between the mean and standard 
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deviation and the scale (beta) and shape (alpha) parameters for the gamma 

distribution. 

The mean of the gamma distribution is equal to alpha * beta and the variance 

(=standard deviation squared) is related to alpha and beta by being equal to 

alpha*beta2.  In R it is always easy to get the mean and variance (or sd) of a data 

vector: 

> mean(x) 

[1] 3.35 

> var(x) 

[1] 1.985556 

Let’s be lazy and just call the variance =2.  But based on this we know that: 

Mean=3.35=αβ 

and 

Var = 2 =αβ2 

Doing a little algebra: 

3.35/β=α 

and then substituting this into the variance equation for alpha allows you to 

solve for beta: 

3.35*β=2, so β=0.6 (roughly) 

and subsequently, you can solve for alpha  

3.35=α (0.6) so alpha = 5.6 

So the distribution of the data can be modeled using a gamma probability 

density function with shape (alpha) = 5.6 and scale (beta)=0.6.  Note that 

because we don’t have many data points (only 10) this might not be the best 

possible fit, but since we only have such a limited amount of data it’s impossible 

to assess the goodness of fit (collecting more data values would be better of 

course).  Also note that alpha and beta need not be integer values, allowing even 

greater flexibility in how the gamma model fits data.  However, there is a 

requirement that both alpha and beta be positive values (so if you do the algebra 

and get negative values for alpha and beta, you did something wrong). 

Let’s look at a graphical model of the data and a dgamma plot using the 

parameters determined above: 
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data <- c(4.75, 3.4, 1.8, 2.9, 2.2, 2.4, 5.8, 2.6, 2.4, 5.25) 

n <- length(data) 

x <-seq(0,8,length=200) 

plot(x,dgamma(x,shape=5.6,scale=0.6),type='l',ylab="f(x)") 

points(data,rep(0,n)) 
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Figure 7-15: Comparing the data distribution to the gamma fit 

As with other distributions the cumulative distribution function for the gamma is 

designated starting with a p, in this case pgamma.  The CDF for the model used 

in this example can simply be graphed in R as: 

plot(x,pgamma(x,shape=5.6,scale=0.6),type='l',ylab="P(X<=x)",  

+ main="Gamma CDF Fit") 

points(data,rep(0,n)) 
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Figure 7-16:Gamma CDF   

It looks from the CDF plot in Figure 7-16 that there may still be some 

probability density at x values higher than 5. We can perform a simple 

calculation to check this out. 
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> 1-pgamma(5,shape=5.6,scale=0.6) 

[1] 0.1263511 

Thus, there 12.6% of the density has values greater than 5 and you may want to 

re do the plots to reflect this (an exercise left to the reader). 

The Exponential Distribution 

The exponential distribution, famous for modeling survival times (as in the case 

with radioactive decay), is just a special case of the gamma distribution where 

the shape parameter, alpha = 1.  This reduces the mathematical formula for the 

gamma to: 

β−

β
= /xe

1
)x(f , x > 0 

The exponential is often written in terms of a rate parameter lambda where 

λ=1/β, or 

xe)x(f λ−λ= , x > 0 

Most students of science have seen this form for radioactive decay rates, or 

survival rates of bacteria or something of that sort.  Although details will not be 

discussed here, the R functions dexp (x, rate = ) is used with the rate parameter 

lambda value to model the probability density, and the function pexp is used to 

model the CDF.   

The Chi Square Distribution 

The Chi-Square distribution is another gamma distribution variant, and the term 

“Chi-Square” should be familiar to genetics students for its role in analyzing 

count data and other applications.  The Chi-Square distribution always uses a 

value of beta=2 for the scale parameter and a value of alpha=k/2 for the shape 

parameter where k is the number of “degrees of freedom”.  The Chi-Square 

distribution and concept of “degrees of freedom” will be returned to in later 

chapters, but is noted here to show its relationship to the gamma distribution.  In 

R the probability density for this distribution is denoted as dchisq, and the 

cumulative density is pchisq.  Both take as parameters the data vector and the 

degrees of freedom.  

The Beta Family 

Like the gamma family, the beta family is group of distributions that use alpha 

and beta parameters.  The beta family has the following mathematically formula: 
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11 )x1(x
),(

1
)x(f −β−α −

βαβ
= , 0<x<1 

And you ask, what is that βαβ ,( ) thing in the denominator?  Well, that thing is 

called the beta function, and the beta function is actually a ratio of gamma 

functions, as follows: 

)(

)()(
),(

β+αΓ

βΓαΓ
=βαβ  

One very important thing to note – the range of x in the equation for the beta 

probability density is clearly denoted as being between 0 and 1.  This is key.  

The beta function is used to model data measured as proportions.  For example, 

if you have data on the proportion of an amino acid in a protein motif (say a 

leucine zipper) and it is not likely to be normally distributed (check with a Q-Q 

plot), then you should model the data with a beta density function. 

Unfortunately the interpretation of the parameters with the beta are not as clear 

as with the gamma, and with the beta distribution, the alpha and beta parameters 

are sometimes referred to as the “shape 1” and “shape 2” parameters.  Both 

parameters play a role in how the data fits the distribution.  As with the gamma, 

the alpha and beta parameters have a relationship to the mean and variance of 

the distribution, with the following mathematical formulas: 

)1()(
iancevar

mean

2 +β+αβ+α

αβ
=

β+α

α
=

 

The formula for the mean is not too bad, but remember to solve for alpha and 

beta you need to solve for both – and algebraically it’s not quite so pretty to do 

with the above relationships.  Because the beta distribution is a sine qua non in 

Bayesian statistics (and literally, used all over the place, along with its 

multivariate counterpart the Dirichlet) it is worth the time to write a small 

program to calculate these parameter values.  Meanwhile, let’s learn how to 

work with the dbeta density function and the pbeta cumulative distribution 

functions in R. 

Let’s use as an example the proportion of acidic amino acids found in a 

particular motif of proteins (a generic example with no particular type of motif).  

Assume we have already determined the parameters of the beta density that 

models our data.  We have alpha (“shape 1”) =2 and beta (“shape 2”) = 10.  A 

graphical model of this density is made in R with the following command: 
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> x 

 [1] 0.11 0.10 0.10 0.16 0.20 0.32 0.01 0.02 0.07 0.05 0.25 0.14 0.11 0.12 

0.08 

[16] 0.13 0.08 0.14 0.09 0.08 

> data<-x 

> n <- length(data) 

> x <- seq(0,1,length=200) 

 

> plot(x,dbeta(x,2,10),xlab="prop. of acidic residues", ylab="f(x)",  

+ main="Beta PDF for residue data") 

> points(data,rep(0,n)) 

 

Figure 7-17: Beta PDF 

Similarly a CDF plot can be generated using the pbeta function: 

> plot(x,pbeta(x,2,10),xlab="prop. of acidic residues", ylab="Cum. prob",  

+ main="Beta CDF for residue data") 

> points(data,rep(0,n) 
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Figure 7-18: CDF for data distrbuted with a beta model 

Other Continuous Distributions 

Many other continuous distributions exist, but will not be discussed here. The 

interested reader is advised to consult a probability and/or mathematical 

statistics book for further information.  R contains functionality to analyze many 

of these distributions and some distributions can be computed using a 

transformation of an existing distribution. For example, there is such a thing as 

an inverse gamma distribution, which can be computed using gamma 

distribution functionality.  Two other continuous distributions which the reader 

may be familiar with will be introduced later – the t distribution and the F 

distribution.  The t distribution will be introduced in the inferential statistics 

chapter and is the distribution which introductory statistics students are taught to 

use in the context of hypothesis testing. The F distribution will be introduced in 

the chapter on experimental design and plays an important role in microarray 

data analysis. 

Simulations 

One of the greatest powers of using a computer lies in the ability to simulate 

things.  What if you don’t have any data, but you know the probability model 

that you want to work with?  Through the power of simulation, you can use the 

computer to generate sample values for you.  It’s like doing an experiment, only 
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in the virtual world instead of the real world.  Simulation is an essential 

technique in computational statistics. 

In R simulations are very easy to do.  Every distribution mentioned in this 

chapter has a corresponding function in R that starts with “r” for random.  All 

you have to do to obtain simulated values is specify the number of simulated 

values you want and the parameters of the function you are simulating from. 

For example, let’s simulate 20 values generated from a standard normal 

distribution.  We just run the rnorm command with the appropriate parameters, 

storing the values in a data vector: 

> y<-rnorm(10,mean=0,sd=1) 

> y 

 [1]  1.37100652  0.46028398 -0.83283766 -1.56743758  1.24318977 -0.43508915 

 [7] -1.64050749  0.08383233 -1.56016713 -0.45454076 

Note that every run of the above simulation should produce different values (do 

not expect the same results as above).  

Once you have simulated data you often want to look at them graphically. One 

way to look at the simulated values is to plot a histogram, which is very simply 

coded below: 

hist(y) 

 

Figure 7-19 

A histogram from a simulation of only 10 values is admiringly dull and usually 

hundreds or thousands of values are simulated.  Let’s try the above simulation a 

few more times, this time with 50, 100, 500, and 1000 values: 

> y1<-rnorm(50,mean=0,sd=1) 

> y2<-rnorm(100,mean=0,sd=1) 

> y3<-rnorm(500,mean=0,sd=1) 

> y4<-rnorm(1000,mean=0,sd=1) 
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> par(mfrow=c(2,2)) 

> hist(y1,nclass=10,main="N=50") 

> hist(y2,nclass=10,main="N=100") 

> hist(y3,nclass=10,main="N=500") 

> hist(y4,nclass=10,main="N=1000") 

As you can see from the plots in Figure 7-20, the more values you simulate the 

closer the histogram will appear to the distribution you are simulating from.  The 

distribution with N=1000 appears to approximate a continuous standard normal 

distribution quite nicely. 

 

Figure 7-20: Increasing the number of simulations from a 

normal distribution 

The reader is encouraged to try more simulation experiments and plots with the 

distributions discussed in this chapter.  There will be much more discussion of 

simulations in coming chapters.   
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8  

Probability and Distributions 
Involving Multiple Variables 

The previous two chapters have looked at the basic principles of probability and 

probability distributions of one random variable.  In this chapter we introduce 

some more concepts of probability and then extend looking at probability 

distributions to include distributions modeling two or more random variables. 

Expanded Probability Concepts 

Conditional Probability 

Conditional probability is a powerful concept that allows us to calculate the 

probability of an event given that some prior event, which we have probability 

information about, has occurred.  Using the concept of conditional probability 

allows us to solve problems where “things happen sequentially” with rather 

simple probability models, instead of complicated mathematical models that 

would be the alternative if it were not for conditional probability.  

Understanding conditional probability, as we will see in the next chapter, is an 

essential foundation for Bayesian statistics. But understanding the concept is 

also of importance on its own. 

Let’s illustrate the use of conditional probability with an example from classical 

genetics by considering the case of pea color as a trait encoded by one gene that 

has two alleles.  The dominant allele, which we will denote by Y, codes for 

yellow pea color.  The recessive allele we will denote by y, which codes for 

green pea color.   
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Assuming they are diploid, peas can have a genotype that is homozygote (yy or 

YY) or heterozygote (Yy or yY).  Assuming equal frequencies of both alleles, 

the probability of a heterozygote is ½, and the probability of the homozygote is 

½ as well.  Peas of genotype yy are green, with a probability of ¼, and peas of 

genotypes Yy, yY, and YY are yellow, and therefore the probability of a yellow 

pea is 3/4.   

Next, suppose we have a yellow pea, and want the probability that the pea is 

also a heterozygote.  In terms of probability theory, we are restricting the sample 

space for the event pea color to the event that the pea is yellow, and creating a 

new sample space consisting only of yellow pea color. Within this new 

restricted space, we are asking what is the probability of the event heterozygous 

pea.  In conditional probability jargon, we are conditioning the event of 

heterozygous pea on the event of yellow pea.  The event yellow pea is our prior 

event that we already have information about.  

Mathematically we can look at this example using language and notation from 

probability theory.  We know from our basic genetic information that the 

probability of a pea being yellow is ¾ and we know that the probability of a pea 

being heterozygous and yellow is 2/4, based on the calculation that peas can be 

of Yy, yy, yY, and YY and 2 of four of these events (Yy and yY) are both 

yellow and heterozygous (we look more at joint probabilities later in this 

chapter).  We can then use the joint probability of the event “heterozygous and 

yellow” and divide this by the event of “yellow” to calculate the probability of 

being heterozygous and yellow as follows: 

P(yellow and heterozygous) = 2/4 

P(yellow)=3/4 

P(heterozygous|yellow) =
)yellow(P

us)heterozygo and P(yellow
=2/3 

The notation P(heterozygous|yellow) is standard notation for conditional 

probability where the event being conditioned on comes after the “|” notation. 

P(A|B) is read as “the conditional probability of the event A given that the event 

B has occurred”. 

Using Trees to Represent Conditional Probability 

Often looking at a graphical illustration helps to understand a concept.  Trees are 

a visual way to represent conditional events and probabilities.  Initial branches 

of the tree depend on the stem and finer branches depend on the previous 

branch.  Let’s use a simple tree diagram to illustrate our example (Figure 8-1). 
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The first branch of the tree represents the event of pea color and the second 

branch of the tree represents genotype (homozygous versus heterozygous) 

conditioned on the pea color.   

 

Figure 8-1: Conditional Probability Tree Diagram 

Note that the second branch tree could have been written with branches for each 

of the four genotypes but is drawn here using the more simplified two branch 

version of heterozygous versus homozygous. The combined result at the end of 

the second branch is the joint probability of both events.  Later in this chapter 

joint probability will be explained in more detail. 

It is also important to observe in Figure 8-1 that probabilities within each set of 

branches add to 1.  In the second branch, this stems from the fact that when we 

condition on an event, we define a new conditional sample space and the 

conditional probabilities obey the axioms and rules of probability within this 

new (conditional) sample space.  In our example, the conditional sample space is 

based on pea colors. 

Independence 

It often happens that knowledge that a certain event E has occurred has no effect 

on the probability that some other event F occurs.  In other words, the 

conditional probability of event F given event E is just the probability of event 

F.  This can be written mathematically as P(F | E) =P(F). One would expect that 

in this case, the equation P(E | F)  =P(E) would also be true. In fact each 

equation implies the other. If these equations are both true, then F is independent 

of E and this is formalized in the definition of independent events, which states 

that two events E and F are independent if P (E|F)=P(E) and P(F|E)=P(E).   

Here is an alternative way to define independence. Two events E and F are 

independent if both E and F have positive probability and if P(E∩F) =P(E)P(F).  
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You may look at this and wonder, why?  The logic for this alternative definition 

of independence comes from the definition of conditional probability: 

P(E|F)=
)F(P

)FP(E ∩
 

This can be algebraically rewritten as 

P(E∩F)=P(E|F)P(F) 

But since we just defined the independence of E and F as P(E|F)=P(E) this 

simplifies to  

P(E∩F) =P(E)P(F) 

This form of the definition of independence comes in very handy for calculating 

joint probabilities of independent events. 

It is important to note here that determining that events are independent is not 

equivalent to determining that events are disjoint or mutually exclusive, which 

was previously defined by two events having no common intersection (P 

(E∩F)= ∅). Disjoint and mutually exclusive mean the same thing, but 

independence is a very different concept! 

Independence can easily be extended to include more than two events.   Three 

events A, B, and C are independent if P(A∩ B∩ C)=P(A)P(B)P(C).  In this case 

we can say that A, B, and C are mutually independent and independence of pairs 

of these events can be concluded (A is independent of B, B is independent of C, 

etc.).  However, it is not always the case that the reverse is true, and it is 

possible to have three events, A, B, and C where A and B are independent, B 

and C are independent but A and C are not independent and therefore A, B, and 

C are not mutually independent. 

In practice, determining whether events are independent can be tricky.  Some 

times it’s based on common logic.  For example, most people would agree that 

the outcomes for each toss of a fair coin are independent, meaning the outcome 

of one toss of a coin (heads or tails) has no impact on the next toss of a coin. But 

in general, you should not assume independence without good reason to do so.  

Independence is often utilized in bioinformatics in analyzing sequence 

information.  Although this issue is often debatable, assuming independence of 

sequence elements is key in many data analysis algorithms commonly used.  

Independence makes calculations easy and the assumption of independence can 

greatly simplify a complicated algorithm. 

For example, suppose nucleotides in a DNA sequence are mutually independent 

with equal probabilities (that is, P(A)=P(T)=P(C)=P(G)=1/4).  The probability 
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of observing a sequence ATCGA is simply P(A)P(T)P(C)P(G)P(A) or 

(1/4)5=1/1024.   

In the case above the nucleotides are assumed equally likely.  However the 

concept of independence can easily be applied to the case of nucleotides of 

different frequencies.  Suppose that P(C)=P(G)=1/3 and P(A)=P(T)=1/6.  Then, 

assuming independence, the probability of sequence ATCGA is (1/6)3(1/3)2 

which calculates to 1/1944. The importance here is that the event of a particular 

nucleotide in a sequence is independent of other nucleotides in the sequence, not 

that the probabilities of each nucleotide be the same. 

In many instances, in sequence analysis or in analyzing other events, it is clear 

events are not independent. Two events that are not independent are said to be 

dependent.  For example, in analyzing the nucleotide sequence for a start codon 

(ATG) or other sequence motif independence does not hold and the subsequent 

nucleotides are dependent on the prior nucleotide within that sequence motif. 

Joint and Marginal Probabilities 

Joint probability is a pretty self-descriptive concept – it’s the probability of two 

(or more) events at once.  Here we will look at the concept of joint probabilities, 

which will serve as preparation for coverage of joint distributions later in this 

chapter, but is also a subject of use on its own.  Joint probability is officially 

defined as the probability of the intersection of two events.  Joint probability 

was diagrammed with a Venn diagram in chapter 6 when we discussed the set 

theory concept of intersection. Recall that the intersection of two events uses the 

symbol “∩”.  Using this notation, P(A∩B) symbolizes the joint probability of 

events A and B. 

Tables are often used to display joint probabilities. For example, given a 

particular DNA sequence we obtain the following (hypothetical) joint 

probabilities for two adjacent nucleotide sites (Table 8-1): 
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Table 8-1: Joint Probabilities of Nucleotides at Adjacent Sites 

  Nucleotide at position 1 

 A T C G 

A 0.2 0.1 0 0.1 

T 0 0.1 0.1 0.1 

C 0.1 0 0.1 0 

N
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G 0 0.1 0 0 

Although not immediately obvious to the untrained eye, a skilled probability 

practitioner can harvest from Table 8-1 a lot of useful information.  Each table 

cell contains the probability of the intersection (joint probability) of events.  For 

example, in the first cell the entry is the joint probabilitiy of nucleotide A in 

position 1 and nucleotide A in position 2.  Therefore, the joint probability is 0.2. 

Fundamental to a joint probability table is the fact that all probability entries add 

up to 1, which is simply an expression of the axiom of probability that the 

probabilities of all events have to sum to 1. 

What if we want to know the probability of nucleotide A being at position 1 

regardless of the nucleotide at position 2? This calculation is the column total of 

the nucleotide A in position 1 column, or 0.3.  This probability is called the 

marginal probability. Table 8-2 expands this idea calculating all the marginal 

probabilities for all columns (marginal probabilities for nucleotide at position 1) 

and all rows (marginal probabilities for nucleotide at position 2).   
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Table 8-2: Computing Marginal Probabilities 

  Nucleotide at position 1 

 A T C G 

Marginal 

probabilities 

for rows 

A 0.2 0.1 0 0.1 0.4 

T 0 0.1 0.1 0.1 0.3 

C 0.1 0 0.1 0 0.2 

N
u
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d
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n
 2

 

G 0 0.1 0 0 0.1 

Marginal 

probabilities for 

columns 

0.3 0.3 0.2 0.2 1 

Calculating conditional probabilities from the information in the table is also a 

breeze.  For example, to calculate the conditional probability of a nucleotide at 

position 2 being T given the nucleotide at position 1 is a G we use the following 

formula from the definition of conditional probability…  

P(E|F)=
)F(P

)FP(E ∩
 

…and simply apply the formula to the desired conditions. 

P (T at P2 | G at P1)= 
P1)at P(G  

P1)at G  P2at  P(T ∩
=

2.0

1.0
=1/2 

Here, the joint probability, P(T at P2 ∩ G at P1), is obtained from the cell in 

Table 8-2 containing the joint probability for nucleotide G at position 1 and T at 

position 2, and P (G at P1) is the marginal probability of nucleotide G at position 

1 obtained from the column total for that column in Table 8-2. 

The Law of Total Probability 

The law of total probability provides a method of calculating the probability of 

an event, which we’ll denote by A, by conditioning on a set of mutually 

exclusive and exhaustive events, which we’ll denote by B1,B2,…,Bn. Note that 

the Bk are usually the different outcomes of a sample experiment (all possible 

events in a given sample space). Remember that mutually exclusive means that 

two events have no common intersection and that their joint probability is 0, that 

is (Bi ∩ Bj) = ∅ for any i, j.   Exhaustive means the entire sample space or 

union of all events, B1 ∪ B2 ∪… ∪ Bn = the sample space. 
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The law of total probability is best illustrated using the “Pizza Venn Diagram” 

in Figure 8-2, and can be summarized mathematically as follows: 

∑ =
=

n
1i iBPiBAPAP )()|()(  

In the above formula and in Figure 8-2, A is the union of disjoint (mutually 

exclusive) sets, A∩Bi, for all i. P(A) can also be written as: 

∑ =
∩=

n

i
BiAPAP

1
)()(  

 

Figure 8-2: Illustrating the Law of Total Probability 

Although the law of total probability may seem confusing, we just applied the 

law of total probability earlier in this chapter when calculating marginal 

probabilities in the adjacent nucleotide example. In this case we used the 

formula ∑ =
∩=

n

i
BiAPAP

1
)()(  where A is the nucleotide we are 

calculating the marginal probability of and the Bi’s are the four nucleotides we 

are calculating the marginal probability over. 

For example, to calculate the marginal probability of A in the first nucleotide 

position: P (A in position 1) = P(A in P1∩ A in P2) +  P(A in P1∩ T in P2) + 

P(A in P1∩ C in P2) + P(A in P1∩ G in P2). Doing the math, P (A in P1) is 0.3. 
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Probability Distributions Involving More 

than One Random Variable 

So far we have only considered the study of distributions where one random 

variable is modeled.  However, modeling probability for most real life 

phenomena, and certainly most phenomena in bioinformatics, usually requires 

modeling the distribution of more than one random variable.  Being able to use 

multiple variable distribution models provides us with a very powerful data 

analysis tool.   

Examples of phenomena being modeled with more than one variable are abound 

in scientific applications.  An environmental study may include measures of 

temperature, green house gases, moisture, and other conditions measured at 

different locations and each measure modeled by a random variable.  In 

biochemistry it may be possible to develop a statistical model predicting tertiary 

protein structure using random variables to model factors such as percentages of 

certain amino acid residues or motifs.  Understanding how to use probability 

distributions involving two or more random variables is key to being able to 

model data involving more than one measurable dimension. 

Joint Distributions of Discrete Random Variables 

Let’s revisit our example of joint probability of nucleotides in two positions 

discussed earlier in this chapter.  Previously we considered joint probabilities of 

events of a particular nucleotide being in position 1 and a particular nucleotide 

being in position 2.  Let’s step this up and model the scenario using random 

variables.  Let X be the random variable to model the nucleotide at position 1 

and Y be the random variable to model the nucleotide at position 2.  

We can re-write our familiar table as a joint probability mass function (pmf) of 

two random variables (Table 8-3). 
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Table 8-3: Joint Probability Mass Function for Nucleotides at 

Two Adjacent Sites 

  X= Nucleotide at position 1 

 A T C G 

A 0.2 0.1 0 0.1 

T 0 0.1 0.1 0.1 

C 0.1 0 0.1 0 

Y
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2
 G 0 0.1 0 0 

This is a small but important change to the table. The table now models 

probability distributions for the two random variables.  We can view each cell as 

representing P (X=xi, Y=yi)=P (X=xi ∩Y=yi), an individual value of the joint 

probability mass function denoted by p(xi, yi). 

Although we will not do so here, extending joint distributions to include more 

than 2 variables is pretty straightforward.  We may extend the nucleotide 

example to include the distribution of the nucleotide in position 3 of a sequence.  

We could use the random variable Z to model third nucleotide.  The probability 

of any given 3-nucleotide sequence such as ATG would be given by the joint 

distribution of random variables X, Y, and Z representing the respective 

probabilities of each nucleotide at each position. We write this as P ((X=A) 

∩(Y=T)∩(Z=G)).   

Marginal Distributions  

Using the same logic used in calculating marginal probabilities described earlier, 

we can take the joint distribution and sum over all values of the other variable to 

create the marginal distribution of one variable. The only novel idea here is that 

we are assigning a random variable to the marginal probability, creating a 

marginal probability mass function for a discrete random variable. 

For example, summing over all values for the second nucleotide position 

produces the marginal distribution or marginal probability mass function (pmf) 

of the first nucleotide, X, as depicted in Table 8-4. 
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Table 8-4: Marginal Probability Mass Function for X 

X= Nucleotide at position 1 

A T C G 

0.3 0.3 0.2 0.2 

Similarly, we could calculate the marginal probability mass function (pmf) of 

random variable Y by summing over all X values, as in Table 8-5. 

Table 8-5: Marginal Probability Mass Function for Y 

A 0.4 

T 0.3 

C 0.2 

Y
=

N
u
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t 
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 2
 

G 0.1 

The marginal distribution can be denoted using mathematical shorthand. For 

example, to denote the marginal probability of X we would write the following: 

∑=
y

iix yxpxp ),()(  

This formula denotes the probability of X summed over all Y values in the joint 

distribution.  Note that the sum of probabilities for each marginal distribution 

adds to 1 (obeying the law sum of all probabilities in a sample space sums to 1), 

which should always be the case (and serves as a good check for determining if 

you did the correct calculations). 

Conditional Distributions  

Sometimes we may be interested in the distribution of one variable conditional 

on a specified value of the second variable.   

For example, we may be interested in the distribution of second nucleotides (Y) 

given that the first nucleotide is an A.  For each nucleotide modeled by the 

distribution of Y, the conditional probability is calculated by using the 

conditional probability formula: 

P (Y=yi|X=A)=
)AX(P

)AXyiP(Y

=

=∩=
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In this formula, the numerator is the joint probability of the first nucleotide 

being A and second nucleotide being nucleotide yi. The denominator is the 

marginal probability of the first nucleotide being A. 

For example, using previous data from Table 8-1, to calculate the probability 

that the second nucleotide is an A (Y=A) conditioned on the probability that the 

first nucleotide is an A we perform the following probability calculation: 

P (Y=A|X=A)= 66.0
3.0

2.0

)AX(P

)AXAP(Y
==

=

=∩=
 

Continuing this calculation for the other nucleotides, we obtain the conditional 

distribution of Y given X=A in Table 8-6. 

Table 8-6:  Conditional Distribution of Y given X=A 

A 0.66 

T 0 

C 0.33 

Y=Nucleotid

e at position 

2 GIVEN 

X=A 

 

G 0 

Again, note that the sum of conditional probabilities adds to 1 and fulfills the 

law of probability that the sum of probabilities of events in a sample space adds 

to 1. When calculating a conditional distribution we are redefining the sample 

space to a specific condition and redefining probability calculations to be valid 

within the new, redefined sample space. 

Joint, Marginal and Conditional Distributions for 

Continuous Variables 

Because of the importance of discrete data in bioinfomatics and the relative 

simplicity of working with discrete data, only discrete joint, marginal and 

conditional distributions have been discussed in detail.  However, although most 

sequence analysis will concern itself with discrete data and distributions, other 

models often utilize continuous variables.  Conceptually the joint, marginal, and 

conditional distributions are the same as for discrete variables, but the 

mathematics is more complicated. 

The joint distribution of two continuous random variables can be modeled using 

a joint probability density function (pdf).  The joint pdf of two continuous 

random variables X and Y is a two dimensional area A and can be evaluated by 
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integrating over this area with respect to each variable for given values of X and 

Y  

∫∫=∈
A

dydxyxfAYXP ),()),((  

Since evaluating this requires integration techniques from multivariable 

calculus, we will not evaluate such integrals here.  But conceptually the 

probability that (X, Y) lies in area A is equal to the volume underneath the 

function f(x,y) over the area A. 

Calculating a marginal distribution of a continuous variable is similar to 

calculating a marginal discrete random variable distribution.  In the case of the 

discrete random variable, this is done by summing over the other variable(s) 

whereas in the case of a continuous random variable, this is done by integrating 

over the other variable(s).   

For example to determine the marginal pdf of X given the joint distribution of 

continuous random variables X and Y, integrate over the distribution of Y 

(which if X and Y were discrete would be summing over all distribution of Y) as 

follows: 

∫=
y

x dyyxfxf ),()(  

Again the calculus of computing these distributions is beyond our coverage here, 

but a conceptual understanding of how to compute a marginal distribution for a 

continuous variable is important and seeing how discrete and random variable 

distribution concepts are very similar is important as well. 

The conditional probability distribution for two continuous random variables 

can also be calculated using some simple calculus.  If X and Y have joint 

probability density function f(x,y), then the conditional probability density 

function of X, given that Y=y, is defined for any values as the joint probability 

of X and Y divided by the marginal probability that Y=y.  This can be written 

mathematically where the conditional distribution is denoted by )|(| yxf yx . 

)(

),(
)|(|

yf

yxf
yxf

y

yx =  

Working with more than two continuous random variables is a simple extension 

of the concepts and techniques presented here for two random variables.  The 

analytical methods and calculus for performing such calculations can become 

quite tedious.  However, using a computer program can greatly simplify these 

types of calculations as well as perform simulations from complex distributions 

and their derived distributions. Many examples presented in this book will 
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perform the task of working with high-dimensional distributions using the 

computational power of R.   

Graphical models beyond two random variables are not very practical, so among 

other applications, marginal and conditional distributions are often used to look 

at graphics of higher dimensional distributions, as we shall in some examples in 

the next section of this chapter. 

Common Multivariable Distributions 

Distributions of more than one random variable are extensions of univariate 

distributions.  The distributions presented here are not should not seem entirely 

novel, because they build on univariate distributions presented previously by 

including more than one random variable in the model.  A solid understanding 

of the univariate binomial, normal, and beta distributions (which can be 

reviewed in the previous chapter) is the foundation for understanding the three 

distributions we will look at here: the multinomial, the multivariate normal, and 

the Dirichlet.  These three distributions are selected because they are the key 

multivariable distributions used in modeling data in bioinformatics. 

The Multinomial Distribution 

The multinomial distribution is the most commonly used discrete, high-

dimensional probability distribution. The multinomial is an extension of the 

binomial distribution.  Instead of just two possible outcomes (as in the case of 

the binomial), the multinomial models the case of multiple possible outcomes.   

Consider an experiment that models the outcome of n independent trials.  Each 
trial can result in any of r different types of outcomes (compared to just r=2 in 
the binomial case).  The probability of any of the outcomes is constant, just as in 
the binomial model the probability of success and probability of failure were 
held constant for a particular model. These probabilities are denoted by 
p1,p2,…,pr and the sum of the probabilities for all outcomes sums to one, that is  
p1+ p2 +…+ pr = 1.   
 
If we count how many outcomes of each type occur, we have a set of r random 
variables X1,X2,…,Xr . Each Xj = the number of outcomes of the jth type (where 
j=1 to r) and the actual counts are values of each random variable, denoted by Xj 
= xj  ,  etc. Note the sum of the values of the random variables is n, the total 
number of trials, that is x1+x2+…+xr = n.   
 
Because we are dealing with a series of independent events, any particular 
sequence of outcomes consists of x1 of the first kind, x2of the second kind, etc 
and has probability 

1 2

1 2 ... rx x x

r
p p p⋅ ⋅



 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

122 

Using combinatorics, we can calculate the number of possible divisions of n 

sequences into r groups of size x1, x2…xr with what is called the multinomial 

coefficient. This can be written as: 

!!...!

!

,..., rx2x1x

n

rx2x1x

n
=








 

Combining these results produces the joint distribution of observed events (a 

formula that directly parallels the binomial case of two possible outcomes 

described in the previous chapter) under the multinomial model. 

Among its many applications in bioinformatics, the multinomial model is 

frequently used in modeling the joint distribution of the number of observed 

genotypes.  Any number of loci and any number of alleles can be modeled this 

way, but the simplest example is the case of looking at a genetic locus which has 

two alleles, A and a. If we sample n diploid individual in the population and 

record their genotype at that locus, a number of individuals will be of genotype 

AA, which we can represent as just as nAA.  Likewise, a number of individuals 

will have Aa genotype and can be represented by nAa, and the number of 

individual of aa genotype can be represented by naa.  To formalize this into a 

probability model, we can use the random variable X to represent nAA, the 

random variable Y to represent nAa, and the random variable Z to represent naa.  

We can label these proportions (probabilities) as PAA, PAa, and Paa for each of the 

three respective possible genotypes. 

The multinomial distribution formula represents the joint distribution of the 

three genotypes is given below. 

P (X=nAA, Y=nAa, Z=naa)= aaAaAA n
aa

n
Aa

n
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aaAaAA
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Since you probably wouldn’t want to perform paper and pencil calculations 

using this formula, the question now is how would you work with such a model 

in R?  Clearly models with 3 random variables are not as simple to work with as 

univariate models, but R can handle analyzing and performing simulations on 

these more complicated distributions quite easily.   

As an example, suppose we have 20 individuals and genotype them and find that 

nAA=4, nAa=14, and naa=2.  Given this information, we can easily estimate our 

parameters for the multinomial distribution by simply using the sample 

proportions PAA=0.2, PAa=0.7 and Paa=0.1.  Since we do not have a lot of data it 

is difficult to examine the properties of this model.  However, using our 

empirical parameters we can extend our data set by doing simulations of more 
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values to look at graphs and other details of the distribution.  Later in chapter 13 

we will do similar types of simulations using a technique called bootstrapping.   

To perform simulations, we can write a simple function in R that generates 

values of the three random variables (genotype counts) from a multinomial 

distribution given the parameter values of the proportions of each genotype: 

#function for drawing random values  

#from a multinomial distribution 

 

#takes as parameters 

## parameter N number of simulations 

## parameter n is number of trials simulated (sample size) 

## parameter p is a vector of proportions  

 

rmnomial_function(N,n,p){ 

 l<-length(p) 

 x<-rbinom(N,n,p[1]) 

 if(l==2) 

  {cbind(x,-x+n)} 

 else 

  {cbind(x,rmnomial(N,-x+n,p[2:1]/sum(p[2:1])))} 

 

} 

To illustrate the use of this function, let’s perform 10 simulations of 20 

individuals using our empirical parameters for the proportion vector. 

> ## Define N to be 10 trials 

> N<-10 

> ## Define n to 20 

> n<-10 

> ## Define our p vector containing empirical values  

> # pAA=0.2, pAa=0.7, paa=0.1 

> p<-c(0.2,0.7,0.1) 

> ## Call function with these parameters, store in results 

> results<-rmnomial(N,n,p) 

This produces the following matrix of simulated values of the three random 

variables we are modeling: 

> results    

       

 [1,] 4 11 5 

 [2,] 4 13 3 

 [3,] 2 12 6 

 [4,] 3 13 4 

 [5,] 4 13 3 

 [6,] 6 11 3 

 [7,] 3 13 4 

 [8,] 4 15 1 

 [9,] 1 13 6 

[10,] 7  7 6 

We could easily write some code to calculate proportions for the values for the 

simulated random variable values: 
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> results2<-results/(results[,1]+results[,2]+results[,3]) 

> results2 

          

 [1,] 0.20 0.55 0.25 

 [2,] 0.20 0.65 0.15 

 [3,] 0.10 0.60 0.30 

 [4,] 0.15 0.65 0.20 

 [5,] 0.20 0.65 0.15 

 [6,] 0.30 0.55 0.15 

 [7,] 0.15 0.65 0.20 

 [8,] 0.20 0.75 0.05 

 [9,] 0.05 0.65 0.30 

[10,] 0.35 0.35 0.30 

Looking at the proportions makes it clearer that the simulated values are indeed 

based on the empirical proportion parameters (0,2,0.7,0.1) supplied.  

You could write your own functions like the above to sample from multinomial 

distributions, but there is a package called combinat that contains some pre-

written functions to sample from multinomial distributions.  This package also 

contains a number of other functions useful in combinatorial calculations. 

Note that if you were interested in doing some statistical tests, you could 

simulate values from distributions with alternative parameters, and then perform 

tests to determine whether the empirical values differ from this theoretical 

distribution.  For example, you could test the empirical values against a 

theoretical population with parameters PAA=0.25, PAa=0.5, and Paa=0.25.  This 

will not be done here because it requires techniques of inferential statistics not 

yet discussed, but is presented here to illustrate some of the powerful 

applications you can perform using simulations of distributions. 

The marginal distributions for each of the random variables X, Y and Z can 

easily be obtained from the multinomial.  Suppose we are interested only in the 

marginal probability mass function of the random variable X?  We could go 

about finding the marginal probability mass function using lots of messy algebra 

or instead we consider the following argument.   

If we are only interested in the number of outcomes that result in the first type, 

X, then we simply lump all the other types (Y and Z) into one category called 

“other”.  Now we have reduced this to a situation we have two outcomes.  This 

should ring a bell of familiarity, as it has now become a case of Bernoulli trials. 

The number of times genotype X occurs resulting from n independent trials 

follows a Binomial probability distribution with parameters n and p1.  Note that 

the probability of “failure” = prob(“other”) = 1 - p1 = p2 +…+ pr (sum of all the 

others).  Thus, the one-dimensional marginal distribution for a multinomial 

distribution is simply a binomial: 
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To examine this more concretely, let’s continue our example and do some 

illustrative simulations.  Only now let’s just be concerned with the first variable, 

X.  Instead of considering both Y and Z variables, let’s consolidate them into a 

variable W, representing “everything else” which is not genotype AA, and make 

W=X+Y=(nAa+naa) and pW=(1-pAa-paa)=0.8.  We now have a binomial model 

that models X (counting the trials of AA as “successes” and all other outcomes 

as “failures”) alone. Using R, let’s simulate this distribution in two ways and 

compare the results.  

First let’s simulate 10,000 values using the multinomial model and all 3 random 

variables.  To do this, repeat the simulation described above but changing 

parameter N to 10,000.   

> results<-rmnomial(10000,20,c(0.2,0.7,0.1)) 

> ## Change results to proportions 

> results2<-results/(results[,1]+results[,2]+results[,3]) 

> ## Store column 1 of results in X 

> X<-results2[,1] 

> ## Store column 2 and 3 results in W 

> W<-(results2[,2]+results2[,3]) 

Summarize values by getting the means for X and W: 

> mean(X) 

[1] 0.19913 

> mean(W) 

[1] 0.80087 

The mean for X is roughly 0.2 and the mean (the proportion of “successes” in 

the binomial) and the mean for W is 0.8 (the proportion of “failures” in the 

binomial). These values should seem logical. 

To look at the result visually, plotting the proportions with a histogram is 

simple, as coded below and shown in Figure 8-3. 

>  hist(X,nclass=10,main="Simulated prop. AA using Multinomial") 
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Figure 8-3 

For comparison, a quick simulation from the binomial of 10,000 values using 

p=0.2 is simple to code using the rbinom function: 

> ##Simulate 10000 values from binomial 

> ##Simulate rv for n=20 and p=0.2 

> B<-rbinom(10000,20,0.2) 

> ##Convert to proportions by dividing by 20 

> hist(B/20,nclass=10,main="Simulated prop. AA using Binomial") 

The histogram using the binomial simulation is shown in Figure 8-4. It should 

be apparent from the graphs that the distributions in Figure 8-3 and Figure 8-4 

are virtually identical.   

 

Figure8-4 
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Multivariate Normal Distribution 

The multivariate normal is a favorite distribution in multivariate statistics.  Often 

data are mathematically transformed to fit a normal model.  Such transformation 

of data can be somewhat controversial, because sometimes they are performed 

for convenience and simplicity and the results may be misleading or difficult to 

translate back to the original variables.  Nonetheless, most of inferential 

multivariate statistics utilize the multivariate normal.  Understanding how the 

normal distribution can be extended to include more than one random variable is 

important. 

Because most of the mathematical aspects of dealing with the multivariate 

normal involve advanced techniques of calculus and matrix algebra, we will 

consider the details of only one limited example of the multivariate normal.  We 

will consider the bivariate normal model, which models the joint distribution of 

two independent normally distributed random variables. 

Recall, from the previous chapter, the mathematical formula for the normal 

distribution: 

22

2)x(

e
2

1
)x(f

σ

µ

πσ

−
−

=  

We can model their joint distribution of the two random variables X and Y by 

simply looking at the product of the marginal distributions of their two marginal 

distributions since they are independent variables.  Thus the model for the joint 

distribution of two independent normally distributed random variables X and Y 

(aka: the bivariate normal) is: 

)()(),( xfxfyxf yx=  

We can write this by using the normal distribution equation for both random 

variables and multiplying them: 
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Let’s now take a look at what this looks like graphically using R. Let’s reduce 

the case even further by considering only a standard bivariate normal 

distribution.  Recall that the standard normal distribution has mean of 0 and 

standard deviation of 1.  Thus, we can further re-write the equation above 

considering X and Y as standard normal random variables, each having mean 0 

and standard deviation 1: 
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By performing some algebra, this can be simplified to: 
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This is a pretty workable equation to plot.  To do this, we can write a function in 

R to simulate draws from a bivariate standard normal.  In the code below we 

create two vectors of length 20, x and y and then write a function to calculate 

values of f(x,y).  The results of the function call are stored in a variable matrix z.  

Then the data can be viewed using a simple 3-d perspective plot, presented in 

Figure 8-5. 

> x<-seq(-2,2,length=20) 

> y<-x 

> bvn_function(x,y){ 

+ (1/2*pi)*exp(-0.5*(x^2+y^2)) 

+ } 

> z<-x%*%t(y) 

> for(i in 1:20){ 

+ for(j in 1:20){z[i,j]<-bvn(x[i],y[j])}} 

> persp(x,y,z) 

 

Figure8-5: Perspective Plot of Bivariate Standard Normal 

Distribution  

Figure 8-5 is shaped like a symmetric upside down cone with its base on the XY 

plane.  Along the X-axis (front view of the plot) the perspective lines show a 

pattern of the normal distribution reflecting that any “slice” of the cone would 

have the shape of a normal distribution.  
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Once again, we didn’t have to write a function, because random generations of 

multivariate normal distributions of any dimension can also be done using the 

package mvtnorm.  Mvtnorm contains functionality for generating random 

values from all kinds of multivariate normal distributions, and from related 

multivariate t distributions for any model, and with any parameter values, not 

just with standard parameter values. Let’s use the package’s function rmvnorm 

to generate 1000 values from a bivariate standard normal distribution: 

> data<-rmvnorm(1000,mean=c(0,0)) 

> data 

                 [,1]          [,2] 

   [1,] -0.9152555414  0.5950708803 

   [2,] -1.2240565493  0.3079036163 

   [3,] -1.2205942482 -0.9042616927 

… 

  [999,]  2.0735458497 -1.7003787054 

 [1000,] -0.0962237236  0.0056516042 

In our result we have a matrix of data where the first column has values of 

random variable X values from standard normal simulation, and the second 

column is random variable Y values from a standard normal simulation.  A 

scatter plot in Figure 8-6 demonstrates that the joint density is shaped as we 

would expect data from a bivariate normal simulation to be shaped.   

 

Figure8-6: Scatter plot of X and Y values from bivariate 

standard normal simulation  

If we want to look at marginal distributions of X and Y, we can break down the 

data matrix into an X and Y matrix and look at the marginal distributions of X 

and Y very easily.  All we have to do is store the X and Y values in new 

variables (although we technically don’t even have to do this and could have just 

plotted the columns from the matrix) and do a histogram plot of the marginal 

distribution of interest.   
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> x<-data[,1] 

> y<-data[,2] 

> hist(x,nclass=20,main 

+ ="Marginal distribution of x") 

 

Figure 8-7: Marginal Distribution of X 

From the histogram in Figure 8-7, the marginal distribution of X is quite 

normally distributed. If we did a simulation of 1000 values from a standard 

univariate normal distribution we would obtain a virtually identical result. 

Dirichlet Distribution 

The Dirichlet is the multivariable version of the beta distribution.  Recall that the 

beta distribution is the distribution often used to model data in the form of 

proportions, i.e. values between 0 and 1.  It should make sense that if you are 

modeling something such as the proportions of nucleotides in a DNA sequence, 

each proportion (A, T, C, G) can be modeled with an individual random 

variable, and the joint distribution for the proportions of all four nucleotides can 

be modeled using a Dirichlet. 

We now denote by X1…Xk a set of proportions noting that X1+…+Xk = 1 (and 

each Xi > 0).   Mathematically the formula for the Dirichlet distribution, for k 

random proportions is: 
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Although this formula may look intimidating, it’s not all that complicated! The 

Γ is just the symbol for the gamma function presented in chapter 6 and used in 

both the gamma and beta distributions in chapter 7.  Capitol sigma ∑ is the 

symbol for addition (sum of), and the capitol pi, Π is the symbol for 

multiplication. The alpha’s are the parameters for the random variable X’s. 

The constraint on the distribution is that the sum of proportions adds to one, that 

is, 
1

1
k

i

i

X
=

=∑ which should seem logical since when modeling the joint 

proportions of nucleotides in a sequence, for example, the total of all proportions 

is always 1.  This follows the usual law that the total probability of all events in 

a sample space is 1. 

As a simple example where we might use the Dirichlet, let’s model the joint 

proportions of purines (A or G) and pyrimidines (C and T) in a given sequence.  

Let’s use X1 to model the proportion of purines, and X2 to model  the 

proportion of pyrimidines.  Let’s use the arbitrary choice of alpha=1 as a 

parameter for X1 and alpha=2 for X2.  We model the proportion of purines as p1 

and the proportion of pyrimidines as p2.  Mathematically, with k=2 since there 

are two random variables being modeled, the joint distribution Dirichlet model 

is: 
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Simplifying the above expression by substituting in the alpha values and pi’s and 

then performing addition and multiplication produces a formula that is not very 

intimidating and just involves algebra and calculation of a few gamma 

functions: 

1211
21 )2p()1p(

)2()1(

)3(
)X,X(f −−

ΓΓ

Γ
=  

Note that since X2 = 1-X1 we could simply view this as a marginal distribution 

of X1 because for any given X1, X2 would be completely determined. 
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We note that this is simply the Beta distribution for X1.with parameters α=α1=1, 

and β=α2=2.  Therefore the joint Dirichlet distribution for two random 

proportions X1,X2 (X1 + X2 = 1) is equivalent to the univariate Beta distribution 

for X1 alone. Although in this example only two random variables are modeled 

and the model is pretty straightforward, when more random variables are 

modeled the Dirichlet can become quite complex. Because calculating the 

gamma functions in this equation can be computationally intense (even for quite 

high powered computers), sometimes the distribution is evaluated by taking 

logarithms (which make it computationally more efficient).  It actually doesn’t 

matter which base you use for your log calculations as long as you are 

consistent. The right side of the Dirichlet model can be calculated using 

logarithms like this: 
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Another computation quirk of the Dirichlet distribution is that it is simpler to 

sample from the Dirichlet indirectly by using a method that draws k independent 

gamma samples and then computing random proportions (Xi) as the value of 

each sample divided by the sum of the k samples. It can be shown that the 

proportions X1,..,Xk have a Dirichlet distribution.  We will not discuss 

mathematical details of this here, but in computer programs and in literature you 

will see Dirichlet being simulated using draws from the gamma distribution so it 

of interest to note this here and this trick is used in the code example below.  

To simulate from the Dirichlet in R you could write your own function.  The 

code below gives an example of a function that simulates n draws with a 

parameter vector of p: 

rDir_function(n,a){ 

 l<-length(a) 

 m<-matrix(nrow=n,ncol=p) 

 for(i in 1:p){m[,i]<-rgamma(n,a[i])} 

 sum<-m%*%rep(1,p) 

 m/as.vector(sum) 

} 

Using this function to simulate values for n=20 with a vector of parameters 

(alpha values) for 3 random variables where alpha=1 for all three variables 

produces matrix of results where each column represents simulations for each 

random variable: 

x<-rDir(20,c(1,1,1)) 

> x 

              [,1]         [,2]       [,3] 

 [1,] 0.0018936588 8.005894e-01 0.19751690 

 [2,] 0.3344705893 1.894494e-03 0.66363492 

 [3,] 0.0372989768 2.437322e-02 0.93832781 

 [4,] 0.5159592455 6.830641e-03 0.47721011 

… 
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Again there is no need to write a function to perform simulations, because the 

package gregmisc contains pre-written functions for computing density of or 

generating random values from the Dirichlet distribution.  Performing the same 

computation as above using the function rdirichlet from this package produces 

the following: 

>  x <- rdirichlet(20, c(1,1,1) ) 

> x 

            [,1]        [,2]       [,3] 

 [1,] 0.74226607 0.034630906 0.22310302 

 [2,] 0.61271253 0.359267638 0.02801983 

 [3,] 0.20446723 0.180993424 0.61453934 

 [4,] 0.77386208 0.004850972 0.22128695 

 … 

Let’s return to our example of modeling the joint distribution of the proportion 

of purines and pyrimidines and simulate 1000 values using the rdirichlet 

function: 

> x<-rdirichlet(1000,c(1,2)) 

If we look at the mean values simulated for p1 and p2, these are the simulated 

proportions of x1 purines and x2 pyrimidines given that our parameters alpha=1 

and alpha=2. 

> mean(x[,1]) 

[1] 0.3354725 

> mean(x[,2]) 

[1] 0.6645275 

Each proportion has a marginal distribution.  If we plot the marginal of x[ ,1] we 

get the following as depicted in Figure 8-8: 

> hist(x[,1],nclass=20,main="Marginal of x[,1]") 

 

Figure 8-8 
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Likewise if we plot the marginal of x[,2] we get the plot in Figure 8-9 

 

 

Figure 8-9 

The Dirichlet is sometimes used on its own, but is used extensively in Bayesian 

statistics in conjunction with the multinomial distribution to form powerful 

models for working with counts and proportion data.  It is important here to 

grasp the basics of the Dirichlet and its mathematical model and how to draw 

simulations from the Dirichlet using R.   

Based on the discussions in chapters 6, 7, and 8 you should have an 

understanding of the basics of probability theory and a feel for working with 

univariate distributions and some select distributions of more than one variable.  

If you can understand the different models, what they are used for, how to 

perform simulations and how to graphically analyze results, you should be 

prepared to utilize these capabilities in some more advanced applications.  The 

next few chapters contain an introduction to Bayesian statistics and an overview 

of Markov Chain methods, and coming discussions will build upon the concepts 

and methods presented thus far. 
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9 

An Introduction to Bayesian Data 
Analysis 

Chapter 6 introduced the discussion of Bayesian statistics by discussing the two 

major schools of thought in statistics.  We discussed frequentists statistics being 

the historic mainstream type of statistics usually taught in introductory statistics 

course and Bayesian being a school of statistical thought which build upon 

frequentists methods but incorporates subjective, as well as objective, thinking 

about probability.   

Building on the concepts of probability and models introduced in chapters 6 

though 8, this chapter introduces the Bayesian way of thinking about data 

models, and presents some basic examples of working with Bayesian models in 

R.  The coverage here is primarily conceptual and only serves as a brief 

introduction to the extensive world of Bayesian statistics.  The goal primarily is 

to provide a foundation for understanding the computationally intense methods 

(using R) presented in Chapter 10 that utilize Bayesian theory and are of 

increasing use in applications in bioinformatics.  These methods will be applied 

in Chapters 11 and 12 in the study of Markov Chain methods. 

There is sometimes a rift, even on occasion referred to as a holy war, among 

statisticians to be either frequentists or Bayesian, and to fight for the cause of 

their beliefs.  This book does not present a biased view of either approach being 

superior to the other, but presents each view in terms of strengths and utilizes 

the approach most likely to be of use in bioinformatics applications discussed.  

For the applications in Chapters 10,11, and 12 Bayesian methods are favored for 

many reasons, highlights of which are discussed.  However, after Chapter 12 we 

will return to working with frequentist statistics to study how to use R for 
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inferential statistics and microarray data analysis.  Some topics discussed after 

that will utilize a combination of frequentists and Bayesian thinking. 

The Essential Difference  

The essential difference between Bayesian and frequentists is in interpreting 

what probability means.  Since probability is the language and foundation of 

statistics, this difference affects not only how Bayesians think about and model 

probability, but also how they make inferences about data as well.  Therefore, 

Bayesians have different methods of inferential statistics as well. However we 

are mainly concerned with Bayesian statistics in the context of working with 

probability models and will only touch on the differences in making inferences. 

To illustrate the difference in how a frequentist and a Bayesian view probability, 

consider the statement that “a fair coin has a probability of landing on its head of 

½”. 

To a frequentist, this has an objective interpretation.  A frequentist would reason 

that if the experiment of tossing a coin were repeated many times, the proportion 

of times the coin would land on its head would be ½.  This probability value is a 

true, fixed measure of the chance that a coin lands on its head, mathematically 

approximated by repetitions of an experiment. The probability is the arithmetic 

average of measurements of the experimental outcome, sometimes called a point 

estimate and the sampling distribution would be normal.  When we return to 

inferential statistics in Chapter 13 this will be studied in more detail.   

A Bayesian however would not be concerned with the idea of a fixed, true 

proportion of times a coin lands on its head. To a Bayesian there is no such thing 

as a fixed probability statement. Bayesians consider probability statements to be 

measures of personal degree of belief in a certain hypothesis.  For a Bayesian, 

there are no true measures, only certain probability distributions associated with 

their subjective beliefs.  A Bayesian will therefore look at the outcome of a coin 

toss as a random variable, with an associated probability distribution.   

Using subjective knowledge, the Bayesian would first guesses on what the 

probability of a parameter is (in this case, the outcome of a coin toss).  This is 

called a prior distribution (and for the coin toss, which is a Bernoulli trial based 

experiment, a likely prior is the beta model, discussed in chapter 7).  Then the 

Bayesian would collect data (tossing the coin) and based on the data collected 

would update the model.  Most of this chapter will be concerned with 

understanding this process:  how the Bayesian chooses a prior, how the data are 

modeled, and how the model is updated to produce what is called a posterior 

distribution.  This process is the paradigm of Bayesian statistics. 

Note, that the Bayesian might not choose ½ as a first guess (p success) but might 

choose 1/10.  Perhaps the Bayesian has experienced in the past that coins do not 

land on their heads and has previously experimented with unfair coins.  One 
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Bayesian may have a different belief about a prior distribution from another 

Bayesian’s belief of prior distribution for the same process.  What is important is 

that the Bayesian first uses subjective belief to produce an initial model of 

probability distribution.  It is this incorporation of subjective belief into the 

model that distinguishes the Bayesian from the frequentists. 

Why the Bayesian Approach? 

Although at first the Bayesian approach may seem odd, and the incorporation of 

subjective belief into a probability model may seem controversial, there are 

many reasons why the Bayesian approach has an advantage for modeling 

probability in bioinformatics as well as many other applications.  

Here are some good reasons to use the Bayesian approach, presented here 

briefly and without technical details. 

• Easier Interpretation of Parameters.   

Anyone who has ever interpreted a confidence interval in frequentists 

statistics course (discussed in Chapter 13) knows that frequentist’s ways of 

interpreting things can become a bit confusing.  Having a distribution for a 

parameter, as the Bayesian approach does, is easier to understand then the 

frequentist’s way of point estimates and standard errors. 

• Less Theoretical. 

All of Bayesian statistics essentially revolves around one paradigm, that of 

Bayes theorem. The forms of distributions modeled may vary, but the 

paradigm for working with them is essentially the same.   

• Computationally Intensive. 

The Bayesian approach is ideal for utilizing computational power. Software 

packages such as R can take advantage of the Bayesian approach because 

they (in combination with the appropriate hardware) can perform 

computationally intensive tasks. 

• More Flexible. 

The Bayesian approach is extremely flexible in how to model distributions 

of data and can be applied to many situations.   

• Deals Well with Missing Data Values. 

Methods of Bayesian data analysis are able to effectively “cover” for 

missing data values without lost of statistical robustness. 

• Effectively Models High-Dimensional Data 
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As a consequence of its computational intensity, the Bayesian approach can 

handle situations involving multiple variables (parameters) 

• Is a Method of Learning. 

As we shall see with Bayes Theorem, the Bayesian approach involves 

constantly updating the model based on new data.  This is a method of 

statistical learning.  Artificial intelligence and other disciplines take 

advantage of the Bayesian approach and utilize it in learning algorithms in 

data mining and other applications. 

• Does Not Require Large Samples 

Bayesian methods do not require mathematical methods of asymptotic 

approximations for valid inferences.  Algorithms based on Bayesian theory, 

including Markov Chain Monte Carlo, can be carried out and produce 

results with small samples very effectively. 

Some potential disadvantages of the Bayesian approach include: 

• Criticism of Using Subjectivity in the Model.   

This may be viewed as nonscientific and biased and is the most frequent 

source of dispute of Bayesians and Frequentists.  The use of a prior 

distribution and its influence on the posterior model are discussed in depth 

in this chapter. 

• Misunderstood.   

Bayesian models are not widely taught or utilized (and even when utilized, 

may not be utilized correctly) and are still not mainstream statistics. 

Therefore others may not understand the Bayesian model and may 

misinterpret it.   

• Complicated?   

When Bayesian models are presented mathematically they may appear very 

complicated.  However, whether they are more complex than frequentist 

statistics is debatable.  In actuality Bayesian methods, especially in 

complicated models, are somewhat easier to work with then Frequentist 

models for the same model.  The bases for all Bayesian models are 

fundamentally the same algorithm, which may be simpler than Frequentists 

models. 

Bayes’ Rule 

The foundation of Bayesian statistics is a rather simple probability rule known 

as Bayes’ rule (also called Bayes’ theorem, Bayes’ law). Bayes’ rule is an 

accounting identity that obeys the axioms of probability.  It is by itself 
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uncontroversial, but it is this simple rule that is the source of the rich 

applications and controversy over subjective elements in Bayesian statistics.  

Bayes’ rule begins with relating joint and conditional probability: 

P (A|B)= 
)B(P

)BP(A ∩
 

Figure 9-1 illustrates this, where A is the event inside the larger circle, B is the 

event inside the smaller circle, and C is the intersection of events A and B and 

represents the joint probability of A and B. 

A

B
C

 

Figure 9-1 

However, the probability of A and B can also be rewritten as: 

P(A∩B)=P(A|B)*P(A)  

Or as P(A∩B)=P(B|A)*P(B) 

We can rewrite the relationship between conditional and joint probability of A 

and B given earlier as: 

P (A|B)= 
)B(P

)BP(A ∩
=

)B(P

)A(P*)A|B(P
 

Where the relation 

P (A|B)= 
)B(P

)A(P*)A|B(P
 

Is known as Bayes’ rule.  Bayes’ rule is sometimes called the rule of inverse 

probability.   This is because it shows how a conditional probability P(B|A) can 

be turned into, or inverted, into a conditional probability P(A|B). 
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The denominator of Bayes’ rule P(B) is the marginal probability of event B, that 

is the probability of event B over all possibilities of A where there is joint 

probability.  In the case where A is not a single event, but a set n of mutually 

exclusive and exhaustive events, , such as a set of hyptheses, we can use the law 

of total probability to calculate P(B): 

P(B)=∑
n

)An(P*)An|B(P  

In this situation, Bayes’ rule provides the posterior probability of any particular 

of these n hypotheses, say Aj given that the even B has occurred: 

( )
( ) ( )|

|
( | )* ( )

j j

j

n

P B A P A
P A B

P B An P An
=
∑

 

Because for a given situation, P(B) is a constant, Bayes theorem may be written 

as: 

P (A|B)∝ )A(P*)A|B(P  

Where ∝ is the symbol for “proportional to”.   

Sometimes Bayes’ rule is written using E and H, where E stands for “evidence” 

and H stands for “hypothesis”.   Using E and H we can write: 

P(H|E)=
)E(P

)H(P)H|E(P
 

In this form, P(H) represents the prior degree of belief in the hypothesis before 

the evidence.  P(H|E) is the updated probability of belief in the hypothesis given 

the evidence.  In other words, Bayes’ rule is updating the degree of belief in the 

hypothesis based on the evidence.  This is where the usefulness of Bayes rule 

and Bayesian statistics in learning comes from, and this idea is a foundation of 

the usefulness of Bayesian statistics. 

Applying Bayes’ Rule 

Let’s apply Bayes’ rule to two examples.  In the first case, we will have 

complete information about the joint probability of two events.  In the second 

case, we will have only select probability information to work with.   

Table 9-1 shows the joint probability of two events, event A being a membrane 

bound protein and event B having a high proportion of hydrophobic (amino 

acid) residues.  The two columns with data represent the marginal distributions 

of A, being a membrane bound protein, and the complement of A (written as ~A 
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or Ac), not being a membrane bound protein.  The two rows represent the 

marginal distributions of B, having a high hydrophobic content and the 

complement of B (~B or Bc).  Each cell represents the joint probability of two 

events. 

Let’s say we want to calculate the probability of a protein having a high 

hydrophobic content given that it is a membrane bound protein.  To do this we 

can apply Bayes’ rule in this form: 

P(B|A)=
)B(P

)A(P)B|A(P
=

)B(P

)BA(P ∩
 

P(A∩B) is the joint probability of A and B is simply found from the cell in the 

joint probability table and is 0.3.  P(B) can be calculated by the law of total 

probability, calculating the P(B|A)P(A)+P(B|~A)P(~A) or since we have the 

table by the sum of the row for event B, which is 0.5. 

Therefore  

P(B|A)= 
)B(P

)BA(P ∩
=

5.0

3.0
=0.6 

And we conclude given protein is membrane bound that there is a 60% chance 

the protein has a high hydrophobic residue content. 

Table 9-1 

Type of Protein  

Membrane 

Bound (A) 

Non-membrane 

Bound (~A) 

High (B) 0.3 0.2 

P
ro

p
. 

H
y

d
ro

p
h

o
b

ic
 

re
si

d
u

e
s 

Low (~B) 0.1 0.4 

In the first example (above) the computation of the desired conditional 

probability and use of Bayes rule are quite straightforward, since all the 

information needed is available from the joint probability table.  Now let’s 

consider a second example, where the computation would be quite difficult were 

it not for Bayes formula. 

Suppose having a gene X results in the onset of a particular disease 50% of the 

time.  Suppose the prevalence of having the gene X is 1/1000 and the prevalence 

of having a particular disease is 1%.  From this, compute the probability of 

having gene X given that you have the disease 
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We could use this information and try to produce a joint probability table for the 

two events – having the gene and having the disease.  Or, now that we know 

there is Bayes’ rule, we can use it to solve this problem. 

From the information above we are given: 

 P(Gene)=1/1000 

 P(Disease)=1/100 

And  

 P(Disease|Gene)=0.5 

Note that what we are doing here is inverting the probability P(Disease|Gene) to 

calculate P(Gene|Disease) in light of the prior knowledge that the P(Gene) is 

1/1000 and the P(Disease)=1/100.  The P(Disease) can be assumed to be the 

marginal probability of having the disease in the population, across those with 

and those without the gene X. 

P(Gene|Disease)=
)Disease(P

)Gene(P)Gene|Disease(P
 

Solving this is as simple as plugging in the numbers: 

P(Gene|Disease)=
100/1

(1/1000)*0.5
=0.05 

This result is interpreted as if you have the disease (condition) the probability 

that you have the gene is 5%.  Note that this is very different from the condition 

we started with which was the probability that you have the gene, then there is a 

50% probability you will have the disease.   

Bayes’ rule could be applied over and over in order to update probabilities of 

hypotheses in light of new evidence, a process known as Bayesian updating in 

artificial intelligence and related areas. In such a sequential framework, the 

posterior from one updating step becomes the prior for the subsequent step.  The 

evidence from the data usually starts to drive the results fairly quickly and the 

influence of the initial (subjective) prior will be diminished.  However, since we 

are interested in Bayes formula with respect to Bayesian statistics and 

probability models, our discussion here will continue in this direction. 

Extending Bayes’ Rule to Working with Distributions 

In a similar way to the previous chapter when we first looked at probability 

theory (of joint, conditional and marginal probability) and then applied it to 
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understanding how these principles apply to distributions, here we first looked at 

Bayes rule (above) but now, we will extend Bayes’ rule and apply it to working 

with probability models (distributions). 

Let’s return to the “evidence” and “hypothesis” view of Bayes’ rule, and apply it 

to our discussion at the beginning of the chapter regarding how a Bayesian 

would view the probability of a fair coin landing on its head.   

P(H|E)=
)E(P

)H(P)H|E(P
 

We have already discussed that this can be written as a proportional relationship 

eliminating P(E), which is a constant for a given scenario, so: 

P(H|E)∝ )H(P)H|E(P  

Recall that P(H) represents the prior degree of belief in the hypothesis before the 

evidence.  In this case, this will be the Bayesian’s subjective belief of the 

proportion of times the coin will land on heads before the coin is flipped. Recall 

that the Bayesian would view this as a probability distribution.  Therefore, we 

have to model P(H) with a distribution.  We refer to the distribution modeled 

with P(H) as a prior. 

But what distribution should we use for the prior?  We have not collected 

empirical data so we have nothing to base a binomial distribution on.  All we 

have is the Bayesian’s subjective belief of the proportion of times that the coin 

will land on its head.  Let’s say the Bayesian believes that this proportion is ¼.  

Recall that the beta distribution is used to model probability distributions of 

proportion data for one random variable.  How can we fit a beta distribution to 

model our P(H) for a proportion of ¼?  Recall the beta model presented in 

chapter 7: 

11 )x1(x
),(

1
)x(f −β−α −

βαβ
= , 0<x<1 

So really all we need here are some alpha and beta parameters which center the 

distribution around 1/4 (or 0.25). Having some experience with understanding 

how using different alpha and beta parameters affects the shape of the beta 

distribution (making a page of different beta distributions with various 

combinations of parameters is helpful for learning these things), we suspect that 

using alpha=2 and beta=5 for parameters will produce an appropriate 

distribution. 

Let’s go ahead in R and graph the prior distribution. 

> x<-rbeta(5000,2,5) 

> plot(x,dbeta(x,2,5),main="Prior dist. P(H)") 
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Figure 9-2 shows the resulting distribution.  Is this an adequate prior?  It is 

centered on 0.25, our Bayesian’s subjective belief.  It is not too precise and has a 

reasonable spread, reflecting both some certainty on the part of the Bayesian that 

the value is around 0.25, but also reflecting that the Bayesian views this as a 

distribution and there is a reasonable spread of variation in the distribution 

between 0 and 0.5, reflecting the Bayesian is fairly certain of his beliefs, but not 

so certain as to use an overly precise (invariable prior). 

You may think this reasoning for defining a prior is quite non scientific.  The 

purpose of a prior is to model the initial subjective belief of the Bayesian 

regarding the parameter of interest, before data are collected.  We will discuss 

priors in more detail later in this chapter. 

 

Figure 9-2 

We now have the P(H) part of the model P(H|E)∝ )H(P)H|E(P .  In order to 

calculate P(H|E) we need P(E|H), the probability of the evidence given the 

hypothesis.  In order to get this, we need some evidence.  Evidence, of course, is 

data.  In order to get data, we need to perform an experiment, so let’s collect 

some evidence. 

Suppose we toss the coin 10 times and record whether it lands on heads or tails.  

Each trial of tossing the coin is a Bernoulli trial, and the combination of 10 trials 

can be modeled using the binomial distribution, which is (from chapter 7): 

)n trialsin  successesk (P)k(p = = 








k

n
knk )p1(p −−  
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Suppose our coin tossing experiments resulted in 5 of the 10 coins landing on 

heads. In frequentist statistics our estimate for the Binomial parameter p would 

be p=0.5 (the sample proportion) and the frequentist estimated binomial model 

for k=0 to 10 would be 

) trials10in  successesk (P)k(p = = 








k

10

0.5k*0.510-k 

 which can be modeled in R using the simple code: 

> plot(0:10,dbinom(0:10,10,0.5),,type='h',xlab="",main="Data dist. P(E|H)") 

With the resulting plot shown in Figure 9-3. 

 

Figure 9-3 

Since in the Bayesian paradigm p is a random variable, there are infinitely many 

plausible models for the data, namely one for each value of p.  Two such models 

are depicted in Figure 9.3. The dependence of the probability of the data on the 

parameter value is also referred to as the likelihood, or likelihood function. In 

our case since the experiment resulted in k=5 the likelihood is  

Likelihood(p) = P(5 successes in 10 trials | parameter p) = 
10

5

 
 
 

p5 * (1-p)5  

Likelihoods will be discussed more later in this chapter, but let’s continue 

working with our extension of Bayes’ rule to apply it to distributions. 

With our prior distribution model and our data distribution model, we have now 

completed the right side of the proportion 
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P(H|E)∝ )H(P)H|E(P  

Now what we want is P (H|E), the updated probability of belief in the hypothesis 

given the evidence.  We want this of course, to be in the form of a probability 

model that we call the posterior. 

Recall our beta model for P(H) 

11 )x1(x
),(

1
)x(f −β−α −

βαβ
= , 0<x<1 

we concluded that alpha=2, and beta=5 are adequate parameters for modeling 

our P(H) with an Bayesian estimate of 0.25, this is our x value but x here 

represents p , the proportion value, so we can rewrite this as  

1 11
( ) (1 )

( , )
f p p pα β

β α β
− −= − , 0<p<1 

Again, looking at the binomial data model equation: 

P(k)= 








k

n
knk )p1(p −−

 

It should be apparent that the two models BOTH contain terms of p raised to an 

exponent, and (1-p) raised to an exponent.  Hopefully you recall a day in math 

class sometime in secondary school when you encountered the rule for 

multiplying exponents of the same base, aman=am+n 

Let’s combine our models: 

P(H|E)∝ )H(P)H|E(P  

P(H|E) ∝ 








k

n
knk )p1(p −− 11 )p1(p

),(

1 −− − βα

βαβ
 

Multiplication produces the posterior: 

P(H|E) ∝ 








k

n

),(

1

βαβ
p

k+α-1
(1-p)

n-k+β-1
 

Combining constant (for this particular) terms and replacing them with c (c is a 

normalizing constant which we will not be concerned with evaluating here): 
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P(H|E) ∝cp
k+α-1

(1-p)
n-k+β-1 

Note that this follows the form of a beta distribution with parameters 

alpha(new)=k+alpha(old)-1, beta(new)=n-k+beta(old)-1. 

Thus our posterior distribution has parameters alpha=5+2=7 and beta=10-

5+5=10, so we have a beta (7,10) distribution to model the posterior distribution 

of P(H|E).  Remember that in the Bayesian paradigm P(H|E) now represents the 

plausibility of the values p given our data which resulted in a value of k=5 in a 

binomial model with parameter p,. The plausibility is naturally represented by 

the posterior probability density function of the Beta (7,10) distribution. 

Let’s use R to graphically analyze our posterior solution (Figure 9-4): 

> x<-rbeta(5000,6,9) 

> plot(x,dbeta(x,6,9),main="Posterior dist P(H|E)") 

 

Figure 9-4 

A more interesting plot can be produced in R using the following code, which 

uses the points function to plot the posterior distribution and the legend function 

to label the two distributions, as shown in Figure 9-5. 

> p <- (0:1000)/1000 

> plot(p,dbeta(p,2,5),,ylim=range(0:4),type=”l” 

+ ylab=”f(p)”, main="Comparing Prior and Posterior") 

 

> lines(p,dbeta(p,7,10)) 

> legend(0,3,legend="Prior") 

> legend(0.4,3.6,legend="Posterior") 
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Notice in Figure 9-5 that the posterior is shifted toward higher proportions, 

reflecting the updating of the model based on the data.  Note though that the 

posterior is still not nearly centered on 0.5, the data value for p.  We will return 

to discussing how the likelihood and prior influence the posterior distribution 

calculation later in this chapter.   

We could update the posterior again, this time utilizing the current posterior 

distribution as the prior distribution and repeat the algorithm assuming the same 

data were achieved in a duplicate experiment.  The readers are encouraged to do 

this experiment on their own with plots resulting in R.  The result would be a 

posterior with updated parameters, which graphically shifts more toward 0.5. 

0.0 0.2 0.4 0.6 0.8 1.0

p

0
1

2
3

4

f(
p

)

Comparing Prior and Posterior

Prior

Posterior

 

Figure 9-5 

What is critical to understand in this example is not the details of the 

distributions used (which have previously been discussed) but the essence of the 

Bayesian algorithm as it applies to working with probability distribution models: 

P(Model|data) ∝ P(Model) P(data|Model) 

Posterior ∝ Prior * Likelihood 

The essence of this is that the Bayesian’s subjective prior model is updated by 

the data model (the Likelihood) to produce a posterior distribution that combines 

the Bayesian subjective knowledge with the objective data observed.   

Although the mathematical complexity of the applications of this algorithms are 

broad and can be complex, this algorithm remains the same for the Bayesian 

methods.  Although only simple examples are used in this book that touch on the 
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computational complexity involved.  Multiple parameter models, extensive 

amounts of data, can all be worked with using this same model.    

The rest of this chapter discusses this algorithm further, taking a closer look at 

the prior choices, what a likelihood function is, and how the posterior is 

calculated. 

Priors 

As stated earlier, the use of the prior in the model is the controversial and 

distinctive element of Bayesian statistics.  The use of a prior introduces 

subjective information from the statistician into the model and there are not hard 

and fast rules as to the “correct” prior to use as it is more of an educated 

guessing game. This is often criticized by non-Bayesians as being too subjective 

for their liking.  In the coin-tossing example above, the prior was an estimate 

lower than the empirical data suggested, so based on that you may argue that the 

prior biased the data and the result would have been more accurate if no prior 

were used in calculating the posterior.  However, what if the prior estimate for 

the proportion of heads was 0.5 and the empirical data result for the proportion 

of heads in a 10 toss trial is 0.3?  In this case, if the coin is fair, the prior is more 

accurate than the data and the posterior would be more close to the true value 

than it would be if it were for the data alone and the posterior accuracy would 

increase with the use of the prior, a counter argument to the criticisms of the 

non-Bayesians. Another counterargument is that there is always subjectivity in 

any model – data can be collected through a variety of experiments with 

different biases.  Everything is subjective. 

Priors however are not just about introducing subjective knowledge into the 

model; they are about introducing previous knowledge into the model.  The 

Bayesian algorithm is all about updating previous knowledge with new 

evidence.  Previous knowledge may be entirely subjective – based on a feel or a 

guess about what the outcome of a novel experiment may be, often in regard to 

the potential outcome of an experiment that has never been done.  Prior 

knowledge however may also be knowledge and based on data from a previous 

similar empirical experiment. Meta analysis models can be done in Bayesian 

combining data from new experiments with data from old experiments. 

The choice of a particular prior for a model is a science in and of itself.  We will 

only deal with the simplest models of standard form, merely touching on the 

vast world of Bayesian models.  Advanced model choices for priors are left to 

the experienced statistician and studying prior choices could be the topic of 

several good dissertation projects.  However, in the Bayesian model the use of a 

prior is key.  Some prior model must be chosen when using a Bayesian method.  

Sometimes, as in the example above the choice of prior is simple because it 

follows a convenient model pattern, as is the case with the beta prior for the 

binomial model.  Such priors are called conjugate priors.  Other times the basis 

of a prior is made for mathematical reasons (beyond our discussion) in a 
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situation where there is little or no information about what the prior distribution 

is.  Such priors are referred to as noninformative. Let’s explore both classes of 

priors a bit further. 

Conjugate Priors  

The type of prior we will use for all our examples in this and coming chapters 

falls into the type of prior referred to as an informative prior or a conjugate 

prior.  Conjugate priors have the property that the posterior distribution will 

follow the same parametric form as the prior distribution, using a likelihood 

model of a particular form as well (but the likelihood form is not the same as the 

prior and posterior form).  This property is called conjugacy.  In our example the 

beta prior combined with a binomial likelihood produces a beta posterior.  This 

is always the case given these models.  Therefore when a binomial model is 

used for the data model, one uses a beta for a prior and this will produce a beta 

posterior distribution.  The example used earlier in this chapter for a coin toss 

can be applied to numerous scenarios. You may have noticed that we are mixing 

a discrete model for the data, the binomial, with a continuous model for the 

parameter p, the beta.  That’s OK.  The subjective belief is quantified on a 

continuous scale for all possible values for p: 0 < p < 1, and the data are 

Bernoulli trials modeled with a binomial model, this produces a continuous scale 

posterior model.  There is no requirement for conjugate pairs to be both 

continuous or both discrete distributions. In an estimation problem, parameters 

are usually on a continuous scale, and hence the prior and posterior distributions 

are continuous. 

There are other conjugate pairs of prior-likelihood to yield a posterior of the 

same form as the prior. Let’s consider one more example using standard 

univariate distributions, the conjugate pair of a Poisson distribution with a 

gamma prior.   

Recall the form of the Poisson distributions (from chapter 7).  This is the data 

model for the occurrence of x events with rate lambda (=rate of occurrence, or 

average number of events per unit time or space).  Let’s use the symbol theta (θ) 

instead of lambda, where theta represents the rate parameter (all we are doing 

here is changing the symbol used, a perfectly legal mathematical maneuver).   

If we observe a single data value x that follows the Poisson distribution with rate 

theta then the probability distribution of such a single “Poisson count” is: 

P(x|θ)=
!x

ex θθ −

where x can take values 0,1,2,3,….. 

Note that the rate can be any positive (real) number. If we observe n 

independent occurrences x1,x2,…,xn (or Poisson counts) they are modeled 

using the likelihood l: 
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P(data|model)=P(x1,x2,…,xn|θ)=
1 !

ixn

i i

e

x

θθ−

=

∏  

Leaving out the constant term (factorial in denominator): 

P(data|model)∝θ
∑xi

e
-nθ

 

Recall also the gamma model, a continuous model with great flexibility of 

particular shape and location parameters, alpha and beta, used to model data 

which are greater than zero and continuous in nature but do not follow the 

normal distribution.  The gamma is the conjugate prior for the Poisson 

distribution and can be used to model the prior distribution of the rate parameter 

theta: 

βθα

α
θ

αβ
θ −

Γ
= − e

)(

1
)(f 1  

Or reducing the model (eliminating the constant term) to produce a prior for 

theta distributed as a gamma: 

p(θ)∝θ
α-1

e
-βθ

 

Let’s use this model to measure the rate of a particular mutation in a particular 

gene, which has rate theta.  According to prior knowledge, the rate per 1000 

people at which this mutation occurs is 0.4.  Based on this we can model this 

with a gamma distribution with alpha parameter of 2 and beta parameter of 5 

(the mean of which is 0.4 from our discussion in chapter 7).  That is the 

distribution of theta (here denoting the rate per 1000 people) for the prior is 

gamma (2,5).  We then obtain some new data that finds that the in n=10 samples 

of 1000 people each, the number of mutations is as follows: (0,2,1,0,1,2,0,1,1,0) 

 Using the Poisson likelihood model and our gamma prior, we need to determine 

our posterior distribution based on this data where 

Posterior ∝ Likelihood * Prior 

P(model|data) ∝  P(data|model) * P(model) 

P(θ|x) ∝  P(x|θ) * P(θ)
 

P(θ|x) ∝ θ
∑xi

e
-nθ

*θ
α-1

e
-βθ

 

Adding exponents, this produces a posterior distribution with 

alpha(post)=Σxi+alpha(prior) and beta(post)=beta(prior)+n.  Since in our 10 

samples we found a total of eight people with the mutation, Σxi is 8.  So our 
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updated parameters are alpha (post)=10 and beta (post)=15 with a gamma 

(10,15) distribution for theta.  Let’s look at a plot (Figure 9-6) of the prior and 

posterior distributions in light of the new data: 

> theta<-seq(0,2,0.001) 

> y<-dgamma(theta,2,5) 

> plot(theta,y,ylim=range(0:3),ylab="",xlab="theta") 

> y2<-dgamma(theta,10,15) 

> lines(theta,y2) 

> legend(0,2.5,"Prior") 

> legend(0.6,2.8,"Posterior") 

 

Figure 9-6 

Note in Figure 9-6 shows the posterior distribution of theta shifts toward higher 

values (the empirical data would suggest a theta of 0.8 per thousand) but still not 

as high as the data would suggests. The sample size (10) is not very large, an 

issue we will discuss below in discussing calculating the posterior. Working 

with conjugate pairs greatly simplies the mathematics and modeling involved in 

Bayesian data analysis. Table 9-2 summarizes commonly used conjugate pairs. 
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Table 9-2: Conjugate Pairs 

Prior Likelihood Posterior 

Univariate Models 

Beta Binomial Beta 

Gamma Poisson Gamma 

Gamma Exponential Gamma 

Normal Normal (known 

variance, unknown 

mean) 

Normal 

Multivariable Models 

Dirichlet Multinomial Dirichlet 

Multivariate Normal Multivariate Normal 

(known variance matrix) 

Multivariate Normal 

Noninformative Priors 

What do we do when we want to use a Bayesian model but are ignorant about 

the prior distribution, and have much to guess on, if any information?  The 

solution to this is to use a so-called noninformative prior. The study of 

noninformative priors in Bayesian statistics is relatively complicated and an 

active area of research.  Other terms used for noninformative prior include: 

reference prior, vague prior, diffuse prior, and flat prior. 

Basically, a noninformative prior is used to conform to the Bayesian model in a 

correct parametric form.  The choice of noninformative prior may be purely 

mathematical and used so the posterior distribution is proper (integrates to 1) 

and thus is a correct density function.  Noninformative priors may be special 

distribution forms, or versions of common probability distributions that reflect 

no knowledge about the distribution of the random variable(s) in the prior 

model. 

Here we will introduce only one specific example of a noninformative prior, 

because it is a prior distribution of interest in modeling proportion data and of 

interest in bioinformatics. If there is no specific prior information known about 

the proportion of something (say a proportion of nucleotide in a sequence 

motif), then we can use a noninformative form of the beta distribution. The beta 

(1,1) distribution, shown in Figure 9-7, is a flat noninformative prior that is 

uniform across the distribution of all proportions. This is a special case of a 



 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

154 

uniform distribution (which is any distribution of uniform density).  If you want 

to use a Bayesian model and have proportion data to model with no prior 

information, you should use a beta(1,1) prior.  The multivariate version of the 

beta(1,1) is a Dirichlet model with prior parameters set to 1, and will be used in 

examples in coming chapters. 

> x<-seq(0,1,by=.001) 

> plot(x,dbeta(x,1,1),ylab="",main="Beta (1,1) Prior") 

 

Figure 9 -7 

Likelihood Functions 

You may have noticed that we do not refer to the likelihood function as the 

likelihood distribution (which would be WRONG!) but instead call it the 

likelihood or the data model.   There is a difference between the likelihood and a 

distribution model.  Although, in Bayesian applications, the likelihood will often 

assume a form of a common probability distribution model, likelihood functions 

are used in many areas of statistics and are not just specific to use in Bayesian 

modeling. 

With a distribution model we are asking what the probability of the sample 

outcomes are given the parameter values. For example, in the binomial model as 

a distribution we are asking what the probability of x successes is given the 

parameter value p.  The parameter, p, is fixed, and the observations (x’s) are 

variable.  The data are a function of the parameters, as: 

xnx )p1(p
p

n
)p,n|x(f −−








=  

With a likelihood function we are asking how likely the parameter values are 

given the sample outcomes.  In essence, the interpretation of the likelihood is the 

reverse of the distribution.  In the likelihood we already have the data and we are 
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trying to determine the parameters given the data.  The parameters are a function 

of the data: 

xnx )p1(p
p

n
)n,x|p(L −−








=  

In frequentist statistics the likelihood function is used to find a single value of 

the parameter, a so-called point estimate. A popular estimate is the value that is 

most likely, that is, the value that makes the likelihood function as big as 

possible (which you could prove by taking the likelihood and finding its 

maximum using calculus).  We call this the maximum likelihood estimate 

(MLE) and it has some nice properties.  The interpretation is that the MLE is the 

most plausible value of the parameter, in the sense that it produces the largest 

possible probability of the observed data occurring.  Many common estimates in 

statistics, such as the mean and variance of a normal distribution are MLE’s. 

Obviously making such a “true” estimate is more of a frequentist than a 

Bayesian thing, but it is of note here because it is an important use of the 

likelihood function. 

Evaluating the Posterior 

The whole purpose of setting up the model, determining a prior, and collecting 

data is of course to evaluate the posterior distribution to determine the results 

desired.  In the examples used so far, the posterior distribution was quite simple 

and the trick of using conjugate pairs resulted in a familiar posterior distribution 

whose parameters could easily be determined by taking advantage of the 

property of conjugacy.  Of course, this is not so easy for more complicated 

models, and this is where the beauty of a computational package such as R 

comes in.  Let’s take a look at some of the issues involved in the posterior 

outcome of the Bayesian model. 

The Relative Role of the Prior and Likelihood  

The posterior distribution reflects both the prior and the likelihood models, 

although in most cases not equally.  Let’s investigate the role of the likelihood 

and role of the prior in determining the posterior. 

First, let’s look at the role of the likelihood.  It is pretty straightforward that the 

more data there are, the more the data will influence the posterior and eventually 

the choice of the prior will become irrelevant. For example, let’s return to our 

example used earlier in this chapter regarding the coin tossing experiments.  In 

this example we had a prior estimate for p of 0.25, which we modeled with a 

beta (2,5) prior distribution.  We collected n=10 data values and obtained k=5 

successes (coin landed on head) for the binomial likelihood model.  The 

comparison of prior and posterior was shown in Figure 9-5.   
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What would happen in this example if instead of 10 data points we obtained 100 

data points, with 50 times the coin landing on its head?  For the posterior we can 

use a beta distribution with parameters alpha (new)=k+alpha(old), beta(new)=n-

k+beta(old).  With n=100 and x=50 we get alpha (new)=52 and beta (new)=55.  

Let’s compare the results with n=10 with the resulting posterior distribution 

obtained with n=100 and the same success rate in the coin toss: 

 

> p <- seq(0, 1, by = 0.001) 

> plot(p, dbeta(p, 2, 5), ylim = range(0:10), ylab = "f(p)", 

+ type = "l", main = "Effect of n on Posterior") 

> lines(p, dbeta(p, 7, 10)) 

> lines(p, dbeta(p, 52, 55)) 

> legend(0, 4, "Prior") 

> legend(0.2, 6, "Post.1") 

> legend(0.5, 9, "Post.2") 

Figure 9-8 shows the result of this analysis.  Note that the second posterior is 

centered on the data value of p=0.5 and is also much more “precise” on this 

value with less spread.  This reflects the general rule that the more the data the 

more the data affect the posterior given the same prior. 

 

Figure 9-8 
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In terms of the role of the prior, the more vague the prior, the less the prior 

influences the posterior.  Let’s see what would happen in the example above if 

we used the same data for n=10 but used instead a beta(1,1) noninformative 

prior to start.  Our posterior would follow the form of a beta distribution wit 

parameters alpha=6, beta=6.  Let’s analyze and graph this model and compare it 

with the prior and first posterior in Figure 9-8 

> p <- seq(0.001, 0.999, by = 0.001) 

> plot(p, dbeta(p, 1, 1), ylim = range(0:10), ylab = "f(p)", 

+ type = "l", main = "Effect of noninformative prior") 

> lines(p, dbeta(p, 6, 6)) 

> legend(0.5, 4, "Posterior") 

> legend(0, 3, "Prior") 

Figure 9-9 shows the result of the posterior when a noninformative beta prior is 

used.  This figure is intentionally drawn on the same scale as Figure 9-8 for 

comparison. Posterior 1 in Figure 9-1 is updated with the same data as the 

posterior distribution in Figure 9-9 except in Figure 9-9 a noninformative beta 

prior is used.  The effect of the noninformative prior is essentially no effect.  

When the noninformative prior is used the data dominate the model, whereas 

when the informative prior in 9-8 is used the informative prior influences the 

posterior along with the data. 

 

Figure 9-9 
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The important point is that in Bayesian analysis the posterior distribution will 

reflect with relative weights the data model and the prior model.  With large 

datasets, the data may dominate, with a small dataset and a precise prior the 

prior will dominate.  This relative influence of data and prior knowledge is 

important aspect of Bayesian analysis. 

The goal in Bayesian analysis is often to determine the posterior distribution and 

sample from it.  Using analytical methods (the paper and pencil method) without 

a computer it is nearly impossible to evaluate a posterior except in simple cases.  

However, computationally intensive methods utilizing software tools such as R 

and a little bit of programming skills enable us to powerfully evaluate posterior 

distributions.  We shall see that the focus of Markov Chains and other methods 

are in fact tools for evaluating a posterior distribution of interest. 

The Normalizing Constant 

Notice that in many examples in this chapter we have used the model that was 

written with a proportionality factor, thus we have left out constant terms and 

ignored them working with the model 

Posterior ∝ Likelihood * Prior 

P(model|data) ∝  P(data|model) * P(model) 

Don’t forget though that with the proportionality factor the models are only 

given “modulo a constant” hence they are not completely defined. In order to 

make the models fully explicit we would need to add back in a constant term c: 

(Note that the notation “c” is generic.  The constant c takes different values in 

each of the two lines below). 

Posterior =c * Likelihood * Prior 

P(model|data) = c* P(data|model) * P(model) 

Note that the constant terms, grouped as c, are called the normalizing constant 

and this can be calculated so that the posterior distribution integrates to 1, but it 

is only a scaling factor and does not affect the distribution otherwise, so it is 

acceptable to ignore the c term in many calculations and only calculate it when 

necessary. 

One versus Multiparameter Models 

So far we have used only one-parameter models in our discussion.  Bayesian 

statistics can of course be utilized in models with multiple parameters, and those 

are of primary interest in bioinformatics.  We have worked in the previous 

chapter with some multivariable models, and in this book we will focus 

examples on the multinomial-Dirichlet conjugate pair in future examples. 
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Often in our analysis we are concerned only with some parameters (so-called 

main parameters) and not others (so-called nuisance parameters).  Nuisance 

parameters can be eliminated easily in Bayesian models by calculating marginal 

and conditional probability distribution for the main parameters Rather than 

introduce techniques here for dealing with multiparameter situations we shall 

only note that they exist and we will work with them in coming chapters when 

we learn computationally intense algorithms that do most of the work for us in 

evaluating such models to understand the parameter of interest. In particular we 

will introduce a chapter covering some special algorithms that may be used to 

evaluate multiparameter Bayesian models.  We also cover Markov chain Monte 

Carlo methods, which are of growing use and popular in bioinformatics 

applications. Working with multiparameter models simply builds on the 

concepts used with single parameter models and an understanding of these basic 

concepts is essential for proceeding further in working with these models 

Applications of Bayesian Statistics in Bioinformatics 

Although coverage in this book is minimal and introductory, the hopes is that 

this will entice the reader to study more advanced statistical methods and fully 

appreciate the power of Bayesian methods in bioinformatics.  Also related are 

artificial intelligence related subjects, logic, and of course, biology related areas.   

Some areas where Bayesian techniques are being researched for applications 

include: 

• Prediction of protein structure and function 

• RNA structure prediction 

• Mechanisms of mammalian regulation 

• Prokaryotic regulatory networks 

• Large scale data analysis methods  

• Algorithms for detecting subtle signals in DNA 

The potential applications of Bayesian data analysis methods are without limit, 

and there is little doubt that such techniques will become increasingly common 

and have an increasing number of applications in the future.  The appendix lists 

some reference papers from the literature where Bayesian methods are used. 

R is a software tool that is adaptable, programmable, and powerful and very 

useful for working with complicated data models and for doing necessary 

calculations for estimation and hypothesis testing, both, frequentist and 

Bayesian. 
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10 

Stochastic Processes and Markov 
Chains 

This chapter begins a three chapter series devoted to the basics of Markov 

Chains (Ch 10), the computational algorithms involved in evaluating them for 

MCMC methods (Ch 11), and utilizing the program WinBugs in conjunction 

with R and the CODA package to be able to perform simple applications using 

MCMC techniques of interest to bioinformatics (Ch 12).  

Markov chains have many applications in many areas of bioinformatics and 

other fields. Our focus in this chapter is providing an elementary introduction to 

Markov Chains for the purpose of utilizing them in the Markov Chain Monte 

Carlo methods for simulating posterior probability distributions for complex 

data models.  Ten years ago, if you brought up the term MCMC to a room of 

biologists, few if any would have heard of such a technique.  Today MCMC is a 

common buzzword especially in bioniformatics. Understanding of the 

mathematical techniques behind MCMC is still mostly the domain of 

statisticians and mathematicians.  This and the next two chapters present a 

conceptual and applied approach to a primarily non-mathematical audience 

interested in being able to understand the lingo and appreciate the computational 

power of using MCMC.  References given in the appendix for further study are 

provided for the interested reader. 

Beginning with the End in Mind 

Let’s begin our study of Markov Chains by keeping the end in mind.  Before 

introducing the basics of the MCMC technique, let’s discuss what the ultimate 
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goal of MCMC technique is.  The previous chapter introduced Bayesian 

statistics in which the major goal is to determine a posterior distribution given a 

likelihood data model and a prior distribution model.  Some simple examples 

were given, and the trick of using conjugate pairs of distributions was illustrated.  

However, determining a posterior distribution is easier said then done and 

traditional analytical methods (using advanced calculus, numerical methods, etc) 

are often extremely difficult. 

For example, let’s consider what is actually a rather is simple case using a 

conjugate pair of a multinomial likelihood and Dirichlet prior which produce a 

Dirichlet posterior distribution. 

The prior is: 
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It is easy to evaluate the Dirichlet - that’s why it is used as a conjugate model. 

Each individual pi has a beta distribution with parameter (alpha. post = alpha + 

Xi, beta.post = sum (alpha_j (j not=i) + sum (Xj (j not = i). Perhaps we should 

use another model to illustrate “difficult to evaluate”.  For example, let’s 

consider the two parameter normal model. In this example we consider what is 

actually a rather simple case using a normal likelihood with parameters µ and 

σ2. 

Data:  X1,X2,…,Xn ~ N(mean=µ , variance =σ2) 
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It turns out to be a bit easier for Bayesian computations to work with the inverse 

of the variance parameter, the so-called precision parameter φ = 1/σ2. We then 

assume the following popular independent priors: 

Priors:  µ ~N(mean=0, variance = τ2) 

φ ~ gamma(α,β) 

If little prior information is available, τ2 is usually chosen to be very large. .For 

this example the likelihood function is, remembering that we use φ = 1/σ2: 
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The posterior distribution is: 

Posterior ∝ Likelihood * Prior 
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The above two examples for the posterior are not easy to evaluate, and these are 

simple cases of multivariable posterior distributions.  Even those in love with 

multidimensional calculus are not very interested in performing such 

evaluations.  Indeed, most posterior distributions of interest involving multiple 

variables are difficult to evaluate and have no easy analytical solution.  But, the 

dilemma is, in bioinformatics and other areas working with high-dimensional 

datasets, what we want is the information in the posterior distribution – the one 

we can’t evaluate directly! 

Do not despair, because there is a clever trick.  Markov Chain Monte Carlo 

(MCMC) methods are the golden key to producing a posterior distribution that 

samples can be obtained from and high dimensional data can be studied.  

MCMC techniques simulate a posterior that can be explored.  We can then use 

the results to draw inferences about models and parameters. 

A brief view of how MCMC works is shown in Figure 10-1.  Here we simulate a 

bivariate normal distribution normal.  The approximation starts at the origin and 
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randomly walks for n cycles.  In the upper left corner, n=10, the samples are 

sequentially joined. Each successive sample is conditionally dependent on 

another in what is a Markov process, described later in this chapter. As the 

iterations continue the process produces a more refined approximation to the 

desired posterior distribution. The sampler used in this figure is called the Gibbs 

sampler, one of the algorithms discussed in Chapter 11 and the algorithm used 

by the software program WinBugs, which can be used as an accessory program 

with R and is discussed in Chapter 12. 

 

Figure 10-1: Posterior MCMC Simulation of a Bivariate 

Normal Distribution  

By 1000 cycles the simulation in Figure 10-1 clearly resembles Figure 8-7, 

which depicts a directly simulated bivariate normal distribution plotted in the 

same way.  Although the bivariate normal is not a very complicated distribution, 

hopefully this illustration has convinced you that MCMC techniques are capable 

of producing a posterior distribution from which analysis of posterior data and 

parameters can be performed. 

Utilizing MCMC techniques require an understanding of Bayesian theory 

(covered in Chapter 9), Stochastic and Markov Processes described in this 

chapter, the algorithms covered in Chapter 11, and can be implemented using R 

and the auxiliary software tools introduced in Chapter 12.  The coverage in this 

book is far from comprehensive, and serves as only a minimalist introduction to 



 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

164 

the power of MCMC.  To take full advantage of MCMC requires much more 

statistical training. 

The idea here is to introduce the reader to the power of this technique so that 

he/she may understand the terminology in the literature, he/she may be able to 

perform simple exploratory applications using R and auxiliary programs, and to 

encourage the reader interested to collaborate with statisticians who can assist 

them in their modeling and data analysis.  Some readers might even become 

interested enough to pursue further formal studies in statistics (such as online 

graduate courese offered at the Univesity of New Hampshire). 

Stochastic Modeling 

As we have mentioned before, models are used to represent behaviors and 

properties of real world systems.  A major goal of statistics is to provide useful 

models in order to understand such systems in particular when there is 

variability.  The use of statistical models in bioinformatics is rapidly growing, 

but many other fields use such models as well.  Understanding models is of 

increasing importance for even those not involved in directly making them 

because of the importance of their use. 

Models can be generally classified as stochastic or deterministic.  The term 

stochastic is used to describe uncertainty (=randomness) in the model.  A 

deterministic model is a model where the input components of the model are not 

random.  The output of a deterministic model is determined by the input.  A 

deterministic model has an outcome that can be computed by direct calculation 

or numerical approximation. 

A stochastic model is one where the input components are random.  The output 

of a stochastic model is also random, and is a snapshot or estimate of the 

characteristics of a model for a given set of inputs. The results of a stochastic 

model are not usually determined by direct methods (analytical methods) but 

usually involve some simulation technique (such as Monte Carlo methods, 

discussed in Chapter 11).  Stochastic models work well in the Bayesian 

paradigm. 

A deterministic model is a simplified version of a stochastic model, eliminating 

much of the randomness.  A deterministic model gives results of a single 

scenario, whereas a stochastic model can be used to give a distribution of results 

for a distribution of scenarios.  Deterministic is more mathematical, stochastic is 

more statistical. 
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Stochastic Processes 

A stochastic process is a stochastic mathematical model for a probabilistic 

experiment that evolves in time (or space) and generates a series of values.   

Recall that in probability, a single random phenomenon (such as the value of the 

role of a die) is modeled using a random variable representing the outcome of an 

experiment. Such an experiment can be referred to as static, because such an 

experiment (rolling a die) does not (or at least should not) depend on time (when 

the die is rolled) or space (my house or yours). 

In a stochastic process, the “game” changes in time or space in some way.  Each 

step in the process is defined by a random variable, and the entire stochastic 

process can be defined as a set of random variables {X1, X2, X3…Xn} that are 

indexed by subsequent integer values (i from 1 to n).  Each random variable in 

the sequence represents the current state of the process.  The state space though 

(consisting of possible values of the random variables) remains the same. In a 

stochastic process the subsequently indexed random variables are not 

independent and there is some pattern of dependency from Xn to Xn+1.  

There are different types of stochastic processes.  Two major categories of 

stochastic processes are arrival-time processes and Markov processes.  Arrival 

time processes play an important role in probability applications and include 

Bernoulli processes and Poisson processes.  We will not cover arrival times 

proceses.  Let’s instead focus on Markov processes. 

Markov Processes 

A Markov process is a stochastic process where the set of random variables 

{X1, X2, X3…Xn…} models a certain process over time where it is assumed 

these random variables represent measurements (or counts) that were taken at 

regularly spaced time points.  Markov processes exhibit a very special type of 

dependence.  The next value (Xn+1) depends only on the current value (Xn).  In 

other words the future evolution exhibits a probabilistic dependence on the past 

through the present, and ONLY the present. 

Mathematically this is written in terms of conditional probability: 

P(Xn+1=xn+1|Xn=xn, Xn-1=x n-1, … X0=x0)=P(X n+1=x n+1|Xn=xn) 

This is known as the Markov condition. 

As an example of a Markov process, consider the evolution of a DNA sequence 

over time.  In Figure 10-2 the state of the sequence depends only on the time 

interval prior to it (t=4 depends only on t=3, etc).  This logic is the basis for 

some models of studying sequence evolution using Markov Chains. 
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ATCGCCATCGAATACTCTAGCATG       t=0

ATCcCCATCGAATACTCTAGCATG       t=1

ATCcCCAaCGAATACTCTAGCATG       t=2

ATCcCCAaCGAATACcCTAGCATG       t=3

ATCcCCATaGAATACgCTAcCATG       t=4

 

Figure 10-2: DNA Sequence Evolution as a Markov Process 

Over Time 

The nucleotide pattern 5’ to 3’ in a DNA sequence is not necessarily 

independent and often is modeled so that the nucleotides are dependent on the 

nucleotide immediately upstream of them. This is an alternative Markov process 

model.  Figure 10-3 depicts an abbreviated version of the above sequence, this 

time each sequential nucleotide represented as an indexed random variable. 

Each state of the nucleotide {A, T, C, G} is sequentially dependent on the 

nucleotide adjacent and immediately upstream of it, and only that nucleotide.  

This type of Markov model is used in analyzing sequences in non-MCMC 

applications, discussed very briefly at the end of this chapter. 

 A  T C  G  C  C
5' 3'

X0      X1
 

Figure 10-3: 5’ to 3’ Nucleotide Dependencies as a Markov 

Process 

Classifications of Stochastic Processes 

Time (Position)– Discrete or Continuous? 

This refers to the index of the random variables.  As we saw in the example 

above the index can be in terms of time or position (place, space, sequence).    If 

the index is discrete then it’s discrete time/space.  If the index is continuous it is 
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continuous time/space.  To avoid confusion with state space (below) it is better 

to use the term sequence, position or place for indexes that represent locations. 

State Space – Discrete or Continuous? 

This refers to the space of values for the random variable.  In the discrete state 

space case there are finite and countable values and the random variables used 

are discrete random variables. For example, a discrete state space is the set of 

four nucleotides in a DNA sequence and modeled using random variables that 

will be discrete random variables (since they can only take on four distinct 

values). If there is a continuum of values (any value) in the state space then a 

continuous random variable is used and the state space is referred to as 

continuous.  

Four Combinations of Possibilities 

Of course, you can have any combination of time and state space.  Here we will 

be concerned mostly with discrete time, discrete space Markov processes which 

are called Markov Chains.  Towards the end of the chapter, we will discuss 

briefly how the discrete models generalize to continuous models. 

Random Walks 

A random walk is a simple Markov Chain, yet the study of random walks is a 

complicated subject in probability and has many aspects. Given that the system 

is in state x (where x can be any integer value) at time n, the system will at time 

n+1 move either up, or down one point (integer) usually with equal probability. 

The basic probability calculations for the alignment algorithm used by BLAST 

are based on random walks and many other powerful applications are based on 

this simple theory.   

The simple function below simulates a random walk with respect to the y-axis 

using R.  The x-axis is the index and represents time.  At any given time a 

random step up or down one integer amounts to sampling with equal 

probabilities from the numbers (+1,-1) and adding the result to the current state. 

We initiate the chain with a starting value of y(t=1)=0. The results of one 

simulation are shown in Figure 10-4. 

> Walk1d <- function() { 

+ n <- 100 

+ y <- vector(length=n) 

+ y[1] <- 0 

+ for (i in 2:n) y[i] <- y[(i-1)] + sample(c(-1,1),1) 

+ plot(1:n,y,type='l',ylim=c(-20,20)) 

+ } 

> Walk1d() 
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Figure 10-4: Simple Random Walk 

Likewise, it is simple to simulate a two dimensional random walk in R as coded 

below. Four sample outcomes are shown in Figure 10-5.  This code could 

represent (among other things) an experiment of flipping two coins.  One uses 

the sample function to “flip” a 1 (heads) or -1 (tails). For the x and y direction if 

the coin is 1, you move + 1 in that direction, if the coin is -1 you move –1 in that 

direction.  In the code below you see that we first generate 500 coin flips 

representing the movements in the X direction (vector “xmove”) and likewise 

for the Y-direction (vector “ymove”).  The “cumsum” function accumulates 

these movements. 

> par(mfrow=c(2,2)) 

> Walk2d<-function(){ 

+ xstart <- 0 

+ ystart <- 0 

+ xmove <- sample(c(-1,1),500,repl=T) 

+ ymove <- sample(c(-1,1),500,repl=T) 

+ xmove <- xstart + cumsum(xmove) 

+ ymove <- ystart + cumsum(ymove) 

+ plot(xmove,ymove,xlim=c(-40,40),ylim=c(-

+40,40),xlab=”x”,ylab=”y”,type=’l’) 

+} 

> for (i in 1:4) Walk2d() 
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Figure 10-5: Two Dimensional Random Walk Outcomes 

(same simulation) 

Real world applications of random walks include fractals, dendritic growth (for 

example, tree roots), models for stock options and portfolios, and gambling 

game outcomes. Random walks underlie the theory of Markov Chains.  Let’s 

now explore Markov Chain models in more detail. 

Probability Models Using Markov Chains 

A Markov Chain is a probability model for a Markov process that evolves in 

time or space.  Because some matrix math is required to compute Markov Chain 

probabilities, we will first review how to do this using R.  Then this section 

introduces two examples of models using Markov Chains.  The first example is 

very simple and will be presented mostly conceptually.  The second example is 

more complex and will be presented more mathematically.  The next section of 

this chapter will investigate the mathematical details of Markov Chain models in 

more depth. 

Matrix Basics 

A matrix is a rectangular table of numbers.  The numbers are called entries (or 

elements) of the matrix.  The dimension of a matrix is the number of rows and 

columns it contains.  You have likely encountered matrices before in a math 

course (although you may not remember them!). 
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For our purpose here, we will be concerned mostly with square matrices.  

Square matrices have an equal number of rows and columns.  And the only 

operation we will be concerned with is multiplying matrices. 

For example, consider matrices A and B, which are both 2 by 2 matrices: 









=

22a21a

12a11a
A  









=

22b21b

12b11b
B  

The elements of the matrix are indexed by ij, where i is the row number, and j is 

the column number.  To multiply matrix A by matrix B to create a new matrix 

C, we multiply row 1 elements of A by corresponding elements of column 1 of 

B and sum the results to get the first entry in C (c11).  Then we multiply row 1 

elements of A by column 2 elements of B to get entry c12 of C, etc…. 

 







=









++

++
==

22c21c

12c11c

22b*22a12b*21a21b*22a11b*21a

22b*12a12b*11a21b*12a11b*11a
ABC  

In R, matrices are a distinct type of object with distinct behaviors declared using 

the matrix function call. Matrices are NOT the same as data frames nor are they 

the same as arrays, which may look the same but behave differently and are 

different object types in R which behave very differently!.  To declare a matrix 

in R use the matrix function below with parameters data (for the data vector), 

nrow (for number of rows) and ncol (for number of columns).  

matrix(data, nrow, ncol) 

There are other parameters that we will not be concerned with here (if interested 

use help(matrix) and R will show the function details).  Data can be a 

preexisting data vector, or can be entered as a parameter directly in the function 

call.  By default columns are filled first and then rows.  Thus, if 4 data values are 

entered as a data parameter, the first two become the first column and the second 

two values become the second column.  

If you have existing data and you are not sure whether it is already a matrix 

object, using function is.matrix(x) will return true or false depending on whether 

object x is a matrix or not. 

Multiplying matrices is done not using “*” alone but using the special notation 

“%*%”.   

Let’s declare two square matrices and multiply them in R 
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> a<-matrix(c(1,2,3,4),nrow=2,ncol=2) 

> a 

     [,1] [,2] 

[1,]    1    3 

[2,]    2    4 

> b<-matrix(c(4,3,2,1),nrow=2,ncol=2) 

> b 

     [,1] [,2] 

[1,]    4    2 

[2,]    3    1 

> #Multiply matrix a times matrix b the CORRECT way 

> a%*%b 

     [,1] [,2] 

[1,]   13    5 

[2,]   20    8 

> Note using a*b is NOT CORRECT 

> a*b 

     [,1] [,2] 

[1,]    4    6 

[2,]    6    4 

A Simple Markov Chain Model  

Suppose a frog lives alone in a small pond with two Lilly pads and we record 

where he is every 5 minutes.  At each time point the frog (who is disabled and 

cannot swim but can only leap from pad to pad) is on one of the Lilly pads (state 

space consisting of A and B). Between the observations (every 5 minutes) the 

frog may move to the other Lilly pad or stay where he is.  

What if we know the frog is on Lilly pad A at the initial time, and we want to 

know the probability that he is on pad A in 10 minutes?  

We can model this scenario as follows.  Our initial model suggests that during 

the first interval we observe (time 0 to time 1 (5 minutes)) if the frog is on pad A 

at time 0, the probability of the frog staying on pad A is 0.8, the probability of 

the frog going to pad B is 0.2 if the frog is on pad A. If the frog is on pad B, the 

probability of staying on pad B is 0.6 and the probability of the frog going from 

pad B to pad A is 0.4. This model is depicted graphically in Figure 10-6. 
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Figure 10-6: Transition Probabilities for Frog’s First Move  

Alternatively, we can use a matrix to model this situation for the probabilities of 

transition from state space 1 (time 0=0 minutes) to state space 2 (time 1=5 

minutes).  We call this a transition matrix. The row is the starting location and 

the column is the ending location for each move.  The matrix below is for 

transition probabilities for the first move given the initial state 

Transition matrix for initial state = 








6.04.0

2.08.0
  

To determine how he could be on pad A in 2 time periods given he is on pad A 

in the initial state, we can observe that in order for this to happen, there are two 

possibilities.  The first is that the frog is on pad A stays on pad A during the first 

and second transitions.  The second is that the frog goes from pad A to pad B 

and then back to pad A.  

The total probability of being on pad A after two time periods given he started in 

pad A is the probability of the mutually exclusive events (disjoint events) of the 

first and second possibilities.  Each transitional event is independent (frog can 

go from A to A or A to B, these events are independent) so we can multiply 

them.  Notice that in the matrix this is the first row times the first column. 

P(Frog on A after two time intervals) 

= P(AA)P(AA)+P(AB)P(BA) 

=(0.8*0.8)+(0.2*0.4) 

=0.64+0.08=0.72 



 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

173 

To get the next transition matrix (t=1 to t=2) we can use R to multiply the first 

transition matrix by itself, using the logic described above. 

> frog1<-matrix(c(0.8,0.4,0.2,0.6),nrow=2,ncol=2) 

> frog1 

     [,1] [,2] 

[1,]  0.8  0.2 

[2,]  0.4  0.6 

> frog2<-frog1%*%frog1 

> frog2 

     [,1] [,2] 

[1,] 0.72 0.28 

[2,] 0.56 0.44 

Figure 10-7 depicts graphically the new transition probabilities. 

 

Figure 10-7: Transition Probabilities for Frog’s First Two 

Moves 

Let’s consider the longer-term behavior of the transition probability matrix 

(which can be referred to as “the chain”).  As we increase the powers of the 

transition matrix (time 3, time 4….) a peculiar thing happens…. 

> frog3<-frog2%*%frog1 

> frog3 

      [,1]  [,2] 

[1,] 0.688 0.312 

[2,] 0.624 0.376 

 

> frog4<-frog3%*%frog1 

> frog4 

       [,1]   [,2] 

[1,] 0.6752 0.3248 

[2,] 0.6496 0.3504 

 

> frog5<-frog4%*%frog1 

> frog6<-frog5%*%frog1 

> frog7<-frog6%*%frog1 

> frog8<-frog7%*%frog1 

> frog9<-frog8%*%frog1 

> frog10<-frog9%*%frog1 
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> frog10 

          [,1]      [,2] 

[1,] 0.6667016 0.3332984 

[2,] 0.6665968 0.3334032 

 

> frog11<-frog10%*%frog1 

> frog12<-frog11%*%frog1 

> frog13<-frog12%*%frog1 

> frog14<-frog13%*%frog1 

> frog15<-frog14%*%frog1 

> frog15 

         [,1]      [,2] 

[1,] 0.666667 0.3333330 

[2,] 0.666666 0.3333340 

 

> frog16<-frog15%*%frog1 

> frog17<-frog16%*%frog1 

> frog18<-frog17%*%frog1 

> frog19<-frog18%*%frog1 

> frog20<-frog19%*%frog1 

> frog20 

          [,1]      [,2] 

[1,] 0.6666667 0.3333333 

[2,] 0.6666667 0.3333333 

 

After around 20 intervals the transition matrix no longer changes.  At this point, 

the frog’s probability of going from A to A is the same as going from B to A, 

and B to B is the same as A to B, as depicted in Figure 10-8.  

B

A

0.666

0.333

0.333

0.666

 

Figure 10-8: Transition Matrix for Frog’s First 20 Jumps 

After 20 jumps the frog’s position is in a so-called stationary distribution and the 

chain has converged (ended) with this stationary distribution. 

In the beginning we didn’t really mention a “starting probability distribution” 

for the probability of the frog being in pad A or B at the beginning of the chain.  

We specified only the transition probabilities for his moving from pad to pad.  

We can easily incorporate such a “prior distribution” in the model.   
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Let’s say there is an equal probability (p=0.5 for starting on A or B).  We can 

update this distribution by multiplying it by each transition matrix. 

> start0<-matrix(c(0.5,0.5),nrow=1,ncol=2) 

> start0 

     [,1] [,2] 

[1,]  0.5  0.5 

> start1<-start0%*%frog1 

> start1 

     [,1] [,2] 

[1,]  0.6  0.4 

> start2<-start1%*%frog2 

> start2 

      [,1]  [,2] 

[1,] 0.656 0.344 

> start3<-start2%*%frog3 

> start3 

         [,1]     [,2] 

[1,] 0.665984 0.334016 

 

By the third iteration, the starting probability distribution is converging to the 

stationary distribution. 

What if we used a different starting probability distribution?  Let’s use p=0.1 for 

the frog starting on pad A and p=0.9 for the frog starting on pad B and see what 

happens when we update this with the transition matrices: 

> altstart0<-matrix(c(0.1,0.9),nrow=1,ncol=2) 

> altstart0 

     [,1] [,2] 

[1,]  0.1  0.9 

> altstart1<-altstart0%*%frog1 

> altstart1 

     [,1] [,2] 

[1,] 0.44 0.56 

> altstart2<-altstart1%*%frog2 

> altstart2 

       [,1]   [,2] 

[1,] 0.6304 0.3696 

> altstart3<-altstart2%*%frog3 

> altstart3 

          [,1]      [,2] 

[1,] 0.6643456 0.3356544 

This alternative starting distribution also converges to the stationary 

probabilities.  This can be interpreted as the process eventually “forgets” the 

starting condition and no matter where it starts, converges to some stationary 

distribution given the initial transition probabilities. 

Important concepts which are illustrated with this simple example are the 

concept of a Markov Chain as a probabilistic model, the concepts of states of the 

Markov chain (Lilly pad A or B at a given time), understanding transition 

probabilities between states and how to use a matrix to display transition 
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probabilities and how to mathematically (using R) manipulate the matrix to 

compute transition probabilities for k>1 subsequent states and understanding the 

idea of convergence to a stationary state.   

Let’s investigate these concepts with more mathematical detail using a second, 

slightly more complex model involving a DNA sequence. 

Modeling A DNA Sequence with a Markov Chain 

Specifying the Model 

The first step in working with a Markov Chain model is to determine what the 

model is.  Consider again Figure 10-3, which could be part of any DNA 

sequence of interest.  Each place in the sequence can be thought of as a state 

space, which has four possible states {A, T, C, G}. Each position in the 

sequence can be represented with a random variable X0, X1,…Xn that takes a 

value of one of the states in the state space for a particular place in the sequence.  

If we follow Figure 10-3 and go in the 5’ to 3’ direction then X0=A, X1=T and 

so forth. 

The model we are interested in is that nucleotides depend on the prior nucleotide 

and only the prior nucleotide.  In other words, the nucleotide sequence is not a 

series of independent nucleotides, but that each nucleotide is dependent on the 

nucleotide immediately upstream.  In other words for the sequence: 

5’ ATTGCC 3’ 

we can express the probability of this sequence using the Markov Property as 

follows: 

P(X5=C|X4=C,X3=G,X2=T,X1=T,X0=A)=P(X5=C|X4=C) 

Setting up the Transition Probability Matrix 

To set up the matrix of transition probabilities, we need some idea of the initial 

probability distribution.  Perhaps we sequence a few 100 base pair stretches 

from the DNA sample in question and determine the following for the 

probability of nucleotides adjacent to each other.  We can use this as our one-

step transition matrix to start the chain with 



















01.08.01.0

4.02.02.02.0

3.04.02.01.0

3.02.02.03.0

G

C

T

A
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Rows represent starting states and columns the next state.  Row 1, column 1 

represents the probability of going from nucleotide A in position 0 (X0=A) to 

nucleotide A in position 1 (X1=A) or P(X1=A| X0=A).  Row 3, column 2 

represents the probability of going from nucleotide C in position 0 (X0=C) to 

nucleotide T in position 1 (X1=T) or P(X1=T|X0=C). The transition matrix 

contains all information needed to compute all the probabilities for future states.  

Notice the sum of every row is 1, obeying the law of total probability.  The 

columns do not have to sum to 1 and usually do not. 

In addition to the matrix we can use a graphical representation of the one-step  

transition probabilities as illustrated in Figure 10-9: 

A T

G C

0.3

0.2

0.2

0.20.1

0.4

0.3

0.2

0.1

0.4

0.1 0.3

0

0.2

0.2
0.8

 

Figure 10-9 

Determining Convergence and Stationary Distributions 

Let’s go ahead and enter this model in R to calculate a stationary distribution 

using R’s capabilities to multiply matrices: 

> DNA<-

matrix(c(0.3,0.1,0.2,0.1,0.2,0.2,0.2,0.8,0.2,0.4,0.2,0.1,0.3,0.3,0.4,0), 

+ nrow=4,ncol=4) 

> DNA 

     [,1] [,2] [,3] [,4] 

[1,]  0.3  0.2  0.2  0.3 

[2,]  0.1  0.2  0.4  0.3 

[3,]  0.2  0.2  0.2  0.4 

[4,]  0.1  0.8  0.1  0.0 

 

Multiplying matrices by powers of 2: 

> DNA2<-DNA%*%DNA 

> DNA4<-DNA2%*%DNA2 

> DNA4 

       [,1]   [,2]   [,3]   [,4] 

[1,] 0.1567 0.3512 0.2424 0.2497 

[2,] 0.1557 0.3476 0.2454 0.2513 

[3,] 0.1572 0.3560 0.2380 0.2488 

[4,] 0.1533 0.3458 0.2529 0.2480 
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> DNA8<-DNA4%*%DNA4 

> DNA8 

          [,1]      [,2]      [,3]      [,4] 

[1,] 0.1556210 0.3497508 0.2450089 0.2496193 

[2,] 0.1556207 0.3497695 0.2450017 0.2496081 

[3,] 0.1556171 0.3497173 0.2450332 0.2496324 

[4,] 0.1556375 0.3498298 0.2449286 0.2496041 

> DNA16<-DNA8%*%DNA8 

> DNA16 

          [,1]      [,2]      [,3]      [,4] 

[1,] 0.1556240 0.3497689 0.2449923 0.2496148 

[2,] 0.1556240 0.3497689 0.2449923 0.2496148 

[3,] 0.1556240 0.3497689 0.2449923 0.2496148 

[4,] 0.1556240 0.3497689 0.2449923 0.2496148 

DNA16 (P
16

) appears to have converged and represents a stationary distribution.  

Just to be sure we run a few more powers…. 

> DNA32<-DNA16%*%DNA16 

> DNA64<-DNA32%*%DNA32 

> DNA64 

          [,1]      [,2]      [,3]      [,4] 

[1,] 0.1556240 0.3497689 0.2449923 0.2496148 

[2,] 0.1556240 0.3497689 0.2449923 0.2496148 

[3,] 0.1556240 0.3497689 0.2449923 0.2496148 

[4,] 0.1556240 0.3497689 0.2449923 0.2496148 

We can use the converged transition matrix to conclude that our stationary 

distribution of nucleotides, which we represent with the letter pi, is: 

[ ]25.025.035.015.0=π  

We can interpret this as, given our initial distribution the posterior distribution 

of nucleotides is 15% A, 35%T, 25%C and 25%G, regardless of position.  We 

can also use this distribution to calculate expected values of the numerical 

distribution of nucleotides.  In a sample of 1000 nucleotides from this sample, 

we would expect 150 A, 350 T and 250 to be C or G. 

Applications 

Although the above is mostly a toy example, models based on these principles 

are used in sequence analysis in non-MCMC applications.  Statistical 

comparisons of sequence elements can be made where the nucleotide 

composition of different types of sequence elements is distinguishable.  For 

example, one could obtain initial distributions of nucleotides in gene coding and 

non-coding regions and use Markov chains to determine the stationary 

distributions for both.  You could then perform statistical analysis to determine 

if there is a significant difference in nucleotide composition in coding or non-

coding regions.  Likewise, Markov models are frequently used to determine if a 

region is a CpG island using a more complicated Markov model called a Hidden 

Markov Model (HMM). 
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Characteristics of a Markov Chain  

Markov Chains can be characterized by certain behaviors and properties.  When 

using MCMC, we are interested in chains that result in a stable and unique 

stationary distribution.  Not all Markov chains have properties we want in order 

to be usable for determining a unique posterior distribution! In order for a chain 

to converge to a unique state it must be ergodic, that is be aperiodic and 

irreducible. These terms and other important terms are explained below. 

Finiteness 

Finiteness means that there are a finite number of possible states.  Clearly in the 

case of the Lilly pads there were only 2 states, and in the case of a DNA 

sequence there are only 4 states.  These systems are finite.  Finite does not 

necessarily mean small, it only means the number of possible states is not 

infinite.  We are only interested in Markov models where the state space is 

finite. 

Aperiodicity 

Aperiodicity means the chain is not periodic.  In other words, the chain does not 

behave like a sine wave and keep visiting the same states over and over again.   

Consider a three state chain {A, B, C} where the only possible -transitions are 

A->B, B->C and C->A as in Figure 10-10.  

B

CA

 

Figure 10-10 

This chain is periodic because if we observe that the chain is in state A at time 0, 

then in time 3 the chain will be in state A again because this is the only route 

possible given the allowable transitions (note there is not a transition to stay  in 

the same state).  Again in time 6 and time 9 the chain will be in state A.  This is 

a very predictable and periodic pattern.  Since the greatest common divisor of 

these is 3, we say that this chain has period of 3. 

We could work with this chain in R as follows: 
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> periodic<-matrix(c(0,1,0,0,0,1,1,0,0),nrow=3,ncol=3) 

> periodic 

     [,1] [,2] [,3] 

[1,]    0    0    1 

[2,]    1    0    0 

[3,]    0    1    0 

 

> periodic1<-periodic%*%periodic 

> periodic1 

     [,1] [,2] [,3] 

[1,]    0    1    0 

[2,]    0    0    1 

[3,]    1    0    0 

 

> periodic2<-periodic%*%periodic1 

> periodic2 

     [,1] [,2] [,3] 

[1,]    1    0    0 

[2,]    0    1    0 

[3,]    0    0    1 

 

> periodic3<-periodic2%*%periodic 

> periodic3 

     [,1] [,2] [,3] 

[1,]    0    0    1 

[2,]    1    0    0 

[3,]    0    1    0 

If we keep going the chain will just rotate around and around without ever 

converging to a unique distribution.  This is NOT a behavior we want for a chain 

we use for determining a posterior distribution.  Instead, we want chains that are 

aperiodic.   

Irreducibility 

Irreducible means that every state can be reached from every state.  To illustrate 

this with a counter example, consider the chain in Figure 10-11. 

B

CA D

E

 

Figure 10-11 

Look at the figure and ask yourself the simple question, how do you go from 

state E to state A?  The answer is that you can’t.  If in a state space the transition 
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probability of going from one state to another state is zero, then the state space is 

reducible. 

An example of what a stationary state transition matrix for a reducible state 

space {A, B, C, D} would look like is: 





















7.03.000

6.04.000

007.03.0

006.04.0

 

In this case there are two stationary distributions.  In a reducible system there 

does not exist a UNIQUE stationary distribution.  Therefore we desire our 

systems to be IRREDUCIBLE when using them for determining a unique 

posterior distribution. 

Ergodicity 

A Markov chain, which is BOTH aperiodic and irreducible, is ergodic.  An 

ergodic chain has a unique stationary distribution that is positive on all states 

when the number of states is finite.   

Mixing 

A Markov chain has good mixing properties if it moves fluidly through all 

possible states.  Good mixing means the chain does not get “stuck” for periods 

of time around one state.  We will analyze mixing when we look at time series 

plots of Markov chains using WinBugs as mixing is a diagnostic tool for chain 

behavior. 

Reversibility 

Reversibility is a special and somewhat mathematically magical property of a 

Markov Chain. It is NOT necessary for a chain to be reversible in order to have 

a unique, stable, stationary distribution.  In other words, an ergodic chain can be 

reversible, but does not have to be reversible. However, some of the algorithms 

we will use take advantage of reversibility. 

An ergodic Markov chain is reversible if it satisfies the detailed balance 

equation: 

)x,y(p)y()y,x(p)x( ππ =  
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In the detailed balance equation for a chain with state space S, x is the current 

state of the system and y is the state at the next step.  The transition probability 

from x to y is p (x, y) and the transition probability of going from y to x is 

p(y,x).  If the system has more than two states the detailed balance holds for any 

two states in the system’s state space. 

 In essence the property of reversibility means that the probability of going 

forward in time (or space) equals the probability of going back in time (or space) 

for a given state space pair.   

Let’s look at a simple example of a reversible Markov Chain. Going back to the 

frog example, what if the one-step transition matrix for the frog is as follows: 

P0= 








1.09.0

9.01.0

B

A
Start  

Although it takes a while (about 60 transitions, try it in R and check) the 

stationary matrix for this system is: 

P
n
= 









5.05.0

5.05.0

B

A
Start  

Thus the unique invariant distribution for states A and B is: 

[ ]5.05.0=π  

To check for reversibility we check the detailed balance equation: 

)A,B(p)B()B,A(p)A( ππ =  

0.5*0.9 =0.5*0.9 

Therefore this system is reversible.  You could take the stationary matrix and 

perform some calculations to travel backward through the chain and you would 

return to the starting state.  

The Stationary State 

The stationary state is the gold in the mining process of Markov chain models.  

The stationary state is also referred to as the target distribution, the limiting 

distribution, and various other terms.  In the Bayesian sense, the stationary state 

is the posterior distribution (or the posterior distribution of interest can be 

determined using the stationary state). 
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We have seen that the existence of a stationary state is NOT guaranteed, but is 

conditional on various properties of the Markov Chain.  To have a unique 

stationary state a chain must be ergodic, possessing the characteristics of 

aperiodicity and irreducibility described earlier. 

The convergence of Markov chains is a mathematical topic in and of itself, the 

details of which are beyond our discussion.  However, not all chains converge 

with equal speed or fluidity and we do want do make sure our chain has 

converged before determining a stationary distribution.  The package CODA 

will be introduced in chapter 12 and contains functionality to perform some 

convergence diagnostics.  

 Often our stationary distribution is a multivariable, high-dimensional 

distribution.  This is difficult to analyze graphically or to interpret, so ordinarily 

we will be interested in analyzing individual variables and parameters 

separately.  In order to do this we will look at marginal and conditional 

probability distributions for the parameters of interest.  Recall the discussion and 

graphical illustrations in Chapter 8, which looked at these distributions for the 

multivariate normal, multinomial, and Dirichlet distributions. We will come 

back to this type of analysis.  

Continuous State Space 

So far we have considered discrete state spaces only – those where the states are 

distinct such as {A, T, C, G}.  However, often we will be dealing with 

continuous state space models where the state space can take on a continuum of 

values.  In the case of continuous state space the transition matrix is replaced 

with a transition density often referred to as the transition kernel.  This cannot be 

put into matrix form but is instead a joint continuous probability density.  

Transition probabilities are calculated with integrals, not sums.  Except for the 

mathematical differences of dealing with continuous versus discrete values for 

the state space, the discrete and continuous state spaces are conceptually the 

same and there is no need to discuss continuous state space models in detail. We 

will work with continuous state space models in some of the examples used in 

Chapters 11 and 12   

Non-MCMC Applications of Markov 

Chains in Bioinformatics 

In this book, our primary interest is in working with probability models and 

using Markov Chains for modeling so that we may utilize MCMC methods to 

simulate posterior distributions in order to harvest results of interest.  This is the 
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area where R and WinBugs can be very useful tools and applications presented 

in this book will focus on this type of analysis. 

However, it is of note here that Markov Chains play important roles in many 

other applications in bioinformatics which may be stand-alone Markov Chain 

applications and do not utilize MCMC techniques.  For these applications, the 

interest is not in posterior distribution determination.  For example, there are 

many applications of Markov Chains in sequence analysis, and the use of 

Markov Chains for additional applications is increasing all across bioinformatics 

related disciplines.  Many books of interest are listed in the appendix for those 

interested in further exploration of the use of Markov Chains in sequence 

analysis; in particular the book by Durbin is devoted to this subject. 

The study of Markov Chains is a rich mix of algorithmic, mathematical and 

statistical methods and only the basics have been introduced here.  However the 

basic properties of Markov Chains introduced in this chapter apply to other 

types of applications and should serve as a foundation for further study. 

A Brief Word About Modeling  

Sometimes you may start feeling a little suspicious about whether stochastic 

modeling and Bayesian methodology is “correct”.  This is especially true if you 

come from a background using primarily analytical and more “exact” methods 

of measuring and working with data.   

Keep in mind, the goal of any type of mathematical modeling is to approximate 

“reality” in order to understand some phenomena.  A major area of modern 

statistics is to develop better models that more accurately reflect reality, an 

ongoing process where models are iteratively refined.  To be useful, it is not 

always necessarily that a model be extremely accurate. In statistics, models take 

randomness and some inaccuracy into account.  In many cases, models are the 

best system we have for understanding phenomena, especially phenomena that 

cannot be accessed or manipulated empirically. An emerging area of 

bioinformatics involves modeling systems at a higher level (systems biology is 

already emerging as a science in and of itself) and statistical models will play a 

key role in these models. 

One of the goals of this book is to impart upon the reader an understanding of 

the basics of some of the statistical models in use.  We focus on methods of 

modeling and on how R can be used as a software tool to work with these 

models.  At this point, we have introduced general probability models using one 

or many variables, and the basics of stochastic models.  We will later work with 

linear models and methods of organizing large data sets in meaningful ways. 
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11 

Algorithms for MCMC 

This is a chapter introducing some commonly used algorithms that take 

advantage of Monte Carlo methods to simulate distributions.  There are many 

algorithms and many variants of algorithms to perform these tasks, but our focus 

here will be on a few specific algorithms often used in bioinformatics.  These 

algorithms can easily be used in R and are relatively mathematically simple yet 

extremely versatile. 

We have seen already that using R it is easy to simulate draws from common 

distributions with either R’s built-in functionality in the base package (as in 

rnorm, rgamma, etc) or using supplementary functions either written directly or 

using a pre-written package (as in the multinomial and Dirichlet simulations in 

chapter 8).   

However, we have also introduced the powerful techniques of Bayesian 

statistics and the idea of a complicated high-dimensional posterior distribution 

that is difficult to determine.  In bioinformatics, this is the type of distribution 

we are interested in applying in order to solve complex problems.  Determining 

solutions for such complex posterior distributions is beyond the limits of 

traditional analytical mathematical methods,  and hence the need for Monte 

Carlo simulation.  We have introduced Markov Chains as a method of 

approximating a posterior distribution.   

The goal now is to work with Bayesian methodology and Markov Chain 

techniques to be able to simulate and study posterior distributions of interest.  

This chapter introduces the algorithmic approaches that are used to do this, and 

the next chapter introduces some applications where we will explore 

complicated posterior distributions using some examples from genetics.  To do 
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so, we will use the program WinBugs and the package CODA in conjunction 

with R.    

WinBugs utilizes the Gibbs sampler, one of the algorithms covered in this 

chapter.  It is possible for a user to work in WinBugs without understanding the 

algorithmic background the program uses, but not wise or advantageous.  

Therefore a focus of this chapter is to cover the theory of why the program 

works.  However, the algorithms introduced here have stand-alone value and are 

used for many other applications in bioinformatics as well. 

Monte Carlo Simulations of Distributions 

Monte Carlo method in general means any technique for obtaining solutions to 

problems using random numbers.  The name obviously derives from the famous 

casino resort on the French/Italian Riviera.  Random numbers were first studied 

in the context of games of chance and gambling.  Monte Carlo basically means 

simulating random outcomes.  Before the availability of fast computers methods 

of generating random numbers were unreliable or tedious.  However, in the 

recent past because of the development of the personal computer and the 

exponential increase of processor speed (over time) Monte Carlo methods have 

experienced explosive growth. Monte Carlo techniques are now standard in 

statistics and all sciences to solve many types of problems.  Our problem of 

interest here is using Monte Carlo methods to simulate probability distributions.  

This section explores two methods of simulating simple distributions.  The next 

two sections introduce more complicated algorithms for Monte Carlo simulation 

and the last section of this chapter ties it all together. 

Inverse CDF Method 

The inverse CDF method, or inverse cumulative distribution function, method is 

the simplest method to simulate a probability distribution directly.  It allows us 

to utilize a computer’s built-in random number generator (technically called 

pseudo-random number generator). A random number generator is an algorithm 

that produces random sequences of the digits 0,1,2,…,9 – imagine repeated 

shuffling of these digits and then drawing one digit at a time between shuffling. 

Any real number between 0 and 1 can be represented as a sequence of such 

digits (up to a certain precision), hence it can be generated using the random 

number generator. If many such numbers are generated the resulting sample is 

that of a uniform distribution with range [0,1]. In R this is the command “runif”. 

The inverse CDF method transforms a set of uniform(0,1) random draws so that 

the resulting values represent random draws from any desired distribution. 

Recall from chapter 6 the discussion of cumulative distribution functions. ecall 

also from precalculus mathematics that if f is a 1 to 1 function with domain A 
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and range B, then f has an inverse function f-1 with domain B and range A and 

is defined by 

 

y)x(fx)y(f 1 =⇔=−  

for any y in B, as depicted in Figure 11-1. 

y=f(x)

B

x

A

 

Figure 11-1 

Of course, for a probability distribution function we know that the range of 

values in B is between 0 and 1 (obeying the probability theory that all 

probability values are between 0 and 1).  Therefore to simulate values, we can 

randomly generate values between 0 and 1, which is called the uniform 

distribution (which is the probability distribution having equal probability of all 

values between 0 and 1). In R the function runif can be used to draw a random 

uniform sample and then to transform the sample by the inverse CDF method to 

obtain a simulation of the desired distribution. 

Let’s do an example of the inverse CDF method to simulate an exponential 

distribution with parameter lambda =2.  Recall that for   the exponential, the 

CDF is 

F(x)=1-e
-λx

 

Letting F(x)=u 

u=1-e
-λx 

 

Solving for x 

1-u= e
-λx

 

log(1-u)=-λx 

x=- )u1log(
1

−
λ
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Therefore we can write a simple function in R to simulate an exponential 

distribution.  We can call this function with the desired n, the number of values 

to be randomly drawn, and parameter lambda desired.  

> simExp_function(n,lambda){ 

+ u<-runif(n) 

+ x<-(-1/lambda)*log(1-u)} 

Doing this to simulate an exponential with lambda=2 using 1000 draws 

(n=1000) produces a simulated distribution using the inverse CDF method 

which appears exactly as a simulated distribution of the exponential using R’s 

command “rexp” with the same parameters does, as in Figure 11-2.  In fact R 

utilizes the inverse CDF method internally to provide simulation of several 

distributions.  However the inverse CDF method is easy to implement when 

faced with a new distribution that is not available in software. 

> x1<-simExp(1000,2) 

> x2<-rexp(1000,2) 

> par(mfrow=c(1,2)) 

> hist(x1,30,main="Inverse CDF") 

> hist(x2,30,main="Direct Simulation") 

 

Figure 11-2 

Rejection Sampling 

The second method of using Monte Carlo methods to simulate a distribution that 

we will look at is called rejection sampling.  Rejection sampling can be useful to 

simulate a distribution when the inverse CDF function is unobtainable or 

complicated.  This is the case even with some univariate distributions such as 

the beta and gamma. 

The general strategy with rejection sampling is to sample instead from another 

appropriate distribution and then use a correction mechanism to redirect the 

sample to make it approximately representative of the distribution of interest.  

Rejection sampling is a technique of approximating a distribution using another 

close distribution for the actual sampling and a rule to determine (accept or 
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reject) which values sampled approximate the distribution of interest. The 

distribution sampled from is sometimes called an envelope distribution, since it 

must frame the distribution of interest and thus contain all values for the 

distribution of interest. 

Rejection sampling is best illustrated with an example.  Let’s simulate via 

rejection sampling a beta distribution with alpha=2 and beta=2. Mathematically 

this distribution is given by its pdf as follows. 

11 )x1(x
)()(

)(
)x(f −− −

ΓΓ

+Γ
= βα

βα

βα
 

For alpha=2, beta=2 this is 

6)x(f = *x *(1-x) 

We note from the plot of a beta (2,2) in Figure 11-3 that the maximum of the 

beta curve is 1.5.  Therefore we can use a multiple of the uniform pdf with y=1.5 

over the range of x from 0 to 1 as the envelope for the beta distribution.  Here 

we simply sample from a uniform(0,1) ignoring the multiplicity factor 1.5. . 

 

Figure 11-3 

The method we will use to do the rejection sampling is as follows: 

1. Draw a sample x from the distribution whose pdf is a multiple of the 
envelope – in our case we are sampling from (uniform [0,1]) . The 
multiplier is M=1.5 (to be used in step 4) 

2. Draw a sample u from the uniform 0 to 1  
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3. Compute f(x) – that is beta(2,2) pdf evaluated at the value x 

4. Compare if f(x) > M*u then accept x as a valid value.  Otherwise reject x 
and repeat steps 1 through 4. 

In R we can code these four steps as follows, recording accepted values as 

“acceptx”.  Here we give an example of 5000 random draws: 

> x <- runif(5000,0,1)  # Step 1 

> u <- runif(5000,0,1)  # Step 2 

> fx <- dbeta(x,2,2)   # Step 3 

> acceptx <- x[fx > 1.5*u]   # Step 4 

Since a picture can speak a thousand words, let’s do a plot comparing where the 

accepted and rejected values lie: 

> hist(acceptx,prob=T,ylim=c(0,1.8)) 

> points(x,fx) 

 

Figure 11-4 is convincing evidence that the rejection sampler works.  

Histogram of acceptx
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Figure 11-4 

The Gibbs Sampler 

In 1984, Geman and Geman introduced the Gibbs sampler in the context of 

image restoration using Bayesian thinking, Besag(1974) used the Gibbs sampler 

for spatial statistics but it wasn’t until 1990 when Gelfand and Smith first used 

this sampler in the context of Bayesian statistics. Since then, probably no other 

algorithm has received so much attention and become so popular in statistical 

applications.  The Gibbs sampler is remarkably simple and versatile, yet 

powerful.   

Basically, the Gibbs sampler is a tool for sampling from a multivariate 

distribution, say of a m-dimensional set of variables U1,…,Um.  It does so by 
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iterating through the individual variables Ui by sampling from the full 

conditionals f(Ui| U(-i) and then updating, and repeating this for all Ui. The full 

conditionals are simply the univariate conditional distributions of any one 

component Ui given the values of all the remaining components denoted by U(-

i)  

In the Bayesian context we are interested in sampling from the multivariate 

posterior distribution of all parameters. Here the full conditional is the 

conditional distribution of a single parameter given the data and all the other 

parameters.  We have mentioned in earlier chapters that one way to study high 

dimensional distributions is to look at marginal and conditional distributions of 

parameters.  Indeed, many times this is the only way to look at such distributions 

especially beyond 3 dimensional distributions since it impossible to visualize or 

graph higher-dimensional distributions. 

The conditional and marginal distributions of parameters of interest have much 

simpler forms.  A high dimensional posterior distribution can be broken down 

into conditional distributions for each of the parameters of interest. We then can 

look at marginal and conditional distributions of individual parameters.  For 

example, let’s say we have a hypothetical distribution which has three 

parameters that we will call A, B, and C. Together these parameters have 

posterior distribution p(A,B,C) which is a joint distribution.  The Gibbs sampler 

enables us to obtain samples from this distribution by simply using the three 

full-conditional distributions: p(A|B,C), p(B|A,C) and p(C|A,B).  Each of these 

is a one-dimensional distribution that is much easier to work with than the joint 

distribution. Ultimately we will not be studying the joint posterior distribution of 

the sampled values but rather marginal distributions of individual parameters 

since that is what we are mainly interested in.  

The Gibbs sampler works by beginning with an initial state of the distribution 

and iterating through the distribution by updating each of the full conditionals 

until the distribution reaches a stable, converged posterior distribution.  

Essentially the Gibbs sampler is a Markov Chain process, illustrated in Figure 

11-5 for a two parameter, x and y scenario. The sampler goes from state X to 

state Y iteratively using Markov dependence and the full conditionals represent 

the Markov transition probability distributions. 

To illustrate use of the Gibb’s sampler we present two examples.  The first is a 

toy example using basic probability.  In this case the posterior distribution of 

interest is known, but all of the steps can be illustrated so this example is 

presented as a review of probability and as an illustration of the Gibb’s sampler, 

which can be easily followed.  The second example is using the Gibb’s sampler 

to simulate the posterior of a bivariate normal distribution, a more complex 

situation.   
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x0 x2 xn

y0 y1 y2 yn...
x1

 

Figure 11-5 

A Gibbs Example Using Simple Probability 

To illustrate the Gibbs sampler, let’s do a simple experiment using only basic 

probability distributions. Suppose we are interested in two parameters, A and B, 

whose joint distribution is known and illustrated in Table 11-1 

Table 11-1 

  A 

  1 2 3 

1 0.3 0.2 0.1 B 

2 0.2 0.1 0.1 

Recall that a marginal probability is the probability of a parameter considering 

only values of that parameter across all values of other parameters. The marginal 

probabilities of A are illustrated in Table 11-2. 

Table 11-2 

A 

1 2 3 

0.5 0.3 0.2 

The marginal probabilities of B are illustrated in Table 11-3. 

Table 11-3 

1 0.6 B 

2 0.4 

Recall that a conditional probability distribution is the value of one parameter 

given a particular value of another parameter. From the joint distribution the full 

conditional distribution of B given A is given in Table 11-4.  For example, in the 

upper left cell the probability that B=1 GIVEN A=1 is 0.6. 
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Table 11-4 

  A 

  1 2 3 

1 0.6 0.667 0.5 P(B|A) 

2 0.4 0.333 0.5 

Likewise, the full conditional distribution of A given B is presented in Table 11-

5.  This time the value in the upper left cell is the probability that A=1 GIVEN 

B=1 is 0.5. If this does not make sense, you should review the coverage of 

conditional and marginal probabilities presented in chapter 8. 

Table 11-5 

  P(A|B) 

  1 2 3 

1 0.5 0.333 0.166 B  

2 0.5 0.25 0.25 

Here is a little program in R, which uses the Gibb’s sampler to compute the 

marginal distributions of A and B, by sampling from the full conditionals.  

First we initialize all variables involved. 

> #initialize a and b to (1,1) first row, first column 

> a<-1 

> b<-1 

> #initialize variables to hold results 

> margA<-NULL 

> margB<-NULL 

> joint<-matrix(c(0.3,0.2,0.2,0.1,0.1,0.1),nrow=2,ncol=3) 

> samples<-matrix(0,nrow=2,ncol=3) 

Next, run a loop of 1000 runs which chooses values for the variable conditioned 

on using the sample () function (not to be confused with the samples results 

matrix variable!) and then stores the selection in the appropriate marginal results 

variable using the append function.   

> for(i in 1:1000){ 

+ #sample a given value of b 

+ #sample comes from full conditional dist of b given a 

+ b<-sample(c(1,2),1,prob=joint[,a]/sum(joint[,a])) 

+ #sample b given value of a from above 

+ #sample comes from full conditional dist of a given b 

+ a<-sample(c(1,2,3),1,prob=joint[b,]/sum(joint[b,])) 

+ margA<-append(margA,a) 

+ margB<-append(margB,b) 

+ samples[b,a]<-samples[b,a]+1} 
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The samples matrix contains the counts of a’s and b’s from the sampler above: 

> samples 

     [,1] [,2] [,3] 

[1,]  288  206  117 

[2,]  194   95  100 

Converting the samples data to probabilities and comparing with the original 

joint distribution shows the results obtained using the iterative Gibb’s sampling 

from the conditional distributions reproduced the joint distribution. 

> sampleProp<-samples/1000 

> sampleProp 

      [,1]  [,2]  [,3] 

[1,] 0.288 0.206 0.117 

[2,] 0.194 0.095 0.100 

> joint 

     [,1] [,2] [,3] 

[1,]  0.3  0.2  0.1 

[2,]  0.2  0.1  0.1 

Figure 11-5 shows the marginal distributions of A and B produced by the 

sampler.  Compare these results to the marginal distributions in Tables 11-2 and 

11-3. 

> par(mfrow=c(1,2)) 

> hist(margA,main="Marg.Dist of A") 

> hist(margB,main="Marg.Dist of B") 

 

Figure 11-5 

A Gibbs Example Using the Bivariate Normal 

Recall from chapter 8 the discussion of the bivariate normal distribution as the 

joint distribution of two normally distributed variables, which we can refer to as 

X and Y.  In chapter 8 we only considered the case where X and Y are 

independent.  Let’s look at slightly more complicated bivariate normal 

distribution where X and Y are correlated.  That is, there is a statistical 

relationship between X and Y.  Correlation is measured by a correlation 

coefficient, usually symbolized by the Greek letter rho (ρ).  If rho=0 then the 

variables are uncorrelated.  If rho=1 then there is a perfect correlation between X 
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and Y.  Values of rho between 0 and 1 indicate the degree of a linear 

relationship between the variables. 

If the correlation coefficient is considered, the joint probability distribution of 

two normally distributed random variables can be written as: 

(X,Y)~ 


























1

1
,

0

0
N

ρ

ρ
 

This means X and Y are distributed normally with means 0 and 0 (the first 

parameter matrix) and variances of σ2 and correlation of ρ between XY. 

For reasons that we will not detail (see a textbook on multivariate statistics, such 

as Johnson&Wichern, listed in the appendix for details), the conditional 

distributions of X and Y for the bivariate normal are (here we assume σ2 = 1 for 

simplicity) 

P(X|Y=y)~N(ρy, 1-ρ
2
) 

P(Y|X=x) ~N(ρx, 1-ρ
2
) 

We can write a function in R that uses the Gibbs sampler to simulate a biviariate 

normal distribution by iteratively sampling from these conditionals. 

> gibbsBVN_function(x,y, n, rho){ 

+  

+ #create a matrix to store values 

+ m<-matrix(ncol=2,nrow=n) 

+  

+ #store initial values in matrix 

+ m[1,]<-c(x,y) 

+  

+ #sampling iteration loop 

+ for (i in 2:n){ 

+ #rnorm takes sd not variance 

+ #update x conditional on y 

+ x<-rnorm(1,rho*y,sqrt(1-rho^2)) 

+ #update y conditional on x from above 

+ y<-rnorm(1,rho*x,sqrt(1-rho^2)) 

+  

+ #store values in matrix 

+ m[i,]<-c(x,y)  

+ } 

+ m 

+ } 

This works because it is a Markov chain.  Refer back to figure 11-5.  If X
(0)

=x0 

then the distribution of X
(n)

 is N(ρ
2n

x0, 1-ρ
4n

).  But as n goes to infinity this 

converges to N(0,1), a regular standard normal distribution. Therefore after 

enough runs, no matter where we start X and Y the marginal distributions of X 
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and Y will be normal distributions with mean of 0 and variance (=standard 

deviation) of 1. 

Let’s run this function with different starting values for X and Y, using rho=0. 

> par(mfrow=c(2,2)) 

> startX0Y0<-gibbsBVN(0,0,200,0) 

> startX5Y5<-gibbsBVN(5,5,200,0) 

> startXn5Y5<-gibbsBVN(-5,5,200,0) 

> startXn5Yn5<-gibbsBVN(-5,-5,200,0) 

Figure 11-6 shows that no matter where you start, after 200 runs the joint 

distribution simulated using the Gibbs algorithm appears the same as if started 

from (0,0). 

 

Figure 11-6 

Next, let’s see how the sampler behaves using different correlation coefficients 

(rho values). With a plot of these four values in Figure 11-7. 

> corr0<-gibbsBVN(0,0,1000,0) 

> corr3<-gibbsBVN(0,0,1000,0.3) 

> corr5<-gibbsBVN(0,0,1000,0.5) 

> corr98<-gibbsBVN(0,0,1000,0.98) 

> par(mfrow=c(2,2)) 

> plot(corr0[,1],corr0[,2],main="XYCorr=0") 

> plot(corr3[,1],corr3[,2],main="XYCorr=0.3") 

> plot(corr5[,1],corr5[,2],main="XYCorr=0.5") 

> plot(corr98[,1],corr98[,2],main="XYCorr=0.98") 
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Figure 11-7 

Note in Figure 11-6 that the bivariate distributions using different correlation 

coefficients show the effect of correlation on the relationship of X and Y.  Let’s 

plot marginal distributions for some of these distributions. 

> par(mfrow=c(2,2)) 

> hist(corr3[,1],nclass=20,main="X Marg, Corr=0.3") 

> hist(corr3[,2],nclass=20,main="Y Marg, Corr=0.3") 

> hist(corr98[,1],nclass=20,main="X Marg, Corr=0.98") 

> hist(corr98[,1],nclass=20,main="Y Marg, Corr=0.98") 

Note in Figure 11-8, which shows plots of selected marginal distributions, that 

all of the marginal distributions show a standard normal distribution pattern.  

This is not only a small study in how correlation coefficients affect the bivariate 

normal, but also an important point about the Gibb’s sampler.  When examining 

individual variables using the Gibb’s sampler’s output one essentially obtains 

results regarding the marginal distributions of parameters of interest.  Although 

in this particular example we can look at the joint distribution, since it is only 

two dimensional, in many cases of higher-dimensional distributions we cannot 

study directly the joint distribution.  Usually this does not matter since the 

marginal distribution gives us the information we need. Note in Figure 11-6 if 

you look only at the X or Y axis and the distribution of data along one axis, it is 

normally distributed and the joint distribution pattern and correlation of 

variables do not matter when we are studying X or Y individually 
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Figure 11-8 

Generalized Gibbs Sampler 

The Gibbs sampler can be written as a general algorithm.  Our interest is in any 

multivariate distribution of the n parameters θ1, θ2, θ3,… θn. which we write as 

p(θ1, θ2, θ3,… ,… θn).   To perform the Gibbs sample follow the following 

algorithm: 

1. Initialize the parameters θ=(θ1
(0)

, θ2
(0)

, θ3
(0)

,… θn
(0)

) 

2. Simulate a value for θ1
(1) from the full conditional θ1|θ2

(0)
, θ3

(0)
,… θn

(0)
 

3. Simulate a value for θ2
(1) from the full conditional θ2|θ1

(1)
, θ3

(0)
,… θn

(0)
 

4. …..(Simulate values for θ3 through θn-1) 

5. Simulate a value for θn
(1) from the full conditional θn|θ1

(1)
, θ2

(1)
,… θn-1

(1)
 

6. Repeat 2 through 5 until a stationary distribution of the parameters is 
reached. 
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The Metropolis-Hastings Algorithm 

The Gibbs sampler assumes sampling from the full conditional distributions if it 

can be done.  Usually the Gibbs sampler will be useful, but if the full conditional 

distributions cannot be sampled from there needs to be an alternative.  Even 

when feasible it is not necessarily easy to use the Gibbs sampler.  In this case a 

more general algorithm, the Metropolis-Hastings algorithm can be of help.  This 

algorithm uses a method that is similar to the rejection method algorithm.  The 

Gibb’s sampler is actually a special case of this algorithm where the sampled 

value is always accepted.  Here we look at both the Metropolis Algorithm and 

its modified and more versatile form, the Metropolis-Hastings Algorithm. 

For both algorithms we will be concerned with two distributions.  One 

distribution, called a proposal distribution, we will use only to initially sample 

from.  The proposal distribution is in essence a transition probability distribution 

as we discussed in the context of Markov chains.  The choice of its particular 

form is flexible.  Often there are many proposal distributions that can be used – 

pick the simplest one!  Sometimes the proposal distribution is called a jumping 

or sampling distribution.   

The other distribution is our posterior distribution of interest, which we will 

refer to as the target distribution.  This is our distribution π or stationary 

distribution we get as a result of an ergodic Markov chain.  The idea here is that 

we simulate values from the proposal distribution and apply criteria whether to 

accept or reject the simulated values. The beauty of the Metropolis algorithm 

lies in the fact that for the acceptance/rejection criterion we only need to 

calculate ratios of the posterior densities, which is much easier than calculating 

the posteriors densities themselves or simulating from the joint posterior 

distributions. For example the normalizing constant for posterior distributions 

can be ignored since it cancels out when using ratios. In general terms (which 

will be translated into specific distributions later) what we do is: 

1. Generate a new value from the proposal distribution, call it θ* 

2. Calculate the ratio of the posterior of the new value to the old value = 

( * | )

( | )old

p data
R

p data

θ

θ
=    

Note since   ( | ) ( | ) ( )p data f data pθ θ θ∝  

this is equals 
( | *) ( *)

( | ) ( )old old

f data p
R

f data p

θ θ

θ θ
=  

3. Draw a uniform [0,1] value, u 

4. Accept the new value θ* if u < min (1, R).  That is, accept the proposed 
value if the uniform value is less than the minimum of 1 and R. 
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The purpose of the simulation is to find values of the posterior distribution 

where there is higher density or more area under the curve.  This can be thought 

of as looking for hills on a flat landscape.  Whether or not a proposed value is 

accepted depends on some hill-climbing rules. 

Rule 1 – Moving UP a hill is always good.  It means you are finding an area of 

higher density.  For example, in Figure 11-9 moving from a value of about 0.5 to 

1.5 is good.  The ratio of the values from finish/start is 1.5/0.5=3=R.  Therefore 

the min(1,R)=min(1,3)=1.  Since u will always be 1 or less a value of R which 

causes uphill climbing will always be accepted. 

Rule 2 – Going SLIGHTLY downhill is OK, as illustrated in Figure 11-10.  The 

R value here is roughly 1.4/1.7=0.82.  Therefore min(1,R)=0.82.  Compared to a 

uniform draw there is a good chance that a value between 0 and 1 will be less 

than 0.82, so usually a slight downhill move will be accepted although not 

always. 

Start

Stop

 

Figure 11-9 
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Start

Stop

 

Figure 11-10 

Rule 3 – Dropping off a cliff is generally not good. In Figure 11-11 Here R 

would be roughly 0.3/1.7=0.176.  A uniform value has only a 17.6% chance of 

being this small.  Therefore in the majority of cases the proposed value will be 

rejected, but not always. 

Start

Stop

 

Figure 11-11 
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Therefore, overall the proportion of accepted move values will create a density 

of interest by accepting values most often when they are values of the most 

dense areas and by rejecting values mostly when they are in area of low density. 

The distributions we are interested in are more complex and ratios more 

complex as well, but the general idea conveyed with the hill climber story is the 

basis for how both the Metropolis and Metropolis-Hastings algorithms work.  

We discuss these in more depth below.  It is also of interest to note that many 

related algorithms exist as well and developing more specific versions of these 

algorithms is an active area of statistical research. 

Metropolis Algorithm 

The Metropolis algorithm is the simplified version of the full Metropolis-

Hastings algorithm that works when the proposal distribution is symmetric 

around the old value θ. , as in Figure 11-12. Note that the proposal distribution 

is actually a conditional distribution for the new value given the old value of the 

parameter.  In a symmetric distribution the ratio going up or down the hill 

doesn’t matter which side of the hill you are on, whereas in a non-symmetric 

distribution the R values will be different for different sides of the hill.  The 

uniform and normal distributions are common symmetric distributions (good for 

sampling distributions).   

 

Figure 11-12 

Because of the proposal distribution symmetry, with the Metropolis algorithm, 

the acceptance ratio R depends only on the value of the ratio of target 

distribution values.  Note that in the hill-climbing example, this is what we did.   

To make the general algorithm given earlier specific for the Metropolis 

algorithm 

1. Generate a new value from the proposal distribution; call it thetaStar (θ*) 
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2. Calculate the ratio of the posterior density at thetaStar (new value) as 
compared to as theta (previous value).  That is: 

R=
)(p

*)(p

θ

θ
 

3. Draw a uniform [0,1] value, u 

4. Accept the new value if u < min (1, R).  That is, accept the proposed value 
if the uniform value is less than the minimum of 1 and R. 

The constant updating of the values of the posterior distribution is a Markov 

chain that results in a stationary posterior distribution.  

Let’s run a short example in R using the Metropolis algorithm for which we 

know the result but pretend that we do not Let’s simulate the posterior 

distribution of theta where theta is the parameter of the probability of success in 

a binomial distribution. We assume that we have one data outcome y=3 from a 

binomial with n=5 trials. We further assume that the prior distribution of theta is 

uniform(0,1).  We have seen earlier that the posterior distribution in this case is 

a beta distribution with parameters alpha=1+y=4, and beta = 1 + n –y = 3, and a 

posterior mean of 4/7 =.5714.   Without knowing this posterior distribution, for 

the Metropolis algorithm, we use the simple representation: 

3 2( | 3) Pr( 3 | ) ( ) (1 ) 1f Y Y fθ θ θ θ θ= ∝ = = − ⋅  

First, initialize values.  We will initialize theta to 0.04 for the first run of the 

Metropolis algorithm, an arbitrary starting value. 

> nchain<-1000 

> y<-3 

> n<-5 

> theta<-vector(length=nchain) 

> theta[1]<-0.04 

Next run a loop sampling thetaStar from the uniform distribution, a symmetric 

proposal distribution, and calculating the value of the ratio of 

p(θ*|Y=6)/p(θ|Y=6).  Draw a uniform value for the acceptance criteria, and if 

u<r accept the new value of theta (thetaStar), otherwise reject thetaStar and use 

the same value of theta.  Iterate through the loop the predetermined nchain 

length. 

> for(i in 2:nchain){ 

+ thetastar<-runif(1) 

+ r<-thetastar^y*(1-thetastar)^(n-y)/(theta[i-1]^y*(1-theta[i-1])^(n-y)) 

+ u<-runif(1) 

+ if(u<r){ 

+ theta[i]<-thetastar} 

+ else theta[i]<-theta[i-1] 

+ } 

Next, do some plots of the output, as depicted in Figure 11-9.   
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> par(mfrow=c(3,1)) 

> plot(1:100,theta[1:100],main="First 100 Runs") 

> lines(1:100,theta[1:100]) 

> plot(1:1000,theta[1:1000],main="All Runs") 

> lines(1:1000,theta[1:1000]) 

> plot(901:1000,theta[901:1000],main="Last 100 Runs") 

> lines(901:1000,theta[901:1000]) 

 

Figure 11-13 

These plots are a time series of the 1000 runs.  The first 100 runs are depicted 

separately and you can see that from runs 0 to 20 the chain is more erratic in 

behavior and takes about 20 cycles reach a more stable state.  The initial period 

is called the burn-in period.  Typically we discard data from the burn in period – 

often it is the first few hundred runs.  Because this is a simple univariate 

example, the number of runs before the chain reaches a stable stationary state is 

very few.  In more complex scenarios it is hundreds of runs that compromise the 

burn-in period.  It is important to do time series plots of all runs and look at 

them.  

Time series plots also are good visual diagnostics of how well a chain mixes.  

The chain in this example is well mixing.  There are no hang-ups where the 

chain spends unusually long periods of time in areas that are substantially above 

or below the mean value of the posterior distribution   As a check we can plot a 
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histogram of the generated values and overlay the theoretical beta(4,3) density 

function: 

> hist(theta[101:1000],nclass=25,prob=T) 

> xx <- (1:100)/100 

> lines(xx,dbeta(xx,4,3)) 

Histogram of theta[101:1000]

theta[101:1000]
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Figure 11-14 

However be aware that the theta values that were generated by the Metropolis 

algorithm do not represent a random sample from the posterior distribution, 

rather they represent a Markov chain whose subsequent values are not 

statistically independent. 

Metropolis-Hastings Algorithm 

The Metropolis-Hastings algorithm extends the use of the Metropolis algorithm 

to situations where the proposal distribution is not symmetric. The algorithm is 

the same as with the Metropolis algorithm except that the proposal distribution 

results are added to the acceptance ratio term.  Using the Metropolis Hastings 

algorithm the acceptance ratio is: 

)|*(q

*)|(q

)(p

*)(p
R

θθ

θθ

θ

θ
=  

The added term is the ratio of the proposal distribution q of theta (old value) 

conditioned on the new value thetaStar over the value of q of thetaStar 

conditioned on theta.  This term accounts for the asymmetry of the distribution 

so that the proper acceptance ratio is used. 

We will not do a full example using the Metropolis Hastings algorithm here, but 

examples are provided in many of the references listed in the appendix and other 

examples abound in the research literature. 
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Putting it All Together: Markov Chain 

Monte Carlo 

In Chapter 10, we learned that Markov chains which are ergodic (aperiodic and 

irreducible) converge to a stationary equilibrium distribution.  In this chapter we 

learned some algorithms for simulating posterior distributions of interest both 

without using Markov chains (inverse CDF, and rejection sampler) and using 

Markov chains (Gibbs, Metropolis-Hastings). 

The two Markov chain methods discussed in this chapter are often the only way 

we have of implementing many Bayesian methods to determine a posterior 

distribution of interest.  Although only simple examples were presented in this 

chapter, the concepts and algorithms discussed here apply to more complex 

high-dimensional distributions.    

Gibbs versus Metropolis-Hastings 

As mentioned previously, the Gibbs sampler is actually a special case of the 

Metropolis-Hastings algorithm, a statement that may make no sense if no one 

tells you that with the Gibbs sampler the proposal distribution is the target 

distribution.  Therefore the acceptance ratio with the Gibb’s sampler is: 

1
)|*(p

*)|(p

)(p

*)(p

)|*(q

*)|(q

)(p

*)(p
R ===

θθ

θθ

θ

θ

θθ

θθ

θ

θ
 

The acceptance ratio is always 1, therefore the value is always accepted. 

The Gibbs sampler has many advantages over the Metropolis-Hastings sampler 

in that it is computationally much simpler.  The Metropolis-Hastings performs 

evaluations on full distributions that can become computationally intense, and 

even computationally impossible (even on the most state of the art machines).  

This is because the Gibb’s only computes from the conditional distributions, 

which is less computationally intense. 

Of course, there are times when sampling from full conditionals is impossible 

(for various mathematical reasons) and the Metropolis-Hastings algorithms must 

be used.  The next chapter introduces WinBugs, which is a program you can use 

in conjunction with R that utilizes the Gibbs sampler.  There is no comparable 

easy to use program that utilizes the Metropolis-Hastings algorithm and 

implementing this algorithm probably requires original statistical programming. 
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Issues in Chain Efficacy 

In conclusion to this chapter, it is fitting to briefly highly some of the areas of 

concern when using Markov chain algorithms to simulate a posterior distribution 

with regard to how well a chain runs.  These issues apply to both Gibbs and 

Metropolis-Hastings algorithm.  In the next chapter we will look at some 

specific examples and how these issues are addressed.  All of these issues are 

areas of active statistical research. 

Mixing 

We have already brought up the issue of mixing on a few occasions.  Mixing 

refers to how well the chain moves, or speed at which chain forgets its past.  

Mixing can be analyzed by looking at a time series plot (such as those in Figure 

11-9) of the values simulated for each parameter of interest.  It is generally 

impossible to tell in advance how well a chain will mix. However if you are 

comparing more than proposal distribution you can determine which is the better 

at mixing and use that one.  Rapid mixing can indicate that the chain requires a 

shorter number of runs to reach a posterior distribution. 

How Many Chains to Run? 

The issue of whether to run one chain or multiple chains is of debate.  Some 

suggest many short runs (Gelfand and Smith, 1990), whereas others suggest 

several long runs (Gelman and Rubin 1992), and others suggest one very long 

run (Geyer 1992).  The idea behind running many runs is that it is possible that 

the chain reaches an incomplete posterior distribution because the chain gets 

hung up on one area of high density of a posterior density that has multiple 

distinct areas of high density where there is little distribution of density 

elsewhere.  No official comment is made here about which method is correct, 

but running more than one chain is generally a good idea. 

Burn in and run length 

As discussed earlier the burn in consists of the initial iterations before the chain 

reaches a stationary state.  How long the burn in is varies tremendously. It can 

be very short as in our example in Figure 11-13, or very long.  Therefore the run 

length (number of times you run the chain) should be long enough to ensure than 

chain has indeed reached a stationary state.  How long this is depends on the 

particular situation.  If in doubt, do more runs. 

Convergence 

After burn-in we say chain has converged to a stationary state (posterior 

distribution). Many models will work, but some may be slow to converge.  

Sometimes a slow converging model may be improved (using a different 

proposal distribution and other ways), yet sometimes it is easier to do longer 
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runs. It is important to check convergence with convergent diagnostics, however 

there is no universal convergence diagnostic. This can be done using the 

package CODA. 
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12 

MCMC using BRugs  

This chapter applies the theories of MCMC and Gibbs sampling by introducing 

the use of the package BRugs and associated package CODA.  These software 

tools make running MCMC analysis simple and accessible for those interested 

in simple applied models without having to do any complicated programming 

tasks. 

About BRugs 

Package BRugs incoroporates what used to be a separate program (WinBUGS, 

still available from the website http://www.mrc-bsu.cam.ac.uk/bugs/.). 

WinBUGS is a small, freeware program designed specifically to run Bayesian 

analysis for MCMC applications.  BUGS is an acronym for Bayesian analysis 

Utilizing Gibbs Sampling.  The original version is called classic BUGS and runs 

in a DOS-based environment.  This version is also still available to interested 

users.   

In biological science, BUGS is used widely in public health and genetics 

applications. Genetics aplications include including linkage analysis, recreating 

evolutionary trees, pedigree analysis, haplotype analysis, and other applications.  

This chapter will present a simple genetic example looking at the distribution of 

ABO blood types.  Other applications of WinBUGS in bioinformatics are 

fathomlessly possible, and those skilled in Bayesian modeling can take 

advantage of WinBUGS to assist with MCMC analysis.  

Package BRugs incoprorates the functionality of WinBUGS but does nto do 

much model diagnositics. Instead, convergence diagnostics are performed using 

the CODA package, a package designed for use in S-Plus or R.   
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ABO Blood Types Example 

The Model 

Different markers determine blood types in humans.  One of the marker systems 

often used is the ABO system.  Humans are typed according to one of the four 

possible types: A, B, AB, and O.  Different genes are encoded by variations 

called alleles.  For the ABO blood type, there are three possible alleles, which 

we will refer to as A, B, and O.  There are six combinations of alleles a human 

can have on their two chromosomes: AA, AB, BB, AO, BO, and OO. 

In this system there is a pattern of co-dominance, where A and B are co-

dominant.  Allele O is always recessive.  This means that if a person has the AB 

allele combination, he/she will be AB blood type since both markers show up 

(co-dominance).  However if a person is type AO only marker A shows up.  

Likewise if a person is type BO only marker B shows up. The only case where a 

person can be type O is if he/she has both alleles of type O. 

We call the allele combination a person has a genotype, with possible genotypes 

for blood types being AA, AB, BB, AO, BO, and OO. We call the way the 

genotype displays itself a phenotype and the possible phenotypes here are AB, 

A, B, and O. 

If we consider the three possible alleles in the gene pool as proportions and 

assume these are the only alleles in the gene pool, the sum of proportions is 1.  

We can write the equation below using p for the proportion of allele A, q for the 

proportion of allele b, and r for the proportion of allele 0. 

p+ q + r =1 

Mathematically we can relate the allele frequency to phenotype frequency using 

the Hardy-Weinberg equilibrium for a three-allele locus: 

(p+ q + r)
 2

=1 

Doing the algebra: 

p
2
 + 2pr + 2pq + q

2
 + 2qr + r

2
 = 1 

Table 12-1 summarizes the relationship between alleles (p, q, r), genotype 

frequencies, genotypes and phenotypes for the blood types. 
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Table 12-1 

Genotype 

Frequencies 

Genotype Phenotype (Blood 

Type) 

p
2
 AA 

2pr AO 

A 

q
2
  BB 

2qr BO 

B 

2pq AB AB 

r
2
 OO O 

The easiest data to collect on blood types for a population under study is the 

phenotype data.  It is simple to phenotype blood and collect data on numbers of 

individuals with each blood type. However, it is not technically or 

mathematically easy to determine frequencies of the individual alleles.  

Although for this example, it is algebraically possible, if there were more alleles 

involved it would soon become impossible algebraically to solve the equations 

necessary.  Therefore a Bayesian MCMC method works better to solve this type 

of problem. 

Recall the Bayesian paradigm: 

P(Model|data) ∝ P(Model) P(data|Model) 

Posterior ∝ Prior * Likelihood 

Our model of interest here is the posterior distribution of alleles (p, q, r) given 

the data of counts of blood type phenotypes.  Recall that the discussion in 

Chapter 8 of using the multinomial distribution to model the distribution of 

phenotype data, based on phenotype counts.  For this example the multinomial is 

the likelihood, or data, model, and can be can be written as follows: 

P (A, B, AB, O) = nO
O

nAB
AB

nB
B

nA
A

OABBA

)p()p()p()p(
!n!n!n!n

!n
 

Where the n’s are the numbers of each phenotype and the p’s are the proportions 

of each phenotype.  Using Hardy-Weinberg equilibrium we can convert the 

proportions of phenotypes to allele proportions in terms of p,q, and r. Since the 

constant term is left out in Bayesian calculations we can re-write the likelihood 

model as: 
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P (A, B, AB, O) α nO2nABnB 2nA2 )r()pq2()2qr  q()2pr   p( ++  

Our prior distribution of interest is the distribution of individual alleles A, B, O 

that are modeled respectively with p, q, and r.  Recall (Chapter 8) that the 

Dirichlet model is used to model multivariable proportion data.  For this 

example we have no specific knowledge of the proportions so we will use a 

noninformative Dirichlet prior assuming all proportions are equal (the 

equivalent of a beta (1,1) distribution for all priors).  We can write our Dirichlet 

prior with parameter alpha=1 and ignoring the constant term as: 

P(p, q, r)    α   (p)α-1(q) α-1 (r) α-1 =1 

Gibbs Sampling to Determine Posterior 

The posterior for our model is: the product of the prior and the likelihood: 

P(p,q,r|data) α   (p)α-1(q) α-1 (r) α-

1 nO2nABnB 2nA2 )r()pq2()2qr  q()2pr   p( ++  

However, it is not easy to solve this analytically for the posterior parameters p, 

q, r which are the proportions of alleles in the population given the phenotype 

count data.  We note that the posterior is of the form of a high-order polynomial 

in p,q,r which is actually a complicated mixture of several Dirichlet 

distributions. 

Our method of solving this problem is to use the Gibb’s sampler and an MCMC 

simulation iterating through the full conditionals as follows: 

 p i= p (p | data, q i-1 , r i-1) 
 q i= p (q | data, p i  ,  r i-1) 

r i= p (r | data, p i  ,q  i) 

Each step of the iteration has the Markov property of being dependent only on 

the prior step.  The chain iterates like this updating each individual parameter for 

that step by sampling from the full conditional distribution.  The number of i’s is 

the number of cycles the chain runs.  If the chain is ergodic the chain will reach 

a steady state distribution that is our posterior distribution of interest, the 

posterior distribution of the alleles given the phenotype count data. 
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Running the Model in BRugs 

Create the Model 

Open a new notepad document and enter the following model: 

model BloodTypes { 

 

##Prior for allele frequencies 

 

#Gamma trick to generate uniform Dirichlet dist 

a~dgamma(1,1) 

b~dgamma(1,1) 

o~dgamma(1,1) 

 

#Scaled frequency of alleles  prior  for each allele 

#frequence allele A 

p<-a/(a+b+o) 

#frequency allele B 

q<-b/(a+b+o) 

#frequency allele O 

r<-o/(a+b+o) 

 

##Multinomial likelihood models data  

 

#A phenotype frequency 

x[1]<-p*p+2*p*r 

#B phenotype frequency 

x[2]<-q*q+2*q*r 

#AB phenotype frequency 

x[3]<-2*p*q 

#O phenotype frequency 

x[4]<-r*r 

 

n[1:4]~dmulti(x[ ],total) 

Save this document as “bt.txt” in the R working directory. 

Create the Data Set 

Likewise, create a small file “btData.txt” in the R working directory. 

#data 

list(n=c(750,250,75,925),total=2000) 

 

#inits 

list(a=1,b=1,o=1) 
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Check the Model 

After you enter the model, the first thing you want to do is check the model and 

make sure it is syntactically correct.  To do this load the BRugs package and 

type the following: 

> modelCheck("bt.txt") 

model is syntactically correct 

Load the Data 

Once the model is syntactically correct, you want to load the data.  Note that the 

data are given as a list. In this example, the data used are just made up and do 

not reflect empirical results. 

 

> modelData("btData.txt") 

data loaded 

 

Compile the Model 

The next step once the data are loaded is to compile the model.   

> modelCompile(numChains=2) 

model compiled 

Initialize Values 

With a successfully compiled model, you are now ready to initialize values of 

parameters in preparation for running the sampler.  To initialize parameter 

values make a small file in the R working directory “btInits.txt” containing the 

following: 

#inits 

list(a=1,b=1,o=1) 

Do the initializing in R with function modelInits 

 

> modelInits("btInits.txt")  

Run the Sampler 

Now that we have a model, which has data loaded, is correctly compiled, and 

has prior parameters initialized, we are ready to run some samplers.  The 

function samplesSet tells which parameters should be monitored and the 

modelUpdate function runs the sampler the specified number of times: 

> samplesSet(c("p","q","r")) 

monitor set for variable 'p' 

monitor set for variable 'q' 

monitor set for variable 'r' 

>  

>  
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> modelUpdate(1000) 

1000 updates took 0 s 

Analyzing Results 

Once you produce sampled data, you have many options for analyzing the 

results.  Remember that our result of interest is the Dirichlet posterior joint 

distribution of p, q, and r – the allele proportions for the blood type alleles given 

the data. 

 One of the simplest things to do is look at the time series plots for the chain for 

each of the parameters. To produce such a plot, simply use function 

samplesHistory() with the parameters of interest.  For the code illustrated above, 

a time series plot of parameter r is illustrated in Figure 12-1. 

 

Figure 12-1: Time Series of Parameter r  

A time series trace gives quick visuals check for two things – how well the chain 

mixes and whether the chain has converged.  In Figure 12-1 the chains are well 

mixing (even up and down moves without a pattern of being hung up in one area 

or having correlated moves) and appear to have quickly converged.  Note that a 

time series trace is NOT a formal statistical analysis, but a visual check, and 

although quite good at diagnosing good and bad runs and convergence, should 

not be used as the sole diagnostic criteria. 

Another way to look at the parameters is to view a density plot of the marginal 

distribution of the parameter of interest.  

samplesDensity("r", mfrow=c(1,1)) 
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Figure 12-2: Marginal Density of Parameter r 

Another way to analyze the results is to look at the summary statistics for each 

parameter.  These results can also be used in statistical inference testing 

comparing parameters from different models, etc.  In later chapters when we 

cover inferential statistics and introduce some different testing methods.   

Function samplesStats will give this information for all parameters of interest: 

> samplesStats("*") 

     mean       sd  MC_error val2.5pc  median val97.5pc start sample 

p 0.23410 0.007205 0.0002394  0.22100 0.23420   0.24860   502    998 

q 0.08527 0.004643 0.0001428  0.07661 0.08516   0.09471   502    998 

r 0.68070 0.007752 0.0002584  0.66640 0.68050   0.69570   502    998 

 

CODA 

The most important diagnostic to do with MCMC output however is to make 

sure the chains have really converged.  All of the results discussed so far are 

invalid if the sampler has not produced a chain that has converged to a stable 

posterior state. CODA, the R package that is used in collaboration with BRugs 

will utilize various convergence diagnostics techniques.  Interested users should 

install and explore the functionality of this package. 

 



 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

217 

13 
Foundations of Statistical 

Inference 

Statistical inference is about analyzing data and drawing conclusions, or 

inferences, about the data at hand.  Often the reason for doing this is to fit a 

mathematical model to the data, which can be either a probability model or some 

type of predictive model, like a regression model, as discussed in Chapter 15.  

Obtaining such a model can be very useful for drawing further conclusions and 

testing (the subject of Chapter 14). The value derived from fitting a useful model 

is often the payoff of laborious experimentation and data collection.   

This chapter discusses the process of analyzing sample data and the techniques 

to discover what we want to learn about a dataset in order to fit parameters for 

models and how R can help with these tasks.  It should be noted here that 

classical and not Bayesian techniques are presented in this and subsequent 

chapters, but that there are parallel Bayesian methods.  It is also noted that much 

of the material in this chapter is covered extensively in any introductory level 

statistics textbook.  Therefore the emphasis here is on a review of topics and 

how they work in R.  The interested reader should consult one of the books in 

the appendix for details of the concepts presented. 

Sampling Theory 

Usually when we collect data we are “sampling from a population”.  In the 

idealistic world we could collect every possible data point of interest from the 

entire population under study.  In practice, except in unusual circumstances, this 

is impossible.  Therefore, taking a sample from the population is the best we can 

do.   
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A sample is a subset of the underlying population.  In statistics, a good sample is 

characterized by being random and therefore representative of the population at 

hand.  Underlying the principle of randomness is the property of independence.  

This means that whatever the ith outcome of the sampling process is, the next (ith 

+ 1) outcome will have no dependence on the ith outcome.  In other words all 

outcomes from a random sampling process are mutually independent.  

Outcomes are viewed as realizations of a random variable and therefore the 

outcomes for any experiment share the same underlying probability distribution.  

These two principles of a random sample are sometimes referred to as “i.i.d.” 

which stands for independent and identically distributed. 

A key issue with sampling is the size of the sample (which is almost always 

designated by the letter n).  It should be intuitive that the larger the sample, the 

better the sample in terms of using the data to characterize the underlying 

population. Figure 13-1 illustrates the effect of sample size when the underling 

population is a standard normal. 

 

Figure 13-1: Effect of Sample Size on Approximating the 

Underlying Distribution 

After a sample is collected, it is mathematically characterized by certain 

functions of the sample data. A statistic, by definition, is a function of the data. 

Some statistics you are likely already familiar with and that were discussed in 

Chapter 5 include mean, median, variance, etc.  These concepts are introduced 
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in great depth in most elementary statistics courses and books.  But let’s review 

some of them here. 

A sample mean is simply the average of the data.  To get the sample mean add 

all the values of data up and divide by the sample size (n).  R will calculate a 

sample mean using mean(x) where x is the data vector. The sample mean is the 

most common measure of central tendency or location. If you take repeated data 

samples from the same underlying population and calculate sample means, the 

distribution of the sample means will follow the central limit theorem, 

commonly known as the law of averages.  That is, the distribution will 

approximate a normal distribution in the limiting case (n goes to infinity). 

The law of averages holds for any underlying population distribution, even 

though the data themselves may be far from normally distributed.  Let’s use R to 

draw samples from an exponential distribution with scale parameter 4, or rate 

parameter ¼ = 0.25 (rate=lambda in R) (see Chapter 7) and calculate means of 

each sample.  To illustrate this effect we will vary the sample sizes. 

> #First a graph of the distribution from which to sample from  

> e<-seq(.1,30,by=.1) 

> plot(e,dexp(e)) 

 

Figure 13-2: Exponential with lambda=4. 

Next we will take 50 random samples of sample size n=5, n=20, n=50 and 

n=200 from the exponential model, calculate the mean of each of these and do a 

histogram of the 50 calculated means for each sample size.  Note that because 

generated data are all i.i.d. (independent and identically distributed), we can 

simply draw a total of n*50 samples, and arrange them in a matrix with 50 rows, 

all in one command. 
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>#Create matrices with 50 rows and n=samples size columns 

> n5<-matrix(rexp(50*5,rate=0.25),nrow=50) 

> n20<-matrix(rexp(50*20,rate=0.25),nrow=50) 

> n50<-matrix(rexp(50*50,rate=0.25),nrow=50) 

> n200<-matrix(rexp(50*200,rate=0.25),nrow=50) 

 

 

> #Compute row means 

> n5means<-rowMeans(n5) 

> n20means<-rowMeans(n20) 

> n50means<-rowMeans(n50) 

> n200means<-rowMeans(n200) 

 

># Plot results 

> par(mfrow=c(2,2)) 

> hist(n5means,xlab="",prob=T,xlim=range(0:12),ylim= 

+ range(0,0.2,0.4,0.6,0.8),main="n=5",nclass=10) 

> hist(n20means,xlab="",prob=T,xlim=range(0:12),ylim= 

+ range(0,0.2,0.4,0.6,0.8),main="n=20",nclass=10) 

> hist(n50means,xlab="",prob=T,xlim=range(0:12),ylim= 

+ range(0,0.2,0.4,0.6,0.8),main="n=50",nclass=10) 

> hist(n200means,xlab="",prob=T,xlim=range(0:12),ylim= 

+ range(0,0.2,0.4,0.6,0.8),main="n=200",nclass=10) 

 

Figure 13-3 Illustrating the Law of Averages  

Figure 13-3 plots the results of the distribution of the sample means based on 

sample size.  . With this smallest sample size the calculated sample means do 

not show a normal distribution tendency.  When the sample size is increased to 

20 a normal pattern begins to appear.  With sample size of n=200 a normal 

distribution pattern for the distribution of sample means is clear. 
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Figure 13-3 also illustrates another important point about the distribution of a 

sample mean.  Notice that the spread of the data decreases as the sample size n 

increases.  This is because the measure of variation, the standard deviation, 

which when applied to repeat samples of sample means is called “standard error 

of the mean”, is inversely proportional to the square root of the sample size.  

Standard error can be written using the following equation, where sigma is the 

standard deviation of the data and n is the sample size: 

( )Stand. Error X
n

σ
=  

In other words if you want to increase precision of your sample mean, increasing 

the sample size always works.  This actually has serious implication in statistical 

testing, where to meet a criterion to reject a hypothesis, sample size will 

undoubtedly play a role. We will discuss this issue again when we discuss 

hypothesis testing in the next chapter. 

The variability, or spread of a sample is usually measured by the standard 

deviation (s). Mathematically (s) is the square root of the average of squared 

deviations from the mean.  For technical reasons, to eliminate something called 

bias, dividing by n-1 instead of n usually performs the calculation.  

1n

2XiX
s

−

−
=
∑ )(

 

In addition to measuring the mean and variability of the data, we often like to 

compute parameters of the underlying distribution, a process referred to as 

parameter estimation.  This issue was touched upon in earlier chapters when 

parameters of standard probability distributions were discussed, but estimating 

and working with parameter estimates is a major focus of this chapter. Statistics 

include both parameters and other metrics of the data.  We have already seen 

that for a normal distribution the major characteristics of the distribution, the 

mean and standard deviation are also the parameters of the distribution, but for 

other distributions such as gamma distributions the mean and standard 

distribution can be computed using the parameters of the distribution (alpha and 

beta for the gamma) but are not equal to the parameters.   

In coming sections of this chapter we discuss two ways to estimate parameters – 

point estimates and interval estimates.  Now, let’s look at probability 

distributions that model sampled data.  
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Sampling Distributions 

Sampling distributions are a special class of probability distributions where the 

shape of the curve changes based on the sample size, n.  The criteria “degrees of 

freedom” which is based in part on sample size, is part of the defining parameter 

for plotting a sampling distribution.  Sampling distributions are distributions of 

statistics rather than distributions of individual data values.  Every statistic has 

it’s own sampling distribution – mean, mode, median, etc. Here we consider the 

sampling distribution for the mean (the t-distribution) and the sampling 

distributions of statistics that are based on variance (the Chi Square, and the F 

distributions).  These common distributions serve as the basis for many 

statistical inference tasks.  

Student’s t Distribution 

This distribution describes the sampling distribution of the sample mean when 

the true population variance is unknown, as is usually the case with sampling.  

This distribution is the basis for t-testing, comparing means drawn from 

different samples, and we use it in hypothesis testing.  Meanwhile let’s look at 

the mathematical properties of this distribution and how to use this distribution 

in R. 

Recall from Chapter 7 the discussion of the normal distribution and that a 

random variable (X) following the normal distribution may be transformed to a 

Z-score with the following relationship where the distribution of Z becomes the 

standard normal distribution with mean of 0 and standard deviation of 1. 

σ

µ−
=

X
Z  

We have already illustrated above that when we are sampling the standard 

deviation (true σ) is not known but an estimated standard deviation from the 

data is used. This estimated standard deviation is a random variable based on 

sample size.  A t-distribution is a modification of the standard normal 

distribution to account for the variability of the standard deviation. A 

standardized t-score takes the following form: 

s

X
t

µ−
=  

If the data values x1,…,xn follow a normal distribution, then we call the 

distribution of the corresponding t scores a t-distribution with n-1 degrees of 

freedom.  It is modeled using a t density curve. The t distribution also applies to 

the sampling distribution of sample means as follows:  



 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

223 

( )
X

t
s X

µ−
=  

where X is the sample mean based on a sample of size n, and 

( )s X s n= is the estimated standard error of the sample mean.  Note that µ 

is both the mean of the data as well as the mean of the sampling distribution of 

the sample mean.  If the data of the sample are more or less normally 

distributed, then the sampling distribution of the t-score is again a t distribution 

with n-1 degrees of freedom, where n is the size of the sample from which X  is 

calculated.   

The t-distribution is symmetric like the normal and has mean 0 but its standard 

deviation is > 1. Let’s take the 50 mean values obtained earlier for the n=200 

sample size of means from an exponential distribution with scale (= mean) = 4.  

Remember, that by the law of averages, these values approximately follow a 

normal distribution. We obtain the t scores of these 50 values. 

> t<-(n200means-  4)/sd(n200means) 

Next, let’s plot these t-scores and overlay a curve for a standard t-distribution 

with n-1 degrees of freedom (where n=sample size).  In R the density curve of 

the t distribution is called with the function 

dt(x, df) 

Where x is the data vector and df is the degrees of freedom.   

> hist(t,prob=T,main="Standardized data wtih overlay of t-distribution") 

> curve(dt(x,49),add=T) 

Figure 13-4 shows the resulting plot. 

 



 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

224 

Standardized data with overlay of t-distribution
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Figure 13-4 

Let’s look at the relationship between degrees of freedom and the shape of the 

curve. As an aside, the term “degrees of freedom” is a description of the number 

of observations that are free to vary after the sample statistics have been 

calculated.  When we compute the sample standard deviation, the mean (a 

statistic) is used in the formula to compute the standard deviation. So the 

degrees of freedom left over is n-1, used in the parameter for the t-distribution.  

You will see degrees of freedom again with the Chi-Square and F-distribution.  

It is a confusing concept, and pay attention to how it is calculated for a particular 

distribution.   

For a t-distribution as the degrees of freedom (sample size) increases, the 

distribution in the limiting case (n approaching infinity) becomes normal.  In 

statistics this is referred to as an asymptotic approximation.  When the t-

distribution has a smaller number of degrees of freedom (smaller sample size) 

the distribution is more variable and less centered.  This is correlated with the 

earlier discussions of when the sample size is smaller it is more variable and the 

mean is less precise (review Figure 13-3). 

Let’s plot some t-distributions with different degrees of freedom: 

> x <- seq(-8,8,by=.1) 

> par(mfrow=c(2,2)) 

> plot(x,dnorm(x),type='l',ylab="",main="df=2") 

> lines(x,dt(x,df=2),lty=2) 

> plot(x,dnorm(x),type='l',ylab="",main="df=5") 

> lines(x,dt(x,df=5),lty=2) 

> plot(x,dnorm(x),type='l',ylab="",main="df=10") 

> lines(x,dt(x,df=10),lty=2) 

> plot(x,dnorm(x),type='l',ylab="",main="df=20") 

> lines(x,dt(x,df=20),lty=2) 
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The resulting plots are shown in Figure 13-5.  In each case the solid line is the 

normal distribution and the dashed line is the t-distribution. Notice how when 

the degrees of freedom are increased the t-distribution becomes closer and closer 

to the normal.  Indeed when sample size is roughly 30 or so (a specific number 

is subject to debate) we often use the normal distribution instead of the t-

distribution because of this close approximation.  With relatively small degrees 

of freedom the t-distribution has what are referred to as “heavy tails” or “thicker 

tails”.  It is important to review as well that as a probability distribution the area 

under the curve for any t-distribution is always 1. 

 

Figure 13-5 

The Chi-Square Distribution 

The Chi-Square distribution was briefly introduced in Chapter 7 as part of the 

gamma family of probability distributions. The Chi-Square distribution 

indirectly models the sample variance.   The ratio of the sample variance to the 

true population variance is modeled as a Chi-Square according to the following: 

)(~
)(

1n
2

2

2s1n
−χ

σ

−
 



 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

226 

The Chi-Square is a sampling distribution because it depends on the sample size 

through n-1 degrees of freedom.  Varying the degrees of freedom changes the 

shape of the distribution.  In R the density curve of the Chi-Square distribution 

is called by the following function: 

dchisq(x, df) 

Figure 13-6 plots the Chi Square distribution with 2, 4 and 9 degrees of freedom.  

As the degrees of freedom increase the shape of the Chi Square becomes more 

normally distributed and the distribution moves to the right. 

 

Figure 13-6: Chi-Square Distribution with 2, 4, and 9 Degrees 

of Freedom 

The Chi-Square, like any other probability distribution, has an area under the 

curve of 1.  Because it is a member of the gamma family, it is somewhat 

mathematically complicated. Computing specific values of the Chi-Square is 

difficult to do directly, so to compute such values tables or computers are used. 

In R the qchisq() function produces Chi-Square test statistic values. 

The F Distribution 

The Chi-Square distribution is not so interesting in and of itself, although testing 

using the Chi-Square has wide applications.  However, what is very interesting 

is the distribution of the ratio of two random variables, each having a Chi-
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Square distribution.  Mathematically such a ratio is described and modeled with 

the F distribution.  Let U and V be independent random variables, where U has a 

Chi-Square distribution with m degrees of freedom and V has Chi-Square 

distribution with n degrees of freedom. Define the ratio W as follows: 

V

U

m

n

nV

mU
W ==

/

/
 

This ratio creates a random variable W whose distribution is an F distribution 

with numerator degrees of freedom m and denominator degrees of freedom n. 

At first glance, the F distribution may make no sense or seem useless. Au 

contraire! The F distribution is an incredibly useful distribution and the basis for 

many statistical inference tests.  What the F ratio creates is a testable “signal to 

noise” ratio.  Suppose the variability of background noise is modeled with 

random variable U and variability due to the experimental effects is modeled 

with random variable V.  Computing the ratio of variability and modeling it with 

an F distribution provides a criterion to determine if the experimental procedure 

achieves a significant effect over the background noise level.  This type of 

testing has a wide range of applications.  In bioinformatics, F ratios are used 

extensively in microarray data analysis.  Indeed F ratios serve as the basis for 

ANOVA (analysis of variance), a procedure discussed in the next chapter, which 

in turn is the basis for the branch of statistics involving the design of 

experiments. 

Meanwhile, let’s work with the F distribution using R.  The F distribution is a 

sampling distribution that depends on two sample sizes.  The formula for calling 

the density curve of the F distribution in R is: 

df(x, df1, df2) 

Where df1 is the numerator degrees of freedom and df2 is the denominator 

degrees of freedom.  We will work more with the specifics of the F distribution 

in the next chapters, but meanwhile let’s just look at how changing the df1 and 

df2 affects the shape of the F distribution curve. 

The following code produces the F distribution plots in Figure 13-7: 

> x <- seq(.1,5,by=.005) 

> m <- c(1,5,10,30) 

> n <- c(1,5,10,30) 

> par(mfrow=c(4,4)) 

> for (i in 1:4){ 

+  for (j in 1:4) { 

+   plot(x,df(x,m[i],n[j]),type='l',ylab="f(x)",cex=.6) 

+   title(paste(paste("dof =",m[i]),n[j],sep=",")) 

>      } 

>    }  
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Figure 13-7: F distributions with varying df1, df2 

Like for the Chi-Square, specific percentiles of the F distribution are difficult to 

determine analytically.  However the qf() function in R produces the 

appropriate test statistics.  We will use this function extensively when we 

discuss ANOVA.  Let’s now shift gears and investigate methods of estimating 

parameters. 

Parameter Estimation 

Given our sample data we want to fit a model to the data. Often we would like to 

fit a standard probability model (see Chapters 7 & 8).  In order to do this, we 

need to determine the best fitting parameters for the particular model we have in 

mind.  Therefore we need a method of estimating the parameters.  Parameter 

estimates take two forms, point estimates and interval estimates.  Point estimates 

have their merit in being very useful in defining the model. Interval estimates 

have merit in quantifying how precise a parameter estimate is.  Often you will 

want both a point estimate and an interval estimate for a particular parameter.  
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This section reviews some basics of both types of estimates.  Parameter 

estimation is a key topic in mathematical statistics and selected appendix 

references are listed which cover this topic in mathematical detail for the 

interested reader. 

Point Estimates 

A point estimate is a single value estimate of a population parameter calculated 

from sample data.  Earlier in this chapter we calculated means of samples from 

the exponential.  Each individual mean is a point estimate and as we resampled 

we had a distribution of point estimates (means), which by the law of averages 

follow a normal distribution pattern when n is large.  We can also measure based 

on the samples of data the standard error of the mean and model its distribution 

as well (proportional to a Chi Square).  In any given sample the point estimate 

differs from the true underlying population parameter.  If in many repeated 

(conceptual) samples this difference averages out to zero, we say that the point 

estimate is unbiased. 

There are different methods of calculating point estimates, including method of 

moments estimates, maximum likelihood methods, least squares estimation, 

Bayesian methods, and others.  We will only work in detail with maximum 

likelihood estimates specifically here, but a good mathematical statistics book 

will cover the other methods in great depth.   

For some cases, point estimates are quite simple to make. Table 13-1 lists some 

common point estimates of parameters that can be calculated with simple 

algebra or using basic functions in R.   

Table 13-1: Point Estimates that are Simple to Calculate 

Point 

Estimate 

Underlying 

Parameter 

Algebraic Calculation R Function 

X  
 

Mean (µ) of a normal 

population 
n

iX∑
 

mean() 

s2 Variance (σ2) of a 

normal population 

1n

2XiX

−

−∑ )(
 

var() 

s Standard deviation (σ) 

of a normal population  
2s  

sd() 

p Parameter (p) for 

binomial model 

X/n where X=number 

of successes 

Calculate 

manually 
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However what if we want to estimate more complicated parameters?  For 

example, calculate point estimates for the alpha and beta parameters of a gamma 

distribution?  Reviewing the formula in Chapter 7 for the gamma distribution 

indicates that there exist no simple calculations of point estimates of these 

population parameters.  Therefore in many cases we need a more sophisticated 

method to make point estimates. Often the maximum likelihood method (MLE) 

works best. 

Maximum Likelihood Estimation (MLE) 

Recall from Chapter 9 that a likelihood function is the function of the 

parameters given the data.  The principle of maximum likelihood estimation is 

that somewhere on the range of parameter values, the likelihood function hits a 

maximum value.  The parameter values for which the likelihood function 

obtains its maximum are called the maximum likelihood estimates for the 

parameters 

Analytically, maximum likelihood estimates can be solved using basic calculus.  

Recall from calculus that a maximum value occurs when the first derivative of a 

function is set to zero.  Often the analytical solution utilizes the practice of 

taking logarithms to make the analytical solution easier (the resulting estimate is 

equivalent).  Figure 13-8 illustrates the analytical MLE solution for a binomial 

parameter. Although the binomial parameter is easily estimated algebraically it 

is illustrated here because is perhaps the easiest to calculate using the analytical 

MLE method. 

( )
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Figure 13-8: Analytical MLE for Binomial Parameter 

However, even the “simple” analytical solution in Figure 13-8 looks 

complicated, and instead of using analytical methods and a pencil, it is handy to 

use R to help calculate MLE estimates.   

A common use of maximum likelihood estimation in genetics is to estimate 

parameters for the Hardy Weinberg equilibrium model for the distribution of 
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genotypes in a population at equilibrium.  In a given population gene pool, for a 

two allele gene locus, alleles A and a are at frequencies p and q, respectively.  

According to Hardy Weinberg equilibrium the genetic frequencies of genotypes 

are modeled by the simple equation: p2+2pq+q2=1.  The likelihood for this 

follows a multinomial probability distribution that we can model, where 

parameter theta,θ=p (and therefore 1-θ=q, theta between 0 and 1) as: 

naa21nAa12nAA2L )())(()()( θ−θ−θθαθ  

Letting n1=nAA and n2=nAa and n3=naa and logarithms (does not matter which 

base): 

Log L(θ)=2n1log(θ) + n2log (2θ(1-θ)) + 2n3log(1-θ) 

Eliminating the multiplicative term: 

Log L(θ)= 2n1log(θ) + n2log (2) + n2log θ + n2log (1-θ) + 2n3log(1-θ) 

To analytically solve for the maximum likelihood take the first derivative of this 

(which we designate with a lowercase letter “l” prime): 

l’(θ)=2n1/θ + n2/θ - n2 /(1-θ) - 2n3 /(1-θ) 

To find the value of theta that maximizes the above we could solve it 

analytically (which is not hard in this case, but with other models is often 

analytically impossible) by setting l’(θ) =0 and solving for theta, or we can solve 

it using R and finding the maximum value of the likelihood function over a grid 

of theta values, which is very simple and illustrated below.   

Suppose we collect data from a population sample of 500 (assume the 

population obeys Hardy Weinberg equilibrium) and obtain the data in Table 13-

2. Note that simply calculating theta from the proportion of AA does not work, 

since this does not account for the information about theta contained in the rest 

of the data. 

Table 13-2 

Genotype Data Variable 

AA 134 n1 

Aa 266 n2 

aa 100 n3 

Let’s program R to solve for the maximum likelihood estimate of theta given 

this data. 
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> #Create a grid of theta values 

> theta<-1:1000/1000 

 

> #Create a data vector to store (log)likelihood values 

> lik<-vector(length=1000) 

 

> #Enter data  

> n1<-134 

> n2<-266 

> n3<-100 

 

> #Given data, evaluate log likelihood 

> for(i in 1:1000){ 

+ lik[i]<-2*n1*log(theta[i])+n2*log(2)+n2*log(theta[i])+ 

+ n2*log(1-theta[i])+2*n3*log(1-theta[i])} 

 

># Use which function to determine max value of lik 

> which(lik==max(lik)) 

[1] 534 

> lik[534] 

[1] -506.4562 

> #MLE value for theta (corresponding vector index to lik[534]) 

> theta[534] 

[1] 0.534 

 

>#Plot of results 

> plot(theta,lik,xlab="theta",ylab="log likelihood",  

+ main="MLE estimation for theta") 

> abline(v=theta[534],lty=2) 

> legend(x=0.54,y=-2000,legend="MLE theta=0.534") 

Figure 13-9 illustrates the resulting plot. 
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Figure 13-9: MLE for theta 

To solve other MLE parameter estimates, apply the same principle illustrated 

above: find the likelihood function, take the first derivative, and find the 

maximum value for the parameter under study. There are a lot of R packages 

with specific applications that utilize maximum likelihood estimation.  All build 

on the principle described above. Maximum likelihood methods are covered in 

most mathematical statistics texts. 

Interval Estimates 

When we obtain a point estimate for a parameter we only have a single value.  

That value in and of itself says nothing about how accurate or precise the 

estimate is.  Interval estimates provide an alternative method for estimating a 

parameter by providing a probable range of values the parameter is likely to 

take.  Often it is good to use both a point estimate and an interval estimate for a 

parameter under study. The most common type of interval estimate is called a 

confidence interval, which is what we will discuss here.  Other types of interval 

estimates exist, such as predictive intervals and tolerance intervals. These have a 

similar theme but different purposes from a confidence interval. 

The classic and most common method of constructing a confidence interval 

requires a point estimate of the parameter and follows the general formula: 

point estimate +/- standard error of point estimate * test statistic 
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This yields an interval that is symmetric with midpoint equals the point estimate 

and with a lower bound of “point estimate – se * test statistic” and an upper 

bound of “point estimate + se *test statistic”.  The width of the interval depends 

on the standard error and the confidence level of the test statistic chosen.  

Smaller standard errors result in narrower intervals, indicating more precision in 

the point estimate.  This is because the standard error is a measure of variation in 

the date on which the point estimate is made.  

The test statistic comes from the appropriate sampling distribution of the 

parameter estimate. We define the level of a confidence interval to be 1-alpha, 

which produces a (1-a)⋅100% confidence interval, where alpha is the error level.  

Therefore we compute the test statistic for the lower end to be that of alpha/2 

and for the upper end to be that of 1-alpha/2, distributing the error equally 

between the upper and lower bounds of the confidence interval.  An example 

below will demonstrate this. Using alpha=0.05 is the norm for most confidence 

intervals. Using more extreme values of the test statistic (say a 95% confidence 

level) produces wider confidence intervals than less extreme values of the test 

statistic (say a 80% confidence interval), which would be narrower. 

Although R doesn’t have a generic function to compute confidence intervals, 

knowing the basic formula above and the specifics of what you’re making a 

confidence interval of, it’s vary easy to construct confidence intervals in R.  

For example, let’s create a confidence interval for a sample mean derived from a 

random sample of size 20 from a standard normal density.  To do this we can 

use R to first generate a random sample: 

> #Random sample of 20 from standard normal 

> x<-rnorm(20,0,1) 

> #Computer mean and standard error 

> xBar<-mean(x) 

> s <- sd(x) 

> se<- s/(19^.5) 

> xBar 

[1] -0.1041 

> se 

[1] 0.2821 

Recall from the discussion of sampling distributions earlier in this chapter that 

the distribution of the mean from a small sample can be modeled using a 

student’s t-distribution.  To do a 95% confidence interval, the alpha level is 0.05 

(or 5%).  We distribute this evenly between the upper and lower confidence 

limits, so for a symmetric distribution like the t-distribution, we can use as a test 

statistic the 0.975 percentile of the t-distribution with n-1=19 degrees of 

freedom. 

> test<-qt(0.975,19) 

> test 

[1] 2.093024 
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Now that we have all the necessary information – the point estimate, the 

standard error, and the test statistic values – we can easily make a 95% 

confidence interval using R: 

> clLower<-xBar-se*test 

> clLower 

[1] -0.6947 

> clUpper<-xBar+se*test 

> clUpper 

[1] 0.4864 

So a 95% confidence interval for our parameter estimate for the mean of our 

random sample is (-0.695, 0.486).  But what does this mean?  The way a 

confidence interval is interpreted is as follows: if we repeated this experiment 

(drawing random samples of size 20 from a standard normal) and made 

confidence intervals for each sample mean point estimate, then 95% of the time 

the confidence interval derived would contain the true mean. Note the 

probability statement is made about the confidence interval itself, not about the 

probability of an interval containing the true parameter. Making confidence 

intervals for other point estimates follows the same algorithm discussed here.  

The specific values will differ, but the general formula will hold. 

Bootstrapping 

To motivate the technique of bootstrapping, consider the following scenario.  

You collect gene expression data for a particular gene from 200 samples of cells 

(note this data is available in the rbioinfo package as bootstrapGE).  Because 

you are wise and look at the distribution of data before performing further 

analysis, you do a histogram and get the distribution depicted in Figure 13-10. 

 

Figure 13-10 
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Clearly this is not a nice distribution pattern in terms of being able to fit a 

standard probability model.  Computing a mean expression level alone given 

this distribution may not have meaning and does not describe the situation well.  

Hence, a more important objective of study is primarily to understand the 

variability of the expression level for this particular gene.  Also the law of 

averages does not work well for this kind of distribution, unless you have a very 

large data set, say n=1000 or more. This is a case where the bootstrap can be a 

useful technique. 

The bootstrap is a technique developed by Brad Efron (a statistics professor at 

Stanford) to find standard errors (measures of variability in the data) or 

confidence intervals in complicated situations where analytical computation is 

impossible.  It is a simple, yet powerful, computational technique that in recent 

years has shown explosive growth in applications.  In bioinformatics literature 

bootstrapping is used extensively in phylogeny analysis and in microarray data 

analysis. More applications of the bootstrap are sure to come, but here we focus 

on the basics of the bootstrap and how to do basic bootstrapping in R. 

Bootstrap techniques are generally categorized as either nonparametric or 

parametric.  Parametric bootstrap techniques assume that the data are generated 

from a standard parametric probability model (such as the normal, Poisson, and 

other models discussed in earlier chapters).  We will not discuss parametric 

bootstrap techniques here although the principles and techniques are very similar 

to nonparametric techniques. Nonparametric bootstrap techniques are more 

versatile and suit our example situation better.  Because of their versatility, 

nonparametric bootstrap techniques are the more popular type of bootstrap 

applications.   

Nonparametric Bootstrapping 

The beauty of the nonparametric bootstrap is that, since there are no 

assumptions of the underlying model, you can apply it to any dataset. Let’s 

return to the bootstrapGE dataset discussion.  Our goal is to determine how 

variable the expression of the gene is given the data.  However, we have no 

formulas for the standard error formulation to use.  So how should we go about 

determining the standard error? 

The bootstrap estimates the standard error of a metric (such as a parameter 

estimate, mean, median, etc) by repeatedly drawing bootstrap samples from the 

original data.  The samples are drawn with replacement and the sample size of 

each sample is the same as the original sample size. For each bootstrap sample, 

the metric is measured.  Typically about 1000 bootstrap samples are taken.  

Then, the standard error of the metric under study is measured using the 

observed variation of the bootstrap samples.  Essentially the process is a process 

of pseudo sampling from the original dataset to determine the variability of the 

dataset.  Although it may sound too easy and simplistic, this is a very robust and 
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statistically sound technique for measuring standard errors.  Figure 13-11 

presents a schematic of the bootstrap process. 

 

 

Figure 13-11 

 
 
The essence of what the nonparametric bootstrap is doing is sampling from the 
empirical cumulative density function (cdf) of the data, which was introduced in 
Chapter 6.  The empirical probability distribution assigns an equal probability to 
each of the data points, 1/n.  Therefore when we resample every data point has 
an equal chance of being sampled.  Using the cdf is what allows us to not rely on 
a particular probability model. 
 
Recall that to plot the empirical cdf for any dataset in R, you can use package 
stepfun (which is usually included with the base installation, or can be 
obtained from the CRAN site).  From this package you can simply plot the 
empirical cdf with the plot.stepfun functionality.  Let’s do this for our 
dataset, with the resulting plot in Figure 13-12.  The line in the middle is the line 
of the median of the distribution, with 50% of the data above and below the 
median. 
 

> #use package step fun to plot CDF 

> plot.stepfun(bootstrapGE) 

 

> #add a median line 

> abline(h=0.5,lty=2) 
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Figure 13-12 

Let’s go ahead and take 1000 bootstrap samples from our original dataset: 

> #create a matrix to hold boostrap samples 

> #note number of rows=number of bootstrap samples 

> #note number of columns=sample size (equal to origninal n=200) 

> bootsamples<-matrix(nrow=1000,ncol=200) 

 

> #perform sampling using sample function, note replace=T 

> for(i in 1:1000){ 

+ bootsamples[i,]<-sample(bootstrapGE,200,replace=T)} 

Next, let’s use the median as our metric to study the standard error of.  The 

median provides a good central measure for a distribution of unknown form, 

which is the case here. We calculate medians for each of our 1000 bootstrap 

samples and store them in a new vector: 

> #create vector to store medians 

> bootmedstar<-vector(length=1000) 

 

> #calculate and store median values 

> for(i in 1:1000){bootmedstar[i]<-median(bootsamples[i,])} 

For interest, let’s look at the distribution of the bootstrap sample medians, 

depicted in Figure 13-13. 

> hist(bootmedstar,nclass=40,xlab="median",main= 

+ "Dist. of bootstrap sample medians") 
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Figure 13-13 

Next, the easiest thing to do to get a sense of variability of the data is to simply 

take the standard deviation of the bootstrap sample medians: 

> sd(bootmedstar) 

[1] 0.1298797 

This is the bootstrap standard error of the sample median and can serve as a 

measure of variability of the central location of gene expression for the original 

data.   Such a measure could serve as a test statistic to compare with variability 

of expression of other genes, or of the same gene under different conditions.   

The above is just one example of bootstrapping presented to illustrate the basics 

of the process.  There are many other uses of the bootstrap, but most involve the 

theme of hunting for a measure of standard error or variability for a dataset with 

an unknown distribution.   

R Packages for Bootstrapping 

R has two specific packages devoted to the bootstrap: bootstrap and boot.  

Both packages are worth looking at and include various applications of the 

bootstrap and further examples.  In addition, many other packages, such as the 

genetics package, contain application specific bootstrap functionality. 
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14 

Hypothesis Testing  

The previous chapter reviewed the basics of statistical inference, including 

sampling theory and parameter estimation methods.  This chapter continues on 

the topic of statistical inference, discussing hypothesis testing and how to 

perform hypothesis tests using R.  Hypothesis testing is a very involved topic 

with broad applications, and we generally cover only the essentials here, 

focusing on tests likely to be of application in bioinformatics.  Many 

introductory statistics texts cover hypothesis testing in great depth and almost 

any text should serve as a good reference to the interested reader.  

The philosophical paradigm of hypothesis testing is that an experimental 

hypothesis is constructed, then the experiment is performed and data are 

collected, statistical tests based on the data are preformed and the results are 

compared with the initial hypothesis.  Hypothesis testing is the foundation of the 

scientific method and therefore crucial to empirical data analysis. Hypothesis 

testing is a very broad topic and there are hundreds of possible tests.  Luckily the 

different tests follow the same basic theory.  Therefore we will cover the basics 

of the theory here, and then introduce some specific examples of commonly 

used tests. 

Basic Theory 

Hypothesis testing begins with the formulation of a null hypothesis (H0) and an 

alternative hypothesis (HA) testing the value of a statistic calculated from a 

sample of data collected in an experiment.  Usually the alternative hypothesis is 

the logical negation of the null hypothesis. Often the null hypothesis is a clearly 

specified situation, which can easily be translated to a probability distribution 

that models a set of data.  For example, a common null hypothesis is that the 
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mean of a population is 0. The testing goal often is to disprove the null 

hypothesis, if possible. .  In this case, this would be to show the mean is not zero 

and differs significantly enough from zero based on a statistical test. The test 

uses information from the sample data.  In this case we would base our evidence 

on the sample mean (remember this follows a normal approximation for large 

samples according to the central limit theorem discussed in the last chapter) 

When we use an alternative hypothesis that “the mean is different from zero” we 

need to be a bit more specific.  To be more specific, we can classify alternative 

hypothesis as being one-sided (also referred to as one-tailed or simple) or two-

sided (also referred to as two-tailed or composite). A one-sided alternative 

hypothesis in this case may say the mean is greater than zero, or the mean is less 

than zero, but not either case.  A two-sided alternative would state the mean is 

not equal to zero, and accounts for the mean being less than or greater than zero, 

either way.  Two-sided tests are generally more common. When performing a 

hypothesis test it is important to be clear about what exactly you are testing and 

whether the alternative is a one or two-sided test. 

After (1) clearly defining the null and alternative hypotheses, (2) you collect 

data.  Using the data, you then (3) calculate the appropriate test statistic, (4) 

perform the appropriate test, (5) and then draw a conclusion based on the test 

result.  Let’s illustrate this with a simple example. 

In-Depth Example to Illustrate Theory 

One interesting application of statistics to bioinformatics concerns the ability to 

predict the secondary structure of protein molecules.  Four proteins of known 

crystal structure (empirically verified secondary structures) were used to test 

various methods available on the Internet that allowed the user to enter primary 

structures of proteins and then used algorithms to predict secondary structure 

motifs, returning results to the user with a record of which amino acids 

corresponded to which predicted secondary structure.  The proteins used are 

listed in Table 14-1 and the prediction algorithms and Internet sites used are 

listed in Table 14-2. The information in these tables is presented for 

informational purposes to illustrate where the data came from (and a way of 

doing an experiment using technology widely available).  Crystal structure data 

was obtained using the PDB, or protein database, at http://www.rcsb.org/pdb/.   

 

 

 

 



 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

242 

Table 14-1 

Protein 

Name 

Primary sequence (length) Alpha helical 

regions 

(amino acids 

in alpha 

helical form) 

Beta sheet 

regions 

Deoxy 

Human 

Hemoglobin 

(Chain 

1A3N:A) 

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTT 

KTYFPHFDLSHGSAQVKGHGKKVADALTNAVAHVDDMPN 

ALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEF 

TPAVHASLDKFLASVSTVLTSKYR (141) 

 

4-17, 21-35, 53-

71, 76-79. 81-89, 

96-112, 119-136 

(68.07%) 

none 

Rab5C 

(mouse) 

ICQFKLVLLGESAVGKSSLVLRFVKGQFHEYQESTIGAA 

FLTQTVCLDDTTVKFEIWDTAGQERYHSLAPMYYRGAQA 

AIVVYDITNTDTFARAKNWVKELQRQASPNIVIALAGNK 

ADLASKRAVEFQEAQAYADDNSLLFMETSAKTAMNVNEI 

FMAIAKKL (164) 

 

16-25, 69-73, 88-

104, 128-137, 

153-162 

(31.71%) 

2-9, 38-47, 50-

59, 78-84, 110-

116, 141-144 

(28.66%) 

Ubiquitin 
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPD 

QQRLIFAGKQLEDGRTLSDYN 

IQKESTLHLVLRLRGG (76) 

23-34(15.79%) 2-7, 12-16, 41-

45, 48-49, 66-

71(30.26%) 

Prealbunin 

(Human 

Transthyretin, 

Chain 

1BMZ:A) 

GPTGTGESKCPLMVKVLDAVRGSPAINVAVHVFRKAADD 

TWEPFASGKTSESGELHGLTTEEEFVEGIYKVEIDTKSY 

WKALGISPFHEHAEVVFTANDSGPRRYTIAALLSPYSYS 

TTAVVTNPKE (127) 

 

75-81 (5.51%) 12-18,  23-24, 

29-35,  41-43, 

45-48, 54-55, 

67-73, 91-

97,104-112, 

115-123 

(44.88%) 

 

Table 14-2 

Method URL Description 

Chou-

Fasman 

http://fasta.bioch.virginia.edu-/o_fasta/chofas.htm Statistical method which is based on 

individual amino acid “propensities” 

to form structure 

GORIV http://npsa-pbil.ibcp.fr/cgi-

bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html 

Statistical method which takes into 

consideration local interactions 

(“windows”) in addition to aa 

propensities 

PHD http://www.embl- Neural network based; combines 
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heidelberg.de/predictprotein/submit_def.html local window comparison with 

sequence homology comparison  

The experiment is to obtain results from the prediction sites and compare these 

results with empirical crystal structure data for each protein and score each 

amino acid residue as predicted correct or incorrect.  Statistically we could come 

up with several tests using data collected from this experiment.  To do a broad 

and simple test of the efficacy of the prediction methods, let’s test that the 

average (mean) % Correct is 50% across the different proteins and different 

methods. 

Step 1: Clearly define the null and alternative hypothesis. 

The null hypothesis (Ho) is that the mean percentage correct is 50% (=0.5).  The 

alternative hypothesis (Ha) is that the mean percentage is not equal to 50%.  

Step 2: Collect the data 

The total percentage of amino acids that followed correct secondary structural 

motif by method is recorded in Table 14-3. Note for the Cho Fassman test the 

average of beta and alpha structure prediction is used.  

Table 14-3 

Protein Method % Correct 

Ubiquitin CF AVG 0.467 

Ubiquitin GOR 0.645 

Ubiquitin PHD 0.868 

DeoxyHb CF AVG 0.472 

DeoxyHb GOR 0.844 

DeoxyHb PHD 0.879 

Rab5c CF AVG 0.405 

Rab5c GOR 0.604 

Rab5c PHD 0.787 

Prealbumin CF AVG 0.449 

Prealbumin GOR 0.772 

Prealbumin PHD 0.780 

Step 3: Calculate the appropriate test statistic 

What is the appropriate test statistic here?  Recall the discussion in Chapter 13 

about the t-distribution being the sampling distribution of the mean for a small 

size sample (which cannot be approximated as normal when n<30 roughly).  

Since our interest here is in testing the mean of the sample, it seems reasonable 

to use a t-distribution as our sample distribution.  Recall that  
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ns

X
t

/

µ−
=  

has a t distribution on n-1 dfs, where s is the estimate of σσσσ.  

So, under the null hypothesis with the theoretical mean, µ, equal to 0.5 the 

quantity  

ns

50X

/

.−
 

is distributed as a t-distribution with n-1 degrees of freedom.  When we use this 

quantity and substitute in our sample data (calculated mean of the sample for X  

and ns / ) this evaluated quantity is our test statistic. 

Let’s use R to calculate the test statistic: 

> percentCorrect 

 [1] 0.467 0.645 0.868 0.472 0.844 0.879 0.405 0.604 0.787 0.449 0.772 0.780 

 

> sampleMean<-mean(percentCorrect) 

> sampleMean 

[1] 0.6643333 

 

> mu<-0.5 

 

> s<-sd(percentCorrect) 

> s 

[1] 0.1792481 

 

> n<-length(percentCorrect) 

> n 

[1] 12 

 

> testStatistic<-(sampleMean-mu)/(s/n^0.5) 

> testStatistic 

[1] 3.175863 

Step 4: Perform the appropriate test 

Our test is to determine where our test statistic, as evaluated, falls on the 

appropriate sampling distribution and whether this location on the sampling 

distribution indicates that the test statistic value is too extreme to be 

probabilistically considered as part of the distribution of the null hypothesis.   

What we want is whether this test statistic value falls within the range of our 

hypothesized value (0.5) of the mean (and thus is it is reasonable to assume our 

test statistic comes from the hypothesized t-distribution) or whether our test 

statistic falls in the extreme regions of the distribution and thus we should reject 
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the null hypothesis.  Notice that what we have just evaluated in calculating the 

test statistic is the distance between the target and the sample average in terms of 

standard errors. The test statistic tells us that that the sample average is about 

3.175863 standard errors more than the target mean of 0.5.  Is this a significant 

distance?  

We need some sort of a cutoff criterion in order to determine this.   The criterion 

is called the alpha-level, or the type one error level.  It is set by the researcher 

and is the percentage of area under the sampling distribution curve that we 

consider too extreme to accept the null hypothesis.  An ordinary alpha level for a 

two-tailed t-test (which is what we are doing here) is 0.05, indicating that a 

value of the test statistic that falls in the extreme 5% of the t-distribution (with 

n-1 degrees of freedom) is too extreme to accept the null hypothesis.  For a two-

tailed test this is split into 2.5% of the lower end of the curve, and 2.5% of the 

upper end of the curve. Other common alpha levels are 0.10, 0.01, and 0.001.  

The lower the alpha level the more stringent the decision criteria, or in other 

words, in order to be able to reject the null hypothesis the test statistics has to be 

very extreme. 

Let’s use an alpha level of 0.05 to perform our test and reach our conclusion 

with the help of R.  Let’s plot where our test statistic falls on the sampling 

distribution under the null hypothesis: 

> x <- seq(-5,5,by=.1) 

> plot(x,dt(x,df=n-1),xlab="t",ylab="",type='l') 

> abline(v=testStatistic,lty=2) 

> legend(3,0.2,legend="3.175863") 

Figure 14-1 shows the result: 

 

Figure 14-1 
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Based on the graph, it looks like our value is pretty extreme and may be 

probable cause to doubt that the sample mean comes from the distribution of the 

null hypothesized mean, but let’s be sure before making a decision. 

We can use 1 - pt function in R to determine the probability of being to the 

right of the test statistic: 

> 1-pt(testStatistic,df=n-1) 

[1 

[1] 0.004413 

This tells us that only 0.44%of the probability mass function is to the right of 

our test statistic.  Given a cutoff alpha value of 5% (2.5% on each tail of the 

distribution) our test statistic is more extreme than 2.5% so we reach the 

decision that we reject the null hypothesis and conclude that the true mean of 

our data differs significantly from 0.5 and follows a different distribution than 

the distribution under the null hypothesis (in other words, our sample test 

statistic did not come from the null distribution).   

Alternatively to determine if our value is too extreme we could have computed 

the values of the t-distribution for the critical points of both tails of the 

distribution using the qt function: 

> alpha<-0.05 

> qt(alpha/2,df=n-1) 

[1] -2.200985 

> qt(1-alpha/2,df=n-1) 

[1] 2.200985 

This would have told us that any values below –2.200985 or above 2.200985 are 

more extreme given the alpha level of 0.05 and we could reject any test statistic 

more extreme than these values. 

We call the probability of being as extreme or more extreme than the observed 

test statistic  (2 times above for a two-tailed alternative) the p-value or 

“observed significance level”.  If the p-value is less than the alpha-level the 

experimenter set, then we reject the null hypothesis for a given test.  The smaller 

the p-value, the more significant the test result.  Our p-value of 2 times 0.004413 

= 0.008826 is significant, but a value of 0.000088 for example would be more 

extreme and even more significant.  The next section discusses significance and 

statistical decision making in more detail.  

Making Statistical Decisions 

When you perform a hypothesis test you are subject to some gray areas.  

Remember nothing in statistics is ever absolute and in any type of statistical 

analysis there is always the randomness factor.  Hypothesis testing is a process 

of making statistical decisions, and in hypothesis testing there is always some 

margin of error where it is possible that the test result is not correct.  
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Statisticians therefore have some formal decision criteria, the terminology of 

which is introduced here. 

Whenever you perform a hypothesis test, there are four possible outcomes, listed 

in Table 14-3.   

Table 14-3 

 Actual Validity of Ho 

 Ho is true Ho is false 

Accept Ho True negative False Negative 

(Type II Error) 

Decision 

Made 

Reject Ho False Positive 

(Type I Error) 

True Positive 

Two of these outcomes are “correct” decisions – you reject a hypothesis when it 

should be rejected (true positive), or you accept a hypothesis when it should be 

accepted (true negative).  The other two outcomes are not “correct” but a result 

of the statistical uncertainty inherent in a hypothesis test.  We call these 

outcomes false results or “errors”.   

To understand errors, imagine a production assembly line and the null 

hypothesis (H0) is that there is nothing wrong with production (product failure 

rate below a certain hypothesized criterion).  A type I error is the rejection of H0 

given that H0 is true (this is a conditional probability statement).  The 

consequence of this is wrongly stopping production and monetary loss to the 

company.  The type I error rate is called the significance level of the test, and is 

exactly the alpha level discussed earlier.  If the alpha level for a test is 0.05, this 

means that 5% of the time we reject the null hypothesis and shut down the 

production line even though there is nothing significantly wrong.   When we set 

the alpha level we are setting what is an acceptable type I error rate for the 

experiment. 

A type II error is the failure to reject the null hypothesis when in fact H0 is false.  

In this case production goes on even though there really does exist a higher than 

acceptable product failure rate.  This may be bad for business in the long run.  

The type II error rate is sometimes referred to as the beta  (β) level. 

Power of a Test 

The rate at which a statistical test can detect a true positive (rejecting the null 
when it should be rejected and accepting the alternative) is referred to as the 
"power" of the test.  This is 1 minus the false negative rate or 1- β.  We will not 
get into a theoretical discussion of power here, as it is covered in most 
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introductory statistics books.  But there are a few key things to be mentioned 
with regard to power and using R to compute power. 
 
First, an important thing to know about power is that as the sample size 
increases, the power of a test increases.  The second thing to know is that 
decreasing the alpha level (significance level) decreases the power of a test, 
given the same sample size.  That is a test with an alpha level of 0.01 has less 
power than a test with an alpha level of 0.05.  The bottom line is that both the 
alpha level and the sample size play a role in how powerful a test is and how 
well a test will correctly reject a null hypothesis.    Do not confuse power with 
significance levels! 
 
For some tests, R provides some relief in computing power.  Two functions, 
power.t.test and power.prop.test, built into the ctest package automate 
power computations that have flexible parameters, allowing the user to enter the 
criteria they wish in order to have R compute other criteria.   
 
For example, power.t.test is specific for computing power related values 
for the t-test (and has optional parameters for different versions of the t-test, 
one-sided versus two sided, etc).   For example, suppose we want to know the 
power of a test given a sample of size n=20 at a significance level of alpha=0.05.  
We can specify these parameters, and also a value for delta, which is the 
difference between populations that we would like to be able to detect. For 
example, suppose we want to detect a difference of 0.5 units between our null 
and our alternative hypothesis, for this we use delta=0.5.  (It doesn’t matter what 
the measurement units are, but a default standard deviation of 1 is assumed 
(which can be changed if necessary using the “sd” option).  For the type of test 
we need to specify “one.sample”.  Later on we will discuss other types of t tests, 
such as two sample and paired for which power can also be calculated with this 
command. 
 

> power.t.test(n=20,delta=0.5,sig.level=0.05, type=”one.sample”) 

 

     One-sample t test power calculation  

 

              n = 20 

          delta = 0.5 

             sd = 1 

      sig.level = 0.05 

          power = 0.5645 

    alternative = two.sided 

Note the power for the test above is only 0.5645, which is not very high.  

Perhaps if we look for a less subtle difference, say delta=1, we should get a 

higher power test, let’s see: 

> power.t.test(n=20,delta=1,sig.level=0.05, type="one.sample") 

 

     One-sample t test power calculation  

 

              n = 20 

          delta = 1 
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             sd = 1 

      sig.level = 0.05 

          power = 0.9886 

    alternative = two.sided 

Indeed the power of this test is 0.9886 meaning 98.86% of the time the test will 

reject the null hypothesis when it should.  This is not bad and much better than 

the 0.5645 result to detect a delta of 0.5.   

Maybe we think it would be a good idea to use fewer samples, perhaps to save 

money.  Let’s see what effect reducing the sample size to 10 has on the same 

test: 

 

> power.t.test(n=10,delta=1,sig.level=0.05, type="one.sample") 

 

     One-sample t test power calculation  

 

              n = 10 

          delta = 1 

             sd = 1 

      sig.level = 0.05 

          power = 0.8031 

    alternative = two.sided 

  

Reducing the sample size reduces the power of the test to 0.8031 all other 

factors being equal.  Maybe it pays to use n=20 as a sample size? To illustrate 

the effect of significance level perhaps we can go with the n=10 sample size but 

instead use a higher alpha level. 

 

> power.t.test(n=10,delta=1,sig.level=0.1, type="one.sample") 

 

     One-sample t test power calculation  

 

              n = 10 

          delta = 1 

             sd = 1 

      sig.level = 0.1 

          power = 0.8975 

    alternative = two.sided  

Using a higher alpha level does increase the power to.0.8975. It is up to the 

researcher to determine what criteria for the test are acceptable and what is an 

acceptable power. Using the power.t.test function is a little tricky at first, 

but if you become skilled at using it (and the help function provides more details 

about the parameter options) it can be a valuable tool to use when determining 

sample sizes and significance levels to use for a particular test you want to work 

with 
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Hypothesis Testing Using R 

Most standard hypothesis test in R have pre-written functionality so all you need 

to know to effectively use R for hypothesis testing is which test to use, how to 

call the test function with the appropriate parameters (use help(name of 

test) to get a help window with parameter details) and be able to interpret the 

test output (especially the p-value). Different tests differ in what is tested, in test 

statistics and how they’re calculated and sampling distributions of the test 

statistic (or other criteria for nonparametric tests).  The next two sections 

introduce how to do some very common tests in R using some examples. The R 

outputs for different tests show similar forms. The first section covers basic 

parametric tests, and the second section covers some nonparametric tests and 

introduces the rationale for using nonparametric tests. 

Package ctest 

Package ctest should be included with the basic installation of R (if not it is 

available on the CRAN site).  Depending on the version of R you are using you 

may or may not specifically need to load package ctest in order to use it 

(version 1.6 has it preloaded). 

Package ctest contains a standard set of hypothesis test functions that are typical 

of those taught in a basic statistics course.  Most of the tests discussed in the 

remainder of this chapter are in this package.   In addition, most of the test 

functions are flexible and have variable parameter options, allowing for different 

types of test possible within the same test function.  Use the help function with 

the appropriate test name for further details about test functionality and 

parameters. Use function ls(package:ctest) to produce the list of specific 

functions available. For version 1.6, these are depicted in Figure 14-2.  
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Figure 14-2: Contents of package ctest 

Other Packages 

Many other packages come with more sophisticated tests or tests that are 

application specific.  For example, many of the microarray analysis packages 

available for R come with specialized hypothesis test functionality.   

Select Parametric Tests 

Parametric tests are based on the assumption the data come from a 

parameterized probability density. For most parametric tests the distribution of 

the test statistic is one of the sampling distributions discussed in Chapter 13 – 

the t-distribution, the Chi-Square distribution or the F-distribution. 

The t-tests 

The t-tests are a group of tests based on using the student’s t distribution as a 

sampling distribution.  Recall from the previous chapter that using the student’s 

t distribution is appropriate to model the mean when you are sampling from a 

distribution that can be approximated as normal when the sample size becomes 

large.  Normality of the data should be checked using a Q-Q plot, as described in 

Chapter 7, as normality is a critical assumption for t-tests results to be valid. 

There are three common forms of the t-test discussed here: the one sample t-test, 
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the two-sample t-test, and the paired t-test.  All three tests are called using the 

function t.test but use different parameters to specify the test requirements. 

One Sample t-test 

The one sample student’s t-test was illustrated earlier in our in depth analysis of 

a hypothesis test, but let’s include an example here for comparison purposes to 

the other two forms of the t-test and to show how R automates functionality for 

this test. 

A one-sample t-test is used to compare a single value of a mean of a test statistic 

result to a hypothetical mean under the null hypothesis.    The test statistic for 

the one-sample t-test, detailed earlier, is: 

ns

X
t

/

µ−
=  

Let’s consider a small dataset of gene expression data (available as geHT data in 

package rbioinfo).  This dataset consists of gene expression measurements for 

ten genes under control and treatment conditions, with four replicates each.    

> geHTdata 

     names   c1   t1   c2   t2   c3   t3   c4   t4 

1   Gene 1 2650 3115 2619 2933 2331 2799 2750 3200 

2   Gene 2 1200 1101 1200 1309 1888 1901 1315  980 

3   Gene 3 1541 1358 1401 1499 1256 1238 1625 1421 

4   Gene 4 1545 1910 1652 2028 1449 1901 1399 2002 

5   Gene 5 1956 2999 2066 2880 1777 2898 1999 2798 

6   Gene 6 1599 2710 1754 2765 1434 2689 1702 2402 

7   Gene 7 2430 2589 2789 2899 2332 2300 2250 2741 

8   Gene 8 1902 1910 2028 2100 1888 1901 2000 1899 

9   Gene 9 1530 2329 1660 2332 1501 2298 1478 2287 

10 Gene 10 2008 2485 2104 2871 1987 2650 2100 2520 

Let’s use a one-sample t-test to compare the hypothesis that the mean of the 

control expression values is 2000: 

> #create data vector of all control data 

> controls<-c(geHTdata$c1,geHTdata$c2,geHTdata$c3,geHTdata$c4) 

 

> #perform one-sample t test that true mean is 2000 

> t.test(controls,mu=2000) 

 

        One Sample t-test 

data:  controls  

t = -2.174, df = 39, p-value = 0.03583 

alternative hypothesis: true mean is not equal to 2000  

95 percent confidence interval: 

 1715.028 1989.722  

sample estimates: 

mean of x  

 1852.375 
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The test result with a p-value of 0.03583 rejects the null hypothesis at a critical 

value (alpha level) of 0.05, but would accept the null hypothesis at a lower 

critical value such as 0.01.  Therefore for this test the interpretation is dependent 

on the critical value set by the experimenter.  For convenience t.test also 

computes a 95% confidence interval for the mean expression level (see the 

description in Chapter 13). As is expected the hypothesized value of 2000 lies 

outside the 95% confidence interval, since we rejected that value at a 

significance level of 5%. There is an exact correspondence between two-sided 

hypothesis tests and (1-α)100%confidence intervals. 

Two sample t-test 

The two-sample t-test is used to directly compare the mean of two groups (X 

and Y).  It is required that measurements in the two groups are statistically 

independent. The null hypothesis states that the means of two groups are equal, 

or equivalently, the difference of the means is zero:  

Ho:  µ(X)=µ(Y), or   µ(X) – µ(Y) = 0 

The test statistic for the two-sample t-test used by default in R (for Welch’s test) 

is: 

2 2

X Y

X Y
t

s s

m n

−
=

+
 

where s2
X is the sample variance of the X group, s

2
Y is the sample variance of 

the Y group, and m and n are the sizes of groups X and Y. 

A good two sample t-test for our gene expression data is that there is no 

difference overall between the treatments and controls for any of the genes (test 

that the whole experiment didn’t work or there are no differentially expressed 

genes).  This is very simple in R by just entering the two vectors whose means 

are being compared as parameters to function t.test: 

> treatments<-c(geHTdata$t1, geHTdata$t2, geHTdata$t3, geHTdata$t4) 

> t.test(controls,treatments) 

 

        Welch Two Sample t-test 

 

data:  controls and treatments  

t = -3.6163, df = 70.732, p-value = 0.0005564 

alternative hypothesis: true difference in means is not equal to 0  

95 percent confidence interval: 

 -653.6098 -188.9902  

sample estimates: 

mean of x mean of y  

 1852.375  2273.675  
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The p-value for this test very strongly rejects the null hypothesis of no 

difference between the mean of the treatment group and control group, 

indicating there are some genes which exhibit significantly different gene 

expression levels, although the test does not provide specifics as to which genes 

these are. 

Paired t-test 

We have so far considered t-test testing one mean against a hypothesized mean 

(one-sample t-test) and comparing two statistically independent group means 

(two sample t-test).  The final variant of the t-test is called the paired t-test.  This 

test is used with paired data to determine if the difference in the data pairs is 

significantly different. The test statistic here is: 

nds

d
t

/
=  

Where d  is the average difference between the pairs, n is the number of pairs, 

and sd is the sample variance of the paired differences.  We notice that the paired 

t-test is really the one-sample t-test applied to the differences of measurements 

within the pairs. The example of paired data we will use here is the difference 

between treatment and control on measures of the same gene. For example 

control 1minus treatment 1 for gene 4 for the same experiment can be 

considered a difference of paired data. Suppose gene 4 and gene 9 are really the 

same gene, so we can pool the data for these two genes: 

> g4g9ctrl 

[1] 1545 1652 1449 1399 1530 1660 1501 1478 

> g4g9trt 

[1] 1910 2028 1901 2002 2329 2332 2298 2287 

Each of the 8 data values in the two data vectors with corresponding vector 

indices created above is a data pair.  We can test for a significant difference in 

treatment-control for this gene using a paired t-test.  Note that in parameters we 

indicate “paired=TRUE” to perform the test. 

> t.test(g4g9ctrl,g4g9trt,paired=TRUE) 

 

        Paired t-test 

 

data:  g4g9ctrl and g4g9trt  

t = -9.0459, df = 7, p-value = 4.127e-05 

alternative hypothesis: true difference in means is not equal to 0  

95 percent confidence interval: 

 -768.3529 -449.8971  

sample estimates: 

mean of the differences  

               -609.125  
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The p-value for the test indicates there is a significant difference for this 

particular gene in treatment conditions versus control, and we can reject the null 

hypothesis of no difference. 

Binomial Test 

Bernoulli trials and the binomial distribution were discussed in Chapter 7.  

Recall that a Bernoulli trial models an experiment that has one of two discrete 

outcomes.   The binomial test is, as described in the R help for binom.test, 

“an exact test of a simple null hypothesis about the probability of success in a 

Bernoulli experiment”. 

For example, suppose we perform an experiment crossing flowers of two 

genotypes that produce progeny with white flowers (recessive) of assumed 

proportion ¼ and progeny with purple flowers (dominant) of assumed 

proportion ¾.  Suppose we want to test our assumption (null hypothesis) that 

these proportions are correct given that we have empirical data from 900 plants, 

625 of which have purple flowers, and the remainder (275) have white flowers. 

To do this we can use the binom.test function with parameters x=number of 

successes (purple flowers), n=total in sample, and p=proportion of successes to 

be tested (3/4).   

> binom.test(x=625,n=900,p=3/4) 

 

        Exact binomial test 

 

data:  625 and 900  

number of successes = 625, number of trials = 900, p-value = 0.0001593 

alternative hypothesis: true probability of success is not equal to 0.75  

95 percent confidence interval: 

 0.663193 0.724417  

sample estimates: 

probability of success  

             0.6944444 

 

The results here give the empirical proportion of successes (0.6944) as well as a 

very small p-value, which significantly rejects the null hypothesis that the 

proportion of successes can be modeled at 0.75.  Scientifically this can be 

interpreted as the relationship between dominant and recessive cannot be 

explained by simple Mendelian ratios for this genotype. The rejection of the null 

may seem surprising here, but since the sample size is large and the test is exact 

it is a convincing result.  It is often useful to compute a confidence interval after 

a null hypothesis has been rejected.  Again the R command shows the 95% 

confidence interval for the proportion of successes being between 0.663 and 

0.724, with the hypothesized value of 0.75 lying outside the 95% confidence 

interval.   
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Comparing Variances 

Sometimes we will be interested in testing whether two groups have equal 

variances, as this is often an assumption when performing the t-test and other 

statistical tests.  If the different groups have significantly different variation 

(spread of the data) it can impact the validity of the test result.   Let’s do a 

simple test to determine if the variances for the gene expression data for the 

gene 4/gene 9 data (same gene) are the same under treatment or control 

conditions.  To do so is very simple in R using the var.test and the desired 

data vectors as parameters: 

 > var.test(g4g9ctrl,g4g9trt) 

 

        F test to compare two variances 

 

data:  g4g9ctrl and g4g9trt  

F = 0.2271, num df = 7, denom df = 7, p-value = 0.06907 

alternative hypothesis: true ratio of variances is not equal to 1  

95 percent confidence interval: 

 0.045468 1.134387  

sample estimates: 

ratio of variances  

         0.2271085  

This test uses an F-test comparing the ratio of the variances of the two groups to 

a critical value on the F-distribution (discussed in Chapter 13 as the sampling 

distribution for the ratio of variances).   This distribution will be used 

extensively in ANOVA discussed in the next chapter.  The p-value result above 

indicates it is OK to assume at an alpha=0.05 ratio that there is no significant 

difference in variances between the two groups (and hence, t-tests can be 

assumed reliable since they assume equal variances). Note this holds only if you 

assume equal variances for the pooled variance version.  This is not assumed in 

the Welch version (see above) 

Indeed if we look at the variances of the two data groups and calculate the ratio 

of the variances, we get the same result as above: 

> var(g4g9ctrl) 

[1] 8455.929 

> var(g4g9trt) 

[1] 37232.98 

> 8455.929/37232.98 

[1] 0.2271086 

Select Nonparametric Tests 

Nonparametric tests make no or very minimal assumptions about the probability 

density from which the data are derived.  They are used when the sample size is 

small, when the data are not normally distributed (always test data with a Q-Q 

plot described in chapter 7, if the normal assumption is in question) and cannot 
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be approximated as normal, and when using non numerical (rank, categorical) 

data. Many nonparametric tests are built into R, either as part of package ctest or 

as part of an add-on package.  There are dozen’s of nonparametric tests in use.  

A good resource for further study is Conover’s text “Practical Nonparametric 

Statistics” (more information given in the appendix). Test statistics for most 

nonparametric tests are not from a standard distribution, but are instead 

calculated from a test-specific test statistic and values for which are obtained 

from a standard table or built into R. 

Wilcoxon Tests 

Wilcoxon tests are the nonparametric analog of the t-tests.  Instead of using a 

mean value derived from a t-distribution they use a median value as a test 

criteria.  The median is simply the central point of the data, 50% of the data fall 

above the median and 50% fall below.  For small datasets or data not normally 

distributed the median provides a good central measure of the data and the 

Wilcoxon tests are a good alternative to the t-tests in these cases. 

The one-sample Wilcoxon test is often called the “Wilcoxon Signed Rank” test.  

This test determines whether the median of the empirical data differs 

significantly from a hypothesized median.  This test is very simple to use in R, 

simply enter the data vector and the hypothetical median (“mu”) as parameters.  

For example, let’s use the Wilcoxon test to test whether the median of the 

protein prediction percent correct differs significantly from 0.5 (note this is the 

parallel of the one-sample t-test performed earlier)  

> wilcox.test(percentCorrect,mu=0.5) 

 

        Wilcoxon signed rank test 

 

data:  percentCorrect  

V = 68, p-value = 0.02100 

alternative hypothesis: true mu is not equal to 0.5  

The results of this test concur with the results of the t-test that the central 

measure (mean or median) of the data differs significantly from 0.5. 

The wilcox.test function, like the t.test function, also provides for two-

sample and paired tests.  Use help(wilcox.test) for information on how to 

perform these tests and what parameters to use.  These tests work in a parallel 

fashion to their t-test counterparts. 

Chi-Square Goodness of Fit Test 

The Chi Square goodness of fit test is a very simple and versatile test that 

quantitatively determines whether a random variable really should be modeled 

with a particular probability distribution.  It literally tests the “goodness” of the 

density fit. The way the test works is it partitions the observed data into bins and 
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calculates the frequencies in each bin, similar to a histogram construction.  It 

then compares the observed frequencies with the expected frequencies that 

would result from a perfect fit to the proposed distribution.  It then calculates a 

test statistic that follows a chi square distribution, where oi are the observed 

frequencies and ei are the expected frequencies values for n bins: 

1ndf
n

1i io
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ieio2 −=

=

−
=χ ∑ ,
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Note that this does use the Chi Square distribution but is a nonparametric test 

because the sample is not from the Chi Square distribution but we are testing the 

fitness of the distribution that the sample does come from. 

This test is best illustrated with an example.  We think that that the proportion of 

nucleotides A, T, C, G should be equally present in a given DNA sequence, with 

proportion 0.25 for each.  This is modeled by a multinomial distribution (see 

Chapter 8). Let’s see for a particular gene how good a fit this really is.  That is 

our null hypothesis is that the data fit a multinomial distribution with equal 

probability for each nucleotide. 

To perform an example using the proportion test in R, it is useful to note here 

that package ape (Analysis of Phylogenetics and Evolution) contains a function 

called read.Genbank that connects to Genbank (http://www.ncbi.nlm.nih.gov/) 

and downloads sequences into R for you.  Make sure you have the package 

installed and loaded and you are connected to the Internet to use this.   

Let’s use this function to download a sequence into R, and then test that 

sequence with a chi square goodness of fit test to see if it conforms to a 

multinomial distribution. For this example we will use the sequence for human 

myoglobin, a muscle protein which carries oxygen. First we need to obtain the 

sequence. 

> #Use nucleotide accession number for reference call 

> ref<-c("NM_005368") 

 

> #Store sequence in variable myoglobin 

> #Call genbank with read.Genbank function and references 

> myoglobin<-read.GenBank(ref) 

 

> #Myoglobin sequence is now an R data object 

> myoglobin 

$"NM_005368" 

   [1] "a" "c" "c" "c" "c" "a" "g" "c" "t" "g" "t" "t" "g" "g" "g" "g" "c" 

…. 

[1059] "a" "a" "c" "a" "t" "c" "t" "c" 

The goodness of fit test functionality is built into R as a default for function 

chisq.test when the input parameter is one vector of data and can be 

performed as below.  
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> #Data are already binned using table function 

> table(myoglobin) 

myoglobin 

  a   c   g   t  

237 278 309 242  

 

> obs <- c(237, 278, 309, 242) 

> chisq.test(obs,p=rep(1/4,4)) 

 

        Chi-squared test for given probabilities 

 

data:  obs  

X-squared = 12.79, df = 3, p-value = 0.005109 

 

> # or even simpler using default p's  

> chisq.test(obs) 

 

        Chi-squared test for given probabilities 

 

data:  obs  

X-squared = 12.79, df = 3, p-value = 0.005109 

 

> 

> #Calculate where the alpha=0.5 level 

> #of a df=n-1=3 Chi Square distribution is 

> qchisq(0.95,df=3) 

[1] 7.814728 

Based on result of a test statistic 12.79 (more extreme on the Chi-Square curve 

with 3 degrees of freedom than 7.81) we fail to accept our null hypothesis at an 

alpha=0.05 significance level and conclude that the fit differs significantly from 

a multinomial with equal probabilities for each nucleotide. 

Analyzing Contingency Tables 

Contingency tables are a simple, yet powerful, method of analyzing count data 

that fits into categories.  The data in them is count data as all we are doing is 

counting how many we observe which fit into which category, and not data 

measured on a continuous scale.  This is also called categorical data analysis.  

We organize the data for analysis in a table format.  The most typical case of a 

contingency table is a 2by 2 table (2 rows, 2 columns), although the table size 

can be extended to r (rows) by c (columns).  We will only consider 2 x 2 tables 

here, looking at the setup of these tables and then considering how to analyze 

the data using some standard test methods available in R. 

In a 2 x 2 contingency table there are four cells for the possible combinations of 

two factors. Where o11 is the number of observations that fit into row 1, column 

1, etc. 
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When testing a contingency table we assume under the null hypothesis that the 

two factors are independent.  Therefore under the null hypothesis the expected 

probability of an observation falling into category oij (i=roe, j=column) is just 

the product of the marginal probabilities for that row and column.  For example, 

the probability of being categorized into the first row and first column is: 

p11=
N

1C

N

1R
*  

Note that the values can also be expressed in terms of marginal probabilities (see 

Chapter 8 for a discussion of marginal probability) for each row or column. 

R1/N for example, is the marginal probability of being in row 1. 

The alternative hypothesis in contingency analysis is to disprove the null 

hypothesis by showing that there is a relationship between the factors being 

analyzed and that they are not independent of each other. To do this we will use 

the Chi-Square test and Fisher’s exact test, both of which are available as 

predefined R functions available as part of package ctest. 

Let’s define a contingency table dataset to use. Suppose we are doing a genetic 

study and studying the effect on which of two alleles for a gene a person has and 

the presence of a disease.  We perform a genetic test to determine which allele 

the test subjects have and a disease test to determine whether the person has a 

disease. The data for a 2 x 2 contingency analysis should be entered in the 

format below, which works for both tests. 

> contingencyTestData<- 

+ matrix(c(45,67,122,38), 

+ nr=2, 

+ dimnames=list("Gene"=c("Allele 1","Allele 2"), 

+ "Disease"=c("Yes","No"))) 

 

> contingencyTestData 

          Disease 

Gene       Yes  No 

  Allele 1  45 122 

  Allele 2  67  38 

The tests we want to perform with this contingency table are whether or not the 

two factors, disease and gene allele, are independent or whether there is a 

significant relationship between the factors.  The null hypothesis is that there is 

no relation and the factors are independent.  



 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

261 

Chi-Square Test (for Independence) 

The Chi-Square test for independence is similar to the goodness of fit test, but 

uses for the expected values the values calculated from the marginal 

probabilities of the data rather than expected values based on a distribution.  

That is, the expected value is the total number N times the expected probability 

based on the marginals, for example for the first cell: 

e11=N* p11=N(
N

1C

N

1R
* ) 

The Chi-Square test statistic is therefore the sum over all cells the squared 

observed minus expected value divided by the observed value.  The degrees of 

freedom for this test are the number of rows minus 1 times the number of 

columns minus 1, which is 1 in the case of a 2 x 2 table. 
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To perform the test in R use the function chisq.test with the appropriately 

formatted table as a parameter: 

> chisq.test(contingencyTestData) 

 

        Pearson's Chi-squared test with Yates' continuity correction 

 

data:  contingencyTestData  

X-squared = 34.6624, df = 1, p-value = 3.921e-09 

Based on this result (p-value of 3.921e-9) we would strongly reject the null 

hypothesis that the factors gene allele and disease are independent and conclude 

that there is a significant relation between the disease and which allele of the 

gene a person has.  

Fisher’s Exact Test 

Fisher’s exact test calculates every possible combination of the N values in the 

table (that is every possible permutation of N values into the 4 categories), 

creating a distribution of possible values, and calculates how extreme the 

observed data are on this exact distribution. It answers the question “How 

extreme is this table” out of all possible tables with the same sample size N. This 

test is extremely precise but computationally intensive (impossible to do without 

a computer). This type of test is referred to as a permutation test, and such tests 

are becoming popular in bioinformatics applications because of their precision.  
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R is one of the few statistical software packages, which easily computes such 

test values. Use function fisher.test and enter the data matrix as a 

parameter. 

> fisher.test(contingencyTestData) 

 

        Fisher's Exact Test for Count Data 

 

data:  contingencyTestData  

p-value = 2.041e-09 

alternative hypothesis: true odds ratio is not equal to 1  

95 percent confidence interval: 

 0.1195958 0.3652159  

sample estimates: 

odds ratio  

 0.2105543  

The p-value result here is slightly different from the Chi-Square test value, but 

indicates the same result. 

Likelihood Ratio Tests 

Likelihood ratio tests are commonly used in bioinformatics and are category of 

hypothesis test.  Because the mathematical theory behind them is somewhat 

complex, we will not cover them in depth here. Basically the likelihood ratio test 

consists of taking the ratio of the likelihood function under the null hypothesis 

over the likelihood function under the alternative hypothesis to determine a 

critical test region.  This provides the “best test” providing the highest power 

with the lowest error (for mathematical reasons beyond our scope here).   The 

BLAST database uses a likelihood ratio test to detect homologies between gene 

sequences. Likelihood ratio tests are common in other genetics applications as 

well.  The R package emplik contains specific functions for testing various 

types of likelihood ratios, and several other genetics related packages (discussed 

in Chapter 18) contain some likelihood ratio test functionality. 
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15 

ANOVA and Regression 

A lot of this book has been concerned with probability models, which are used 

to model the probability of a range of data.  Now we talk about another type of 

models, linear modeling.  Linear models can be used to predict variables and to 

evaluate patterns between variables.  The most common types of linear models 

are linear regression and ANOVA models, which will be introduced here. Using 

R makes working with linear models very easy, as R has extensive built-in 

functionality to handle such models.  Let’s first look at ANOVA, then linear 

regression, and then the end of the chapter discusses general linear models. 

ANOVA 

The previous chapter discussed techniques for comparing means of two groups 

of data using the two-sample t-test (illustrated comparing control and treatment 

means for gene expression data).  This test, however, is limited because in many 

cases we wish to compare more than two group means.  ANOVA, or analysis of 

variance (somewhat misnamed, but we shall soon see why) is the statistical 

method used to determine differences in means when there are more than two 

groups under study. 

Let’s return to the dataset illustrated in Table 14-3, made into a data frame in R 

(available as protStruct).  Note that the non-numerical data are factor data types.  

Factors are non-numerical variables.  Different values of the factor are called 

levels.  For example, Method has 3 levels: CF AVG, GOR, and PHD, 

representing the three different methods used to evaluate protein secondary 

structure (see discussion in Chapter 14).  ANOVA always uses some type of 

factor variable.  The function as.factor can be used to convert data to data 

type factor. 
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 > protStruct 

      Protein Method Correct 

1   Ubiquitin CF AVG   0.467 

2   Ubiquitin    GOR   0.645 

3   Ubiquitin    PHD   0.868 

4     DeoxyHb CF AVG   0.472 

5     DeoxyHb    GOR   0.844 

6     DeoxyHb    PHD   0.879 

7       Rab5c CF AVG   0.405 

8       Rab5c    GOR   0.604 

9       Rab5c    PHD   0.787 

10 Prealbumin CF AVG   0.449 

11 Prealbumin    GOR   0.772 

12 Prealbumin    PHD   0.780 

 

> # NOTE – Protein and Method are FACTOR data types 

> is.factor(Protein) 

[1] TRUE 

Suppose we want to test whether the percentages correct differ by method 

(ignoring the protein factor for now).  Essentially what we want to test is 

whether the mean percent correct is different based on method.  Because we 

have three groups, a two-sample t test is inadequate for this analysis. 

Let’s extract this data from the data frame (not a necessary step, just to simplify 

things here) 

> compareMethod 

   Method Correct 

1  CF AVG   0.467 

2     GOR   0.645 

3     PHD   0.868 

4  CF AVG   0.472 

5     GOR   0.844 

6     PHD   0.879 

7  CF AVG   0.405 

8     GOR   0.604 

9     PHD   0.787 

10 CF AVG   0.449 

11    GOR   0.772 

12    PHD   0.780 

The trick with ANOVA (and why it is called analysis of variance) is to look at 

the response of interest (percent correct in this case) and analyze the variability 

in that response.  The way ANOVA does this is to break up the variability into 

two categories – variability within groups, and variability between groups. 

If we look at the data and regroup it as depicted in Table 15-1 we notice that we 

can computer an average (sum of the data divided by the number of data values) 

for each of the groups as well as a “grand” average, which is the average of all 

the data. 
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Table 15-1 

Method Correct Group Averages 

CF AVG 0.467 0.448 

CF AVG 0.472  

CF AVG 0.405  

CF AVG 0.449  

GOR 0.645 0.716 

GOR 0.844  

GOR 0.604  

GOR 0.772  

PHD 0.868 0.828 

PHD 0.879  

PHD 0.787  
PHD 0.780  

Grand Average 0.664  

In order to statistically determine if a significant difference exists between the 

methods, we need to determine how much variability in the result is due to 

random variation and how much variability is due to the different method. 

Different factor levels are sometimes referred to as “treatments”. In this case the 

treatment is the secondary structure determination method. 

ANOVA partitions the observed variability into two components.  One 

component is random variation, also known as pure error or within factor level 

variation.  This “within” variation is calculated by observing the variability of 

the replicates within each level of the experimental factor.  For example, for the 

CF AVG method, the within variation is calculated by using the variation of 

each individual measure minus the group average.  Changing the factor levels 

causes the other component of variability.  This is called “between” factor 

variation.  This type of variability is measured using group averages as 

compared to the grand average.  The total variation is the sum of the within 

variation and the between variation, and is measured using each data value as 

compared to the grand average. 

Note, we have not yet discussed how to calculate within, between and total 

variation.  Although it seems easiest to subtract average values from data points 

to perform these calculations, this alone does not work.  The sum of distances of 

data from any average of the data is always zero. Therefore, we use the sum of 

the squared distances as the metric of variability of data values from average 

values. 

Figure 15-1 shows the details of these calculations for the protein structure data.  

Of key interest are the three columns noted.  The sum of squares total is the sum 

of the squared distances from each data point to the grand average.  The sum of 
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squares between is the sum of squared distances from the group average to the 

grand average.  The sum of squares within is the squared distance from each 

data value to the group average. 
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Figure 15-1 
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Note that in Figure 15-1 the following relation holds: 

Sum of Squares TOTAL  

= Sum of Squares WITHIN + Sum of Squares BETWEEN 

This can be simplified as: 

 SST = SSW + SSB 

Thus the total variation is partitioned into two parts – the variation due to 

treatment (SSB) and the variation due to random variation (SSW).  This 

partitioning of the variance is the core essence of how ANOVA works as this 

relation always holds. 

However, the values of the sum of squares in and of themselves are not 

interesting and do not provide us within enough information to perform a 

statistical inference test.  To do such a test we must work some more with these 

values and their interpretations. 

Recall the brief discussion in Chapter 13 regarding using the F distribution as 

the distribution of the ratio of variances which can be used to analyze signal to 

noise ratios.  ANOVA is a case of such a signal to noise ratio, and significance 

tests using ANOVA use the F distribution.  The signal here is the between 

variation which represents changes in the mean response due to treatments 

(prediction methods in this case).  The noise is the within variability (sometimes 

called error) since this represents random variation in repeated observations 

under the same factor level (same protein prediction method in this case). 

Therefore, what we want a test of is whether we have a real signal – a real 

difference between the treatments, in relation the amount of noise we see in the 

experimental data.  However, in order to compare our signal to our noise we 

cannot directly compare our SSW and SSB values.  Why is this?  If you look at 

the data in Figure 15-1 you may notice that for the sum of squares between there 

are only three unique values.  And if you took the SSB value and subtracted two 

of the values, you automatically get the third value.  The SSW has more than 3 

unique values. 

Each sum of squares value has associated with it a number called the degrees of 

freedom, a concept we have encountered before.  For the sum of squares 

between, the degrees of freedom is the number of treatments (which we’ll 

designate with a lowercase letter a) minus 1.  For the sum of squares total the 

degrees of freedom is N (total number of data values) minus 1.  Like the sum of 

squares the degrees of freedom also have the relation: 

Total df = Within df + Between df 
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So the degrees of freedom for the sum of squares within is N-a, yielding the 

relation: 

Total df = Within df + Between df 

(N-1) = (N-a) + (a-1) 

Which algebraically makes sense.  In our example we have 11 total degrees of 

freedom, 9 degrees of freedom within, and 2 degrees of freedom between. We 

cannot directly compare SSW and SSB to get our signal to noise value because 

these values are based on different numbers.   So we need to standardize our 

values to make the comparison level.  Taking averages does this and we call 

these averages “mean squares”.  

Mean squares are calculated by taking the sum of squares and dividing them by 

their respective degrees of freedom.  We are interested in the Mean Square 

Between (MSB) and the Mean Square Within, usually called Mean Square Error 

(MSE), which are calculated as follows, by taking the respective sum of squares 

and dividing by the respective degrees of freedom: 

MSB = 
1a

SSB

−
 

MSE = 
aN

SSW

−
 

For our example these calculations are: 

MSB = 
2

3050.
=0.1525 

MSE = 
9

0480.
=0.00533 

Finally we have the values we need to conduct a statistical test of significant 

differences between the protein structure prediction methods.  The test utilizes 

the F distribution and takes for a test statistic the ratio of the MSB/MSE, our 

“signal to noise” ratio.  The F test statistic value here is 0.1525/0.00533 or 

approximately 28.6.  Recall from the discussion of the F distribution that this 

distribution depends on numerator and denominator degrees of freedom, which 

are the SSB degrees of freedom and the SSW degrees of freedom.  In this case 

these are 2 and 9 respectively.  Therefore we can use R to determine the critical 

value of this F distribution given alpha=0.05: 

> qf(0.95,2,9) 

[1] 4.256495 
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Thus, our test statistic value of ~28.6 is more extreme on the F distribution than 

the critical value of 4.257 and we conclude there is a significant difference 

among the three protein secondary structure prediction methods. 

The ANOVA Table 

All of the computations done in the discussion above are easily summarized into 

a convenient standardized format known as the ANOVA table, depicted in Table 

15-2.  R (and other statistical software packages) formats out for ANOVA 

analysis in this type of format. 

Table 15-2 

Source Degrees of 

Freedom 

Sum of 

Squares 

Mean 

Squares 

F Ratio 

Factor a-1 SS(between) MSB 

MSE

MSB
 

Error N-a SS(error) MSE  

Total N-1 SS(total)   

Performing ANOVA using R 

Performing ANOVA analysis using R is fairly simple.  To do so, first create a 

linear model object using function lm.  This function will be discussed later in 

this chapter when it is used for regression.  Apply the ANOVA function to the 

linear model object created.  To do this, you can nest the function calls, as 

demonstrated below for our sample data: 

> anova(lm(Correct~Method,data=protStruct)) 

Analysis of Variance Table 

 

Response: Correct 

          Df   Sum Sq  Mean Sq F value    Pr(>F)     

Method     2 0.305352 0.152676  28.581 0.0001263 *** 

Residuals  9 0.048077 0.005342                       

--- 

Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  

R refers to the sum of squares between by the group name (method row) and the 

sum of squares within as part of the “residuals” row.  

The above example is the simplest possible case of ANOVA.  This simple 

model can be built upon to create much more complicated models but they all 

follow the same paradigm of partitioning the variance and are all run in R in a 

similar fashion.  We will do some two-factor ANOVA later in this chapter but 
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now let’s consider another issue, determining which means are significantly 

different. 

Determining Which Groups Differ 

ANOVA analysis tells us whether there is a significant difference between 3 or 

more groups (treatments, factor levels).  However, it does not determine which 

groups differ.  For example based on the ANOVA analysis above we know that 

there is a significant difference somewhere between protein prediction methods 

PHD, GOR and CF (Cho Fasman) AVG.  However, we don’t know the specifics 

of whether PHD differs from GOR significantly, or GOR differs from CF AVG, 

etc. 

To determine which methods differ from one another, we can use the 

pairewise.t.test function.  This will produce a pairwise comparison of the 

methods and produce a table of p-values for the significant differences of 

specific pairs.  This command requires us to attach the data frame, so that its 

variables can be used as individual objects. 

> attach(prot.Struct) 

> pairwise.t.test(Correct,Method) 

 

        Pairwise comparisons using t tests with pooled SD  

 

data:  Correct and Method  

 

    CF AVG  GOR     

GOR 0.00115 -       

PHD 0.00013 0.05793 

 

P value adjustment method: holm  

Based on this output for this experiment, it can safely be concluded there is no 

difference between the GOR and PHD methods but that both of these differ 

significantly from the CF AVG method. 

In much of microarray gene expression data analysis researchers are faced with 

performing sometimes as many as hundreds to thousands of comparisons tests.  

In such situations the Bonferroni adjustment would require to select individual 

alpha levels of 0.0001 or smaller, which makes it virtually impossible to detect 

any significant differences at all, in other words the power of such tests is near 

zero.  Even the Holm adjustment, which is less stringent, would still not work 

for so many tests.  Therefore researchers have developed a less restricting 

adjustment of the α-level that can be applied to a larger number of simultaneous 

tests.  It is called the False Discovery Rate (FDR) and was proposed by 

Benjamini and Hochberg(1995). The False Discovery Rate controls the false 

discovery rate, the expected proportion of false discoveries amongst the rejected 

hypotheses.  So, a FDR rate of 0.05 says that we can tolerate at most 5% of false 

rejections among all our tests.  Let’s see how a 5% FDR rate compares with the 
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5% Bonferroni adjusted and the 5% Holm adjusted P-values for our 3 pairwise 

comparisons. 

> pairwise.t.test(Correct,Method,p.adj="fdr") 

 

        Pairwise comparisons using t tests with pooled SD  

 

data:  Correct and Method  

 

    CF.AVG  GOR     

GOR 0.00086 -       

PHD 0.00013 0.05793 

 

P value adjustment method: fdr 

The result is that with only 3 pairwise tests, the FDR controlled P-values are 

nearly identical to those using the Holm adjustment for family-wise error rate. 

However the difference between the two methods would be dramatic if we 

performed several hundred tests simultaneously. 

Graphical Analysis of ANOVA Comparisons 

Often it is helpful to view means comparison data visually.  This can be done in 

R using the stripchart function, which will plot the spread of data values for 

each group as depicted in Figure 15-2. 

> stripchart(Correct~Method, vert=T) 

> title("Comparing Secondary Structure Prediction Methods") 

> #Calculating group means, sd, and sem 

> xbar<-tapply(Correct,Method,mean) 

> s<-tapply(Correct,Method,sd) 

> sem<-s/sqrt(12) 

> arrows(1:3,xbar+2*sem,1:3,xbar-2*sem,angle=90,code=3) 
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Figure 15-2 

The addition of arrows (with flat heads at 90 degree angles) depicts the spread 

range of the mean within 2 standard errors, which is usually about the 

approximate range of a confidence interval.  Using this range, if the arrow lines 

overlap (or come close) it indicates there is no significant difference between the 

groups, whereas if the arrows do not overlap there does exist a significant 

difference.  Figure 15-2 provides a visual confirmation of our earlier 

conclusions. 

Two-Factor ANOVA 

Let’s return to our initial dataset, which included which protein as well as the 

method used to determine secondary structure prediction.  Suppose we want to 

analyze not only whether the percentage correct (result) is affected by the 

method of prediction used, but also whether the percentage correct is affected by 

which protein is being tested.  In this analysis, both protein and method are 

factors. We call such an analysis a two factor ANOVA. 

Adding another factor to the model is vary simple in R, simply use a plus sign 

and add the next factor to the lm function parameter. Nesting lm inside ANOVA 

creates a new ANOVA table as a result, this time with an additional line for the 

additional factor. 

> anova(lm(Correct~Method+Protein)) 
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Analysis of Variance Table 

 

Response: Correct 

          Df   Sum Sq  Mean Sq F value    Pr(>F)     

Method     2 0.305352 0.152676 42.6844 0.0002832 *** 

Protein    3 0.026615 0.008872  2.4803 0.1583825     

Residuals  6 0.021461 0.003577                       

--- 

Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  

Based on this analysis the method factor is significant but the protein factor is 

not. In the case of two-factor ANOVA the sum of squares between is split into 

two factors like this: 

 SS (between) = SS (Method) + SS (Protein) 

The sum of squares is simply partitioned into partial sums of square components 

with one for each effect in the model.  The relationship for total sum of squares 

still holds: 

SST = SSW + SSB 

Only now we can split SSB into two components, so: 

SST = SSW + [SS(method) +SS (protein)] 

The F-values are the mean square for the sum of squares for that method divided 

by the sum of squares error.  An additional concern with ANOVA models 

incorporating two or more factors is the possibility that the factors interact and 

the interaction of factors is a significant concern.  The analysis of interactions is 

not presented here, but this is a point of interest to note. 

ANOVA Beyond Two Factors 

The ANOVA analysis technique can be extended to all kinds of analyses and 

models.  Although the complexity of these models is beyond coverage here, all 

of these rely on the basic analysis method discussed above.  To study such 

models, some good references are presented in the appendix.  In particular, 

books on the statistical discipline of experimental design have in-depth coverage 

of various types of ANOVA models.  In bioinformatics, complex ANOVA 

models are often used in microarray data analysis. 

Meanwhile let’s proceed to studying the second major form of linear model, the 

regression model. 
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Regression Analysis 

Regression analysis is the statistical technique used to model relationships 

between a set of input (or predictor) variables and one or more output (response) 

variables.  The simplest form of regression analysis, called simple liner 

regression or straight-line regression involves the statistical modeling between a 

single input factor X (the “regerssor”) and a single output variable Y (the 

“response”).  We discuss simple linear regression and how to perform this 

analysis in some detail here.   

First let’s consider how to do a simple look at the relationship of two variables 

before producing a formal regression model. 

Correlations 

Correlation metrics are measures of associations between variables.  It is 

important to note that association is a concept that has no implication of 

causation.  Two variables can correlate quite nicely, yet have no cause/effect 

relationship.  For example, in warm weather both the consumption of ice cream 

and the population of mosquitoes go up. Variables measuring each of these 

quantities would have a high correlation.  This relationship however, is nothing 

but a coincidental relationship and is not of further statistical interest. 

Nevertheless looking at correlations does provide a useful preliminary analysis 

for looking at relationships between variables.  A correlation metric is called a 

correlation coefficient, usually designated by the letter r.  There are three most 

commonly used correlation metrics: Pearson’s correlation coefficient, 

Spearman’s rho, and Kendall’s tau.  Pearson’s correlation coefficient is 

determined by the mathematical formula: 

SxSy

yyixxi
1n

1

r
∑ −−

−=
))((

 

where n is the number of data points, Sx and Sy are the standard deviations of 

the x and y data respectively, and x  and y  are the mean values of the data.   

Spearman’s rho and Kendall’s tau are nonparametric correlation coefficients and 

based on the ranks of the data.  

All three correlation metrics have values between 1 and -1 where 1 is a perfect 

positive correlation, -1 is a perfect negative correlation, and 0 implies there is no 

correlation.  All three correlations measure the strength of a linear relationship 

between the two variables.  In the case of a perfect correlation of 1, the (x,y) 

data points are all exactly on a line with positive slope.  This usually does not 
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happen with real data.  As an example, consider the small dataset geneCorrData 

(this was available as part of the rbioinfo package which contains expression 

measurements for a time course of two genes under the same treatment 

condition in a prior release of R but has been retired).  We can use R to analyze 

the correlation of gene expression for these two genes, linked in functionality, to 

study how they express together 

First, just looking at the data, does there appear to be a relationship? 

 

> geneCorrData 

   gene1 gene2 

1  -1.06 -1.08 

2  -0.81 -1.02 

3  -0.48 -0.39 

4  -0.42 -0.48 

5  -0.30 -0.58 

6  -0.35 -0.24 

7  -0.31 -0.05 

8  -0.18 -0.33 

9  -0.20  0.51 

10 -0.11 -0.53 

11 -0.09 -0.47 

12  0.16  0.10 

13  0.45  0.39 

14  0.53  0.11 

15  0.67  0.52 

16  0.80  0.34 

17  0.87  1.08 

18  0.92  1.21 

It helps with correlations to do a simple plot of the data, as depicted in Figure 

15-3: 

> plot(gene1,gene2) 
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Figure 15-3 

The plot demonstrates visually that there is evidence of a relationship but does 

not quantify it.  Let’s measure the strength of the linear relationship between 

gene 1 and gene 2 expression values using correlation coefficients.  To do this 

we can use the R function cor.test.  By default the test calculates Pearson’s 

correlation coefficient, but other coefficients can be specified using the optional 

method parameter. 

> cor.test(gene1,gene2) 

 

        Pearson's product-moment correlation 

 

data:  gene1 and gene2  

t = 7.5105, df = 16, p-value = 1.246e-06 

alternative hypothesis: true correlation is not equal to 0  

95 percent confidence interval: 

 0.7071560 0.9556856  

sample estimates: 

      cor  

0.8826268  

 

> cor.test(gene1,gene2,method="spearman") 

 

        Spearman's rank correlation rho 

data:  gene1 and gene2  

S = 192, p-value = 8.498e-05 

alternative hypothesis: true rho is not equal to 0  

sample estimates: 

      rho  

0.8018576  
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This correlation, 0.88 or 0.80 depending which metric you use, is pretty strong.  

It says the association between the expression values for gene 1 (X values) and 

gene 2 (Y values) is positive and the values are highly correlated (as one goes 

up, so does the other).  What it doesn’t do is create any type of statistical model 

that relates how we would predict a new Y value given a new X data point.  A 

simple linear regression model is required to do this. 

The Basic Simple Linear Regression Model 

Surely at some point in your mathematical career, probably in algebra class, you 

encountered the equation of a straight line, y=mx+b.  In this equation m is the 

“slope” of the line (change in y over change in x) and b is the “intercept” of the 

line where the y-axis is intersected by the line.  The plot of a line with slope 2 

and intercept 1 is depicted in Figure 15-4. 

Although the straight-line model is perfect for algebra class, in the real world 

finding such a perfect linear relationship is next to impossible.  Most real world 

relationships are not perfectly linear models, but imperfect models where the 

relationship between x and y is more like Figure 15-3.  In this case, the question 

literally is “Where do you draw the line?”.  Simple linear regression is the 

statistical technique to correctly answer to this question. 
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Figure 15-4 
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Simple linear regression is the statistical model between X and Y in the real 

world, where there is random variation associated with measured variable 

quantities.  To study the relationship between X and Y, the simplest relationship 

is that of a straight line, as opposed to a more complex relationship such as a 

polynomial.  Therefore in most cases we want to try to fit the data to a linear 

model.  Plotting X versus Y, as done in Figure 15-3 is a good first step to 

determine if a linear model is appropriate. Sometimes data can be transformed 

(often by taking logarithms or other mathematical methods) to fit a linear pattern 

if they do not do so in the original measurement scale.  Determining if a straight-

line relationship between X and Y is appropriate is the first step.  The second 

step, once it is determined a linear model is a good idea, is to determine the best 

fitting line that represents the relationship.   

Fitting the Regression Model 

Obviously, given Figure 15-3, you could simply take a ruler and draw in a line, 

which, according to your subjective eye, best goes through the data.  This 

method is subject to much error and is unlikely you will produce the “best 

fitting” line.  Therefore a more sophisticated method is needed.   

To fit a regression model, some assumptions are made (presented here for 

thoroughness), these include: 

1. For any given value of X, the true mean value of Y depends on X, which 

can be written xy|µ .  In regression, the line represents mean values of Y 

not individual data values. 

2. Each observation Yi is independent of all other Yj≠Yi. 

3. We assume linearity between X and the mean of Y.  The mean of Y is 
determined by the straight line relationship which can be written as: 

X10xy β+β=µ | where the betas are the slope and intercept of the line 

(note this closely resembles y=b+mx, the equation of a line). 

4. The variance of the Yi’s is constant (homoscedasticity property). 

5. The response Yi’s are normally distributed with a constant variance (see 
property 4). 

Let’s build on the third assumption. The actual observed values of Y differ from 

the mean of Y ( xy|µ ) by an error term (reflecting random variation).  We can 

write this as: 

 Yi = X10 β+β=  + ε i 
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The errors, ε i’s, are the difference between the mean line and the actual Yi data 

values. We call these errors residuals.   

In order to fit a regression model, we have parameters to estimate.  In this case, 

we need good estimates for β1, the slope of the line, and β0, the y-axis intercept. 

We have a special method for estimating these called the method of least 

squares.  Sometimes simple linear regression is referred to as least squares 

regression. The least square estimates minimize the sum of squares of the 

vertical distances between the points and the line, which corresponds with 

minimizing the squared residual values. 

The model above with Greek letters for the beta values is the theoretical model.  

For the estimates of the theoretical parameters, we use the convention of lower 

case b’s (an alternative notation uses hats on the Greek letters, such as )β̂ to 

denote that these are estimates based on the data not theoretical values.   

The formulas for the least square estimates are as follows: 

For b1 (slope of the line) 

b1=

∑
∑

−

−−

2xix

yiyxix

)(

))((
=

Sxx

Sxy
 

Where the numerator is also known as the sum of squares xy (Sxy) and the 

denominator is know as the sum of squares x (SSxx). 

For b0 (intercept) 

b0= x1by −  

Of course, performing such calculations with large datasets is tedious.  

However, there is no need to do these calculations manually, as R provides 

simple functionality to perform them. 

Once again, as with ANOVA, we will use the linear model function lm. To 

perform simple linear regression analysis in R, simply model the y and x data 

vectors of interest as lm(y~x) as follows for the gene expression data described 

earlier: 

> geneLM<-lm(gene2~gene1) 

> geneLM 

 

Call: 

lm(formula = gene2 ~ gene1) 

Coefficients: 

(Intercept)        gene1   

   -0.05541      0.97070   
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In the above output R has calculated the b0 term (-0.05541) that is the y-

intercept and the slope (listed as 0.9707). These terms are referred to as 

coefficients.  As a challenge, you can verify these results using the formulas 

given for the coefficients and the empirical data. It is a good idea to store the 

linear model object created in a new variable so that it can be analyzed further. 

Plotting the regression line makes the analysis more interesting.  We can do this 

with a simple plot function, then adding a line with the fitted data values for y. 

> plot(gene1,gene2) 

> lines(gene1,fitted(geneLM)) 

To make things even more interesting we can add segments connecting the 

empirical data to the regression line.  The length of these segments is the 

residual or error, representing the distance from the empirical data to the fitted 

regression value (mean of y line). 

> segments(gene1,fitted(geneLM),gene1,gene2,lty=2) 

> title("Fitted Model with Residual Line Segments") 

Figure 15-5 shows the resulting plot.  This model allows us to predict new y data 

(designated as y hat to indicate that it is an estimate) values based on an 

empirical x value with the formula.   

ix97070  -0.05541iy *.ˆ +=  

 

Figure 15-5 

Note that regression is a tool to understand existing causal relationships not to 

create them.  There are many misuses of regression where researchers falsely 
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conclude two variables are causally related just because they can find a good 

fitting regression model relating the variables.   

If you want to look at the fitted values and the residuals, R provides functions 

fitted and resid.  Supply these functions with the saved variable containing 

the linear model object to obtain the output of results: 

> fitted(geneLM) 

          1           2           3           4           5           6  

-1.08435135 -0.84167628 -0.52134519 -0.46310317 -0.34661914 -0.39515415  

          7           8           9          10          11          12  

-0.35632614 -0.23013511 -0.24954911 -0.16218609 -0.14277208  0.09990299  

         13          14          15          16          17          18  

 0.38140607  0.45906209  0.59496013  0.72115116  0.78910018  0.83763519  

 

> resid(geneLM) 

            1             2             3             4             5  

 4.351347e-03 -1.783237e-01  1.313452e-01 -1.689683e-02 -2.333809e-01  

            6             7             8             9            10  

 1.551542e-01  3.063261e-01 -9.986489e-02  7.595491e-01 -3.678139e-01  

           11            12            13            14            15  

-3.272279e-01  9.701311e-05  8.593934e-03 -3.490621e-01 -7.496013e-02  

           16            17            18  

-3.811512e-01  2.908998e-01  3.723648e-01  

In fact, if you add the fitted values and the residual values together you get the 

empirical Y data values (gene 2). 

> fit<-fitted(geneLM) 

> res<-resid(geneLM) 

> sumFnR<-fit+res 

> compare<-data.frame(sumFnR,gene2) 

 

 

> compare 

   sumFnR gene2 

1   -1.08 -1.08 

2   -1.02 -1.02 

3   -0.39 -0.39 

4   -0.48 -0.48 

5   -0.58 -0.58 

6   -0.24 -0.24 

7   -0.05 -0.05 

8   -0.33 -0.33 

9    0.51  0.51 

10  -0.53 -0.53 

11  -0.47 -0.47 

12   0.10  0.10 

13   0.39  0.39 

14   0.11  0.11 

15   0.52  0.52 

16   0.34  0.34 

17   1.08  1.08 

18   1.21  1.21 
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Testing the Regression Model 

Once we have a regression model we often want to do some inferential tests and 

analysis to see if the model is indeed a good fit or if we should adjust the model 

accordingly.  In R the lm function is more than just an ordinary function.  It is a 

special type of function that creates a model object.  Those familiar with object-

oriented programming know about the principle of encapsulation, where 

information is “hidden” inside an object.  The linear model object when created 

contains hidden information that can be extracted with other functions.  The 

summary function can be used to extract details of a linear model object.  These 

details include information of use to diagnose the regression fit. 

Applying the summary function to our linear model object yields the following 

output: 

> summary(geneLM) 

 

Call: 

lm(formula = gene2 ~ gene1) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-0.3812 -0.2196 -0.0084  0.1492  0.7595  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -0.05541    0.07330  -0.756    0.461     

gene1        0.97070    0.12925   7.511 1.25e-06 *** 

--- 

Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  

 

Residual standard error: 0.311 on 16 degrees of freedom 

Multiple R-Squared: 0.779,      Adjusted R-squared: 0.7652  

F-statistic: 56.41 on 1 and 16 DF,  p-value: 1.246e-06 

The first section of output simply states the model.  The next section is a 

summary of the residuals.  Often in regression we look at the distribution of the 

residuals the check the assumption of normality.  The distribution should be 

centered around zero, so the median value should be near zero, and it is so for 

our data.  

Another good way to check normality by looking at the distribution of residuals 

is to do a Q-Q plot of the residuals to look for a linear pattern: 

> qqnorm(resid(geneLM)) 

Figure 15-6 displays the result, which seems reasonably linear indicating the 

normality assumption of the model is not violated. This is one indication of a 

good model fit. A nonlinear pattern on a Q-Q plot casts doubt on the assumption 

of normality.  This may or may not indicate a problem with the model fit, but 

deserves further exploration. 
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Figure 15-6 

The other section of summary output that is of interest for testing simple linear 

regression models is the coefficients section.  This section repeats least square 

estimate values for the slope and intercept coefficients but also gives output of 

statistical tests of these values, with a t-test statistics value and a p-value for the 

test statistic.   

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -0.05541    0.07330  -0.756    0.461     

gene1        0.97070    0.12925   7.511 1.25e-06 *** 

The interesting test here is the test on the slope, which ids a test to see if the 

slope is significantly different from zero.   In this case, with a p-value of 1.25e-

06 our slope is highly significantly different from zero.  However, if this test 

provides an insignificant p-value (0.05 or higher) this cast doubt on whether 

there is a strong linear relationship between x and y and perhaps there is no 

relationship or maybe another type of model would be a better fit.  The intercept 

test is of little interest in practice. 

Generalizing the Linear Model 

Underneath the details, ANOVA and regression are really the same thing.  Both 

are linear models that relate a response (Y) to input (X) through a linear 

relationship.  In the cases above we looked at the case of one input variable, 

although this can easily be extended to include multiple input variables.  Both 

ANOVA and regression take the form: 
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Observed data = fit  + residual 

Yij = fit + ε ij 

In the case of one-way ANOVA we have the following: 

Yij = µ + τi + ε ij 

Where the fit is the grand mean, µ plus the treatment effect for that group, 

designated with the Greek letter tau.  If we expand this to two-way ANOVA the 

model is: 

Yij = µ + αi + βj + ε ij 

Now instead of one treatment effect we have two, alpha and beta, representing 

the effect of the two groups (in our example earlier, protein and prediction 

structure method). 

For the regression model we have  

Yi = X10 β+β=  + ε i 

Where the slope and intercept determine the fit based on the input data.  In 

regression the input data is continuous data, whereas with ANOVA we are 

working with factor (discrete) variables. 

The general paradigm for a linear model is: 

Y = f(X) + ε 

Where the output is a linear function of input variables plus an error term.  There 

are dozens of variations of the linear model, which is a topic of advanced 

statistics courses. In all cases of the linear model the “fit” function f(X) is also 

linear in the parameters.. It is of note though that the input variables themselves 

need not be linear and can have exponents other than 1.  Models where f(X) 

does not follow a linear relation in the coefficients are known as nonlinear 

models.   

In bioinformatics, the use of linear models occurs frequently in quantitative 

genetics applications such as QTL mapping.  ANOVA models can be used in 

designing experiments and analyzing microarray data, discussed further in 

chapter 19.  R has extensive functionality for dealing with all types of linear and 

nonlinear regression models and many packages are devoted to specific 

advanced regression modeling applications. Select packages are featured in 

Table 15-3. 
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Table 15-3 Selected R Functionality for Linear Models 

Package Select functions Description 

Base installation lm() Linear regression model 

Base installation glm() Generalised linear 

models 

coxph() Cox model 

survreg() Survival models 

survival 

clogit() Conditional logistic 

regression 

lme() Linear mixed effects 

models 

nlme  

nlme() Non linear mixed effect 

models 

gee gee() Generalised estimating 

equations 

rmeta Various Models for meta 

analysis (fixed effects, 

random effects) 
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16 

Working with Multivariate Data 

Many of the probability models introduced in earlier chapters are univariate 

models.  However there is a large body of work in statistics devoted to the 

simultaneous analysis of several response variables.  This area of statistics is 

called multivariate statistics.  We have already introduced multivariate 

probability models; in particular the multinomial distribution is a multivariate 

model for discrete data.  We have also discussed the bivariate normal 

distribution (Chapter 8), which is a continuous multivariate model.   

Multivariate statistics can be challenging.  In high dimensions there is the “curse 

of dimensionality”: data spaces are vast, and it requires huge amounts of data to 

even moderately fill the space.   Another serious problem is the edge effect 

issue.  As the number of variables grows, a larger percentage of the data tends to 

be near the edge of the data space, yet many statistical approaches attempt to 

draw conclusions about the mean (center) of the data.   

Another challenge is data and pattern description and visualization.  We can 

only display low-dimensional projections of the data, such as histograms, 

scatterplots or perspective plots and rotating point clouds (three-dimensional 

projections).  It is likely that important features of multivariate data get lost in 

these projections.  In this chapter we discuss how multivariate data is 

summarized, and we introduce the general multivariate normal distribution. 

Furthermore we will introduce some techniques of analyze multivariate data 

which are becoming commonplace in biomedical literature.  
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The Multivariate Normal Distribution 

We first generalize the bivariate normal distribution, discussed in Chapter 8, to 

the case of several variables.  So far we only considered the bivariate standard 

normal distribution with zero correlation.  The probability density function for 

higher dimensional normal probability models is fairly complex and requires the 
notation of linear algebra.  Starting first with the case of two variables, say Y1 

and Y2 we simply state the parameters that define the distribution, avoiding 

complicated algebra. They are: µ1 and µ2, the mean of Y1 and mean of Y2, 

respectively; σ1 and σ2, the standard deviation of Y1 and of Y2, respectively, 

and the correlation coefficient ρ12 between Y1 and Y2. Figure 16.1 displays 

random samples of size 500 from several different normal distributions whose 

parameters are given below in Table 16.1. 

Table 16.1 Bivariate Normal Parameters of Figure 16.1 

 µ1 µ2 σ1 σ2 ρ12 σ12 

(a) 0 0 1 1 0 0 

(b) 2 1 1.732 1 0 0 

(c) 0 0 1.414 1 -0.5 -0.707 

(d) 2 1 1.732 1 0.9 1.5588 
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Figure 16.1: Simulated Bivariate Normal Data 



 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

290 

The effects of changes in the parameters are obvious. The bivariate means 

determine the location of the center of the distribution.  The standard deviations 

reflect the scale in the directions of the variables.  For example in plot (b), the 
standard deviation of Y1 is 1.732 times larger than that of Y2 which is reflected 

in the larger range of Y1.  Finally the correlation describes the strength of a 

linear association between the two variables.  Correlations vary between –1 and 

+1, where these limits denote perfect negative and positive correlations.  Plot (d) 

depicts a strong positive correlation of 0.9.  Notice the last column for the 

parameter σ12 in the table.  This is the covariance of Y1 and Y2, which is the 

expected product of the deviations from the means: 

σ12 = Covariance = Cov(Y1,Y2) =  Expected Value (Y1 – µ1)( Y2 – µ2)  

The correlation coefficient ρ12 is simply a scale-free version of the covariance, 

namely: 

ρ12 = Correlation(Y1,Y2) = Expected Value 1 1 2 2

1 2

Y Yµ µ

σ σ

    − −
    
    

g   

= σ12 /(σ1 σ2) ,   or, equivalently σ12 =  ρ12 σ1 σ2  

It is customary in multivariate statistics to provide the variances and the pairwise 

covariances arranged in a matrix as follows: 

 

2
1 1 2 1 12

2
1 2 2 12 2

var( ) cov( , )

cov( , ) var( )

Y Y Y

Y Y Y

σ σ

σ σ

  
Σ = =   

   
 

This is called the variance-covariance or the dispersion matrix and is equivalent 

to providing the individual standard deviations and the correlations.  Note that 

this matrix is symmetric: the off-diagonal elements above the diagonal 

correspond to those below the diagonal.  

The R package mvtnorm provides commands for the multivariate normal 

distribution, rmvnorm for random number generation, dmvnorm for density 

calculations, and pmvnorm for cumulative probabilities. These commands 

require as inputs a vector of the means of the variables, and the variance-

covariance matrix.  For example, plot(d) in Figure 16.1 was generated using the 

following commands: 

> library(mvtnorm) 

> mean4 <- c(2,1) 

> Sigma4 <- matrix(c(3,.9*(3^.5),.9*(3^.5),1),ncol=2) 

> mat4 <- rmvnorm(500,mean4,Sigma4)  

> plot(mat4,xlim=c(-8,8),ylim=c(-4,6),xlab="y1",ylab="y2") 
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The multivariate normal distribution serves as a baseline for most multivariate 

statistical analyses. Although clearly not all continuous data have a multivariate 

normal distribution, it is very difficult to work with other multivariate 

continuous distributions, one exception being the Dirichlet distribution that is 

used for modeling continuous fractions (see Chapter 8).  The multivariate 

normal distribution is also preserved under linear data transformation.  

Geometrically speaking such transformations include translations, rotations, 

stretching and contracting.  Virtually all of the classical dimension reduction 

techniques and classification methods are based on linear transformations, and 

therefore the multivariate normal distribution arises as a natural candidate for 

probabilistic modeling.   

Another nice feature of the multivariate normal distribution is that any marginal 

distributions are again normal.  To illustrate this point we randomly generate 4 
variables Y1,Y2,Y3,Y4 that jointly have a multivariate normal distribution with 

respective means (2,4,6,8) and with variance covariance matrix 

1 1 .4 0.9

1 4 1.6 1.2

.4 1.6 4 1.8

0.9 1.2 1.8 9

− − 
 

− Σ =
 −
  − − 

 

We first check that the one-dimensional (univariate) marginal distributions are 

normal by plotting individual histograms which are displayed in Figure 16.2. 

> Sigma <- matrix(c(1,1,-.4,-.9,1,4,1.6,-1.2,-.4,1.6,4, 

+  1.8,-.9,-1.2,1.8,9),ncol=4) 

> Y <- rmvnorm(500,c(2,4,6,8),Sigma) 

> par(mfrow=c(1,4)) 

> for (i in 1:4) hist(Y[,i], main="", nclass=15, 

  + xlab = paste("Y",i, sep="")) 

 

Y1

F
re

q
u
e
n

c
y

-1 1 2 3 4 5

0
2
0

4
0

6
0

8
0

1
0
0

Y2

F
re

q
u
e
n

c
y

0 5 10

0
2
0

4
0

6
0

8
0

1
0
0

Y3

F
re

q
u
e
n

c
y

-2 2 6 10

0
2
0

4
0

6
0

8
0

1
0
0

Y4

F
re

q
u
e
n

c
y

0 5 10 15

0
1
0

3
0

5
0

 

Figure 16.2.  One-dimensional marginal distributions: 

Histograms  

Note and check that the pairwise correlation coefficients are ρ12 = 0.5,  

ρ13 = -0.2,   ρ14 = -0.3, ρ23 = 0.4, ρ24 = -0.2, ρ34 = 0.3.  We examine the two-
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dimensional marginal distributions by producing scatterplots of pairs of 

variables. For example, scatterplots of the pairs (1,2), (1,4), and (2,4) are shown 

in Figure 16.3. 
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Figure 16.3.  Two-dimensional marginal distributions: 

Scatterplots.  

These are typical shapes for bivariate normal distributions as we have seen in 

Figure 16.1.   

We now illustrate the property that normal distributions are preserved under 

linear transformation.  A general linear transformation of the above four 
variables is defined by any arbitrary coefficients c, b1, b2, b3, b4 which then 

define a new random variable U: 

U = c + b1Y1 + b2Y2 + b3Y3 + b4Y4 

We consider the following two transformations: 

U1 = 3 + 2Y1 –2Y2 + 4Y3 – 4Y4 

U2 = -6 –Y1 – Y2 + 6Y3 + 2Y4 

By examining the histograms and the scatterplots (Figure 16.4) we verify that 
the U1 and U2 each have marginally a normal distribution, and both jointly 

follow a bivariate normal distribution. 

> # Generate linear combinations 

> U1 <- 3 + 2*Y[,1] -2*Y[,2] + 4*Y[,3] - 4*Y[,4] 

> U2 <- -6 - Y[,1] - Y[,2] + 6*Y[,3] + 2*Y[,4] 

> # Create graphs 

> par(mfrow=c(1,3)) 

> hist(U1,nclass=12);hist(U2,nclass=12) 

> plot(U1,U2) 
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Figure 16.4:  Distributions of Linear Combinations of Normal 

Variates 

So far we have only examined simulated data, which by design are very well 

behaved.  When being faced with actual continuous multivariate data in 

scientific applications, we will need to examine, explore and summarize the data 

before proceeding to use more sophisticated statistical techniques.  Whenever 

possible we will judge as to whether the data follow a multivariate normal 

distribution.  Note that most of the techniques in this text are not very sensitive 

to mild departures of the data from normality.  However they can be influenced 

by individual extreme data values, so-called outliers, especially if the dataset is 

small to moderately large.  If the distributions of some or all variables are 

consistently skewed a nonlinear transformation of the data such as the logarithm, 

or the square root transformation, often does wonders in creating transformed 

data that fairly closely follow a multivariate normal distribution.  

Multivariate Sample Statistics 

A routine first step in multivariate data analysis involves calculating sample 

statistics for the purpose of summarizing the data.  The R-command “summary” 

gives the mean, median and sample quantiles of the variables.  It is best to 

arrange the data into a data frame, instead of into a matrix.  In a data frame each 

column can be named with the “names” command, and is treated as a separate 

variable.   

> Y <- as.data.frame(Y) 

> # Provide summaries for each variable 

> summary(Y) 

       Y1                Y2               Y3               Y4         

 Min.   :-0.8827   Min.   :-2.173   Min.   :-2.062   Min.   :-1.266   

 1st Qu.: 1.2324   1st Qu.: 2.653   1st Qu.: 4.534   1st Qu.: 5.918   

 Median : 1.9557   Median : 4.008   Median : 5.989   Median : 8.052   

 Mean   : 1.9506   Mean   : 3.947   Mean   : 5.943   Mean   : 8.020   

 3rd Qu.: 2.5636   3rd Qu.: 5.315   3rd Qu.: 7.311   3rd Qu.:10.316   

 Max.   : 4.9096   Max.   :11.023   Max.   :10.927   Max.   :17.822   

We note how close the medians and the means are to each other, indicating that 

the data are symmetric.  In the following we obtain the standard deviations, the 
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sample variances and covariances arranged in a variance-covariance matrix, and 

the sample (Pearson) correlation coefficients arranged in a correlation matrix. 

> # In the following only print 4 digits 

> options(digits=4) 

> # Get standard deviations 

> sd(Y) 

 

    Y1     Y2     Y3     Y4  

0.9997 2.0017 2.0116 3.0502  

 

> # Print the sample variance - covariance matrix 

> var(Y) 

        Y1      Y2      Y3      Y4 

Y1  0.9993  0.9756 -0.4111 -0.8692 

Y2  0.9756  4.0069  1.6587 -1.0377 

Y3 -0.4111  1.6587  4.0466  1.7394 

Y4 -0.8692 -1.0377  1.7394  9.3039 

 

> # Print the correlation matrix 

> cor(Y) 

 

        Y1      Y2      Y3      Y4 

Y1  1.0000  0.4875 -0.2044 -0.2851 

Y2  0.4875  1.0000  0.4119 -0.1700 

Y3 -0.2044  0.4119  1.0000  0.2835 

Y4 -0.2851 -0.1700  0.2835  1.0000 

> 

Note how close the sample variance – covariance matrix is to the corresponding 

matrix Σ of the theoretical model from which the data was simulated.  We use 

the symbol S (bold faced S) to denote the sample variance covariance matrix, 

which is customary in multivariate statistics.  Remember again that the diagonal 

elements of S are the sample variances of the individual variables, and the off-

diagonal elements are the covariances between pairs of the variables.  

Displaying Multivariate Data 

The best way to familiarize oneself with what is in a data set is through 
examining graphs.  This is particularly important for multivariate data sets.  
While high dimensionality (many variables) prevents us from clearly seeing all 
features in lower dimensional plots, graphing is still a powerful method 
particularly for identifying outliers, relationships between variables, and for 
suggesting transformations to achieve distributions that are closer to a normal.   
 

Let’s use as an example the famous (Fisher’s or Anderson’s) iris data set that 

gives the measurements in centimeters of the variables sepal length and width 

and petal length and width, respectively, for 50 flowers from each of the 3 

species of iris: Iris setosa, Iris versicolor, and Iris virginica. (see  Anderson 

(1935).  The iris data is included in the R base package as a dataframe.  We will 

analyze the species “versicolor”. 
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> data(iris) 

> # first print the data 

> print(iris)  

     

    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species 

1            5.1         3.5          1.4         0.2     setosa 

2            4.9         3.0          1.4         0.2     setosa 

3            4.7         3.2          1.3         0.2     setosa 

…. 

…. 

49           5.3         3.7          1.5         0.2     setosa 

50           5.0         3.3          1.4         0.2     setosa 

51           7.0         3.2          4.7         1.4 versicolor 

52           6.4         3.2          4.5         1.5 versicolor 

.. 

… 

100          5.7         2.8          4.1         1.3 versicolor 

101          6.3         3.3          6.0         2.5  virginica 

102          5.8         2.7          5.1         1.9  virginica 

.. 

….. 

149          6.2         3.4          5.4         2.3  virginica 

150          5.9         3.0          5.1         1.8  virginica 

 

> # Create subset of Species versicolor 

> iris.versicolor <- iris[iris$Species=="versicolor",1:4] 

> # Plot 4 histograms 

> par(mfrow=c(2,2)) 

> for (i in 1:4) { hist(iris.versicolor[,i],xlab=NULL, 

 + main=names(iris.versicolor)[i]) } 
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Figure 16.5:  Histograms of Iris Versicolor Variables 

With the exception of petal width, the variables fairly closely follow a normal 

distribution as we can see in Figure 16.5.  Let’s next examine pairwise 

correlations and scatterplots.  R provides a convenient command, “pairs” that 

produces all scatterplots of all pairs of variables in a data set arranged as a 
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matrix (see Figure 16.6).  We also create labels for plotting that indicate the iris 

species.  There is of course redundancy in this figure.  For example the first row 

second column entry is the scatterplot of Sepal Width on the x-axis versus Sepal 

Length on the y-axis, while the second row first column entry is the scatterplot 

of the same pair with the axes interchanged.  

> n <- nrow(iris) 

> # Create labels 

> ir.labels <- rep("v",n) 

> ir.labels[iris$Species=="versicolor"]<- "c" 

> ir.labels[iris$Species=="setosa"]<- "s" 

> pairs(iris[,1:4],pch=ir.labels) 
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Figure 16.6: Scatterplot Matrix of Iris Versicolor Data 

> # Pairwise Correlations  

> cor(iris.versicolor) 

 

             Sepal.Length Sepal.Width Petal.Length Petal.Width 

Sepal.Length    1.0000000   0.5259107    0.7540490   0.5464611 

Sepal.Width     0.5259107   1.0000000    0.5605221   0.6639987 

Petal.Length    0.7540490   0.5605221    1.0000000   0.7866681 
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Petal.Width     0.5464611   0.6639987    0.7866681   1.0000000 

We note that the pairs Sepal.Length and Petal. Length, and Petal.Length and 

Petal Width are most strongly correlated with respective correlations of 0.7540 

and 0.7867.  

Within the last 10 years many statistical and graphical software packages have 

provided 3-dimensional data plots as point clouds where points are colored or 

shaded in a clever way to make the 3-dimensional features more visible to the 

human eye.  Software may also include interactive graphics that allow the 

rotation of the point cloud which further enhances the subtle features in the data.  

The R package “scatterplot3d” provides a single command of the same name 

that creates a 3-d point cloud.  For example plotting the four 3-d point clouds of 

the iris versicolor data results in the following (Figure 16.7) 
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Figure 16.7:  3-d Point Clouds of Iris Versicolor Data 

We notice a few subtle patterns in these point cloud graphs.  In particular, in 

graph 1 (top left) there appear to be 4 points with low Sepal values slightly 

separated from the rest of the data.  Also, in graph 2 (top right) there is a hint of 

a hook-like pattern for large values of Sepal Width and Petal Width.  Again 

these patterns are subtle and would only be considered mild departures from 

multivariate normality.  In fact for multivariate normal data, the surfaces of 

constant point density are ellipsoids in 3-d space that are centered at the mean. 
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Ellipsoids in 3-d space look like American footballs that have been stretched or 

compressed.  In the special case of uncorrelated normal data, the football 

becomes aligned with the axes, and in the special case of uncorrelated data and 

equal variances among the variables, the football becomes a sphere.  

Outliers  

Outliers are extreme observations that are either the product of a data reading or 

measurement error, or they a caused by accidentally sampling from a different 

population than the rest of the data.  For one and two-variable data it is easy to 

identify outliers in a scatterplot.  For 3-variable data, rotating a 3-d point cloud 

helps in identifying outliers.  For multivariate data with more than 3 variables, 

there is the chance that lower-dimensional projections do not reveal all outliers. 

The following gives an example of a two-variable data set with one outlier that 

is masked when the data is projected onto one-dimensional subspaces.  The one-

dimensional projections are represented as rugplots along the x and y axes. 

Outlier in 2-d Space

No outliers in 

1-d Projections

 

Figure 16.8: Masking of Outlier in Projections 

 

One very simple classical method is to obtain for each data point xi, the unit-free 

measure of how many standard deviations it lies away from the center of the 

data, the multivariate mean.  Remember that in univariate statistics this number, 

when using sample data, is simply the t-score: 

i
i

X

x x
t

s

−
= , 

which for large data is approximates the z-score: 
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Typically we are only interested in the absolute value (positive number) of the t-

score, in which case we can write 

( ) ( )
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i i i i

X X

x x
u t x x x x

s s
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= = = − − 

 
 

For normally distributed data, ti
2 has for large data approximately a chi-square 

distribution with 1 degree of freedom. 

In multivariate data we will need to consider information from all the variances 

and covariances in order to obtain the measure that is equivalent to the t-score.  

It turns out that the measure, di
2 , which is a generalized squared distance, is: 

( ) ( )2 1'id
−= − −i ix x S x x  

This is a vector-matrix expression, and S-1 denotes the inverse matrix of the 

sample variance-covariance matrix S, and (..)’ denotes the transpose of a vector 

or matrix.  Any p by p matrix, such as S defines the coefficients of a system of p 

linear equations which is a transformation from one p-vector to another.  The 

inverse matrix simply consists of the coefficients of the inverse transformation, 

and can be calculated by solving the linear system.  For any p>2, such systems 

invariably require computer software for quick calculations.  Notice the 

correspondence of di
2 with the right hand side of the equation for ui.  The di

2 

are also called Mahalanobis distances, after the Indian statistician Mahalanobis.  

A result from multivariate statistics that generalizes the chi-square result above 

states that Mahalanobis distances approximately follow a  chi square distribution 

with p degrees of freedom where p is the number of variables.  R provides the 

Mahalanobis distances with the mahalanobis command for the rows of a data 

matrix. It requires the specification of the mean vector and of the variance 

covariance matrix:  We plot the square roots of the Mahalanobis distances 

representing the distances in standard deviation units from the center for the Iris 

versicolor data in Figure 16.9. 

> dist2 <- mahalanobis(iris.versicolor, 

  + mean(iris.versicolor),var(iris.versicolor)) 

> plot(dist2^.5) 



 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

300 

0 10 20 30 40 50

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Index
d

is
t2

^0
.5

 

Figure 16.9 Multivariate distances of Iris Versicolor Data 

We recognize 2 observations that are more than 3 units away from the center.  

Note that the square root of the 95th percentile of the chi squared distribution 

with 4 degrees of freedom equals 3.0802.  We would use this number as a rough 

cut-off to flag extreme observations that give an indication of departure from 

normality.  Notice however that none of the 2 flagged observations have an 

extremely large generalized distance, hence these are very moderate outliers, if 

we want to call them outliers at all.  

Principal Components 

 In order to effectively analyze multivariate data the scientist is often forced to 

resort to what is known as dimension reduction techniques, the first we will 

introduce is known as principal component analysis. The primary goal of the 

method is to describe the variability in a multivariate data of p correlated 

variables by a smaller set of derived variables that are uncorrelated.  The derived 

variables, called principal components, are linear combinations of the original 

variables, and are usually listed in the order of their respective importance.  In 

other words, the first principal component (PC1) explains the largest amount of 

variation, the second principal component (PC2) is uncorrelated to PC1, and 

explains the second largest amount of variation, and so on.  The aim is to discard 

subsequent principal components after a large percentage of the variation (90% 

– 99 %) has been explained by the first k principal components, where k < p.  

Most statistical software provides methods for principal component analysis.  In 

R we use the command princomp followed by the summary command to 

obtain standard PC analysis output given below.  We apply this to the iris 

versicolor data.  The procedure resides in the package mva. 

> # Perform a Prinicpal Component Analysis 

> library(mva) 

> pc.iris <- princomp(iris.versicolor) 

> summary(pc.iris) 

 

Importance of components: 
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                          Comp.1    Comp.2     Comp.3     Comp.4 

Standard deviation     0.6914597 0.2663389 0.23169066 0.09795181 

Proportion of Variance 0.7808176 0.1158471 0.08766635 0.01566898 

Cumulative Proportion  0.7808176 0.8966647 0.98433102 1.00000000 

The Screeplot given in Figure 16.10 visualizes the amount of the variance that is 

explained by the four principal components. A dimension reducing 

transformation of the data into the first two PC’s would capture 89.7% of the 

variability, while using the first three PC’s would capture 98.4% of the 

variability.  

> # Create screeplot of a princomp object 

> screeplot(pc.iris) 
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Figure 16.10:  Screeplot of PC Analysis for Iris Versicolor 

We note that all four original variables are size measurements (length and 

width). The essence of what principal components has done is to capture most of 

the variability of the data in one component variable (PC1) which can be used to 

reduce the dimensionality of the data from four original variables to one new 

component variable. PC1 can be interpreted as a derived variable of size. 

Principal components arise naturally in several other statistical procedures, 

notably in classification, which is the subject of the next section.  

Classification and Discriminant Analysis 

The goal of classification is to develop a predictive model that is capable of 

assigning membership to a class based on several measured characteristics.  A 

standard example arises in biology:  Several size measurements are obtained 

from samples of several species and the species of each sample is determined as 

well.  It is assumed that taking size measurements is much easier than 

determining the exact species.  In order to avoid the difficult task of species 

determination, a classification rule, capable of determining species from the size 

measurements alone, is developed.   
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Classification for Two Populations 

The easiest classification methods are those related to two populations, called 

binary classification.  As the name suggests the goal is to predict membership in 

any one of two classes.  The two classes are often coded as 0 and 1, but could 

also be thought of success and failure, or Yes and No.  

Reaven and Miller (1979) examined the relationship between chemical 

subclinical and overt nonketotic diabetes in 145 non-obese adult subjects. The 

three primary variables used in the analysis are glucose intolerance, insulin 

response to oral glucose and insulin resistance. In addition, the relative weight 

and fasting plasma glucose were measured for each individual in the study.  This 

data is available from the StatLib website. 

http://lib.stat.cmu.edu/datasets/Andrews/, Table 36.1.  The data and a summary 

of related research is also described in the text Data, by Andrews and Herzberg 

(1985).   

We attempt to derive a classification into the two categories normal (coded as 3 

in the data) and subclinical diabetes (coded as 2) using the two variables glucose 

intolerance, and insulin response.  We retrieve and plot the data using the 

following set of commands. 

> glucose <- read.table('blood.glucose.data.txt') 

> # Only use the 6 relevant variables. Last variable is class variable 

> glucose <- glucose[,5:10] 

> names(glucose) <- c('gluc.intol','i.respons','i.resist','rel.wt', 

+'plas.gluc','diagn') 

> # Only use normal (diagn=3) and subclinical diab (diagn=2) 

> gluc1 <- glucose[glucose$diagn != 1,] 

> attach(gluc1) 

> # Plot the data 

> plot(gluc.intol,i.respons,type='n') 

> text(gluc.intol,i.respons,labels=diagn,cex=0.8) 

> # Plot means of each group using point-character 15: filled square 

> mean2 <- mean(gluc1[diagn==2,1:2]) 

> mean3 <- mean(gluc1[diagn==3,1:2]) 

> points(rbind(mean2,mean3),pch=15) 

From the scatterplot of the data in Figure 16.11, we see that the responses of the 

two groups are quite interspersed.  Diabetics overall have higher insulin 

response and glucose intolerance, as expected.  The means of each group are 

indicated as filled squares. 
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Figure 16.11:  Glucose Intolerance and Insulin Response of 

Healthy (3) and Subclinically Diabetic (2) Individuals 

Geometrically speaking a classification rule for this example is a partition of the 

2-dimensional sample space where each side of the partition is assigned to one 

of the two groups.  In the ideal case the observations are totally separated in 

sample space, in which case we can easily draw a line, or a curve of separation 

that classifies the data perfectly.  In the majority of real-word scenarios there 

will be overlap of the groups, as illustrated by this example.  Because of the 

overlap there is some risk of misclassifying a future sample into group “2” when 

it should be classified into group “3” and vice versa.  The probabilities of correct 

classification and misclassification of an object X into groups A and B can be 

written as 

P(X is correctly classified and X in A) = P(X in A|A)pA 

P(X is misclassified as A and X in B) = P(X in A|B)pB 

P(X is correctly classified and X in B) = P(X in B|B)pB 

P(X is misclassified as B and X in A) = P(X in B|A)pA 

In the above, pA and pB represent the prior probability of group A and group B 

respectively.  Thus, the classification/misclassification probability is the 

conditional probability of the classification multiplied by the prior probability.  

Now we are ready to derive an optimal classification rule by minimizing the 

expected cost of misclassification (ECM). 
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ECM = C(A|B)P(A|B)pB  + C(B|A)P(B|A)pA  , 

where C(A|B) is the cost of misclassifying X into A, when in fact it is in B, and 

similarly for C(B|A).  Most often we consider a “0-1” cost function which 

means that there is a cost of 1 when misclassification occurs.  With a “0-1’ cost 

function it can easily be shown that the optimal classification rule is the one that 

maximizes the posterior probability.   

(   | )
( |   )   

(   | ) (   | )

(   | )
( |   )  

(   | ) (   | )

A

A B

B

A B

p X in A A p
p A X in A

p X in A A p p X in A B p

p X in A B p
p B X in A

p X in A A p p X in A B p

=
+

=
+

 

Note that for binary classification, these two probabilities add to one.  Deriving 

a minimum ECM rule can be difficult in practice.  In particular expressions like 

p(X in A|A) may involve complicated multivariate density functions.   

Linear discriminant analysis (LDA), was developed by R.A. Fisher in 1936 

when he analyzed the iris data in the context of genetics. Fisher’s LDA is an 

optimal classification rule if the data in each group follow a multivariate normal 

distribution that have different mean vectors but with the same variance-

covariance matrix.  That is a lot of assumption but is analogous to the 

assumptions made in ANOVA (see Chapter 15).   

The package “MASS” contributed to the R project in conjunction with the text 

“Modern Applied Statistics with S-Plus” (Venables and Ripley, 1997) provides 

command lda linear discriminant analysis.  The commands require as inputs a 

multivariate data matrix or dataframe, and a factor that denotes class 

membership. Let’s first apply lda:   

> # Perform Linear Discriminant Analysis 

> library(MASS) 

> gluc.lda <- lda(gluc1[,1:2],gluc1$diagn) 

> gluc.lda 

 

Prior probabilities of groups: 

     2      3  

0.3214 0.6786  

The prior probabilities are assumed according to the fraction of data that fall in 

each class, unless otherwise specified. 

Group means: 

  gluc.intol i.respons 

2     1.0558     99.31 

3     0.9372     91.18 

 

Coefficients of linear discriminants: 

                LD1 

gluc.intol -5.57342 
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i.respons  -0.07247 

The coefficients of lda determine the linear transformation.  One must be 

careful in interpreting these, because in R, as in other packages, they have been 

conveniently rescaled.  An easier interpretation is the following:  The separation 

line crosses the line connecting the group means at the halfpoint, and has a slope 

that is minus the ratio of the lda coefficients.  In our example the slope is –

5.573/0.072 = -76.9. (see Figure 16.11).   

Let’s examine how well this classification works.  The command 

predict(lda) provides a printable list with the following objects: 

> # Store the list of output 

> gluc.pred <- predict(gluc.lda) 

> # class membership prediction 

> gluc.pred$class 

 

  [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 

 [29] 3 3 3 3 3 3 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 

 [57] 3 3 3 2 2 3 2 3 2 3 2 3 3 3 3 3 3 3 2 2 3 3 3 3 3 3 3 3 

 [85] 3 2 2 2 2 2 2 2 3 3 2 2 2 3 3 2 2 3 2 3 3 3 3 3 2 3 2 3 

Levels: 2 3 

> # posterior probabilities of membership 

> gluc.pred$posterior 

          2      3 

1   0.03147 0.9685 

2   0.28652 0.7135 

3   0.43596 0.5640 

4……….. 

 

> # lda scores induced by the transformation 

> gluc.pred$x 

      

           LD1 

  1    1.92131 

  2   -0.09097 

  3   -0.61500 

..4…………. 

Inspecting gluc.pred$class we notice that the first 3 observations are 

classified as 3 because p(3|X) > 0.5  in all three.  We could now count the 

misclassifications by comparing the actual diagnosis, the diagn variable with 

the predicted class.  The table command in R provides for a convenient 

summary: 

> table(gluc1$diagn,gluc.pred$class) 

    

     2  3 

  2 17 19 

  3 10 66 

Thus the estimated misclassification errors are as follows 
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 P(X is “3”|”2”) = 19/36 = 0.528,  and P(X is in “2”| “3”) = 10 / 76 = 0.132.  We 

can obtain the classification probabilities by dividing the table by its row sums 

as follows: 

 

> tab <- table(gluc1$diagn,gluc.pred$class) 

> tab/rowSums(tab) 

    

         2      3 

  2 0.4722 0.5278 

  3 0.1316 0.8684 

These misclassification error probabilities are quite high. 

Classification for More Than Two Populations 

The discussion of binary classification directly generalizes to more than two 

populations without much difficulty.  More challenging is the case where there 

are much more than two response variables.  We now attempt to classify the full 

diabetes data using all five variables and all three diagnoses (1: overt diabetic, 2: 

chemical diabetic, 3: normal).  We may first examine the scatterplot matrix.  

Linear discriminant analysis attempts to transform the data into one or two new 

variables, so called canonical variates, so that the separation of diagnosis is 

strongest in the first, and second strongest in the second.  Note the similarity to 

principal component analysis.  The following gives the R calculations.   

> # Perform LDA for three diagnoses; use all variables 

> library(MASS) 

> gluc.lda <- lda(glucose[,1:5],glucose$diagn) 

> gluc.lda 

 

Prior probabilities of groups: 

     1      2      3  

0.2276 0.2483 0.5241  

 

Group means: 

  gluc.intol i.respons i.resist rel.wt plas.gluc 

1     0.9839    217.67   1043.8  106.0     318.9 

2     1.0558     99.31    493.9  288.0     209.0 

3     0.9372     91.18    350.0  172.6     114.0 

 

Coefficients of linear discriminants: 

                  LD1       LD2 

gluc.intol -1.3624357 -3.784142 

i.respons   0.0336488  0.036633 

i.resist   -0.0125764 -0.007092 

rel.wt      0.0001022 -0.006173 

plas.gluc  -0.0042432  0.001134 

 

Proportion of trace: 

   LD1    LD2  

0.8812 0.1188 
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The optimal classification results in two canonical variates (LD1 and LD2)  

given by the coefficients above.  About 88% of the separation results from the 

first LD transform.  Let’s examine class membership and misclassification error. 

 

> # Store the list of output 

> gluc.pred <- predict(gluc.lda) 

> # class membership prediction 

> gluc.pred$class 

 

  [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 

 [30] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

 [59] 3 3 3 2 2 3 2 2 3 3 2 3 2 3 3 3 3 3 2 3 3 3 3 2 2 3 2 2 2 

 [88] 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 3 2 3 1 1 1 1 

[117] 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 3 2 2 2 1 1 1 1 1 1 1 1 

Levels: 1 2 3 

 

> tab <- table(glucose$diagn,gluc.pred$class) 

> tab/rowSums(tab) 

    

         1       2       3 

  1 0.8182 0.15152 0.03030 

  2 0.0000 0.86111 0.13889 

  3 0.0000 0.03947 0.96053 

This classification has much lower misclassification error than the previous one 

where we only used two response variables.  In particular three out of 76 healthy 

individuals are misclassified as chemically diabetic, with a misclassification 

probability of 3/76 = 0.039.  We see in Figure 16.12 plot (b) that the separation 

into the three groups shows clearly when the data are represented in the two 

canonical variates, whereas the groups appear interspersed, particularly groups 2 

and 3, when represented in the first two variables glucose intolerance, and 

insulin response, as shown in plot (a).  
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Figure 16.12:  Comparison of Group Separation in (a) the 

first two variables and (b) the first two canonical variates 

Cross-Validation 

A note of caution is in order.  Any of the linear methods for multivariate 

statistics are optimal when the data more or less follow a multivariate normal 

distribution.  More importantly, since the calculations depend on the sample 

variance-covariance matrix, they can be highly sensitive to outliers.  This outlier 

sensitivity can have a major impact on the misclassification error:  Outliers can 

have a pull-effect on the separation curve that tends to reduce their probability 

of being misclassified.  It is a well-known fact that, if the data from which the 

classification rule is derived (the “training” set) is also used to evaluate the rule, 

then the misclassification error are too low, or biased towards zero.   

In order to adequately evaluate the classification procedure we need to have a 

separate data set, the so-called test set, for which we evaluate how well the 

classification rule works.  This is called cross-validation.  The test set can be a 

separated part of the dataset originally used which was not incorporated when 

making the model or a different dataset.  R provides methods for cross 

validation which the interested reader should explore.  

Classification Trees 

Classification trees, or recursive binary partition schemes originated as tools for 

decision making in the social sciences and were introduced to main-stream 

statistics by Breiman et al. (1984).  Classification trees essentially provide a 

sequence of rectangular blocks of the data space, where one of the groups is 

assigned to each block.  The method is recursive, which means that the 

partitioning at a given step depends on the partitioning of previous steps, hence 

the method lends itself to a tree-like representation.  Classification trees are 

similar to the widely used “keys” in botany for plant identification.  

Constructing a Tree 

The R library “tree” provides convenient commands that produce and validate 

classification trees.  Let’s use this methodology on the cancer microarray gene 

expression data, available at http://www-stat.stanford.edu/ElemStatLearn ,the 

website for the textbook by Hastie et al. (2001).  This data has been fully 

preprocessed. A total of 64 tissue samples of a total of 14 different cancers have 

been obtained and their genetic responses were analyzed with DNA microarray 

technology.   
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We have deleted the samples of the types of cancers for which there were 2 or 

fewer samples, resulting in a sample size of 57.  We selected a set of 35 genes 

that exhibited minimal expression of at least –0.55 for all cancers.  To make the 

results more understandable we only consider the 6 most expressive genes, 

which corresponds to a minimal expression level over the 64 cancer samples of 

–0.42.   

We thus work with 6 variables and attempt to partition into 8 different cancer 

types.  The cancer types are BREAST, CNS, COLON, LEUKEMIA, 

MELANOMA, NSCLC, OVARIAN, RENAL.  They are assigned in this order 

in the following output. 

> # Classification Trees 

> # Only use the 6 most expressed genes 

> rowmin <- apply(MAdat,1,min) 

> sort(rowmin,decr=T)[1:20] 

> MAdat.red <- MAdat[(rowmin > -.475),] 

> # Delete cancers with few cases 

> delet <- c(21,24,30,35,36,49,51) 

> MAdat.red <- MAdat.red[,-delet] 

> Genedat <- data.frame(t(MAdat.red)) 

> # Names of Genes 

> names(Genedat) 

 

[1] "X2838" "X3234" "X3320" "X4831" "X5680" "X6596"  

 

> cancers <- as.factor(names(MAdat.red)) 

> Genedat <- cbind.data.frame(Genedat,cancers) 

The command tree, which requires a model formula, produces a tree object 

that can be plotted with the plot command and summarized with the summary 

command.  We use an abbreviated model formula: cancers ~. , which means 

that cancer is the response variable, and all others are the predictor variables.  

> # Classification Tree via Recursive Partitioning 

> library(tree) 

> MA.tr <- tree(cancers ~.,data=Genedat) 

We can get an overall summary of the tree procedure: 

 > summary(MA.tr) 

 

Classification tree: 

tree(formula = cancers ~ ., data = Genedat) 

Variables actually used in tree construction: 

[1] "X5680" "X4831" "X2838" "X3234" 

Number of terminal nodes:  8  

Residual mean deviance:  2.1 = 103 / 49  

Misclassification error rate: 0.439 = 25 / 57 

And we can plot the tree, which uses these commands.  The graph is given in 

Figure 16.13. 

> plot(MA.tr) 

> # Add labels to the splits 

> text(MA.tr) 
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|X5680 < -0.070039

X4831 < -0.055

X2838 < 0.105039

X3234 < -0.08

X2838 < 0.13002 X5680 < 0.12498

X5680 < 0.514981

COLON

BREASTOVARIAN

NSCLC BREASTMELANOMA

RENAL RENAL
 

Figure 16.13 Classification Tree for Gene Expression Data 

Hastie et al. (2001) delves much further into creating clasification trees. We can 

assess the predictive power of a tree using cross-validation as described 

previously. The relevant command here is cv.tree.  Interested users should 

familiarize themselves with this functionality. 

Classification trees have their natural counterpart in regression analysis where 

the variable to be predicted is continuous.  Here the method is called regression 

trees.  The commercially available computer software CART (Classification and 

Regression trees) is a full-fledged stand-alone package for tree-based analyses.  

The R package rpart provides functionality for both, classification and 

regression trees. 

Clustering Methods 

Clustering of data is usually a first step in organizing a multivariate dataset. 

Clustering is common in everyday life. Let’s say you purchased a new bookshelf 

that holds 100 of your books.  How do you arrange your books on the new 

shelf?  You obviously want to place the books that are similar next to each other, 

and those that are dissimilar far from each other.  In such a way you create 

groups, or clusters of books, where books within a cluster are similar.  Now, 

how do you define similar?  You may form groups based on qualifiers (nominal 

variables) like fiction, essays, or others, or educational books versus leisure 

reading.   Or you may use quantitative characteristics such as book size, 

thickness, etc.  In the end you are likely to have used several characteristics for 

determining the clusters, and you will have switched several books back and 

forth between different clusters (i.e. places on the shelf).  The final outcome will 

depend on what “measures of similarity” or “dissimilarity” you have used.   
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A basic reality of clustering is the fact that for even a small number of items to 

be grouped, there are thousands of possible ways to cluster – that’s why 

“cleaning house” can be so frustrating!  In fact the number of possible clusters 

of k items is 2k – 1, a number that grows exponentially with k.  

Number of possible clusters of k items 

# items 2 4 6 8 10 12 

#clusters 3 15 63 255 1023 4095 

# items 14 16 18 20 22 24 

#clusters 16383 65535 262143 1048575 4194303 16777215 

Obviously we need computers to check through so many possible solutions.  But 

even with today’s high-speed computers, it is still a computational challenge to 

repeatedly check and sort billions of possible clusters.  Clustering techniques 

have been developed as clever algorithms that make it possible for the computer 

to arrive at an optimal set of clusters without having to repeatedly check and 

count through all possible clusters.  There are two broad categories of clustering 

techniques.  In the first, called hierarchical clustering, the number of clusters is 

determined hierarchically either going from smallest to largest clusters 

(agglomerative) or from largest to smallest (divisive).  In the second, which can 

be called non-hierarchical clustering, the number (k) of clusters is predetermined 

and one simply finds the best possible partition of the samples into k clusters.  

Measures of Dissimilarity 

A clustering of a data is considered optimal if samples within clusters are as 

similar as possible, and samples between clusters are as dissimilar as possible.  

We first need to define what we use as measure of similarity, or dissimilarity 

.Let’s do a mini-microarray hypothetical experiment.  We are looking at six 

genes and the expression of these genes under treatment and control conditions.  

Scores below are standardized expression scores. 

 

 

 

 

Gene Treatment Control 

G1 0.5 0.5 
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G2 0.2 0.8 

G3 0.3 0.4 

G4 0.9 0.2 

G5 -0.5 0.5 

G6 0.3 -0.5 

 

The data are plotted in Figure 16.14.   
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Figure 16.14 Toy Example of Gene Expression 

The R package mva provides basic functionality for obtaining dissimilarity 

measures and for traditional clustering methods.  For continuous data 

dissimilarity is measured using traditional distance metrics, the most obvious 

one being the Euclidean (geometric) distance.  For genes x and y this is: 

Euclidean Distance: 

( ) ( ) ( ) ( )
22 2 2

1 1 2 2

1

, ... ( )
p

p p i i

i

d x y x y x y x y
=

= − + − + + − = −∑x y  

In our case, we only have two variables, so p=2, and for genes 4 and 6 the 

distance is  

( ) ( )
2 2

( 4, 6) 0.9 0.3 0.2 ( 0.5) 0.36 0.49 0.922d G G = − + − − = + =  

The R command dist creates a lower triangular matrix of pairwise distances.. 
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> library(mva) 

> genes <- cbind(c(.5,.8,.4,.2,.5,-.5),c(.5,.2,.3,.9,-.5,.3)) 

> # Euclidean Distances 

> dist(genes) 

       1      2      3     4     5 

2 0.4243                           

3 0.2236 0.4123                    

4 0.5000 0.9220 0.6325             

5 1.0000 0.7616 0.8062 1.432       

6 1.0198 1.3038 0.9000 0.922 1.281 

Two other popular distance metrics used for clustering are the city block, or 

Manhattan distance (or L1 norm) and the max component distance.  

In R, simply indicate the distance type in a subcommand inside dist.  Any 

recognizable abbreviation is sufficient.  The following shows the distances 

between the six genes using these two alternative metrics.  

> # Manhattan Distances 

> dist(genes,'manh') 

    1   2   3   4   5 

2 0.6                 

3 0.3 0.5             

4 0.7 1.3 0.8         

5 1.0 1.0 0.9 1.7     

6 1.2 1.4 0.9 1.3 1.8 

 

> # Max Component Distances 

> dist(genes,'max') 

    1   2   3   4 5 

2 0.3               

3 0.2 0.4           

4 0.4 0.7 0.6       

5 1.0 0.7 0.8 1.4   

6 1.0 1.3 0.9 0.7 1 

  

K-means Clustering 

K-means clustering is probably the most widely used non-hierarchical clustering 

method in biological applications.  The major advantage of this type of 

clustering comes from computational efficiency.  Because K-means clustering 

does not require initial computation of a large distance matrix stored during the 

computer run, it is computationally efficient on a large dataset.  As the name 

suggests, the aim is to optimally assign n data points to k clusters (k < n) where 

optimal means that each point belongs to the cluster whose mean it is closest to 

with respect to a chosen dissimilarity metric. The number of clusters (k) is a 

fixed number and needs to be selected prior to the cluster calculation.  

Mathematically, K-means clustering works in a three steps algorithm:   
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• First, decide on the number k of clusters to be calculated, and then separate 

the data arbitrarily into k initial clusters.  Calculated the centroid (=mean 

value or center) coordinates for every cluster selected 

• Second, check through the data, assigning each data item to the cluster 

whose centroid is nearest (based on a distance metric).  If a data item needs 

reassignment, create new clusters and recalculate the centroid coordinates 

for the clusters losing and gaining items.   

• Third, repeat the second step until no more reassignment takes place.   

There exist slight variations to this algorithm.  In some versions the new 

centroid coordinates are calculated only after all data points have been checked 

and possibly reassigned.  The R command kmeans is part of the package mva. 

> clus <- kmeans(genes, 2, 20) 

> # Note: the second number (20) denotes the number of iterations 

> clus  

 

$cluster 

[1] 2 1 2 2 1 2 

 

$centers 

  [,1]  [,2] 

1 0.65 -0.15 

2 0.15  0.50 

 

$withinss 

[1] 0.29 0.85 

 

$size 

[1] 2 4 

 

> plot(genes, pch = clus$cluster,xlab='control',ylab='treatment') 

> # Plot Cluster Centers 

> points(clus$centers,pch=8) 

 

 

 Cluster 2 

 Cluster 1  
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Figure 16.15. K means clustering of 6 Genes.( ∗ denotes 

cluster means) 

We can see by eye from that all 6 genes are closest (in Euclidean distance) to 

their respective cluster means.  

K-Medoid Clustering 

Euclidean distances that are used for clustering as in the K-means procedure are 

very sensitive to extreme observations and outliers.  Furthermore, the within - 

cluster means that are used as centroids are equally sensitive to outliers.  Many 

so-called robust alternatives have been suggested, but they tend to be heavy on 

the computing requirement.  The R package cluster is a suite of robust 

clustering methods for the most part based on the text by Kaufman and 

Rousseeuw (1990).  Furthermore the graphics capabilities provided by cluster 

are quite impressive.  This package is highly recommended as an add-on to the 

standard mva package.  

In univariate statistics the sample median, or the middle observation, is often 

considered as a robust alternative to the sample mean.  The median is 

insensitive, or robust, to outliers, no matter how extreme an outlier.  The sample 

mean minimizes the sum of the squared distances (i.e. squared Euclidean 

distance) to the data points, while the median minimizes the sum of the absolute 

differences (L1 metric) to the data points.  For clustering of p-dimensional data 

we consider so-called medoids as centers for the clusters.  A medoid of a set of 

data points in p-space is the one data point for which the sum of the 

dissimilarities with all the other points is at a minimum.  Medoids can be 

defined for any distance metric, but usually the Manhattan metric is chosen in 

order to reduce the influence of potential outliers.   

The command pam in the package cluster, that is an acronym for “partition 

using medoids”, performs k-medoid clustering.  The input for the command can 

be either a data matrix or, instead, a distance matrix.  Also the command 

provides the option (stand = TRUE )of using standardized data.  Standardizing 

variables is highly recommended when the variables represent measurements 

that do not have a common natural scale.  Data are standardized by subtracting 

each variable's mean value and by dividing by the variable's mean absolute 

deviation.  

Hierarchical Clustering 

In most large data in bioinformatics, such as in gene expression microarrays, 

there is no a-priori information as to what the number of clusters should be.  For 

exploring structure in such data the biologist will perform a sequence of 
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clustering calculations from small to large number of clusters.  It is much easier 

to interpret results if clusters of a finer partition are restricted to be subclusters 

of those of a coarser partition.  Such a restriction results in what is called 

hierarchical clustering.  Because of the hierarchy results can be displayed in a 

tree-like fashion, called a dendrogram.   

There are two ways to do hierarchical clustering: (1) from small to large (so-

called agglomerative), and (2) from large to small (so-called divisive).  

Agglomerative clustering starts with each data point being a one-point cluster.  

Clusters are then successively combined until ultimately all data reside in a 

single big cluster.  Divisive clustering proceeds in the opposite way, starting 

with a single big cluster, and then optimally dividing clusters into subclusters, 

until ultimately each data point forms a separate one-point cluster.  The question 

of course arises as to when to stop the procedure.  The y axis of the dendrogram 

is the height, and usually measures the distance between the two clusters that are 

formed by the split.  Therefore it is best to stop before branches in successive 

splits become crowded over short distances.   

Agglomerative hierarchical clustering 

The first thing in agglomerative clustering is to choose a dissimilarity measure, 

such as Euclidean or Manhattan. At any given step in the algorithm, all pairs of 

dissimilarities between clusters are examined, and the pair of clusters with 

smallest dissimilarity will be joined to form a single cluster.  There are a variety 

of dissimilarities between clusters that we can choose from.  These are 

commonly called the methods of linkage. The most common linkages are (1) 

average, (2) single, (3) complete, (4) Ward linakge.  In the average linkage 

method the distance between two clusters is the average of the dissimilarities 

between the points in one cluster and the points in the other cluster.  In the 

single linkage method, we use the smallest dissimilarity between a point in the 

first cluster and a point in the second cluster.  In the complete linkage method, 

we use the largest dissimilarity between a point in the first cluster and a point in 

the second cluster.  The Ward linkage method uses sums of squared deviations 

from the mean within clusters as a criterion.  The following graph illustrates the 

first three different linkage methods 
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Figure 16.16: Linkage Methods for Hierarchical Clustering 

We examine the different linkage methods for the sleep data.  We use the R 

command agnes (“agglomerative nesting”) of the cluster library.  We note 

that agnes is virtually identical to the command hclust of the mva package but 

is more convenient to use when standardization of the data is necessary.  The 

choice of measurement units strongly affects the resulting clustering. The 

variable with the largest variance will have the largest impact on the clustering. 

If all variables are considered equally important, the data need to be 

standardized first.  The plot command provides two graphs, (1) banner plot, (2) 

dendrogram.  We find the dendrogram more useful.  It is obtained using the 

which=2 option.  Without the which option R plots both graphs in sequence with 

a interactive stop in between.  We display dendrograms of the clustering that 

results from the three linkage methods average, complete, and single.  Ordinarily 

the rownames of the data are used as labels in the dendrogram.  In order to avoid 

cluttering we create simple numberings for labels.  

> # Agglomerative Hierarchical Clustering using number labels 

> n <- nrow(sleep1) 

> row.names(sleep1) <- 1:n 

> cl1 <- agnes(sleep1[,-1],method='aver',metric='eucl',stand=T) 

> cl2 <- agnes(sleep1[,-1],method='comp',metric='eucl',stand=T) 

> cl3 <- agnes(sleep1[,-1],method='sing',metric='eucl',stand=T) 

> plot(cl1,which=2,main="Average Linkage") 

> plot(cl2,which=2,main="Complete Linkage") 

> plot(cl3,which=2,main="Single Linkage") 



 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

318 

1
1
1 2
5

3
5 1
0

2
7

2
6

4
3 3
8 3

4
7 3
3 1
4 7

3
9 2
3

2
1

3
6

1
2

8
2
8 3
4

2
9

4
4 3
7

2
5

4
0

4
1

4
5 1
5

1
9 9

4
2 1
7 2
2

4
6

1
8

2
0 3

1
4
6 2
4

3
2

1
3

1
6

4
8 3
00

1
2

3
4

Average Linkage

Agglomerative Coeff icient =  0.91

H
e
ig

h
t

1
1
1 2
5

3
5

1
5

1
9

2
5

4
0

4
1

4
5 9

4
2 1
7 2
2 3

4
7 1
4

3
3 7

3
9 2
3

2
1

3
6

1
2

8
2
8 3
4

1
0

2
7

2
6

4
3 3
8

2
9

4
4 3
7

4
6

1
8 2
0 3
1

4
6 2
4

3
2

1
3

1
6

4
8 3
0

0
2

4
6

Complete Linkage

Agglomerative Coeff icient =  0.93

H
e
ig

h
t

1
1
1 2
5

3
5 1

0
2
7

2
6

4
3 3
8 3

4
7 3
3 1
4

7
3
9 2
3

2
1

3
6

8
2
8 3
4

2
9

4
4 3
7 5

4
0

1
5

1
9

4
1

4
5 9
4
2

1
7

2
2

1
2

6
1
8 2
0

3
1

4
6

4 2 2
4

3
2

1
3

1
6

4
8 3

0

0
.0

1
.0

Single Linkage

Agglomerative Coeff icient =  0.8

H
e
ig

h
t

 

Figure 16.17.  Agglomerative Clustering of Sleep Data using 

Three Different Linkage Methods 

Divisive Hierarchical Clustering 

Divisive clustering basically works in the opposite direction of agglomerative 

clustering.  For a given dissimilarity metric the algorithm begins with a single 

cluster for the entire data set.  In subsequent steps clusters are divided into sub-

clusters.  There are many different possibilities for dividing clusters, and hence 

many different algorithms exist.  At any given stage, which cluster should be 

divided next?  The R command diana of the library cluster chooses at each 

stage the cluster with the largest diameter, which is the largest dissimilarity 

between any two of its observations.  For this cluster it then isolates the point 

that is farthest away from all the other points within the clusters.  This point will 

initiate the new cluster split.  Then more points will be aggregated to this new 

cluster, if they are closer in distance to this new cluster than to the old cluster, 

until no more such points are found.  The command diana works just as the 

other commands in the cluster library, such as agnes: It takes as input a data 

matrix or data frame, or instead a dissimilarity matrix, and has options for 

metric, and for standardization.  The plot command provides banner plot and 

dendrogram (see discussion above).   
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17 

Going Further 

When the first manuscript of this book was written it was possible to write a 

summary chapter with an overview of R’s specific functionality for biological 

applications.  In the past 5 years since the inception of this book (which 

originated as a contract in the bioinfomatics series at a major publisher, which 

had financial problems and cancelled the series) the number of R applications 

has exploded.  It is not possible to do justice to R’s diverse capabilities in a few 

pages and another book (which if time permits, I may write) is necessary to 

illustrate these capacities.  There are some books out there already, mostly for 

microarray applications.    

In addition on the CRAN website there is now a section called “Task Views” 

which includes a genetics section, listing and explaining several packages of 

interest to biological researchers.  The reader should install interesting packages 

and run the examples in them to explore functionality of R of interest. 
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Resources for Further Study 

This is a list of some of the reference material I used in preparing this 

manuscript. 

 

R and S-Plus  

Introductory Statistics with R. P. Dalgaard. Springer. Covers material typical of 

an introductory statistics course, using R for examples.  Assumes no advanced 

mathematics beyond algebra. 

Mixed Effects Models in S and S-Plus. J. C. Pinheiro, D. M. Bates. Springer. An 

advanced title covering liner and nonlinear mixed effect models. 

Modern Applied Statistics with S, 4
th
 Ed..  B.D. Ripley and V.N.Venables.  

Springer.  A more advanced book using S.  Emphasis on linear models and 

multivariate data analysis. Includes some coverage of R but more specific to S-

Plus.  

S Programming. B.D. Ripley and V.N.Venables.  Springer. For more advanced 

users interested in programming. 

General Probability and Statistics  

Note that there are many suitable books on general probability and statistics, 

these are just some examples. 

The Cartoon Guide to Statistics L. Gonick, and W. Smith. Harper-Collins.  A 

beginner’s introduction to statistical concepts. 

How to Think About Statistics, 6
th

 Ed. J.L. Philips. W.H.Freeman.  

Nonmathematical conceptual introduction to statistics. 
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Mathematical Statistics and Data Analysis, 2nd Ed. J.A. Rice. Duxbury. 

Commonly used text on inferential statistics.  Mathematically advanced 

(calculus based). 

Probability and Statistics for Engineering and the Sciences, 5
th

 Ed. J. L. Devore. 

Duxbury.  Written at the level of (very) elementary calculus. Accompanying 

dataset available formatted for R. 

Probability and Statistical Inference, 6
th

 Ed. R.V.Hogg and E. Tanis. 

Intermediate-level classic text (requires some calculus background but not as 

advanced as most calculus-based texts). 

Probability Theory 

A First Course in Probability, 6
th

 Ed. S. Ross. Prentice-Hall. Easy to understand 

comprehensive elementary text on probability models and theory. 

Introduction to Probability Theory and Its Application, 3
rd

 Ed. W. Feller. Wiley. 

Classic text. 

Schaum's Outline of Probability. S. Lipschutz. McGraw-Hill Professional. An 

inexpensive review of probability. 

Bayesian Statistics  

Bayesian Data Analysis, 2nd Ed. A. Gelman, D. B. Rubin, H. S. Stern.  CRC 

Press. A standard text for Bayesian statistics courses.  Mathematically advanced. 

Bayesian Methods: A Social and Behavioral Sciences Approach. J. Gill. CRC 

Press.  Although written for social scientists, presents understandable coverage 

of Bayesian statistics. 

Statistics: A Bayesian Perspective. D.A. Berry. Duxbury. Algebra-based 

introductory probability and statistics using Bayesian theory.   

Markov Chains  

Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. D. 

Gamerman. CRC Press.  Short but complete coverage of the theory of MCMC.  

Mathematically advanced. 
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Markov Chain Monte Carlo in Practice.  W. R. Gilks, D. J. Spiegelhalter and S. 

Richardson. CRC Press.  Introductory text containing examples from various 

fields. 

Monte Carlo Statistical Methods. C. P. Robert, and G. Casella. Springer-Verlag. 

Graduate-level text includes extensive coverage of Markov Chains. 

Nonparametric Statistics 

Nonparametric statistics provides many inferential tests that can be used with 

discrete data. 

Practical Nonparametric Statistics, 3rd Ed. W.J. Conover. Wiley.  Classic text 

on nonparametric methods.  Written at the level of algebra and very 

understandable. 

Experimental Design 

Design of experiments is important for microarray experimental setup and 

design, as well as useful for anyone involved in any type of scientific 

experimentation. 

 Design and Analysis of Experiments. 5thEd.  D. C. Montgomery. Wiley.  Wiley.  

Comprehensive DOE text for science and engineering. 

Design of Experiments: Statistical Principles of research Design and Analysis, 

2
nd

 Ed. R. O. Kuehl. Duxbury. Comprehensive introductory DOE text. 

Regression and Linear Modeling 

Applied Linear Statistical Models. Kutner et al. Advanced undergraduate level 

text contains coverage of regression, ANOVA, experimental design and liner 

models. 

Applied Regression Analysis and Other Multivariable Methods, 3
rd

 Ed. 

Kleinbaum et al. Common college regression analysis text. 

Generalized Linear Models, 2
nd

 Ed. J.A. Nelder and P. McCullagh. CRC Press. 

Graduate level text on GLMs. 
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Multivariate Statistics 

Applied Multivariate Statistical Analysis, 5
th

 Ed.  R.A. Johnson and D.W. 

Wichern.  Pearson Education. One of the classic and widely used texts for 

introductory multivariate statistics.  Written at a reasonable mathematical level. 

The Elements of Statistical Learning: Data Mining, Inference, and Prediction.  

T. Hastie, R. Tibshirani, and J. Friedman.  Springer.  Widely used title 

emphasizing supervised learning techniques.  Contains numerous examples 

using gene expression data.  Mathematically sophisticated yet accessible to non-

mathematicians. 

Multivariate Statistical Analysis: A Conceptual Introduction. S. K. Kachigan. 

Radius. Conceptual (no math required) coverage of multivariate techniques. 

Using Multivariate Statistics, 4
th

 Ed.. B. G. Tabachnick and L. S. Fidell. Perason 

Education.  Comprehensive multivariate text. 

Bioinformatics 

Bioinformatics: Sequence and Genome Analysis. Mount. Cold Spring Harbor 

Press. In-depth coverage of protein and DNA sequence analysis. 

Bioinformatics for Dummies. J.M.Claverie and C.Notredame.  For Dummies.  

Non-technical introduction to bioinformatics. 

Developing Bioinformatics Computer Skills. C.Gibas and P. Jambeck. OReilly.  

A Primer of Genome Science. G.Gibson and S.V.Muse. Sinauer.  Covers the 

empirical side of bioinformatics, including genome projects, sequencing, 

microarrays, and proteomics.  Introductory level. 

Statistical Methods in Bioinformatics: An Introduction. W.J.Ewens and G.R. 

Grant.  Springer. Mathematically sophisticated coverage of statistics with 

applied bioinformatics examples. 

Quantitative Genetics 

Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics. D. 

Sorensen and D. Gianola.  Springer.  Mathematically advanced coverage of 

quantitative genetics.  



 

Copyright May 2007, K Seefeld 

Permission granted to reproduce for nonprofit, educational use. 

324 

Molecular Dissection of Complex Traits. A.H. Paterson (Ed.). CRC Press.  

Comprehensive coverage of QTL analysis. 

Microarrays 

Statistical Analysis of Gene Expression Microarray Data. T. P. Speed (Ed). 

Chapman & Hall. Collection of essays by microarray authorities. 

The Analysis of Gene Expression Data. G. Parmigiani (Ed) et al. Springer. 

Covers various statistical tools for microarray analysis, including R. 
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