MATLAB ® / R Reference May 25, 2010

David Hiebeler Dept. of Mathematics and Statistics University of Maine Orono, ME 04469-5752 http://www.math.umaine.edu/~hiebeler

I wrote the first version of this reference during the Spring 2007 semester, as I learned R while teaching my Modeling & Simulation course at the University of Maine. The course covers population and epidemiological modeling, including deterministic and stochastic models in discrete and continuous time, along with spatial models. Half of the class meetings are in a regular classroom, and half are in a computer lab where students work through modeling & simulation exercises. When I taught earlier versions of the course, it was based on MATLAB only. In Spring 2007, some biology graduate students in the class who had learned R in statistics courses asked if they could use R in my class as well, and I said yes. My colleague Bill Halteman was a great help as I frantically learned R to stay ahead of the class. As I went, every time I learned how to do something in R for the course, I added it to this reference, so that I wouldn't forget it later. Some items took a huge amount of time searching for a simple way to do what I wanted, but at the end of the semester, I was pleasantly surprised that almost everything I do in MATLAB had an equivalent in R. I was also inspired to do this after seeing the "R for Octave Users" reference written by Robin Hankin. I've continued to add to the document, with many additions based on topics that came up while teaching courses on Advanced Linear Algebra and Numerical Analysis.

This reference is organized into general categories. There is also a MATLAB index and an R index at the end, which should make it easy to look up a command you know in one of the languages and learn how to do it in the other (or if you're trying to read code in whichever language is unfamiliar to you, allow you to translate back to the one you are more familiar with). The index entries refer to the item numbers in the first column of the reference document, rather than page numbers.

Any corrections, suggested improvements, or even just notification that the reference has been useful are appreciated. I hope all the time I spent on this will prove useful for others in addition to myself and my students. Note that sometimes I don't necessarily do things in what you may consider the "best" way in a particular language. I often tried to do things in a similar way in both languages, and where possible I've avoided the use of MATLAB toolboxes or R packages which are not part of the core distributions. But if you believe you have a "better" way (either simpler, or more computationally efficient) to do something, feel free to let me know.

Acknowledgements: Thanks to Alan Cobo-Lewis and Isaac Michaud for correcting some errors; and Robert Bryce, Thomas Clerc, Richard Cotton, Stephen Eglen, Andreas Handel, Niels Richard Hansen, David Khabie-Zeitoune, Michael Kiparsky, Andy Moody, Ben Morin, Lee Pang, Manas A. Pathak, Rachel Rier, Rune Schjellerup Philosof, and Corey Yanofsky for contributions.

Permission is granted to make and distribute verbatim copies of this manual provided this permission notice is preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation.

Contents

1	Help	3			
2	Entering/building/indexing matrices 2.1 Cell arrays and lists 2.2 Structs and data frames	3 6 6			
3	Computations 3.1 Basic computations 3.2 Complex numbers 3.3 Matrix/vector computations 3.4 Root-finding 3.5 Function optimization/minimization 3.6 Numerical integration / quadrature 3.7 Curve fitting	6 7 8 14 14 15 16			
4	Conditionals, control structure, loops	17			
5	Functions, ODEs	21			
6	Probability and random values	23			
7	Graphics 7.1 Various types of plotting	27 27 35 36			
8	Working with files	37			
9	Miscellaneous 9.1 Variables 9.2 Strings and Misc.	38 38 39			
10) Spatial Modeling	42			
In	ndex of MATLAB commands and concepts 43				
In	ndex of R commands and concepts 48				

1 Help

No.	Description	Matlab	R
1	Show help for a function (e.g.	help sqrt, or helpwin sqrt to see	help(sqrt) or ?sqrt
	$\mathbf{sqrt})$	it in a separate window	
2	Show help for a built-in key-	help for	help('for') or ?'for'
	word (e.g. for)		
3	General list of many help top-	help	library() to see available libraries,
	ics		or library(help='base') for very
			long list of stuff in base package which
			you can see help for
4	Explore main documentation	doc or helpbrowser (previously it	help.start()
	in browser	was helpdesk, which is now being	
		phased out)	
5	Search documentation for	lookfor binomial	help.search('binomial')
	keyword or partial keyword		
	(e.g. functions which refer to		
	"binomial")		

2 Entering/building/indexing matrices

No.	Description	Matlab	R
6	Enter a row vector $\vec{v} =$	v=[1 2 3 4]	v=c(1,2,3,4) or alternatively
	$\left[\begin{array}{rrrrr}1 & 2 & 3 & 4\end{array}\right]$		v=scan() then enter "1 2 3 4" and
			press Enter twice (the blank line
	[1]		terminates input)
7	Enter a column vector $\begin{bmatrix} 1\\ 2\\ 3\\ 4 \end{bmatrix}$	[1; 2; 3; 4]	c(1,2,3,4)
			(R does not distinguish between row and column vectors.)
8	Enter a matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$	[1 2 3 ; 4 5 6]	To enter values by row: matrix(c(1,2,3,4,5,6), nrow=2, byrow=TRUE) To enter values by column: matrix(c(1,4,2,5,3,6), nrow=2)
9	Access an element of vector ${\bf v}$	v(3)	v[3]
10	Access an element of matrix	A(2,3)	A[2,3]
	A		
11	Access an element of matrix	A(5)	A[5]
	A using a single index: in-		
	dices count down the first col-		
	umn, then down the second		
	column, etc.		
12	Build the vector $\begin{bmatrix} 2 & 3 & 4 & 5 & 6 & 7 \end{bmatrix}$	2:7	2:7
13	Build the vector $[7\ 6\ 5\ 4\ 3\ 2]$	7:-1:2	7:2
14	Build the vector $\begin{bmatrix} 2 & 5 & 8 & 11 & 14 \end{bmatrix}$	2:3:14	seq(2,14,3)

No.	Description	Matlab	R
15	Build a vector containing n equally-spaced values be- tween a and b inclusive	linspace(a,b,n)	<pre>seq(a,b,length.out=n) or just seq(a,b,len=n)</pre>
16	Build a vector containing n logarithmically equally- spaced values between 10^a and 10^b inclusive	logspace(a,b,n)	10 ^{seq(a,b,len=n)}
17	Build a vector of length k containing all zeros	<pre>zeros(k,1) (for a column vector) or zeros(1,k) (for a row vector)</pre>	rep(0,k)
18	Build a vector of length k containing the value j in all positions	<pre>j*ones(k,1) (for a column vector) or j*ones(1,k) (for a row vector)</pre>	rep(j,k)
19	Build an $m \times n$ matrix of zeros	zeros(m,n)	<pre>matrix(0,nrow=m,ncol=n) or just matrix(0,m,n)</pre>
20	Build an $m \times n$ matrix con- taining j in all positions	j*ones(m,n)	<pre>matrix(j,nrow=m,ncol=n) or just matrix(j,m,n)</pre>
21 22	$n \times n$ identity matrix I_n Build diagonal matrix A us- ing elements of vector v as di- agonal entries	eye(n) diag(v)	<pre>diag(n) diag(v,nrow=length(v)) (Note: if you are sure the length of vector v is 2 or more, you can simply say diag(v).)</pre>
23	Extract diagonal elements of matrix A	v=diag(A)	v=diag(A)
24	"Glue" two matrices a1 and a2 (with the same number of rows) side-by-side	[a1 a2]	cbind(a1,a2)
25	"Stack" two matrices a1 and a2 (with the same number of columns) on top of each other	[a1; a2]	rbind(a1,a2)
26	Given vectors \mathbf{x} and \mathbf{y} of lengths m and n respectively, build $n \times m$ matrices \mathbf{X} whose rows are copies of \mathbf{x} and \mathbf{Y} whose columns are copies of \mathbf{y}	<pre>[X,Y]=meshgrid(x,y)</pre>	<pre>m=length(x); n=length(y); X=matrix(rep(x,each=n),nrow=n); Y=matrix(rep(y,m),nrow=n)</pre>
27	Reverse the order of elements in vector \mathbf{v}	v(end:-1:1)	rev(v)
28	Column 2 of matrix \mathbf{A}	A(:,2)	A[,2] Note: that gives the result as a vector. To make the result a $m \times 1$ matrix instead, do A[,2,drop=FALSE]
29	Row 7 of matrix \mathbf{A}	A(7,:)	A[7,] Note: that gives the result as a vector. To make the result a $1 \times n$ matrix instead, do A[7,,drop=FALSE]
30	All elements of \mathbf{A} as a vector, column-by-column	A(:) (gives a column vector)	c(A)
31	Rows 2–4, columns 6–10 of \mathbf{A} (this is a 3×5 matrix)	A(2:4,6:10)	A[2:4,6:10]
32	A 3×2 matrix consisting of rows 7, 7, and 6 and columns 2 and 1 of A (in that order)	A([7 7 6], [2 1])	A[c(7,7,6),c(2,1)]
33	Circularly shift the rows of matrix A down by s_1 ele- ments, and right by s_2 ele- ments	<pre>circshift(A, [s1 s2])</pre>	<pre>No simple way, but modulo arithmetic on indices will work: m=dim(A)[1]; n=dim(A)[2]; A[(1:m-s1-1)%/m+1, (1:n-s2-1)%/n+1]</pre>

No.	Description	Matlab	R
34	Flip the order of elements in	fliplr(A)	t(apply(A,1,rev))
	each row of matrix A	1	
35	Flip the order of elements in	flipud(A)	apply(A,2,rev)
	each column of matrix A		
36	Given a single index ind into		
	an $m \times n$ matrix A , compute	<pre>[r,c] = ind2sub(size(A), ind)</pre>	r = ((ind-1) %% m) + 1
	the row ${\bf r}$ and column ${\bf c}$ of		c = floor((ind-1) / m) + 1
	that position (also works if		
	ind is a vector)		
37	Given the row \mathbf{r} and column		
	c of an element of an $m \times n$	<pre>ind = sub2ind(size(A), r, c)</pre>	ind = (c-1)*m + r
	matrix \mathbf{A} , compute the single		
	index ind which can be used to access that element of A		
	(also works if r and c are vectors)		
38	Given equal-sized vectors r		
	and \mathbf{c} (each of length k), set		
	elements in rows (given by \mathbf{r})	<pre>inds = sub2ind(size(A),r,c);</pre>	inds = $cbind(r,c)$
	and columns (given by \mathbf{c}) of	A(inds) = 12;	A[inds] = 12
	matrix \mathbf{A} equal to 12. That		
	is, k elements of A will be		
	modified.		
39	Truncate vector \mathbf{v} , keeping	v = v(1:10)	v = v[1:10], or length(v) = 10
	only the first 10 elements		also works
40	Extract elements of vector ${\bf v}$	v(a:end)	v[a:length(v)]
	from position a to the end		
41	All but the k^{th} element of	v([1:(k-1) (k+1):end])	v[-k]
10	vector v		
42	All but the j^{th} and k^{th} ele-	No simple way? Generalize the pre-	v[c(-j,-k)]
49	ments of vector v	vious item	
43	Reshape matrix A , making it an $m \times n$ matrix with ele-	A = reshape(A,m,n)	$\dim(A) = c(m,n)$
	an $m \times n$ matrix with ele- ments taken columnwise from		
	the original A (which must		
	have mn elements)		
44	Extract the lower-triangular	L = tril(A)	L = A; L[upper.tri(L)]=0
	portion of matrix A		
45	Extract the upper-triangular	U = triu(A)	U = A; U[lower.tri(U)]=0
	portion of matrix A		
46	Enter $n \times n$ Hilbert matrix H	hilb(n)	Hilbert(n), but this is part of the
	where $H_{ij} = 1/(i + j - 1)$		Matrix package which you'll need to
			install (see item 331 for how to in-
			stall/load packages).
47	Enter an n -dimensional array,	reshape(1:24, 3, 4, 2) or	array(1:24, c(3,4,2)) (Note that
	e.g. a $3 \times 4 \times 2$ array with the	reshape(1:24, [3 4 2])	a matrix is 2-D, i.e. rows and
	values 1 through 24		columns, while an array is more gen-
			erally N -D)

2.1 Cell arrays and lists

No.	Description	Matlab	R
48	Build a vector \mathbf{v} of length \mathbf{n} , capable of containing differ- ent data types in different el- ements (called a <i>cell array</i> in MATLAB, and a <i>list</i> in R)	v = cell(1,n) In general, cell(m,n) makes an $m \times n$ cell array. Then you can do e.g.: v{1} = 12 v{2} = 'hi there' v{3} = rand(3)	<pre>v = vector('list',n) Then you can do e.g.: v[[1]] = 12 v[[2]] = 'hi there' v[[3]] = matrix(runif(9),3)</pre>
49	Extract the i^{th} element of a cell/list vector \mathbf{v}	<pre>w = v{i} If you use regular indexing, i.e. w = v(i), then w will be a 1 × 1 cell matrix containing the contents of the ith element of v.</pre>	<pre>w = v[[i]] If you use regular indexing, i.e. w = v[i], then w will be a list of length 1 containing the contents of the ith element of v.</pre>
50	Set the name of the i^{th} element in a list.	(MATLAB does not have names asso- ciated with elements of cell arrays.)	<pre>names(v)[3] = 'myrandmatrix' Use names(v) to see all names, and names(v)=NULL to clear all names.</pre>

2.2 Structs and data frames

No.	Description	Matlab	R
51	Create a matrix-like object	<pre>avals=2*ones(1,6);</pre>	v=c(1,5,3,2,3,7); d=data.frame(
	with different named columns	yvals=6:-1:1; v=[1 5 3 2 3 7];	cbind(a=2, yy=6:1), v)
	(a <i>struct</i> in MATLAB, or a	d=struct('a',avals,	
	data frame in R)	'yy', yyvals, 'fac', v);	

Note that I (surprisingly) don't use R for statistics, and therefore have very little experience with data frames (and also very little with MATLAB structs). I will try to add more to this section later on.

3 Computations

3.1 Basic computations

No.	Description	Matlab	R
52	a+b, a-b, ab, a/b	a+b, a-b, a*b, a/b	a+b, a-b, a*b, a/b
53	\sqrt{a}	sqrt(a)	sqrt(a)
54	a^b	a^b	a^b
55	a (note: for complex ar-	abs(a)	abs(a)
	guments, this computes the		
	modulus)		
56	e^a	exp(a)	exp(a)
57	$\ln(a)$	log(a)	log(a)
58	$\log_2(a), \log_{10}(a)$	log2(a), log10(a)	log2(a), log10(a)
59	$\sin(a), \cos(a), \tan(a)$	sin(a), cos(a), tan(a)	<pre>sin(a), cos(a), tan(a)</pre>
60	$\sin^{-1}(a), \cos^{-1}(a), \tan^{-1}(a)$	asin(a), acos(a), atan(a)	asin(a), acos(a), atan(a)
61	$\sinh(a), \cosh(a), \tanh(a)$	<pre>sinh(a), cosh(a), tanh(a)</pre>	<pre>sinh(a), cosh(a), tanh(a)</pre>
62	$\sinh^{-1}(a), \qquad \cosh^{-1}(a),$	asinh(a), acosh(a), atanh(a)	asinh(a), acosh(a), atanh(a)
	$\tanh^{-1}(a)$		

No.	Description	Matlab	R
63	$n \mod k$ (modulo arithmetic)	mod(n,k)	n %% k
64	Round to nearest integer	round(x)	<pre>round(x) (Note: R uses IEC 60559 standard, rounding 5 to the even digit</pre>
65	Round down to next lowest integer	floor(x)	floor(x)
66	Round up to next largest in- teger	ceil(x)	<pre>ceiling(x)</pre>
67	Sign of x (+1, 0, or -1)	<pre>sign(x) (Note: for complex values, this computes x/abs(x).)</pre>	<pre>sign(x) (Does not work with com- plex values)</pre>
68	Error function $\operatorname{erf}(x) = (2/\sqrt{\pi}) \int_0^x e^{-t^2} dt$	erf(x)	2*pnorm(x*sqrt(2))-1
69	Complementary er- ror function $\operatorname{cerf}(x) =$ $(2/\sqrt{\pi}) \int_x^\infty e^{-t^2} dt = 1\operatorname{-erf}(x)$	erfc(x)	2*pnorm(x*sqrt(2),lower=FALSE)
70	Inverse error function	erfinv(x)	qnorm((1+x)/2)/sqrt(2)
71	Inverse complementary error function	erfcinv(x)	<pre>qnorm(x/2,lower=FALSE)/sqrt(2)</pre>
72	Binomial coefficient $\binom{n}{k} = n!/(n!(n-k)!)$	nchoosek(n,k)	choose(n,k)

Note: the various functions above (logarithm, exponential, trig, abs, and rounding functions) all work with vectors and matrices, applying the function to each element, as well as with scalars.

3.2 Complex numbers

No.	Description	Matlab	R
73	Enter a complex number	1+2i	1+2i
74	Modulus (magnitude)	abs(z)	abs(z) or Mod(z)
75	Argument (angle)	angle(z)	Arg(z)
76	Complex conjugate	conj(z)	Conj(z)
77	Real part of z	real(z)	Re(z)
78	Imaginary part of z	imag(z)	Im(z)

3.3 Matrix/vector computations

No.	Description	Matlab	R
79	Vector dot product $\vec{x} \cdot \vec{y} = \vec{x}^T \vec{y}$	dot(x,y)	<pre>sum(x*y)</pre>
80	Vector cross product $\vec{x} \times \vec{y}$	cross(x,y)	Not in base R, but e.g. the xprod function from the RSEIS package will do it (see item 331 for how to install/load packages)
81	Matrix multiplication AB	A * B	A %*% B
82	Element-by-element multiplication of A and B	A .* B	A * B
83	Transpose of a matrix, A^T	A' (This is actually the complex con- jugate (i.e. Hermitian) transpose; use A.' for the non-conjugate trans- pose if you like; they are equivalent for real matrices.)	t(A) for transpose, or Conj(t(A)) for conjugate (Hermitian) transpose
84	Solve $A\vec{x} = \vec{b}$	A\b Warning: if there is no solution, MATLAB gives you a least-squares "best fit." If there are many solu- tions, MATLAB just gives you one of them.	solve(A,b) Warning: this only works with square invertible matrices.
85	Reduced echelon form of A	rref(A)	${\sf R}$ does not have a function to do this
86	Determinant of \mathbf{A}	det(A)	det(A)
87	Inverse of A	inv(A)	solve(A)
88	Trace of A	trace(A)	<pre>sum(diag(A))</pre>
89	Compute AB^{-1}	A/B	A %*% solve(B)
90	Element-by-element division of A and B	A ./ B	A / B
91	Compute $A^{-1}B$	A∖B	solve(A,B)
92	Square the matrix A	A^2	A %*% A
93	Raise matrix A to the k^{th} power	A^k	(No easy way to do this in R other than repeated multiplication A %*% A %*% A)
94	Raise each element of A to the k^{th} power	A.^k	A^k
95	Rank of matrix A	rank(A)	qr(A)\$rank
96	Set w to be a vector of eigenvalues of A , and V a matrix containing the corresponding eigenvectors	[V,D]=eig(A) and then w=diag(D) since MATLAB returns the eigenvalues on the diagonal of D	<pre>tmp=eigen(A); w=tmp\$values; V=tmp\$vectors</pre>
97	Permuted <i>LU</i> factorization of a matrix	[L,U,P]=lu(A) then the matrices satisfy $PA = LU$. Note that this works even with non-square matrices	tmp=expand(lu(Matrix(A))); L=tmp\$L; U=tmp\$U; P=tmp\$P then the matrices satisfy $A = PLU$, i.e. $P^{-1}A = LU$. Note that the lu and expand functions are part of the Ma- trix package (see item 331 for how to install/load packages). Also note that this doesn't seem to work correctly with non-square matrices. L, U, and P will be of class Matrix rather than class matrix; to make them the latter, instead do L=as.matrix(tmp\$L), U=as.matrix(tmp\$U), and P=as.matrix(tmp\$P) above.

No.	Description	Matlab	R
98	Singular-value decomposi- tion: given $m \times n$ matrix A with rank r , find $m \times r$ matrix P with orthonormal columns, diagonal $r \times r$ matrix S , and $r \times n$ matrix Q^T with orthonormal rows so that $PSQ^T = A$	[P,S,Q]=svd(A,'econ')	<pre>tmp=svd(A); U=tmp\$u; V=tmp\$v; S=diag(tmp\$d)</pre>
99	Schur decomposi- tion of square matrix, $A = QTQ^{H} = QTQ^{-1}$ where Q is unitary (i.e. $Q^{H}Q = I$) and T is upper triangular; $Q^{H} = \overline{Q^{T}}$ is the Hermitian (conjugate) transpose	[Q,T]=schur(A)	<pre>tmp=Schur(Matrix(A)); T=tmp@T; Q=tmp@Q Note that Schur is part of the Matrix package (see item 331 for how to install/load packages). T and Q will be of class Matrix rather than class matrix; to make them the latter, instead do T=as.matrix(tmp@T) and Q=as.matrix(tmp@Q) above.</pre>
100	Cholesky factorization of a square, symmetric, positive definite matrix $A = R^T R$, where R is upper-triangular	R = chol(A)	R = chol(A) Note that chol is part of the Matrix package (see item 331 for how to install/load packages).
101	QR factorization of matrix A , where Q is orthogonal (sat- isfying $QQ^T = I$) and R is upper-triangular	[Q,R]=qr(A) satisfying $QR = A$, or [Q,R,E]=qr(A) to do permuted $QRfactorization satisfying AE = QR$	<pre>z=qr(A); Q=qr.Q(z); R=qr.R(z); E=diag(n)[,z\$pivot] (where n is the number of columns in A) gives permuted QR factorization satisfying AE = QR</pre>
102	Vector norms	norm(v,1) for 1-norm $\ \vec{v}\ _1$, norm(v,2) for Euclidean norm $\ \vec{v}\ _2$, norm(v,inf) for infinity-norm $\ \vec{v}\ _{\infty}$, and norm(v,p) for <i>p</i> -norm $\ \vec{v}\ _p = (\sum v_i ^p)^{1/p}$	R does not have a norm func- tion for vectors; only one for matrices. But the following will work: norm(matrix(v),'1') for 1-norm $\ \vec{v}\ _1$, norm(matrix(v),'1') for infinity-norm $\ \vec{v}\ _{\infty}$, and $\operatorname{sum}(\operatorname{abs}(v)^p)^{(1/p)}$ for <i>p</i> -norm $\ \vec{v}\ _p = (\sum v_i ^p)^{1/p}$
103	Matrix norms	norm(A,1) for 1-norm $ A _1$, norm(A) for 2-norm $ A _2$, norm(A,inf) for infinity-norm $ A _{\infty}$, and norm(A,'fro') for Frobenius norm $(\sum_i (A^T A)_{ii})^{1/2}$	norm(A, '1') for 1-norm $ A _1$, max(svd(A)\$d) for 2-norm $ A _2$, norm(A, 'i') for infinity-norm $ A _{\infty}$, and norm(A, 'f') for Frobenius norm $(\sum_i (A^T A)_{ii})^{1/2}$
104	Condition number cond(A) = $ A _1 A^{-1} _1$ of A, using 1- norm	<pre>cond(A,1) (Note: MATLAB also has a function rcond(A) which computes reciprocal condition estimator using the 1-norm)</pre>	1/rcond(A,'1')
105	Condition number $\operatorname{cond}(A) = A _2 A^{-1} _2$ of A , using 2- norm	cond(A,2)	<pre>kappa(A, exact=TRUE) (leave out the "exact=TRUE" for an esti- mate)</pre>
106	Condition number $\operatorname{cond}(A) = A _{\infty} A^{-1} _{\infty}$ of A , using infinity-norm	<pre>cond(A,inf)</pre>	<pre>1/rcond(A,'I')</pre>

No.	Description	Matlab	R
107	Compute mean of all ele-	<pre>mean(v) for vectors, mean(A(:)) for</pre>	mean(v) or mean(A)
101	ments in vector or matrix	matrices	
108	Compute means of columns	mean(A)	colMeans(A)
100	of a matrix		
109	Compute means of rows of a	mean(A,2)	rowMeans(A)
100	matrix		
110	Compute standard deviation	<pre>std(v) for vectors, std(A(:)) for</pre>	sd(v) for vectors, sd(c(A)) for ma-
	of all elements in vector or	matrices. This normalizes by $n-1$.	trices. This normalizes by $n-1$.
	matrix	Use $std(v, 1)$ to normalize by n .	
111	Compute standard deviations	std(A). This normalizes by $n-1$.	sd(A). This normalizes by $n-1$.
	of columns of a matrix	Use std(A,1) to normalize by n	
112	Compute standard deviations	std(A,0,2) to normalize by $n-1$,	apply(A,1,sd). This normalizes by
	of rows of a matrix	std(A,1,2) to normalize by n	n-1.
113	Compute variance of all ele-	<pre>var(v) for vectors, var(A(:)) for</pre>	<pre>var(v) for vectors, var(c(A)) for</pre>
	ments in vector or matrix	matrices. This normalizes by $n-1$.	matrices. This normalizes by $n-1$.
		Use var(v,1) to normalize by n .	, i i i i i i i i i i i i i i i i i i i
114	Compute variance of columns	var(A) . This normalizes by $n - 1$.	apply(A,2,var). This normalizes by
	of a matrix	Use $var(A,1)$ to normalize by n	n-1.
115	Compute variance of rows of	var(A,0,2) to normalize by $n-1$,	apply(A,1,var). This normalizes by
	a matrix	var(A,1,2) to normalize by n	n-1.
116	Compute covariance for two	cov(v,w) computes the 2×2 co-	cov(v,w)
	vectors of observations	variance matrix; the off-diagonal ele-	
		ments give the desired covariance	
117	Compute covariance matrix,	cov(A)	<pre>var(A) or cov(A)</pre>
	giving covariances between		
	columns of matrix A		
118	Given matrices A and B ,	I don't know of a direct way to	cov(A,B)
	build covariance matrix C	do this in Matlab. But one way is	
	where c_{ij} is the covariance be-	<pre>[Y,X]=meshgrid(std(B),std(A));</pre>	
	tween column i of A and col-	X.*Y.*corr(A,B)	
110	$\operatorname{umn} j \text{ of } B$		
119	Compute Pearson's linear correlation coefficient be-	corr(v, w) Note: v and w must	cor(v,w)
	tween elements of vectors \mathbf{v}	be column vectors. To make it work regardless of whether they	
	and \mathbf{w}	are row or column vectors, do	
	and w	corr $(v(:),w(:))$	
120	Compute Kendall's tau corre-	<pre>corr(v,w,'type','kendall')</pre>	<pre>cor(v,w,method='kendall')</pre>
120	lation statistic for vectors \mathbf{v}	corr(v, w, cype , nonuarr)	(v, w, moonou hondall)
	and \mathbf{w}		
121	Compute Spearman's rho	<pre>corr(v,w,'type','spearman')</pre>	<pre>cor(v,w,method='spearman')</pre>
	correlation statistic for	· · · · · · · · · · · · · · · · · · ·	- <u>r</u> ,
	vectors \mathbf{v} and \mathbf{w}		
122	Compute pairwise Pearson's	corr(A) The 'type' argument may	cor(A) The method argument may
	correlation coefficient be-	also be used as in the previous two	also be used as in the previous two
	tween columns of matrix	items	items
	A		
123	Compute matrix C of pair-	corr(A,B) The 'type' argument	cor(A,B) The method argument
	wise Pearson's correlation co-	may also be used as just above	may also be used as just above
	efficients between each pair of		
	columns of matrices A and B ,		
	i.e. so c_{ij} is the correlation		
	between column i of A and		
	column j of B		

No.	Description	Matlab	R
124	Compute sum of all elements	<pre>sum(v) for vectors, sum(A(:)) for</pre>	<pre>sum(v) or sum(A)</pre>
	in vector or matrix	matrices	
125	Compute sums of columns of matrix	<pre>sum(A)</pre>	colSums(A)
126	Compute sums of rows of ma- trix	sum(A,2)	rowSums(A)
127	Compute product of all ele- ments in vector or matrix	<pre>prod(v) for vectors, prod(A(:)) for matrices</pre>	prod(v) or prod(A)
128	Compute products of columns of matrix	prod(A)	apply(A,2,prod)
129	Compute products of rows of matrix	prod(A,2)	apply(A,1,prod)
130	Compute matrix exponential $e^A = \sum_{k=0}^{\infty} A^k / k!$	expm(A)	expm(Matrix(A)), but this is part of the Matrix package which you'll need to install (see item 331 for how to in- stall/load packages).
131	Compute cumulative sum of values in vector	cumsum(v)	cumsum(v)
132	Compute cumulative sums of columns of matrix	cumsum(A)	apply(A,2,cumsum)
133	Compute cumulative sums of rows of matrix	cumsum(A,2)	<pre>t(apply(A,1,cumsum))</pre>
134	Compute cumulative sum of all elements of matrix (column-by-column)	<pre>cumsum(A(:))</pre>	cumsum(A)
135	Cumulative product of elements in vector \mathbf{v}	<pre>cumprod(v) (Can also be used in the various ways cumsum can)</pre>	<pre>cumprod(v) (Can also be used in the various ways cumsum can)</pre>
136	Cumulative minimum or maximum of elements in vector \mathbf{v}	I don't know of an easy way to do this in MATLAB	cummin(v) or cummax(v)
137	Compute differences between consecutive elements of vec- tor \mathbf{v} . Result is a vector \mathbf{w} 1 element shorter than \mathbf{v} , where element i of \mathbf{w} is ele- ment $i+1$ of \mathbf{v} minus element i of \mathbf{v}	diff(v)	diff(v)
138	Make a vector \mathbf{y} the same size as vector \mathbf{x} , which equals 4 everywhere that \mathbf{x} is greater than 5, and equals 3 every- where else (done via a vector- ized computation).	z = [3 4]; y = z((x > 5)+1)	y = ifelse(x > 5, 4, 3)
139	Compute minimum of values in vector v	min(v)	min(v)
140	Compute minimum of all values in matrix \mathbf{A}	min(A(:))	min(A)
141	Compute minimum value of each column of matrix \mathbf{A}	<pre>min(A) (returns a row vector)</pre>	<pre>apply(A,2,min) (returns a vector)</pre>
142	Compute minimum value of each row of matrix \mathbf{A}	<pre>min(A, [], 2) (returns a column vector)</pre>	<pre>apply(A,1,min) (returns a vector)</pre>

No.	Description	Matlab	R
143	Given matrices \mathbf{A} and \mathbf{B} ,	min(A,B)	pmin(A,B)
	compute a matrix where each		
	element is the minimum of		
	the corresponding elements of		
	\mathbf{A} and \mathbf{B}		
144	Given matrix \mathbf{A} and scalar	min(A,c)	<pre>pmin(A,c)</pre>
	\mathbf{c} , compute a matrix where		
	each element is the minimum		
	of ${\bf c}$ and the corresponding el-		
	ement of \mathbf{A}		
145	Find minimum among all val-	min([A(:) ; B(:)])	min(A,B)
	ues in matrices ${\bf A}$ and ${\bf B}$		
146	Find index of the first time	[y,ind] = min(v)	<pre>ind = which.min(v)</pre>
	min(v) appears in \mathbf{v} , and		
	store that index in ind		
	Note:		

Notes:

- MATLAB and R both have a max function (and R has pmax and which.max as well) which behaves in the same ways as min but to compute maxima rather than minima.
- Functions like exp, sin, sqrt etc. will operate on arrays in both MATLAB and R, doing the computations for each element of the matrix.

No	Description	Matlab	R
No.	-		
147	Number of rows in A	size(A,1)	nrow(A)
148	Number of columns in A	size(A,2)	ncol(A)
149	Dimensions of A , listed in a vector	size(A)	dim(A)
150	Number of elements in vector \mathbf{v}	length(v)	length(v)
151	Total number of elements in matrix A	numel(A)	length(A)
152	Max. dimension of A	length(A)	<pre>max(dim(A))</pre>
153	Sort values in vector \mathbf{v}	sort(v)	sort(v)
154	Sort values in \mathbf{v} , putting sorted values in \mathbf{s} , and indices in \mathbf{idx} , in the sense that $\mathbf{s}[\mathbf{k}]$ = $\mathbf{x}[\mathbf{idx}[\mathbf{k}]]$	[s,idx]=sort(v)	<pre>tmp=sort(v,index.return=TRUE); s=tmp\$x; idx=tmp\$ix</pre>
155	Sort the order of the rows of matrix m	<pre>sortrows(m) This sorts according to the first col- umn, then uses column 2 to break ties, then column 3 for remaining ties, etc. Complex numbers are sorted by abs(x), and ties are then broken by angle(x).</pre>	<pre>m[order(m[,1]),] This only sorts according to the first column. To use column 2 to break ties, and then column 3 to break fur- ther ties, do m[order(m[,1], m[,2], m[,3]),] Complex numbers are sorted first by real part, then by imaginary part.</pre>
156	Sort order of rows of matrix m, specifying to use columns c1, c2, c3 as the sorting "keys"	sortrows(m, [c1 c2 c2])	<pre>m[order(m[,c1], m[,c2], m[,c3]),]</pre>

No.	Description	Matlab	R
157	Same as previous item, but sort in decreasing order for columns c1 and c2	sortrows(m, [-c1 -c2 c2])	<pre>m[order(-m[,c1], -m[,c2], m[,c3]),]</pre>
158	Sort order of rows of matrix m , and keep indices used for sorting	[y,i] = sortrows(m)	i=order(m[1,]); y=m[i,]
159	To count how many values in the vector \mathbf{v} are between 4 and 7 (inclusive on the upper end)	<pre>sum((v > 4) & (v <= 7))</pre>	sum((v > 4) & (v <= 7))
160	Given vector \mathbf{v} , return list of indices of elements of \mathbf{v} which are greater than 5	find(v > 5)	which($v > 5$)
161	Given matrix A , return list of indices of elements of A which are greater than 5, us- ing single-indexing	find(A > 5)	which(A > 5)
162	Given matrix A , generate vectors r and c giving rows and columns of elements of A which are greater than 5	<pre>[r,c] = find(A > 5)</pre>	<pre>w = which(A > 5, arr.ind=TRUE); r=w[,1]; c=w[,2]</pre>
163	Given vector \mathbf{x} (of presum- ably discrete values), build a vector \mathbf{v} listing unique val- ues in \mathbf{x} , and corresponding vector \mathbf{c} indicating how many times those values appear in \mathbf{x}	<pre>v = unique(x); c = hist(x,v);</pre>	<pre>w=table(x); c=as.numeric(w); v=as.numeric(names(w))</pre>
164	Given vector \mathbf{x} (of presum- ably continuous values), di- vide the range of values into k equally-sized bins, and build a vector \mathbf{m} containing the midpoints of the bins and a corresponding vector \mathbf{c} con- taining the counts of values in the bins	[c,m] = hist(x,k)	<pre>w=hist(x,seq(min(x),max(x), length.out=k+1), plot=FALSE); m=w\$mids; c=w\$counts</pre>
165	Convolution / polynomial multiplication (given vectors x and y containing polyno- mial coefficients, their convo- lution is a vector containing coefficients of the product of the two polynomials)	conv(x,y)	convolve(x,rev(y),type='open') Note: the accuracy of this is not as good as MATLAB; e.g. doing v=c(1,-1); for (i in 2:20) v=convolve(v,c(-i,1), type='open') to generate the 20^{th} -degree Wilkinson polynomial $W(x) = \prod_{i=1}^{20} (x-i)$ gives a coefficient of ≈ -780.19 for x^{19} , rather than the correct value -210.

3.4 Root-finding

No.	Description	Matlab	R
166	Find roots of polynomial	roots(v)	<pre>polyroot(rev(v)) (This function</pre>
	whose coefficients are stored		really wants the vector to have the
	in vector \mathbf{v} (coefficients in \mathbf{v}		constant coefficient first in \mathbf{v} ; rev re-
	are highest-order first)		verses their order to achieve this.)
167	Find zero (root) of a function	Define function $f(\mathbf{x})$, then do	Define function $f(\mathbf{x})$, then do
	f(x) of one variable	<pre>fzero(f,x0) to search for a root</pre>	uniroot(f, c(a,b)) to find a root
		near $x0$, or fzero(f,[a b]) to find	between a and b , assuming the sign
		a root between a and b , assuming	of $f(x)$ differs at $x = a$ and $x = b$.
		the sign of $f(x)$ differs at $x = a$	Default forward error tolerance (i.e.
		and $x = b$. Default forward error	error in x) is fourth root of machine
		tolerance (i.e. error in x) is machine	epsilon, $(\epsilon_{\rm mach})^{0.25}$. To specify e.g.
		epsilon $\epsilon_{\rm mach}$.	a tolerance of 2^{-52} , do uniroot(f,
			c(a,b), tol=2^-52).

3.5 Function optimization/minimization

	\mathbf{D} · · ·		R
	Description	MATLAB	R C C C C C C C C C C C C C C C C C C C
	Find value m which mini-	Define function $f(x)$, then do	Define function $f(\mathbf{x})$, then do
	mizes a function $f(x)$ of one	<pre>m = fminbnd(f, a, b)</pre>	<pre>m = optimize(f,c(a,b))\$minimum</pre>
	variable within the interval	m = Imindual(1, a, b)	m = optimize(1, c(a, b))\$minimum
	from a to b		
169	Find value m which mini-	Define function $f(x,p1,p2)$, then use	Define function $f(x,p1,p2)$, then:
	mizes a function $f(x, p_1, p_2)$	an "anonymous function":	
	with given extra parameters		<pre># first define values for p1</pre>
	(but minimization is only oc-	% first define values for p1	<pre># and p2, and then do:</pre>
	curing over the first argu-	% and p2, and then do:	<pre>m = optimize(f, c(a,b), p1=p1,</pre>
	ment), in the interval from a	<pre>m=fminbnd(@(x) f(x,p1,p2),a,b)</pre>	p2=p2)\$minimum
	to b .		
	Find values of x, y, z which	First write function $f(v)$ which ac-	First write function $f(v)$ which ac-
	minimize function $f(x, y, z)$,	cepts a vector argument \mathbf{v} containing	cepts a vector argument \mathbf{v} containing
	using a starting guess of $x =$	values of x, y , and z , and returns the	values of x, y , and z , and returns the
	1, $y = 2.2$, and $z = 3.4$.	scalar value $f(x, y, z)$, then do:	scalar value $f(x, y, z)$, then do:
	1, $y = 2.2$, and $z = 3.4$.	scalar value $f(x, y, z)$, then do.	scalar value $f(x, y, z)$, then do.
		fminsearch(@f,[1 2.2 3.4])	optim(c(1,2.2,3.4),f)\$par
		. ,	
171	Find values of x, y, z	First write function f(v,p1,p2)	First write function f (v , p1 , p2) which
	which minimize function	which accepts a vector argument	accepts a vector argument \mathbf{v} contain-
	$f(x, y, z, p_1, p_2)$, using a	v containing values of x , y , and	ing values of x, y , and z , along with
	starting guess of $x = 1$,	z, along with the extra parame-	the extra parameters, and returns the
	y = 2.2, and $z = 3.4$, where	ters, and returns the scalar value	scalar value $f(x, y, z, p_1, p_2)$, then do:
	÷	-	Scalar value $f(x, y, z, p_1, p_2)$, then do.
	the function takes some extra	$f(x, y, z, p_1, p_2)$, then do:	optim(c(1,2.2,3.4), f, p1=p1,
	parameters (useful e.g. for	fminsearch(@f,[1 2.2 3.4],	p2=p2)\$par
	doing things like nonlinear	[], p1, p2)	r- r-, +r
	least-squares optimization	L J, P-, P2/	
	where you pass in some data	Or use an anonymous function:	
	vectors as extra parameters).	~	
		<pre>fminsearch(@(x) f(x,p1,p2),</pre>	
		[1 2.2 3.4])	

No.	Description	Matlab	R
172	Numerically integrate func- tion $f(x)$ over interval from a to b	quad(f,a,b) uses adaptive Simp- son's quadrature, with a default absolute tolerance of 10 ⁻⁶ . To specify absolute tolerance, use quad(f,a,b,tol)	integrate(f,a,b) uses adaptive quadrature with default absolute and relative error tolerances being the fourth root of machine epsilon, $(\epsilon_{mach})^{0.25} \approx 1.22 \times 10^{-4}$. Tol- erances can be specified by using integrate(f,a,b, rel.tol=tol1, abs.tol=tol2). Note that the func- tion f must be written to work even when given a vector of x values as its
173	Simple trapezoidal numerical integration using (x, y) values in vectors x and y	<pre>trapz(x,y)</pre>	argument. <pre>sum(diff(x)*(y[-length(y)]+ y[-1])/2)</pre>

3.6 Numerical integration / quadrature

3.7 Curve fitting

No.	Description	Matlab	R
174	Fit the line $y = c_1 x + c_0$ to data in vectors x and y .	<pre>p = polyfit(x,y,1)</pre>	<pre>p = coef(lm(y ~ x))</pre>
		The return vector \mathbf{p} has the coefficients in descending order, i.e. $\mathbf{p(1)}$ is c_1 , and $\mathbf{p(2)}$ is c_0 .	The return vector \mathbf{p} has the coefficients in ascending order, i.e. $\mathbf{p}[1]$ is c_0 , and $\mathbf{p}[2]$ is c_1 .
175	Fit the quadratic polynomial $y = c_2 x^2 + c_1 x + c_0$ to data in vectors x and y .	<pre>p = polyfit(x,y,2)</pre>	$p = coef(lm(y ~ x + I(x^2)))$
		The return vector \mathbf{p} has the coefficients in descending order, i.e. $\mathbf{p(1)}$ is c_2 , $\mathbf{p(2)}$ is c_1 , and $\mathbf{p(3)}$ is c_0 .	The return vector \mathbf{p} has the coefficients in ascending order, i.e. $\mathbf{p}[1]$ is c_0 , $\mathbf{p}[2]$ is c_1 , and $\mathbf{p}[3]$ is c_2 .
176	Fit n^{th} degree polynomial $y = c_n x^n + c_{n-1} x^{n-1} + \ldots + c_1 x + c_0$ to data in vectors x and y .	p = polyfit(x,y,n) The return vector p has the coefficients in descending order, $p(1)$ is c^n , $p(2)$ is c^{n-1} , etc.	No simple built-in way. But this will work: coef(lm(as.formula(paste('y~',paste('I(x^',1:n,')', sep='',collapse='+'))))) This more concise "lower- level" method will also work: coef(lm.fit(outer(x,0:n,'^'),y)) Note that both of the above return the coefficients in ascending order. Also see the polyreg function in the mda package (see item 331 for how to install/load packages).
177	Fit the quadratic polynomial with zero intercept, $y = c_2x^2 + c_1x$ to data in vectors x and y .	(I don't know a simple way do this in MATLAB, other than to write a function which computes the sum of squared residuals and use fmin- search on that function. There is likely an easy way to do it in the Statistics Toolbox.)	$p=coef(lm(y ~ -1 + x + I(x^2)))$ The return vector p has the coefficients in ascending order, i.e. p [1] is c_1 , and p [2] is c_2 .
178	Fit natural cubic spline (S''(x) = 0 at both end- points) to points (x_i, y_i) whose coordinates are in vectors x and y ; evaluate at points whose <i>x</i> coordinates are in vector xx , storing corresponding <i>y</i> 's in yy	<pre>pp=csape(x,y,'variational'); yy=ppval(pp,xx) but note that csape is in MATLAB's Spline Toolbox</pre>	<pre>tmp=spline(x,y,method='natural', xout=xx); yy=tmp\$y</pre>
179	Fit cubic spline using Forsythe, Malcolm and Moler method (third deriva- tives at endpoints match third derivatives of exact cu- bics through the four points at each end) to points (x_i, y_i) whose coordinates are in vectors x and y ; evaluate at points whose x coordinates are in vector xx , storing corresponding y's in yy	I'm not aware of a function to do this in MATLAB	<pre>tmp=spline(x,y,xout=xx); yy=tmp\$y</pre>

No.	Description	Matlab	R
180	Fit cubic spline such that	<pre>pp=csape(x,y); yy=ppval(pp,xx)</pre>	I'm not aware of a function to do this
	first derivatives at endpoints	but csape is in MATLAB's Spline	in R
	match first derivatives of ex-	Toolbox	
	act cubics through the four		
	points at each end) to points		
	(x_i, y_i) whose coordinates are		
	in vectors \mathbf{x} and \mathbf{y} ; evaluate		
	at points whose x coordinates		
	are in vector $\mathbf{x}\mathbf{x}$, storing cor-		
	responding y 's in $\mathbf{y}\mathbf{y}$		
181	Fit cubic spline with periodic	<pre>pp=csape(x,y,'periodic');</pre>	<pre>tmp=spline(x,y,method=</pre>
	boundaries, i.e. so that first	yy=ppval(pp,xx) but csape is in	'periodic', xout=xx); yy=tmp\$y
	and second derivatives match	MATLAB's Spline Toolbox	
	at the left and right ends		
	(the first and last y values		
	of the provided data should		
	also agree), to points (x_i, y_i)		
	whose coordinates are in vec-		
	tors \mathbf{x} and \mathbf{y} ; evaluate at		
	points whose x coordinates		
	are in vector $\mathbf{x}\mathbf{x}$, storing cor-		
	responding y 's in yy		
182	Fit cubic spline with "not-	<pre>yy=spline(x,y,xx)</pre>	I'm not aware of a function to do this
	a-knot" conditions (the first		in R
	two piecewise cubics coincide,		
	as do the last two), to points		
	(x_i, y_i) whose coordinates are		
	in vectors \mathbf{x} and \mathbf{y} ; evaluate		
	at points whose x coordinates		
	are in vector $\mathbf{x}\mathbf{x}$, storing cor-		
	responding y 's in $\mathbf{y}\mathbf{y}$		

4 Conditionals, control structure, loops

No.	Description	Matlab	R
183	"for" loops over values in a vector v (the vector v is of- ten constructed via a:b)	for i=v command1 command2 end	<pre>If only one command inside the loop: for (i in v) command or for (i in v) command If multiple commands inside the loop: for (i in v) { command1 command2 }</pre>

No. Description	Matlab	R
184 "if" statements with no els clause	if cond command1 command2 end	<pre>If only one command inside the clause: if (cond) command or if (cond) command If multiple commands: if (cond) { command1 command2 }</pre>
185 "if/else" statement	<pre>if cond command1 command2 else command3 command4 end Note: MATLAB also has an "elseif" statement, e.g.: if cond1 command1 elseif cond2 command2 elseif cond3 command3 else command4 end</pre>	<pre>If one command in clauses: if (cond) command1 else command2 or if (cond) cmd1 else cmd2 If multiple commands: if (cond) { command1 command2 } else { command3 command4 } Warning: the "else" must be on the same line as command1 or the "}" (when typed interactively at the com- mand prompt), otherwise R thinks the "if" statement was finished and gives an error. R does not have an "elseif" state- ment.</pre>

Logical comparisons which can be used on scalars in "if" statements, or which operate element-byelement on vectors/matrices:

MATLAB	R	Description
x < a	x < a	True if x is less than a
x > a	x > a	True if x is greater than a
x <= a	x <= a	True if x is less than or equal to a
x >= a	x >= a	True if x is greater than or equal to a
$\mathbf{x} == \mathbf{a}$	$\mathbf{x} == \mathbf{a}$	True if x is equal to a
x ~= a	x != a	True if x is not equal to a

Scalar logical operators:

Description	Matlab	R
a AND b	a && b	a && b
a OR b	a b	a b
a XOR b	xor(a,b)	xor(a,b)
NOT a	~a	!a

The && and || operators are short-circuiting, i.e. && stops as soon as any of its terms are FALSE, and || stops as soon as any of its terms are TRUE.

Matrix logical operators (they operate element-by-element):

Description	Matlab	R
a AND b	a & b	a & b
a OR b	a b	a b
a XOR b	xor(a,b)	xor(a,b)
NOT a	~a	!a

No.	Description	Matlab	R
186	To test whether a scalar value	if ((x > 4) && (x <= 7))	if ((x > 4) && (x <= 7))
	\mathbf{x} is between 4 and 7 (inclu-		
	sive on the upper end)		
187	To count how many values in	sum((x > 4) & (x <= 7))	sum((x > 4) & (x <= 7))
	the vector \mathbf{x} are between 4		
	and 7 (inclusive on the upper		
	end)		
188	Test whether all values in	all(v)	all(v)
	a logical/boolean vector are		
	TRUE		
189	Test whether any values in	any(v)	any(v)
	a logical/boolean vector are		
	TRUE		

No.	Description	Matlab	R
190	"while" statements to do iter- ation (useful when you don't know ahead of time how many iterations you'll need). E.g. to add uniform ran- dom numbers between 0 and 1 (and their squares) until their sum is greater than 20:	<pre>mysum = 0; mysumsqr = 0; while (mysum < 20) r = rand; mysum = mysum + r; mysumsqr = mysumsqr + r^2; end</pre>	<pre>mysum = 0 mysumsqr = 0 while (mysum < 20) { r = runif(1) mysum = mysum + r mysumsqr = mysumsqr + r^2 } (As with "if" statements and "for" loops, the curly brackets are not nec- essary if there's only one statement in- side the "while" loop.)</pre>
191	More flow control: these com- mands exit or move on to the next iteration of the inner- most while or for loop, re- spectively.	break and continue	break and next
192	"Switch" statements for inte- gers	<pre>switch (x) case 10 disp('ten') case {12,13} disp('dozen (bakers?)') otherwise disp('unrecognized') end</pre>	<pre>R doesn't have a switch statement ca- pable of doing this. It has a function which is fairly limited for integers, but can which do string matching. See ?switch for more. But a basic ex- ample of what it can do for integers is below, showing that you can use it to return different expressions based on whether a value is 1, 2, mystr = switch(x, 'one', 'two',</pre>

5 Functions, ODEs

No.	Description	Matlab	R
193	Implement a function add(x,y)	<pre>Put the following in add.m: function retval=add(x,y) retval = x+y; Then you can do e.g. add(2,3)</pre>	<pre>Enter the following, or put it in a file and source that file: add = function(x,y) { return(x+y) } Then you can do e.g. add(2,3). Note, the curly brackets aren't needed if your function only has one line. Also, the return keyword is optional in the above example, as the value of the last expression in a function gets returned, so just x+y would work too.</pre>
194	Implement a function $f(x,y,z)$ which returns mul- tiple values, and store those return values in variables u and v	<pre>Write function as follows: function [a,b] = f(x,y,z) a = x*y+z; b=2*sin(x-z); Then call the function by doing: [u,v] = f(2,8,12)</pre>	<pre>Write function as follows: f = function(x,y,z) { a = x*y+z; b=2*sin(x-z) return(list(a,b)) } Then call the function by do- ing: tmp=f(2,8,12); u=tmp[[1]]; v=tmp[[2]]. The above is most gen- eral, and will work even when u and v are different types of data. If they are both scalars, the function could simply return them packed in a vec- tor, i.e. return(c(a,b)). If they are vectors of the same size, the func- tion could return them packed to- gether into the columns of a matrix, i.e. return(cbind(a,b)).</pre>

No.	Description	Matlab	R
195	Numerically solve ODE	First implement function	First implement function
	dx/dt = 5x from $t = 3$ to t = 12 with initial condition x(3) = 7	<pre>function retval=f(t,x) retval = 5*x;</pre>	<pre>f = function(t,x,parms) { return(list(5*x))</pre>
		Then do ode45(@f,[3,12],7) to plot solution, or [t,x]=ode45(@f,[3,12],7) to get back vector t containing time values and vector x containing correspond- ing function values. If you want function values at specific times, e.g. 3,3.1,3.2,,11.9,12, you can do [t,x]=ode45(@f,3:0.1:12,7). Note: in older versions of MATLAB, use 'f' instead of @f.	<pre>} Then do y=lsoda(7, seq(3,12, 0.1), f,NA) to obtain solution values at times 3, 3.1, 3.2,, 11.9, 12. The first column of y, namely y[,1] contains the time values; the second column y[,2] contains the corre- sponding function values. Note: lsoda is part of the deSolve package (see item 331 for how to install/load packages).</pre>
196	Numerically solve system of ODEs $dw/dt = 5w$, $dz/dt = 3w + 7z$ from $t = 3$ to $t = 12$ with initial conditions $w(3) = 7$, $z(3) = 8.2$	<pre>First implement function function retval=myfunc(t,x) w = x(1); z = x(2); retval = zeros(2,1); retval(1) = 5*w; retval(2) = 3*w + 7*z;</pre>	<pre>First implement function myfunc = function(t,x,parms) { w = x[1]; z = x[2]; return(list(c(5*w, 3*w+7*z))) } Then do y=lsoda(c(7,8.2),</pre>
		Then do ode45(@myfunc,[3,12],[7; 8.2]) to plot solution, or [t,x]=ode45(@myfunc,[3,12],[7; 8.2]) to get back vector t contain- ing time values and matrix x, whose first column containing correspond- ing $w(t)$ values and second column contains $z(t)$ values. If you want function values at specific times, e.g. 3,3.1,3.2,,11.9,12, you can do [t,x]=ode45(@myfunc,3:0.1:12,[7; 8.2]). Note: in older versions of MATLAB, use 'f' instead of @f.	seq(3,12, 0.1), myfunc,NA) to obtain solution values at times $3, 3.1, 3.2, \ldots, 11.9, 12$. The first column of y, namely y[,1] contains the time values; the second column y[,2] contains the corresponding values of $w(t)$; and the third column contains $z(t)$. Note: lsoda is part of the deSolve package (see item 331 for how to install/load packages).
197	Pass parameters such as $r = 1.3$ and $K = 50$ to an ODE function from the command line, solving $dx/dt = rx(1 - x/K)$ from $t = 0$ to $t = 20$ with initial condition $x(0) = 2.5$.	<pre>First implement function function retval=func2(t,x,r,K) retval = r*x*(1-x/K) Then do ode45(@func2,[0 20], 2.5, [], 1.3, 50). The empty matrix is necessary between the ini- tial condition and the beginning of your extra parameters.</pre>	<pre>First implement function func2=function(t,x,parms) { r=parms[1]; K=parms[2] return(list(r*x*(1-x/K))) } Then do y=lsoda(2.5,seq(0,20,0.1), func2,c(1.3,50))</pre>
			Note: lsoda is part of the deSolve package (see item 331 for how to install/load packages).

6 Probability and random values

No.	Description	Matlab	R
198	Generate a continuous uni- form random value between 0 and 1	rand	<pre>runif(1)</pre>
199	Generate vector of n uniform random vals between 0 and 1	<pre>rand(n,1) or rand(1,n)</pre>	runif(n)
200	Generate $m \times n$ matrix of uni- form random values between 0 and 1	rand(m,n)	<pre>matrix(runif(m*n),m,n) or just matrix(runif(m*n),m)</pre>
201	Generate $m \times n$ matrix of con- tinuous uniform random val- ues between a and b	a+rand(m,n)*(b-a) or if you have the Statistics toolbox then unifrnd(a,b,m,n)	<pre>matrix(runif(m*n,a,b),m)</pre>
202	Generate a random integer between 1 and k	floor(k*rand) + 1	<pre>floor(k*runif(1)) + 1 Note: sample(k)[1] would also work, but I believe in general will be less efficient, because that actually generates many random numbers and then just uses one of them.</pre>
203	Generate $m \times n$ matrix of dis- crete uniform random inte- gers between 1 and k	<pre>floor(k*rand(m,n))+1 or if you have the Statistics toolbox then unidrnd(k,m,n)</pre>	<pre>floor(k*matrix(runif(m*n),m))+1</pre>
204	Generate $m \times n$ matrix where each entry is 1 with probabil- ity p , otherwise is 0	<pre>(rand(m,n)<p)*1 (true="" 1="" also="" back="" by="" could="" do="" double(rand(m,n)<p)<="" false)="" into="" logical="" multiplying="" note:="" numeric="" pre="" re-="" sult="" the="" turns="" values.="" you=""></p)*1></pre>	<pre>(matrix(runif(m,n),m)<p)*1 (note:="" (true="" 1="" as.numeric()="" back="" by="" do="" false)="" into="" it="" logical="" lose="" matrix.)<="" multiplying="" numeric="" of="" pre="" result="" shape="" the="" to="" turns="" using="" values;="" would=""></p)*1></pre>
205	Generate $m \times n$ matrix where each entry is a with probabil- ity p , otherwise is b	b + (a-b)*(rand(m,n) <p)< td=""><td><pre>b + (a-b)*(matrix(runif(m,n),m)<p)< pre=""></p)<></pre></td></p)<>	<pre>b + (a-b)*(matrix(runif(m,n),m)<p)< pre=""></p)<></pre>
206	Generate a random integer between a and b inclusive	<pre>floor((b-a+1)*rand)+a or if you have the Statistics toolbox then unidrnd(b-a+1)+a-1</pre>	<pre>floor((b-a+1)*runif(1))+a</pre>
207	Flip a coin which comes up heads with probability p , and perform some action if it does come up heads	<pre>if (rand < p) some commands end</pre>	<pre>if (runif(1) < p) { some commands }</pre>
208	Generate a random permutation of the integers $1, 2, \ldots, n$	randperm(n)	<pre>sample(n)</pre>
209	Generate a random selection of k unique integers between 1 and n (i.e. sampling with- out replacement)	<pre>[s,idx]=sort(rand(n,1)); ri=idx(1:k) or another way is ri=randperm(n); ri=ri(1:k). Or if you have the Statistics Toolbox, then randsample(n,k)</pre>	ri=sample(n,k)
210	Choose k values (with replacement) from the vector \mathbf{v} , storing result in \mathbf{w}	L=length(v); w=v(floor(L*rand(k,1))+1) Or, if you have the Statistics Toolbox, w=randsample(v,k)	<pre>w=sample(v,k,replace=TRUE)</pre>

No.	Description	Matlab	R
211	Choose k values (without re-	L=length(v); ri=randperm(L);	w=sample(v,k,replace=FALSE)
	placement) from the vector \mathbf{v} ,	ri=ri(1:k); w=v(ri) Or, if	
	storing result in \mathbf{w}	you have the Statistics Toolbox,	
		w=randsample(v,k)	
212	Set the random-number gen-	rand('state', 12) Note: begin-	set.seed(12)
	erator back to a known state	ning in Matlab 7.7, use this in-	
	(useful to do at the beginning	stead: RandStream('mt19937ar',	
	of a stochastic simulation	'Seed', 12) though the previous	
	when debugging, so you'll get	method is still supported for now.	
	the same sequence of random		
	numbers each time)		

Note that the "*rnd," "*pdf," and "*cdf" functions described below are all part of the MATLAB Statistics Toolbox, and not part of the core MATLAB distribution.

No.	Description	MATLAB	R
213	Generate a random value	binornd(n,p)	rbinom(1,n,p)
	from the $binomial(n, p)$ dis-		
	tribution		
214	Generate a random value	poissrnd(lambda)	rpois(1,lambda)
	from the Poisson distribution		
	with parameter λ		
215	Generate a random value	<pre>exprnd(mu) or -mu*log(rand) will</pre>	rexp(1, 1/mu)
	from the exponential distri-	work even without the Statistics	
	bution with mean μ	Toolbox.	
216	Generate a random value	unidrnd(k) or floor(rand*k)+1	<pre>sample(k,1)</pre>
	from the discrete uniform dis-	will work even without the Statistics	
	tribution on integers $1 \dots k$	Toolbox.	
217	Generate n iid random values	unidrnd(k,n,1) or	<pre>sample(k,n,replace=TRUE)</pre>
	from the discrete uniform dis-	<pre>floor(rand(n,1)*k)+1 will work</pre>	
	tribution on integers $1 \dots k$	even without the Statistics Toolbox.	
218	Generate a random value	unifrnd(a,b) or (b-a)*rand + a	<pre>runif(1,a,b)</pre>
	from the continuous uniform	will work even without the Statistics	
	distribution on the interval	Toolbox.	
210	(a, b)		
219	Generate a random value	normrnd(mu,sigma) or	rnorm(1,mu,sigma)
	from the normal distribution	mu + sigma*randn will work	
	with mean μ and standard	even without the Statistics Toolbox.	
220	deviation σ		
220	Generate a random vector from the multinomial distri-	mnrnd(n,p)	rmultinom(1,n,p)
	bution, with \mathbf{n} trials and		
	probability vector \mathbf{p}		
221	Generate j random vectors	mnrnd(n,p,j)	rmultinom(j,n,p)
	from the multinomial distri-	The vectors are returned as rows of	The vectors are returned as columns
	bution, with \mathbf{n} trials and	a matrix	of a matrix
	probability vector \mathbf{p}	a maura	
	Notes:		

Notes:

• The MATLAB "*rnd" functions above can all take additional **r**,**c** arguments to build an $r \times c$ matrix of iid random values. E.g. poissrnd(3.5,4,7) for a 4×7 matrix of iid values from the Poisson distribution with mean $\lambda = 3.5$. The unidrnd(k,n,1) command above is an example of this, to generate a $k \times 1$ column vector.

- D. Hiebeler, MATLAB / R Reference
 - The first parameter of the R "r*" functions above specifies how many values are desired. E.g. to generate 28 iid random values from a Poisson distribution with mean 3.5, use rpois(28,3.5). To get a 4 × 7 matrix of such values, use matrix(rpois(28,3.5),4).

No.	Description	Matlab	R
222	Compute probability that	binopdf(x,n,p) or	dbinom(x,n,p)
	a random variable from the	nchoosek(n,x)* p^x *(1-p)^(n-x)	asinom(n,n,p)
	Binomial (n, p) distribution	will work even without the Statistics	
	has value \mathbf{x} (i.e. the density,	Toolbox, as long as \mathbf{n} and \mathbf{x} are	
	or pdf).	non-negative integers and $0 \leq \mathbf{p}$	
	r r)	$\leq 1.$	
223	Compute probability that a	poisspdf(x,lambda) or	dpois(x,lambda)
	random variable from the	exp(-lambda)*lambda^x /	1
	$Poisson(\lambda)$ distribution has	factorial(x) will work even	
	value x .	without the Statistics Toolbox, as	
		long as \mathbf{x} is a non-negative integer	
		and $lambda \ge 0$.	
224	Compute probability density	exppdf(x,mu) or	dexp(x,1/mu)
	function at ${\bf x}$ for a random	(x>=0)*exp(-x/mu)/mu will work	
	variable from the exponential	even without the Statistics Toolbox,	
	distribution with mean μ .	as long as mu is positive.	
225	Compute probability density	normpdf(x,mu,sigma) or	dnorm(x,mu,sigma)
	function at ${\bf x}$ for a random	exp(-(x-mu)^2/(2*sigma^2))/	
	variable from the Normal dis-	(sqrt(2*pi)*sigma) will work even	
	tribution with mean μ and	without the Statistics Toolbox.	
	standard deviation σ .		
226	Compute probability density	unifpdf(x,a,b) or	dunif(x,a,b)
	function at \mathbf{x} for a random	((x>=a)&&(x<=b))/(b-a) will	
	variable from the continuous	work even without the Statistics	
	uniform distribution on inter-	Toolbox.	
	val (a, b) .		
227	Compute probability that a	unidpdf(x,n) or ((x==floor(x))	$((x=round(x)) \&\& (x \ge 1) \&\&$
	random variable from the dis-	&& (x>=1)&&(x<=n))/n will work	(x <= n))/n
	crete uniform distribution on	even without the Statistics Toolbox,	
	integers $1 \dots n$ has value x .	as long as \mathbf{n} is a positive integer.	
228	Compute probability that	<pre>mnpdf(x,p) NLta</pre>	dmultinom(x,prob=p)
	a random vector from the	Note: vector \mathbf{p} must sum to one.	
	multinomial distribution	Also, x and p can be vectors of length h on if any or both any h	
	with probability vector \vec{p} has the value \vec{x}	length k, or if one or both are $m \times k$	
	the value x	matrices then the computations are	
		performed for each row.	

Note: one or more of the parameters in the above "*pdf" (MATLAB) or "d*" (R) functions can be vectors, but they must be the same size. Scalars are promoted to arrays of the appropriate size.

· · · · · ·	The corresponding CDF func		
No.	Description	Matlab	R
229	Compute probability that a	binocdf(x,n,p). Without the	<pre>pbinom(x,n,p)</pre>
	random variable from the	Statistics Toolbox, as long	
	Binomial(n, p) distribution is	as \mathbf{n} is a non-negative in-	
	less than or equal to \mathbf{x} (i.e.	teger, this will work: $r =$	
	the cumulative distribution	0:floor(x); sum(factorial(n)./	
	function, or cdf).	<pre>(factorial(r).*factorial(n-r))</pre>	
		.*p.^r.*(1-p).^(n-r)). (Un-	
		fortunately, MATLAB's nchoosek	
		function won't take a vector argu-	
		ment for \mathbf{k} .)	
230	Compute probability that a	poisscdf(x,lambda). With-	ppois(x,lambda)
	random variable from the	out the Statistics Toolbox, as	
	$Poisson(\lambda)$ distribution is less	long as lambda ≥ 0 , this	
	than or equal to \mathbf{x} .	will work: r = 0:floor(x);	
		<pre>sum(exp(-lambda)*lambda.^r</pre>	
		./factorial(r))	
231	Compute cumulative distri-	expcdf(x,mu) or	pexp(x,1/mu)
	bution function at \mathbf{x} for a	(x>=0)*(1-exp(-x/mu)) will	
	random variable from the ex-	work even without the Statistics	
	ponential distribution with	Toolbox, as long as mu is positive.	
	mean μ .		
232	Compute cumulative distri-	normcdf(x,mu,sigma) or 1/2 -	pnorm(x,mu,sigma)
	bution function at ${\bf x}$ for a ran-	erf(-(x-mu)/(sigma*sqrt(2)))/2	
	dom variable from the Nor-	will work even without the Statis-	
	mal distribution with mean μ	tics Toolbox, as long as sigma is	
	and standard deviation σ .	positive.	
233	Compute cumulative distri-	unifcdf(x,a,b) or	<pre>punif(x,a,b)</pre>
	bution function at ${\bf x}$ for a ran-	(x>a)*(min(x,b)-a)/(b-a) will	
	dom variable from the contin-	work even without the Statistics	
	uous uniform distribution on	Toolbox, as long as $\mathbf{b} > \mathbf{a}$.	
	interval (a, b) .	-	
234	Compute probability that a	unidcdf(x,n) or	$(x \ge 1) * \min(floor(x), n)/n$
	random variable from the dis-	(x>=1)*min(floor(x),n)/n will	
	crete uniform distribution on	work even without the Statistics	
	integers $1 \dots n$ is less than or	Toolbox, as long as \mathbf{n} is a positive	
	equal to \mathbf{x} .	integer.	
	-	~	I

7 Graphics

7.1 Various types of plotting

No.	Description	Matlab	R
235	Create a new figure window	figure	<pre>dev.new() Notes: internally, on Windows this calls windows(), on MacOS it calls quartz(), and on Linux it calls X11(). X11() is also available on MacOS; you can tell R to use it by default by doing options(device='X11'). In R sometime after 2.7.0, X11 graphics started doing antialising by default, which makes plots look smoother but takes longer to draw. If you are using X11 graphics in R and notice that figure plotting is extremely slow (especially if making many plots), do this before calling dev.new(): X11.options(type='X1ib') or X11.options(antialias='none'). Or just use e.g. X11(type='X1ib') to make new figure windows. They are uglier (lines are more jagged), but render much more quickly.</pre>
236	Select figure number n	<pre>figure(n) (will create the figure if it doesn't exist)</pre>	dev.set(n) (returns the actual device selected; will be different from n if there is no figure device with number n)
237	Determine which figure win- dow is currently active	gcf	dev.cur()
238	List open figure windows	<pre>get(0,'children') (The 0 handle refers to the root graphics object.)</pre>	<pre>dev.list()</pre>
239	Close figure window(s)	close to close the current figure win- dow, close(n) to close a specified figure, and close all to close all fig- ures	<pre>dev.off() to close the currently ac- tive figure device, dev.off(n) to close a specified one, and graphics.off() to close all figure devices.</pre>
240	Plot points using open circles	<pre>plot(x,y,'o')</pre>	plot(x,y)
241	Plot points using solid lines	plot(x,y)	<pre>plot(x,y,type='1') (Note: that's a lower-case 'L', not the number 1)</pre>
242	Plotting: color, point mark- ers, linestyle	<pre>plot(x,y,str) where str is a string specifying color, point marker, and/or linestyle (see table below) (e.g. 'gs' for green squares with dashed line)</pre>	<pre>plot(x,y,type=str1, pch=arg2,col=str3, lty=arg4)</pre>
			See tables below for possible values of the 4 parameters
243	Plotting with logarithmic axes	semilogx, semilogy, and loglog functions take arguments like plot , and plot with logarithmic scales for x, y, and both axes, respectively	plot(, log='x'), plot(, log='y'), and plot(, log='xy') plot with logarithmic scales for x , y , and both axes, respectively

No.	Description	Matlab	R
244	Make bar graph where the x coordinates of the bars are in \mathbf{x} , and their heights are in \mathbf{y}	bar (\mathbf{x} , \mathbf{y}) Or just bar (\mathbf{y}) if you only want to specify heights. Note: if A is a matrix, bar (A) interprets each column as a separate set of observa- tions, and each row as a different ob- servation within a set. So a 20 × 2 matrix is plotted as 2 sets of 20 ob- servations, while a 2 × 20 matrix is plotted as 20 sets of 2 observations.	Can't do this in R; but barplot(y) makes a bar graph where you specify the heights, barplot(y,w) also spec- ifies the widths of the bars, and hist can make plots like this too.
245	Make histogram of values in x	hist(x)	hist(x)
246	Given vector \mathbf{x} containing discrete values, make a bar graph where the x coordi- nates of bars are the values, and heights are the counts of how many times the values appear in \mathbf{x}	<pre>v=unique(x); c=hist(x,v); bar(v,c)</pre>	<pre>barplot(table(x))</pre>
247	Given vector \mathbf{x} containing continuous values, lump the data into k bins and make a histogram / bar graph of the binned data	<pre>[c,m] = hist(x,k); bar(m,c) or for slightly different plot style use hist(x,k)</pre>	<pre>hist(x,seq(min(x), max(x), length.out=k+1))</pre>
248	Make a plot containing error- bars of height s above and be- low (x, y) points	errorbar(x,y,s)	errbar(x,y,y+s,y-s) Note: errbar is part of the Hmisc package (see item 331 for how to install/load pack- ages).
249	Make a plot containing error- bars of height a above and b below (x, y) points	errorbar(x,y,b,a)	errbar(x,y,y+a,y-b) Note: errbar is part of the Hmisc package (see item 331 for how to install/load pack- ages).
250	Other types of 2-D plots	<pre>stem(x,y) and stairs(x,y) for other types of 2-D plots. polar(theta,r) to use polar coordinates for plotting.</pre>	pie(v)

No.	Description	Matlab	R
251	Make a 3-D plot of some data points with given x, y, z co- ordinates in the vectors \mathbf{x}, \mathbf{y} , and \mathbf{z} .	plot3(x,y,z) This works much like plot, as far as plotting symbols, line- types, and colors.	<pre>cloud(z[*]x*y) You can also use arguments pch and col as with plot. To make a 3-D plot with lines, do cloud(z[*]x*y,type='l', panel.cloud=panel.3dwire)</pre>
252	Surface plot of data in matrix \mathbf{A}	<pre>surf(A)</pre>	persp(A)
		You can then click on the small curved arrow in the figure window (or choose "Rotate 3D" from the "Tools" menu), and then click and drag the mouse in the figure to ro- tate it in three dimensions.	You can include shading in the im- age via e.g. persp(A,shade=0.5). There are two viewing angles you can also specify, among other pa- rameters, e.g. persp(A, shade=0.5, theta=50, phi=35).
253	Surface plot of $f(x,y) = sin(x+y)\sqrt{y}$ for 100 values of x between 0 and 10, and 90 values of y between 2 and 8	<pre>x = linspace(0,10,100); y = linspace(2,8,90); [X,Y] = meshgrid(x,y); Z = sin(X+Y).*sqrt(Y); surf(X,Y,Z) shading flat</pre>	<pre>x = seq(0,10,len=100) y = seq(2,8,len=90) f = function(x,y) return(sin(x+y)*sqrt(y)) z = outer(x,y,f) persp(x,y,z)</pre>
254	Other ways of plotting the data from the previous command	<pre>mesh(X,Y,Z), surfc(X,Y,Z), surfl(X,Y,Z), contour(X,Y,Z), pcolor(X,Y,Z), waterfall(X,Y,Z). Also see the slice command.</pre>	<pre>contour(x,y,z) Or do s=expand.grid(x=x,y=y), and then wireframe(z~x*y,s) or wireframe(z~x*y,s,shade=TRUE) (Note: wireframe is part of the lattice package; see item 331 for how to load packages). If you have vectors x, y, and z all the same length, you can also do symbols(x,y,z).</pre>
255	Set axis ranges in a figure window	axis([x1 x2 y1 y2])	You have to do this when you make the plot, e.g. plot(x,y,xlim=c(x1,x2), ylim=c(y1,y2))
256	Add title to plot	<pre>title('somestring')</pre>	<pre>title(main='somestring') adds a main title, title(sub='somestring') adds a subtitle. You can also include main= and sub= arguments in a plot command.</pre>
257	Add axis labels to plot	<pre>xlabel('somestring') and ylabel('somestring')</pre>	<pre>title(xlab='somestring', ylab='anotherstr'). You can also include xlab= and ylab= arguments in a plot command.</pre>

No.	Description	Matlab	R
258	Include Greek letters or sym-	You can use basic TeX com-	<pre>plot(x,y,xlab=</pre>
	bols in plot axis labels	mands, e.g. plot(x,y);	<pre>expression(phi^2 + mu['i,j']))</pre>
		<pre>xlabel('\phi^2 + \mu_{i,j}')</pre>	or plot(x,y,xlab=expression(
		or xlabel('fecundity \phi')	<pre>paste('fecundity ', phi)))</pre>
		See also help tex and parts of	See also help(plotmath) and p.
		$\mathbf{doc} \ \mathbf{text_props}$ for more about	98 of the <i>R</i> Graphics book by Paul
		building labels using general LaTeX	Murrell for more.
		commands	
259	Change font size to 16 in plot	For the legends and numerical axis	For on-screen graphics, do
	labels	labels, use set(gca, 'FontSize',	par(ps=16) followed by e.g. a plot
		16), and for text labels on axes	command. For PostScript or PDF
		do e.g. xlabel('my x var',	plots, add a pointsize=16 argument,
		'FontSize', 16)	e.g. pdf('myfile.pdf', width=8,
			height=8, pointsize=16) (see
			items 275 and 276)
260	Add grid lines to plot	grid on (and grid off to turn off)	grid() Note that if you'll be
			printing the plot, the default style
			for grid-lines is to use gray dot-
			ted lines, which are almost invis-
			ible on some printers. You may
			<pre>want to do e.g. grid(lty='dashed', col='black') to use black dashed</pre>
			lines which are easier to see.
261	Add a text label to a plot	<pre>text(x,y,'hello')</pre>	<pre>text(x,y,'hello')</pre>
262	Add set of text labels to a	<pre>s={'hi', 'there'};</pre>	<pre>s=c('hi', 'there');</pre>
	plot. \mathbf{xv} and \mathbf{yv} are vectors.	text(xv,yv,s)	text(xv,yv,s)
263	Add an arrow to current plot,	<pre>annotation('arrow', [xt xh],</pre>	arrows(xt, yt, xh, yh)
	with tail at (xt, yt) and head	[yt yh]) Note: coordinates should	
	at (xh, yh)	be normalized figure coordinates, not	
		coordinates within your displayed	
		axes. Find and download from The	
		Mathworks the file dsxy2figxy.m	
		which converts for you, then do this:	
		<pre>[fx,fy]=dsxy2figxy([xt xh],</pre>	
		<pre>[yt yh]); annotation('arrow',</pre>	
		fx, fy)	
264	Add a double-headed arrow	annotation('doublearrow', [x0	arrows(x0, y0, x1, y1, code=3)
	to current plot, with coordi-	x1], [y0 y1]) See note in previ-	
	nates $(x0, y0)$ and $(x1, y1)$	ous item about normalized figure	
265	Add forme logend to ten 1-ft	coordinates.	logond(/tonloft/
265	Add figure legend to top-left corner of plot	<pre>legend('first', 'second', 'Location', 'NorthWort')</pre>	<pre>legend('topleft', legend=c('first', 'second'),</pre>
	corner or prot	'Location', 'NorthWest')	<pre>col=c('lirst', 'second'), col=c('red', 'blue'),</pre>
			<pre>col=c('red', 'blue'), pch=c('*','o'))</pre>
		u build a graph piece-by-piece, and then	

MATLAB note: sometimes you build a graph piece-by-piece, and then want to manually add a legend which doesn't correspond with the order you put things in the plot. You can manually construct a legend by plotting "invisible" things, then building the legend using them. E.g. to make a legend with black stars and solid lines, and red circles and dashed lines: h1=plot(0,0,'k*-'); set(h1,'Visible', 'off'); h2=plot(0,0,'k*-'); set(h2,'Visible', 'off'); legend([h1 h2], 'blah, 'whoa'). Just be sure to choose coordinates for your "invisible" points within the current figure's axis ranges.

No.	Description	Matlab	R
266	Adding more things to a fig- ure	hold on means everything plotted from now on in that figure window is added to what's already there. hold off turns it off. clf clears the figure and turns off hold.	points() and lines() work like plot , but add to what's already in the figure rather than clearing the figure first. points and lines are basically identical, just with different default plotting styles. Note: axes are not recalculated/redrawn when adding more things to a figure.
267	Plot multiple data sets at once	plot(x,y) where x and y are 2-D matrices. Each column of x is plot- ted against the corresponding col- umn of y. If x has only one column, it will be re-used.	<pre>matplot(x,y) where x and y are 2-D matrices. Each column of x is plotted against the corresponding column of y. If x has only one column, it will be re-used.</pre>
268	Plot $\sin(2x)$ for x between 7 and 18	fplot('sin(2*x)', [7 18])	<pre>curve(sin(2*x), 7, 18, 200) makes the plot, by sampling the value of the function at 200 values between 7 and 18 (if you don't specify the number of points, 101 is the default). You could do this manually yourself via commands like tmpx=seq(7,18,len=200); plot(tmpx, sin(2*tmpx)).</pre>
269	Plot color image of integer values in matrix A	<pre>image(A) to use array values as raw indices into colormap, or imagesc(A) to automatically scale values first (these both draw row 1 of the matrix at the top of the image); or pcolor(A) (draws row 1 of the matrix at the bottom of the image). After using pcolor, try the commands shading flat or shading interp.</pre>	image(A) (it rotates the matrix 90 de- grees counterclockwise: it draws row 1 of A as the left column of the im- age, and column 1 of A as the bottom row of the image, so the row number is the x coord and column number is the y coord). It also rescales colors. If you are using a colormap with k en- tries, but the value k does not appear in A, use image(A,zlim=c(1,k)) to avoid rescaling of colors. Or e.g. image(A,zlim=c(0,k-1)) if you want values 0 through $k-1$ to be plot- ted using the k colors.
270	Add colorbar legend to image plot	colorbar, after using image or pcolor.	Use filled.contour(A) rather than image(A), although it "blurs" the data via interpolation, or use levelplot(A) from the lat- tice package (see item 331 for how to load packages). To use a colormap with the latter, do e.g. levelplot(A,col.regions= terrain.colors(100)).
271	Set colormap in image	<pre>colormap(hot). Instead of hot, you can also use gray, flag, jet (the default), cool, bone, copper, pink, hsv, prism. By default, the length of the new colormap is the same as the currently-installed one; use e.g. colormap(hot(256)) to specify the number of entries.</pre>	<pre>image(A, col=terrain.colors(100)). The parameter 100 specifies the length of the colormap. Other colormaps are heat.colors(), topo.colors(), and cm.colors().</pre>

No.	Description	Matlab	R
272	Build your own colormap us-	Use an $n \times 3$ matrix; each row	Use a vector of hexadecimal strings,
	ing Red/Green/Blue triplets	gives R,G,B intensities between 0	each beginning with '#' and giving
		and 1. Can use as argument with	R,G,B intensities between 00 and FF.
		colormap. E.g. for 2 colors: mycmap	E.g. c('#80CC33','#3333B3'); can
		= [0.5 0.8 0.2 ; 0.2 0.2 0.7]	use as argument to $\mathbf{col} =$ parameter
			to image. You can build such a
			vector of strings from vectors of Red,
			Green, and Blue intensities (each
			between 0 and 1) as follows (for a
			2-color example): $r=c(0.5,0.2);$
			g=c(0.8,0.2); b=c(0.2,0.7);
			<pre>mycolors=rgb(r,g,b).</pre>

 ${\rm MATLAB\ plotting\ specifications,\ for\ use\ with\ plot,\ fplot,\ semilogx,\ semilogy,\ loglog,\ etc:}$

Symbol	Color	Symbol	Marker	Symbol	Linestyle
b	blue	•	point (.)	-	solid line
g	green	0	circle (\circ)	:	dotted line
r	red	x	$cross(\times)$		dash-dot line
С	cyan	+	plus sign $(+)$		dashed line
m	magenta	*	asterisk (*)		
у	yellow	S	square (\Box)		
k	black	d	diamond (\Diamond)		
W	white	v	triangle (down) (∇)		
		^	triangle (up) (\triangle)		
		<	triangle (left) (\triangleleft)		
		>	triangle (right) (\triangleright)		
		р	pentragram star		
		h	hexagram star		

R plotting specifications for **col** (color), **pch** (plotting character), and **type** arguments, for use with **plot**, **matplot**, **points**, and **lines**:

col	Description	pch	Description	type	Description
'blue'	Blue	'a'	a' a (similarly for other		points
			characters, but see '.'		
			below for an exception		
'green'	Green	0	open square	1	lines
'red'	Red	1	open circle	b	both
'cyan'	Cyan	2	triangle point-up	с	lines part only of "b"
'magenta'	Magenta	3	+ (plus)	0	lines, points overplotted
'yellow'	Yellow	4	\times (cross)	h	histogram-like lines
'black'	Black	5	diamond	s	steps
'#RRGGBB'	hexadecimal specifica-	6	triangle point-down	S	another kind of steps
	tion of Red, Green,				
	Blue				
(Other names)	See colors() for list of	'.'	rectangle of size 0.01	n	no plotting (can be use-
	available color names.		inch, 1 pixel, or 1 point		ful for setting up axis
			(1/72 inch) depending		ranges, etc.)
			on device		
			(See table on next page		
			for more)		

Rp	lotting	specifications	for lt	jy ((line-type)	argument,	for	use	with	plot,	matplot,	points,	and lin	es:
----	---------	----------------	---------------	-------------	-------------	-----------	-----	-----	------	-------	----------	---------	---------	-----

lty	Description
0	blank
1	solid
2	dashed
3	dotted
4	dotdash
5	longdash
6	twodash

R plotting characters, i.e. values for **pch** argument (from the book *R Graphics*, by Paul Murrell, Chapman & Hall / CRC, 2006)

No.	Description	Matlab	R
273	Divide up a figure window	<pre>subplot(m,n,k) divides the current</pre>	There are several ways to do this, e.g.
	into smaller sub-figures	figure window into an $m \times n$ ar-	using layout or split.screen, al-
		ray of subplots, and draws in sub-	though they aren't quite as friendly
		plot number k as numbered in "read-	as MATLAB 's. E.g. if you let $A =$
		ing order," i.e. left-to-right, top-to-	
		bottom. E.g. subplot(2,3,4) se-	$\begin{bmatrix} 1 & 1 & 3 \\ 4 & 5 & c \end{bmatrix}$, then layout(A) will
		lects the first sub-figure in the second	4 5 6 divide the figure into 6 sub-figures:
		row of a 2×3 array of sub-figures. You can do more complex things,	you can imagine the figure divide into
		e.g. subplot(5,5,[1 2 6 7]) se-	a 3×3 matrix of smaller blocks; sub-
		lects the first two subplots in the first	figure 1 will take up the upper-left
		row, and first two subplots in the	2×2 portion, and sub-figures 2–6 will
		second row, i.e. gives you a bigger	take up smaller portions, according to
		subplot within a 5×5 array of sub-	the positions of those numbers in the
		plots. (If you that command followed	matrix A. Consecutive plotting com-
		by e.g. subplot(5,5,3) you'll see	mands will draw into successive sub-
		what's meant by that.)	figures; there doesn't seem to be a way
			to explicitly specify which sub-figure
			to draw into next.
			To use split.screen, you can
			do e.g. split.screen(c(2,1)) to
			split into a 2×1 matrix of sub-
			figures (numbered 1 and 2). Then
			split.screen(c(1,3),2) splits sub-
			figure 2 into a 1×3 matrix of smaller sub-figures (numbered 3, 4, and 5).
			screen(4) will then select sub-figure
			number 4, and subsequent plotting
			commands will draw into it.
			A third way to accomplish this is
			via the commands par(mfrow=) or
			par(mfcol=) to split the figure win-
			dow, and par(mfg=) to select which
			sub-figure to draw into.
			Note that the above methods are all
			incompatible with each other.
274	Force graphics windows to	drawnow (MATLAB normally only	R automatically updates graphics
	update	updates figure windows when a	windows even before functions/scripts
		script/function finishes and returns	finish executing, so it's not neces-
		control to the MATLAB prompt, or	sary to explicitly request it. But note
		under a couple of other circum-	that some graphics functions (partic-
		stances. This forces it to update figure windows to reflect any recent	ularly those in the lattice package) don't display their results when called
		plotting commands.)	from scripts or functions; e.g. rather
		proving commands.)	than levelplot() you need to do
			print(levelplot()). Such func-
			tions will automatically display their
			plots when called interactively from
			the command prompt.
			commence prompto

No.	Description	Matlab	R
275	To print/save to a PDF file named fname.pdf	print -dpdf fname saves the con- tents of currently active figure win- dow	First do pdf('fname.pdf'). Then, do various plotting commands to make your image, as if you were plotting in a window. Fi- nally, do dev.off() to close/save the PDF file. To print the con- tents of the active figure win- dow, do dev.copy(device=pdf, file='fname.pdf'); dev.off(). (But this will not work if you've turned off the display list via dev.control(displaylist= 'inhibit').) You can also simply use dev.copy2pdf(file='fname.pdf').
276	To print/save to a PostScript file fname.ps or fname.eps	print -dps fname for black & white PostScript; print -dpsc fname for color PostScript; print -deps fname for black & white Encapsulated PostScript; print -depsc fname for color Encapsu- lated PostScript. The first two save to fname.ps, while the latter two save to fname.eps.	<pre>postscript('fname.eps'), followed by your plotting commands, fol- lowed by dev.off() to close/save the file. Note: you may want to use postscript('fname.eps', horizontal=FALSE) to save your fig- ure in portrait mode rather than the default landscape mode. To print the contents of the active figure window, do dev.copy(device=postscript, file='fname.eps'); dev.off(). (But this will not work if you've turned off the display list via dev.control(displaylist= 'inhibit').) You can also include the horizontal=FALSE argument with dev.copy(). The command dev.copy2eps(file='fname.eps') also saves in portrait mode.</pre>
277	To print/save to a JPEG file fname.jpg with jpeg qual- ity = 90 (higher quality looks better but makes the file larger)	print -djpeg90 fname	<pre>jpeg('fname.jpg',quality=90), followed by your plotting commands, followed by dev.off() to close/save the file.</pre>

7.2 Printing/saving graphics

No.	Description	Matlab	R
278	To display images of cellu-	Repeatedly use either pcolor or	If you simply call image repeatedly,
	lar automata or other lattice	image to display the data. Don't	there is a great deal of flicker-
	simulations while running in	forget to call drawnow as well, oth-	ing/flashing. To avoid this, after
	real time	erwise the figure window will not be	drawing the image for the first time
		updated with each image.	using e.g. image(A), from then
			on only use image(A,add=TRUE),
			which avoids redrawing the entire
			image (and the associated flicker).
			However, this will soon consume a
			great deal of memory, as all drawn
			images are saved in the image buffer.
			There are two solutions to that
			problem: (1) every k time steps, leave off the "add=TRUE" argument
			to flush the image buffer (and get
			occasional flickering), where you
			choose k to balance the flickering
			vs. memory-usage tradeoff; or
			(2) after drawing the first image,
			do dev.control(displaylist=
			'inhibit') to prohibit retaining the
			data. However, the latter solution
			means that after the simulation is
			done, the figure window will not be
			redrawn if it is resized, or temporarily
			obscured by another window. (A
			call to dev.control(displaylist=
			'enable') and then one final
			image(A) at the end of the sim-
			ulation will re-enable re-drawing
			after resizing or obscuring, without
			consuming extra memory.)

7.3 Animating cellular automata / lattice simulations
8 Working with files

No.	Description	Matlab	R
279	Create a folder (also known as a "directory")	mkdir dirname	<pre>dir.create('dirname')</pre>
280	Set/change working directory	cd dirname	<pre>setwd('dirname')</pre>
281	See list of files in current working directory	dir	dir()
282	Run commands in file 'foo.m' or 'foo.R' respectively	foo	<pre>source('foo.R')</pre>
283	Read data from text file "data.txt" into matrix A	A=load('data.txt') or A=importdata('data.txt') Note that both routines will ignore com- ments (anything on a line following a "%" character)	<pre>A=as.matrix(read.table('data.txt')) This will ignore comments (anything on a line following a "#" character). To ig- nore comments indicated by "%", do</pre>
284	Read data from text file "data.txt" into matrix A , skipping the first s lines of the file	<pre>tmp=importdata('data.txt', ' ',s); a=tmp.data</pre>	<pre>A=as.matrix(read.table('data.txt', skip=s))</pre>
285	Write data from matrix A into text file "data.txt"	save data.txt A -ascii	<pre>write(t(A), file='data.txt', ncolumn=dim(A)[2])</pre>

9 Miscellaneous

9.1 Variables

No.	Description	Matlab	R
286	Assigning to variables	x = 5	x <- 5 or $x = 5$ Note: for compatibility with S-plus, many people prefer the first form.
287	From within a function, as- sign a value to variable y in the base environment (i.e. the command prompt envi- ronment)	assignin('base', 'y', 7)	y <<- 7
288	From within a function, access the value of variable y in the base environment (i.e. the command prompt environment)	evalin('base', 'y')	get('y', envir=globalenv()) Though note that inside a function, if there isn't a local variable y, then just the expression y will look for one in the base environment, but if there is a local y then that one will be used instead.
289	Short list of defined variables	who	ls()
290	Long list of defined variables	whos	ls.str()
291	See detailed info about the variable ab	whos ab	str(ab)
292	See detailed info about all variables with "ab" in their name	whos *ab*	<pre>ls.str(pattern='ab')</pre>
293	Open graphical data editor, to edit the value of variable A (useful for editing values in a matrix, though it works for non-matrix variables as well)	openvar(A) , or double-click on the variable in the Workspace pane (if it's being displayed) of your MAT- LABdesktop	fix(A)
294	Clear one variable	clear x	rm(x)
295	Clear two variables	clear x y	rm(x,y)
296	Clear all variables	clear all	<pre>rm(list=ls())</pre>
297	See what type of object \mathbf{x} is	class(x)	class(x) and typeof(x) give differ- ent aspects of the "type" of x
298	(Variable names)	Variable names must begin with a letter, but after that they may con- tain any combination of letters, dig- its, and the underscore character. Names are case-sensitive.	Variable names may contain letters, digits, the period, and the underscore character. They cannot begin with a digit or underscore, or with a period followed by a digit. Names are case- sensitive.
299	Result of last command	<pre>ans contains the result of the last command which did not assign its value to a variable. E.g. after 2+5; x=3, then ans will contain 7.</pre>	.Last.value contains the result of the last command, whether or not its value was assigned to a variable. E.g. after 2+5; x=3, then .Last.value will contain 3.

9.2 Strings and Misc.

No.	Description	Matlab	R
<u>No.</u> 300	Line continuation	MATLAB If you want to break up a MATLAB command over more than one line, end all but the last line with three periods: "". E.g.: x = 3 + 4 or x = 3 + 4	RIn R, you can spread commands out over multiple lines, and nothing ex- tra is necessary. R will continue read- ing input until the command is com- plete. However, this only works when the syntax makes it clear that the first line was not complete. E.g.: $\mathbf{x} = 3 + 4$ works, but $\mathbf{x} = 3 + 4$ does not treat the second line as a con-
			tinuation of the first.
301	Controlling formatting of output	format short g and format long g are handy; see help format	options(digits=6) tells R you'd like to use 6 digits of precision in values it displays (it is only a suggestion, not strictly followed)
302	Exit the program	quit or exit	q() or quit()
303	Comments	% this is a comment	# this is a comment
304	Display a string	<pre>disp('hi there') or to omit trailing newline use fprintf('hi there')</pre>	<pre>print('hi there') Note: to avoid having double-quotes around the displayed string, do print('hi there', quote=FALSE) or print(noquote('hi there')).</pre>
305	Display a string containing single quotes	disp('It''s nice') or to omit trailing newline fprintf('It''s nice')	<pre>print('It\'s nice') or print("It's nice")</pre>
306	Give prompt and read numer- ical input from user	<pre>x = input('Enter data:')</pre>	print('Enter data:'); x=scan() But note: if in a script and you use the Edit \rightarrow Execute menu item to run it, the selected text after the scan statement will be used as source for the input, rather than keyboard.
307	Give prompt and read char- acter (string) input from user	<pre>x = input('Enter string:','s')</pre>	<pre>x = readline('Enter string:')</pre>
308	Concatenate strings	['two hal' 'ves']	<pre>paste('two hal', 'ves', sep='')</pre>
309	Concatenate strings stored in a vector	<pre>v={'two ', 'halves'}; strcat(v{:}) But note that this drops trailing spaces on strings. To avoid that, instead do strcat([v{:}])</pre>	<pre>v=c('two ', 'halves'); paste(v, collapse='')</pre>
310	Extract substring of a string	<pre>text1='hi there'; text2=text(2:6)</pre>	<pre>text1='hi there'; text2=substr(text1,2,6)</pre>
311	Determine whether elements of a vector are in a set, and give positions of correspond- ing elements in the set.	<pre>x = {'a', 'aa', 'bc', 'c'}; y = {'da', 'a', 'bc', 'a', 'bc', 'aa'}; [tf, loc]=ismember(x,y) Then loc contains the locations of last occurrences of elements of x in the set y, and 0 for unmatched elements.</pre>	<pre>x = c('a', 'aa', 'bc', 'c'); y = c('da', 'a', 'bc', 'a', 'bc', 'aa'); loc=match(x,y) Then loc contains the locations of first oc- curences of elements of x in the set y, and NA for unmatched elements.</pre>

No.	Description	Matlab	R
312	Find indices of regular expression pattern \mathbf{p} in string \mathbf{s}	v=regexp(s,p)	<pre>v=gregexpr(p,s)[[1]] (The returned vector also has a "match.length" attribute giv- ing lengths of the matches; this attribute can be removed via attributes(v)=NULL.)</pre>
313	Perform some commands only if the regular expression \mathbf{p} is contained in the string \mathbf{s}	<pre>if (regexp(s,p) commands end</pre>	<pre>if (grepl(p,s)) { commands }</pre>
314	Convert number to string	num2str(x)	as.character(x)
315	Use sprintf to create a formatted string. Use %d for integers ("d" stands for "dec- imal", i.e. base 10), %f for floating-point numbers, %e for scientific-notation floating point, %g to automatically choose %e or %f based on the value. You can spec- ify field-widths/precisions, e.g. %5d for integers with padding to 5 spaces, or %.7f for floating-point with 7 digits of precision. There are many other options too; see the docs.	<pre>x=2; y=3.5; s=sprintf('x is %d, y=%g', x, y)</pre>	<pre>x=2; y=3.5 s=sprintf('x is %d, y is %g', x, y)</pre>
316	Machine epsilon ϵ_{mach} , i.e. difference between 1 and the next largest double-precision floating-point number	eps (See help eps for various other things eps can give.)	.Machine\$double.eps
317	Pause for x seconds	pause(x)	Sys.sleep(x)
318	Wait for user to press any key	pause	Don't know of a way to do this in R, but scan(quiet=TRUE) will wait until the user presses the Enter key
319	Produce a beep (or possibly a visual signal, depending on preferences set)	beep	alarm()
320	Measure CPU time used to do some commands	<pre>t1=cputime;commands ; cputime-t1</pre>	<pre>t1=proc.time();commands ; (proc.time()-t1)[1]</pre>
321	Measure elapsed ("wall- clock") time used to do some commands	<pre>tic;commands ; toc or t1=clock;commands ; etime(clock,t1)</pre>	<pre>t1=proc.time();commands ; (proc.time()-t1)[3]</pre>
322	Print an error message an in- terrupt execution	<pre>error('Problem!')</pre>	<pre>stop('Problem!')</pre>
323	Print a warning message	<pre>warning('Smaller problem!')</pre>	<pre>warning('Smaller problem!')</pre>
324	Putting multiple statements on one line	Separate statements by commas or semicolons. A semicolon at the end of a statement suppresses display of the results (also useful even with just a single statement on a line), while a comma does not.	Separate statements by semicolons.

No.	Description	Matlab	R
325	Evaluate contents of a string	eval(s)	<pre>eval(parse(text=s))</pre>
	s as command(s).		
326	Get a command prompt for debugging, while executing a script or function. While at that prompt, you can type ex- pressions to see the values of variables, etc.	Insert the command keyboard in your file. Note that your prompt will change to K>>. When you are done debugging and want to continue ex- ecuting the file, type return.	Insert the command browser() in your file. Note that your prompt will change to Browse[1]>. When you are done debugging and want to continue executing the file, either type c or just press return (i.e. enter a blank line). Note, if you type n, you enter the step debugger.
327	Show where a command is	which sqrt shows you where the file defining the sqrt function is (but note that many basic functions are "built in," so the MATLAB func- tion file is really just a stub con- taining documentation). This is use- ful if a command is doing something strange, e.g. sqrt isn't working. If you've accidentally defined a variable called sqrt, then which sqrt will tell you, so you can clear sqrt to erase it so that you can go back to using the function sqrt.	R does not execute commands directly from files, so there is no equivalent command.
328	Query/set the search path.	path displays the current search path (the list of places MATLAB searches for commands you enter). To add a directory ~/foo to the beginning of the search path, do addpath ~/foo -begin or to add it to the end of the path, do addpath ~/foo -end (Note: you should generally add the full path of a directory, i.e. in Linux or Mac OS-X something like ~/foo as above or of the form /usr/local/lib/foo, while under Windows it would be something like C:/foo)	R does not use a search path to look for files.
329	Startup sequence	If a file startup.m exists in the startup directory for MATLAB, its contents are executed. (See the MATLAB docs for how to change the startup directory.)	If a file .Rprofile exists in the cur- rent directory or the user's home di- rectory (in that order), its contents are sourced; saved data from the file .RData (if it exists) are then loaded. If a function .First() has been de- fined, it is then called (so the obvious place to define this function is in your .Rprofile file).
330	Shutdown sequence	Upon typing quit or exit , MATLAB will run the script finish.m if present somewhere in the search path.	Upon typing q() or quit(), R will call the function .Last() if it has been de- fined (one obvious place to define it would be in the .Rprofile file)

No.	Description	Matlab	R
331	Install and load a package.	MATLAB does not have packages. It	To install e.g. the deSolve pack-
		has toolboxes, which you can pur-	age, you can use the command
		chase and install. "Contributed"	<pre>install.packages('deSolve').</pre>
		code (written by end users) can sim-	You then need to load the package
		ply be downloaded and put in a di-	in order to use it, via the command
		rectory which you then add to MAT-	library('deSolve'). When running
		LAB's path (see item 328 for how to	R again later you'll need to load the
		add things to MATLAB's path).	package again to use it, but you
			should not need to re-install it. Note
			that the lattice package is typically
			included with binary distributions of
			R, so it only needs to be loaded, not
			installed.

10 Spatial Modeling

No.	Description	Matlab	R
332	Take an $L \times L$ matrix A of	A = (A (rand(L) < p))*1;	$A = (A (matrix(runif(L^2),L))$
	0s and 1s, and "seed" frac-		< p))*1
	tion p of the 0s (turn them		
	into 1s), not changing entries		
	which are already 1.		
333	Take an $L \times L$ matrix A of 0s	A = (A & (rand(L) < 1-p))*1;	$A = (A \& (matrix(runif(L^2),L))$
	and 1s, and "kill" fraction p		< 1-p))*1
	of the 1s (turn them into 0s),		
	not changing the rest of the		
	entries		
334	Do "wraparound" on a coor-	<pre>mod(newx-1,L)+1 Note: for porta-</pre>	((newx-1) %% L) + 1 Note: for
	dinate \mathbf{newx} that you've al-	bility with other languages such as	portability with other languages such
	ready calculated. You can	C which handle MOD of negative	as C which handle MOD of nega-
	replace \mathbf{newx} with $\mathbf{x} + \mathbf{dx}$ if	values differently, you may want to	tive values differently, you may want
	you want to do wraparound	get in the habit of instead doing	to get in the habit of instead doing
	on an offset x coordinate.	mod(newx-1+L,L)+1	((newx-1+L)%%L) + 1
335	Randomly initialize a portion	dx=ix2-ix1+1; dy=iy2-iy1+1;	dx=ix2-ix1+1; dy=iy2-iy1+1;
	of an array: set fraction p of	A(iy1:iy2,ix1:ix2) =	A[iy1:iy2,ix1:ix2] =
	sites in rows $\mathbf{iy1}$ through $\mathbf{iy2}$	(rand(dy,dx) < p0)*1;	<pre>(matrix(runif(dy*dx),dy) <</pre>
	and columns $\mathbf{ix1}$ through $\mathbf{ix2}$		p0)*1
	equal to 1 (and set the rest of		
	the sites in that block equal		
	to zero). Note: this assume		
	iy1 < iy2 and $ix1 < ix2$.		

Index of MATLAB commands and concepts

', 83 , 324 .*, 82 ..., 300 ./, 90 .^, 94 /, 89 :, 12–14 ;, 324 =, 286 [, 6-8 %, 303 &, 186, 187 [^], 54, 92, 93 \, 84, 91 **{** 49 abs, 55, 74 acos, 60acosh, 62 addpath, 328 all, 188 angle, 75 annotation, 263, 264 ans, 299 any, 189 arrows in plots, 263, 264 asin, 60asinh, 62 assignin, 287 atan, 60 atanh, 62 average, see mean axis, 255 bar, 244, 246, 247 beep, 319 binocdf, 229 binopdf, 222 binornd, 213 boolean tests scalar, 186 vector, 187-189 break, 191 cd. 280 ceil, 66 cell, 48 cell arrays, 48 extracting elements of, 49 cellular automata animation, 278 chol, 100 circshift, 33 class, 297 clear, 294-296 clf, 266 clock, 321 close, 239 colon, see:colorbar, 270 colormap building your own, 272 colormap, 271, 272 column vector, 7 comments, 303 complex numbers, 73–78 cond, 104-106conj, 76 continue, 191 contour, 254 conv, 165 corr, 118-123 cos, 59 cosh, 61 cov, 116, 117 cputime, 320 cross, 80 csape, 178, 180, 181 cubic splines, 179, 180 natural, 178 not-a-knot, 182 periodic, 181 cumprod, 135 cumsum, 131-134 cumulative distribution functions binomial, 229 continuous uniform on interval (a, b), 233 discrete uniform from 1..n, 234 exponential, 231 normal, 232 Poisson, 230 debugging, 326 det, 86 diag, 22, 23 diff, 137 differential equations, $see \ ode45$ dir, 281 disp, 304, 305 doc, 4dot, 79

INDEX OF MATLAB COMMANDS AND CONCEPTS

drawnow, 274, 278 echelon form, see matrix eig, 96 element-by-element matrix operations, see ma- trix else, 185 elseif, 185 end, 40 eps, 316 erf, 68 erfc, 69erfcinv, 71erfinv, 70 error, 322 errorbar, 248, 249 etime, 321eval, 325 evalin, 288 exit, 302, 330 exp, 56 expcdf, 231 expm, 130 exppdf, 224 exprnd, 215 eye, 21 figure, 235, 236 file running commands in, 282 text reading data from, 283, 284 saving data to, 285 find, 160-162 finish.m, 330 fliplr, 34 flipud, 35 floor, 65fminbnd, 168, 169 fminsearch, 170, 171 font size in plots, 259 for, 183 format, 301 fplot, 268 fprintf, 304, 305 function multi-variable minimization, 170 minimization over first parameter only, 169 minimization over only some parameters, 171single-variable minimization, 168

user-written, 193 returning multiple values, 194 fzero, 167 gca, 259 gcf, 237 get, 238 Greek letters in plot labels, 258 grid, 260 help, 1-3 helpbrowser, 4 helpdesk, 4 hilb, 46 hist, 163, 164, 245, 246 hold. 266 identity, see matrix if, 184-186 imag, 78 image, 269, 278 imagesc, 269 importdata, 283, 284 ind2sub, 36 indexing matrix, 10 with a single index, 11 vector, 9 input, 306, 307 inv, 87 inverse, see matrix ismember, 311 keyboard, 326 legend, 265 length, 150, 152 linspace, 15 load, 283 log, 57 log10, 58 log2, 58 loglog, 243logspace, 16 lookfor, 5 lu, 97 matrix, 8 boolean operations on, 161, 162 changing shape of, 43 Cholesky factorization, 100 circular shift, 33 condition number, 104–106

INDEX OF MATLAB COMMANDS AND CONCEPTS

containing all indentical entries, 20 containing all zeros, 19 converting row, column to single index, 37 converting single-index to row, column, 36 cumulative sums of all elements of, 134 cumulative sums of columns, 132 cumulative sums of rows, 133 determinant, 86 diagonal, 22 echelon form, 85 eigenvalues and eigenvectors of, 96 equation solving, 84 exponential of, 130 extracting a column of, 28 extracting a rectangular piece of, 31 extracting a row of, 29 extracting specified rows and columns of, 32 "gluing" together, 24, 25 identity, 21 inverse, 87 lower-triangular portion of, 44 LU factorization, 97 minimum of values of, 140 minimum value of each column of, 141 minimum value of each row of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 N-dimensional. 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 QR factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in columns, 35 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147-149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 upper-triangular portion of, 45 max, see min

mean, 107-109 mesh, 254 meshgrid, 26, 118, 253 min, 139-142, 144-146 mind. 143 mkdir, 279 mnpdf, 228 mnrnd, 220, 221 mod, 63. 334 modulo arithmetic, 63, 334 multiple statements on one line, 324 nchoosek, 72 norm, 102, 103 normcdf, 232 normpdf, 225 normrnd, 219 num2str, 314 numel, 151 ode45, 195-197 ones, 18, 20 openvar, 293 optimization, 168-171 path, 328 pause, 317, 318 pcolor, 254, 269, 278 perform some commands with probability p, 207 permutation of integers 1..n, 208 plot, 240-242, 267 Greek letters in axis labels, 258 plot3, 251 poisscdf, 230 poisspdf, 223 poissrnd, 214 polar, 250 polyfit, 174-176 polynomial least-squares fitted, 175-177 multiplication, 165 roots of, 166 ppval, 178, 180, 181 print, 275-277 probability density functions binomial, 222 continuous uniform on interval (a, b), 226 discrete uniform from 1..n, 227 exponential. 224 multinomial, 228 normal. 225 Poisson, 223 prod, 127-129

gr, 101

guad, 172 quit, 302, 330 rand, 198-206, 212 random values Bernoulli, 204 binomial, 213 continuous uniform distribution on interval (a, b), 201, 218continuous uniform distribution on interval (0,1), 198-200discrete uniform distribution from a..b, 206 discrete uniform distribution from 1..k, 203, 216, 217 discrete uniform distribution, 202 exponential, 215 k unique values sampled from integers 1..n, 209multinomial, 220, 221 normal, 219 Poisson, 214 setting the seed, 212 randperm, 208, 209 randsample, 209-211 rank, 95 rcond. 104 real, 77 regexp, 312, 313 reshape, 43, 47 roots of general single-variable function, 167 polynomial, 166 roots, 166 round, 64row vector, 6 rref, 85sampling values from a vector, 210, 211 save, 285 schur, 99 semilogx, 243 semilogy, 243 set, 259shading, 269 sign, 67 sin, 59 sinh, 61 size, 147-149 slice, 254sort, 153, 154, 209 sortrows, 155-158 spline, 182

splines, see cubic splines sprintf, 315 sqrt, 53 stairs, 250 standard deviation, see std startup.m, 329 std, 110-112 stem, 250 stop, 322 strcat, 309 string concatenation, 308 converting number to, 314 pattern matching, 312, 313 substrings, 310 struct, 51 sub2ind, 37, 38 subplot, 273 sum, 124-126, 187 surf, 252, 253 surfc, 254surf1, 254 svd, 98 switch, 192 tan, 59 tanh. 61 text, 261, 262 tic, 321 title, 256 toc, 321 trace, 88 transpose, see matrix trapz, 173 tril, 44 triu, 45 unidcdf, 234 unidpdf, 227 unidrnd, 216, 217 unifcdf, 233 unifpdf, 226 unifrnd, 218 unique, 163, 246 var, 113-115 variables assigning, 286 assigning in base environment from function, 287 evaluating from base environment within function, 288 names, 298 variance, see var

vector

boolean operations on, 159, 160 containing all indentical entries, 18 containing all zeros, 17 counts of binned values in, 164 counts of discrete values in, 163 cross product, 80 cumulative sum of elements of, 131 differences between consecutive elements of, 137dot product, 79 minimum of values of, 139 norm, 102 position of first occurance of minimum value in, 146 product of all elements, 127 reversing order of elements in, 27 size of, 150sum of all elements, 124 truncating, 39

warning, 323 waterfall, 254 which, 327 while, 190 who, 289 whos, 290-292 xlabel, 257-259 ylabel, 257, 258 zeros, 17, 19

Index of R commands and concepts

*, 92 /. 90 :, 12, 13;, 324 <-, 286 <<-, 287 =, 286 ?, 1, 2 [[, 49] #, 303 %%, 63, 334 &, 186, 187 [^], 54, 94 abs, 55, 74 acos, 60acosh, 62 alarm, 319 all, 188 any, 189 apply, 34, 35, 112, 114, 115, 128, 141, 142 Arg, 75 array, 47 arrows, 263, 264 as.character, 314 as.formula, 176 as.numeric, 163 asin, 60 asinh, 62 atan, 60atanh, 62 average, see mean barplot, 244, 246 boolean tests scalar, 186 vector, 187-189 break, 191 browser, 326 c, 6, 7 cbind, 24, 38 ceiling, 66 cellular automata animation, 278 **chol**, 100 choose, 72 class, 297 cloud, 251coef, 174-177 colMeans, 108 colon, see:

colormap building your own, 272 for image, 271 colSums, 125 column vector, 7 comments, 303 complex numbers, 73–78 Conj, 76 contour, 254convolve, 165 cor, 119-123 cos, 59 cosh. 61 cov, 116-118 cubic splines, 179, 180, 182 natural, 178 periodic, 181 cummax, 136 cummin, 136 cumprod, 135 cumsum, 131-134 cumulative distribution functions binomial, 229 continuous uniform on interval (a, b), 233 discrete uniform from 1..n, 234 exponential, 231 normal, 232 Poisson, 230 curve, 268 data.frame, 51 dbinom, 222 debugging, 326 det, 86 dev.control, 275, 276, 278 dev.copy, 275, 276 dev.copy2eps, 276 dev.copy2pdf, 275 dev.cur(), 237 dev.list, 238 dev.new, 235 dev.off, 239, 275-277 dev.set, 236 dexp, 224 diag, 21-23 diff, 137 differential equations, see lsoda dim, 43, 149, 152 dir, 281 dir.create, 279

dmultinom. 228 dnorm, 225dpois, 223 dunif, 226 echelon form, see matrix eig, 96 element-by-element matrix operations, see matrix else. 185 errbar, 248, 249 eval, 325 exp, 56 expand, 97 expand.grid, 254 expm, 130 file running commands in, 282 text reading data from, 283, 284 saving data to, 285 filled.contour, 270 .First, 329 fix, 293 floor, 65font size in plots, 259 for, 183 function multi-variable minimization, 170 minimization over first parameter only, 169 minimization over only some parameters, 171single-variable minimization, 168 user-written, 193 returning multiple values, 194 get, 288 globalenv, 288 graphics not being displayed from scripts/functions, 274Greek letters in plot labels, 258 gregexpr, 312 grep1, 313 grid, 260 help, 1, 2 help.search, 5 help.start, 4 Hilbert, 46

hist, 164, 244, 245, 247 identity, see matrix if, 184-186 ifelse, 138 Im, 78 image, 269, 278 indexing matrix, 10 with a single index, 11 vector, 9 install.packages, 331 integrate, 172 inverse, see matrix jpeg, 277 kappa, 105 .Last, 330 .Last.value, 299 lattice package, 254, 270, 274, 331 layout, 273 legend, 265 length, 39, 40, 150, 151 levelplot, 270, 274 library, 3, 331 lines, 266 lists, 48 extracting elements of, 49 lm, 174-177 lm.fit, 176 log, 57 log10, 58 log2, 58 lower.tri, 45 ls, 289 ls.str, 290, 292 lsoda, 195-197 .Machine\$double.eps, 316 match, 311 matplot, 267 matrix, 8 boolean operations on, 161, 162 changing shape of, 43 Cholesky factorization, 100 circular shift. 33 condition number, 104–106 containing all indentical entries, 20 containing all zeros, 19 converting row, column to single index, 37 converting single-index to row, column, 36 cumulative sums of all elements of, 134

cumulative sums of columns, 132 cumulative sums of rows, 133 determinant, 86 diagonal, 22 echelon form, 85 eigenvalues and eigenvectors of, 96 equation solving, 84 exponential of, 130 extracting a column of, 28 extracting a rectangular piece of, 31 extracting a row of, 29 extracting specified rows and columns of, 32 "gluing" together, 24, 25 identity, 21 inverse, 87 lower-triangular portion of, 44 LU factorization, 97 minimum of values of, 140 minimum value of each column of, 141 minimum value of each row of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 N-dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 QR factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in columns, 35 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 upper-triangular portion of, 45 matrix, 8, 19, 20 max, see min mean. 107 min, 139-142, 145 Mod. 74 modulo arithmetic, 63, 334

multiple statements on one line, 324 names, 50, 163 ncol, 148 next, 191 norm, 102, 103 nrow, 147 optim, 170, 171 optimization, 168-171 optimize, 168, 169 options digits=, 301 order, 155-158 outer, 176, 253 packages installing, 331 loading, 331 par, 259 par mfcol=, 273 mfrow=, 273 parse, 325 paste, 176, 308, 309 pbinom, 229 pdf, 259, 275 perform some commands with probability p, 207 permutation of integers 1..n, 208 persp, 252, 253 pexp, 231 pie, 250 plot, 240-243 Greek letters in axis labels, 258 main=, 256 sub=, 256 xlab=, 257, 258 xlim=. 255 ylab=, 257, 258 ylim=, 255 pmin, 143, 144 pnorm, 68, 69, 232 points, 266 polynomial least-squares fitted, 175–177 multiplication, 165 roots of, 166 polyreg, 176 polyroot, 166 postscript, 276 ppois, 230 print, 274, 304, 305 probability density functions binomial, 222

continuous uniform on interval (a, b), 226 discrete uniform from 1..n, 227 exponential, 224 multinomial, 228 normal, 225 Poisson, 223 proc.time, 320, 321 prod, 127-129 punif, 233 q, 302, 330 qnorm, 70, 71 gr, 95, 101 quartz, 235 quit, 302, 330 rand. 205 random values Bernoulli, 204 binomial, 213 continuous uniform distribution on interval (a, b), 201, 218continuous uniform distribution on interval (0,1), 198, 200continuous uniform distribution on inteval (0,1), 199discrete uniform distribution from a..b, 206 discrete uniform distribution from 1..k, 203, 216, 217 discrete uniform distribution, 202 exponential, 215 k unique values sampled from integers 1..n, 209multinomial, 220, 221 normal, 219 Poisson, 214 setting the seed, 212 rbind, 25 rbinom. 213 rcond, 104, 106 .RData, 329 Re, 77 read.table, 283, 284 readline, 307 rep, 17, 18 rev, 27 **rexp**, 215 rgb, 272 rm, 294-296 rmultinom, 220, 221 **rnorm**. 219 roots of general single-variable function, 167

polynomial, 166 round, 64 row vector, 6 rowMeans, 109 rpois, 214 .Rprofile, 329 runif, 198-204, 206, 218 sample, 208-211, 216, 217 sampling values from a vector, 210, 211 scan, 306, 318 Schur, 99 sd, 110-112 seq, 14-16 set.seed, 212 setwd, 280 sign, 67 sin, 59 sinh, 61 solve, 84, 87, 89, 91 sort, 153, 154 source, 282 spline, 178, 179, 181 splines, see cubic splines split.screen, 273 sprintf, 315 sqrt, 53 standard deviation, see sd str, 291 string concatenation, 308 converting number to, 314 pattern matching, 312, 313 substrings, 310 substr, 310 sum, 124, 126, 187 svd, 98 switch. 192 symbols, 254 Sys.sleep, 317 t, 83 table, 163, 246 $\tan, 59$ tanh. 61 text, 261, 262 title, 256, 257 transpose, see matrix typeof, 297 uniroot, 167 upper.tri, 44 var, 113-115, 117

variables assigning, 286 assigning in base environment from function, 287 evaluating from base environment within function, 288 names, 298 variance, see var vector boolean operations on, 159, 160 containing all indentical entries, 18 containing all zeros, 17 counts of binned values in, 164 counts of discrete values in, 163 cross product, 80 cumulative sum of elements of, 131 differences between consecutive elements of, 137dot product, 79 minimum of values of, 139 norm, 102 position of first occurance of minimum value in, 146 product of all elements, 127 reversing order of elements in, 27 size of, 150sum of all elements, 124 truncating, 39 vector, 48warning, 323 which, 160-162 which.max, see which.min which.min, 146 while, 190windows, 235 wireframe, 254 write, 285 x11, 235