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1 Introduction

This is a set of notes and annotated examples of the use of the statistical package R. It is “for psychology experiments
and questionnaires” because we cover the main statistical methods used by psychologists who do research on human
subjects, but of course it this is also relevant to researchers in others fields that do similar kinds of research.

R, like S—Plus, is based on the S language invented at Bell Labs. Most of this should also work with S—Plus.
Because R is open-source (hence also free), it has benefitted from the work of many contributors and bug finders. R
is a complete package. You can do with it whatever you can do with Systat, SPSS, Stata, or SAS, including graphics.
Contributed packages are added or updated almost weekly; in some cases these are at the cutting edge of statistical
practice.

Some things are more difficult with R, especially if you are used to using menus. With R, it helps to have a list of
commands in front of you. There are lists in the on-line help and in the index of An introduction to R by the R Core
Development Team, and in the reference cards listed in http://finzi.psych.upenn.edu/.

Some things turn out to be easier in R. Although there are no menus, the on-line help files are very easy to use, and
quite complete. The elegance of the language helps too, particularly those tasks involving the manipulation of data.

The purpose of this document is to reduce the difficulty of the things that are more difficult at first. We assume that
you have read the relevant parts of An introduction to R, but we do not assume that you have mastered its contents. We
assume that you have gotten to the point of installing R and trying a couple of examples.

2 A few useful concepts and commands

2.1 Concepts

In R, most commands are functions. That is, the command is written as the name of the function, followed by
parentheses, with the arguments of the function in parentheses, separated by commas when there is more than one,
e.g., plot(mydatal). When there is no argument, the parentheses are still needed, e.g., g() to exit the program.

In this document, we use names such as x1 or filel, that is, names containing both letters and a digit, to indicate
variable names that the user makes up. Really these can be of any form. We use the number simply to clarify the
distinction between a made up name and a key word with a pre-determined meaning in R. R is case sensitive.

Although most commands are functions with the arguments in parentheses, some arguments require specification
of a key word with an equal sign and a value for that key word, such as source("'myfilel.R",echo=T), which means
read in myfilel.R and echo the commands on the screen. Key words can be abbreviated (e.g., e=T).

In addition to the idea of a function, R has objects and modes. Objects are anything that you can give a name. There
are many different classes of objects. The main classes of interest here are vector, matrix, factor, list, and data frame.
The mode of an object tells what kind of things are in it. The main modes of interest here are logical, numeric,
and character.
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We sometimes indicate the class of object (vector, matrix, factor, etc.) by using v1 for a vector, m1 for a matrix,
and so on. Most R functions, however, will either accept more than one type of object or will “coerce” a type into the
form that it needs.

The most interesting object is a data frame. It is useful to think about data frames in terms of rows and columns.
The rows are subjects or observations. The columns are variables, but a matrix can be a column too. The variables can
be of different classes.

The behavior of any given function, such as plot(), aov() (analysis of variance) or summary() depends on
the object class and mode to which it is applied. A nice thing about R is that you almost don’t need to know this,
because the default behavior of functions is usually what you want. One way to use R is just to ignore completely the
distinction among classes and modes, but check every step (by typing the name of the object it creates or modifies).
If you proceed this way, you will also get error messages, which you must learn to interpret. Most of the time, again,
you can find the problem by looking at the objects involved, one by one, typing the name of each object.

Sometimes, however, you must know the distinctions. For example, a factor is treated differently from an ordinary
vector in an analysis of variance or regression. A factor is what is often called a categorical variable. Even if numbers
are used to represent categories, they are not treated as ordered. If you use a vector and think you are using a factor,
you can be misled.

2.2 Commands

As areminder, here is a list of some of the useful commands that you should be familiar with, and some more advanced
ones that are worth knowing about. We discuss graphics in a later section.

2.2.1 Getting help

help.start() starts the browser version of the help files. (But you can use help() without it.) With a fast computer
and a good browser, it is often simpler to open the html documents in a browser while you work and just use the
browser’s capabilities.

help(commandl) prints the help available about commandl. help.search(*'keyword1') searches keywords for help
on this topic.

apropos(topicl) or apropos(*'topicl™) finds commands relevant to topicl, whatever it is.

example(commandl) prints an example of the use of the command. This is especially useful for graphics commands.
Try, for example, example(contour), example(dotchart), example(image), and example(persp).

2.2.2 Installing packages

instal l.packages(c(""packagel","package2')) will install these two packages from CRAN (the main archive),
if your computer is connected to the Internet. You don’t need the c() if you just want one package. You should, at
some point, make sure that you are using the CRAN mirror page that is closest to you. For example, if you live in the
U.S., you should have a -Rprofile file with options(CRAN = "http://cran.us.r-project.org™) init. (It may
work slightly differently on Windows.)

CRAN.packages(), installed.packages(), and update.packages() are also useful. The first tells you what
is available. The second tells you what is installed. The third updates the packages that you have installed, to their
latest version.

To install packages from the Bioconductor set, see the instructions in
http://ww._bioconductor.org/reposToolsDesc.html.
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When packages are not on CRAN, you can download them and use R CMD INSTALL packagel.tar.gz from a
Unix/Linux command line. (Again, this may be different on Windows.)

2.2.3 Assignment, logic, and arithmetic

<- assigns what is on the right of the arrow to what is on the left. (If you use ESS, the _ key will produce this arrow
with spaces, a great convenience.)

Typing the name of the object prints the object. For example, if you say:
tl <- ¢(1,2,3,4,5)
ol

youwillseel 2 3 4 5.

Logical objects can be true or false. Some functions and operators return TRUE or FALSE. For example, 1==1, is
TRUE because 1 does equal 1. Likewise, 1==2 is FALSE, and 1<2 is TRUE. Use al1 (), any(), |, |l, & and &&
to combine logical expressions, and use ! to negate them. The difference between the | and | | form is that the shorter
form, when applied to vectors, etc., returns a vector, while the longer form stops when the result is determined and
returns a single TRUE or FALSE.

Set functions operate on the elements of vectors: union(vl,v2), intersect(vl,v2), setdiff(vi,v2), setequal(vi,v2),
is.element(elementl,vl) (or, elementl %in% v1).

Arithmetic works. For example, -t1 yields -1 -2 -3 -4 -5. It works on matrices and data frames too. For example,
suppose m1 is the matrix

123
456

Thenml * 2is

8 10 12

Matrix multiplication works too. Suppose m2 is the matrix

e
N NN

thenml %*% m2 is

6 12
15 30

and m2 %*% mlis

9 12 15
9 12 15
9 12 15

You can also multiply a matrix by a vector using matrix multiplication, vectors are aligned vertically when they
come after the %*% sign and horizontally when they come before it. This is a good way to find weighted sums, as we
shall explain.
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For ordinary multiplication of a matrix times a vector, the vector is vertical and is repeated as many times as
needed. For example m2 * 1:2 yields

=N
AN DS~

Ordinarily, you would multiply a matrix by a vector when the length of the vector is equal to the number of rows
in the matrix.

2.2.4 \ectors, matrices, lists, arrays, and data frames

- is a way to abbreviate a sequence of numbers, e.g., 1:5 is equivalent to 1,2,3,4,5.

c(number. 1istl) makes the list of numbers (separated by commas) into a vector object. For example, c(1,2,3,4,5)
(but 1:5 is already a vector, so you do not need to say c(1:5)).

rep(vl,nl) repeats the vector vl nl times. For example, rep(c(1:5),2) is1,2,3,4,5,1,2,3,4,5.

rep(vl,v2) repeats each element of the vector vl a number of times indicated by the corresponding element of
the vector v2. The vectors v1 and v2 must have the same length. For example, rep(c(1,2,3),c(2,2,2)) is
1,1,2,2,3,3. Notice that this can also be written as rep(c(1,2,3),rep(2,3)). (See also the function gl () for
generating factors according to a pattern.)

cbind(vl,v2,v3) puts vectors vl, v2, and v3 (all of the same length) together as columns of a matrix. You can of
course give this a name, such as matl <- cbind(vl,v2,v2).

matrix(vl,rowsl,colmunsl) makes the vector v1 into a matrix with the given number of rows and columns. You
don’t need to specify both rows and columns, but you do need to put in both commas. You can also use key words
instead of using position to indicate which argument is which, and then you do not need the commas. For example,
matrix(1:10, ncol=5) represents the matrix

1 35 7 9

2 4 6 810

Notice that the matrix is filled column by column.

data.frame(vector.listl) takes a list of vectors, all of the same length (error message if they aren’t) and makes
them into a data frame. It can also include factors as well as vectors.

dim(obj1) prints the dimensions of a matrix, array or data frame.
length(vectorl) prints the length of vectorl.

You can refer to parts of objects. m1[, 3] is the third column of matrix m1. m1[,-3] is all the columns except the third.
m1[mi[,1]>3,] is all the rows for which the first column is greater than 3. v1[2] is the second element of vector v1.
If df1 is a data frame with columns a, b, and c, you can refer to the third column as df1$c.

Most functions return lists. You can see the elements of a list with unlist(). For example, try unlist(t.test(1:5))
to see what the t.test() function returns. This is also listed in the section of help pages called “Value.”

array() seems very complicated at first, but it is extremely useful when you have a three-way classification, e.g.,
subjects, cases, and questions, with each question asked about each case. We give an example later.

outer(ml,m2,"funl™) applies funl, a function of two variables, to each combination of m1 and m2. The default is to
multiply them.

mapply(*"funl",01,02), another very powerful function, applies funl to the elements of o1 and 02. For example, if
these are data frames, and funl is ""t.test", you will get a list of t tests comparing the first column of 01 with the
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first column of 02, the second with the second, and so on. This is because the basic elements of a data frame are the
columns.

2.2.5 String functions

R is not intended as a language for manipulating text, but it is surprisingly powerful. If you know R, you might not
need to learn Perl. Strings are character variables that consist of letters, numbers, and symbols.

strsplit() splits a string, and paste() puts a string together out of components.
grep(), sub(), gsub(), and regexpr() allow you to search for, and replace, parts of strings.

The set functions such as union(), intersect(), setdiff(), and %in% are also useful for dealing with
databases that consist of strings such as names and email addresses.

You can even use these functions to write new R commands as strings, so that R can program itself! Just to see
an example of how this works, try eval (parse(text="t.test(1:5)")). The parse() function turns the text into
an expression, and eval () evaluates the expression. So this is equivalent to t.test(1:5). But you could replace
t.test(1:5) with any string constructed by R itself.

2.2.6 Loading and saving

library(xx1) loads the extra library. A useful library for psychology is and mva (multivariate analysis). To find the
contents of a library such as mva before you load it, say library(help=mva). The ctest library is already loaded
when you start R.

source(""filel™) runs the commands in filel.

sink("filel™) diverts output to Filel until you say sink().

save(x1,file="filel™) saves object x1 to file Filel. To read in the file, use load("'filel™).
q() quits the program. q(*'yes'") saves everything.

write(object, "filel™) writes a matrix or some other object to filel.

write.table(objectl,"filel™) writes a table and has an option to make it comma delimited, so that (for example)
Excel can read it. See the help file, but to make it comma delimited, say
write.table(objectl,"filel",sep=",").

round() produces output rounded off, which is useful when you are cutting and pasting R output into a manuscript.
For example, round(t.test(vl)$statistic,2) rounds off the value of t to two places. Other useful functions are
format and formatC. For example, if we assign t1 <- t.test(vl, then the following command prints out a nicely
formatted result, suitable for dumping into a paper:

print(paste("(t_{",t1[[2]1],"}=",FormatC(t1[[1]], format="F",digits=2),
", p=",formatC(t1[[3]], format=""F"),")",sep="""),quote=FALSE)

This works because t1 is actually a list, and the numbers in the double brackets refer to the elements of the list.

read.table(""filel™) reads in data from a file. The first line of the file can (but need not) contain the names of the
variables in each column.

2.2.7 Dealing with objects

Is() lists all the active objects.
rm(objectl) removes objectl. To remove all objects, say rm(list=1s()).
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attach(data.framel) makes the variables in data.framel active and available generally.
names(obj1) prints the names, e.g., of a matrix or data frame.
typeof(), mode()), and class() tell you about the properties of an object.

2.2.8 Summaries and calculations by row, column, or group

summary(x1) prints statistics for the variables (columns) in x1, which may be a vector, matrix, or data frame. See
also the str() function, which is similar, and aggregate(), which summarizes by groups.

table(x1) prints a table of the number of times each value occurs in x1. table(x1,y1) prints a cross-tabulation of
the two variables. The table function can do a lot more. Use prop.table() when you want proportions rather than
counts.

ave(vl,v2) yields averages of vector v1 grouped by the factor v2.
cumsum(vl) is the cumulative sum of vector v1.

You can do calculations on rows or columns of a matrix and get the result as a vector. apply(x1,2,mean) vyields
just the means of the columns. Use apply(x1,1,mean) for the rows. You can use other functions aside from mean,
such as sd, max, min or sum. To ignore missing data, use apply(x1,2,mean,na.rm=T), etc. For sums and means,
it is easier to use rowSums(), colSums(), rowMeans(), and colMeans instead of apply(). Note that you can
use apply with a function, e.g., apply(x1,1,function(x) exp(sum(log(x))) (which is a roundabout way to write
apply(x1,1,prod)). The same thing can be written in two steps, e.g.:

newprod <- function(x) {exp(sum(log(x)))
apply(x1,1,newprod)

You can refer to a subset of an object in many other ways. One way is to use a square bracket at the end, e.g.,
matrix1[,1:5] refers to columns 1 through 5 of the matrix. You can also use this method for new objects, e.g.,
(matrix1l+matrix2)[,1:5], which refers to the first five columns of the sum of the two matrices. Another important
method is the use of by() or aggregate() to compute statistics for subgroups defined by vectors or factors. You can
also use split() to get a list of subgroups. Finally, many functions allow you to use a subset argument.

2.2.9 Functions and debugging

function() allows you to write your own functions.

Several functions are useful for debugging your own functions or scripts: traceback(), debug(), browser(),
recover().

3 Basic method

The following basic method is assumed here. You have a command file and then submit it, for each data set. Thus,
for each experiment or study, you have two files. One consists of the data. Call it expl.data. The other is a list of
commands to be executed by R, expl1.R. (Any suffixes will do, although ESS recognizes the R suffix and loads special
features for editing.) The advantage of this approach is that you have a complete record of what your transformed
variables mean. If your data set is small relative to the speed of your computer, it is a good idea to revise expl.R and
re-run it each time you make a change that you want to keep. So you could have expl.R open in the window of an
editor while you have R in another window.*

11f you want, you can put your data in the same fi le as the commands. The simplest way to do thisis to put commas between the numbers and
then useacommand liket1 <- ¢(1,2,3, ...26,90), possibly over severa lines, where the numbers are your data.
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To analyze a data set, you start R in the directory where the data and command file are. Then, at the R prompt, you
type

source("'expl.R™)

and the command file runs. The first line of the command file usually reads in the data. You may include statistics and
graphics commands in the source file. You will not see the output if you say source(*'datal.R™), although they will
still run. If you want to see the output, say

source(*'datal.R",echo=T)

Command files can and should be annotated. R ignores everything after a #. In this document, the examples are
not meant to be run.

We have mentioned ESS, which stands for “Emacs Speaks Statistics.” This is an add-on for the Emacs editor,
making Emacs more useful with several different statistical programs, including R, S—Plus, and SAS. 2 If you use
ESS, then you will want to run R as a process in Emacs, so, to start R, say emacs -f R. You will want expl.R in
another window, so also say emacs expl.R. With ESS, you can easily cut and paste blocks (or lines) of commands
from one window to another.

Here are some tips for debugging:

o If you use the source("expl.R™) method described here, use source("'expl.R",echo=T) to echo the input
and see how far the commands get before they “bomb.”

e Use Is() to see which objects have been created.

e Often the problem is with a particular function, often because it has been applied to the wrong type or size of
object. Check the sizes of objects with dim() or (for vectors) length().

e Look at the help() for the function in question. (If you use help.start() at the beginning, the output will
appear in your browser. The main advantage of this is that you can follow links to related functions very easily.)

e Type the names of the objects to make sure they are what you think they are.

o If the help is not helpful enough, make up a little example and try it. For example, you can get a matrix by
sayingml <- matrix(1:12,,3).

e For debugging functions, try debug(), browser(), and traceback(). (See their help pages. We do very little
with functions here.)

4 Reading and transfor ming data

4.1 Data layout

R, like Splus and S, represents an entire conceptual system for thinking about data. You may need to learn some new
ways of thinking. One way that is new for users of Systat in particular (but perhaps more familiar to users of SAS)
concerns two different ways of laying out a data set. In the Systat way, each subject is a row (which may be continued

2ESS is wonderful, but Emacs will cause trouble for you if you use aword processor like Word, and if you are used to shortcut keys such as
ctrl-x for cutting text. The shortcut keysin Emacs are all different, and this leads to serious mind-boggle. One solution, adopted by the fi rst author,
isto give up word processors and editors that use the same shortcuts, such as Winedt. A side effect of this solution isthat you have very little reason
to use Microsoft Windows.
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on the next row if too long, but still conceptually a row) and each variable is a column. You can do this in R too, and
most of the time it is sufficient.

But some the features of R will not work with this kind of representation, in particular, repeated-measures analysis
of variance. So you need a second way of representing data, which is that each row represents a single datum, e.g.,
one subject’s answer to one question. The row also contains an identifier for all the relevant classifications, such as
the question number, the subscale that the question is part of, AND the subject. Thus, “subject” becomes a category
with no special status, technically a factor (and remember to make sure it is a factor, lest you find yourself studying
the effect of the subject’s number).

4.2 A simple questionnaire example

Let us start with an example of the old-fashioned way. In the file ctest3.data, each subject is a row, and there are
134 columns. The first four are age, sex, student status, and time to complete the study. The rest are the responses to
four questions about each of 32 cases. Each group of four is preceded by the trial order, but this is ignored for now.

c0 <- read.table('ctest3.data")
The data file has no labels, so we can read it with read.table.

agel <- cO[,1]
sexl <- ¢0[,2]
studentl <- cO[,3]
timel <- cO[,4]
nsubl <- nrow(c0)

We can refer to elements of cO by cO[row,column]. For example, cO[1,2] is the sex of the first subject. We can
leave one part blank and get all of it, e.g., c0[,2] is a vector (column of numbers) representing the sex of all the
subjects. The last line defines nsubl as the number of subjects.

cl <- as.matrix(cO[,4+1:128])

Now c1 is the main part of the data, the matrix of responses. The expression 1:128 is a vector, which expandsto 1 2 3
...128. By adding 4, it becomes56 7 ...132.

4.2.1 Extracting subsets of data

rspl <- cl[,4*c(1:32)-2]
rsp2 <- cl[,4*c(1:32)-1]

The above two lines illustrate the extraction of sub-matrices representing answers to two of the four questions
making up each item. The matrix rspl has 32 columns, corresponding to columns 2 6 10 ... 126 of the original
128-column matrix c1. The matrix rsp2 correspondsto 37 11 ... 127.

Another way to do this is to use an array. We could say al <- array(cl,c(ns,4,32)). Thenal[,1,] is the
equivalent of rspl, and a1[20,1,] is rspl for subject 20. To see how arrays print out, try the following:

ml <- matrix(1:60,5,)

al <- array(ml,c(5,2,6))
ml

al
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You will see that the rows of each table are the first index and the columns are the second index. Arrays seem difficult
at first, but they are very useful for this sort of analysis.

4.2.2 Finding means (or other things) of sets of variables

rimean <- apply(rspl,1,mean)
r2mean <- apply(rsp2,1,mean)

The above lines illustrate the use of apply for getting means of subscales. In particular, abrmean is the mean of
the subscale consisting of the answers to the second question in each group. The apply function works on the data in
its first argument, then applies the function in its third argument, which, in this case, is mean. (It can be max or min or
any defined function.) The second argument is 1 for rows, 2 for columns (and so on, for arrays). We want the function
applied to rows.

rdmean <- apply(cl[,4*c(1:32)],1,mean)

The expression here represents the matrix for the last item in each group of four. The first argument can be any
matrix or data frame. (The output for a data frame will be labeled with row or column names.) For example, suppose
you have a list of variables such as g1, g2, g3, etc. Each is a vector, whose length is the number of subjects. The
average of the first three variables for each subject is, apply(cbind(ql,92,93),1,mean). (This is the equivalent of
the Systat expression avg(ql,q2,q3). A little more verbose, to be sure, but much more flexible.)

You can use apply is to tabulate the values of each column of a matrix m1: apply(ml,2,table). Or, to find
column means, apply(ml,2,mean).

There are many other ways to make tables. Some of the relevant functions are table, tapply, sapply, ave, and
by. Here is an illustration of the use of by. Suppose you have a matrix m1 like this:

1234
4455
5645

The columns represent the combination of two variables, y1is0 0 1 1, for the four columns, respectively, and y2 is
0 1 0 1. To get the means of the columns for the two values of y1, say by(t(ml), y1l, mean). You get 3.67 and
4.33 (labeled appropriately by values of y1). You need to use t(m1) because by works by rows. If you say by (t(ml1),
data.frame(yl,y2), mean), you get a cross tabulation of the means by both factors. (This is, of course, the means
of the four columns of the original matrix.)

Of course, you can also use by to classify rows; in the usual examples, this would be groups of subjects rather than
classifications of variables.

4.2.3 One row per observation

The next subsection shows how to transform the data from a layout from “one row per subject” to “one row per
observation.” We’re going to use the matrix rspl, which has 32 columns and one row per subject. Here are five
subjects:

11221235232425776675787988998999
123213232323232412454556566767738
11231234233424344455566767787788
12222333344445555666677778888999
11122223333444455556666777788889
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We’ll create a matrix with one row per observation. The first column will contain the observations, one variable at
a time, and the remaining columns will contain numbers representing the subject and the level of the observation on
each variable of interest. There are two such variables here, r2 and r1. The variable r2 has four levels, 1 2 3 4, and
it cycles through the 32 columnsas1 2 3 4 1 2 3 4 ... The variable rl has the values (for successive columns)
1111222233334444111122223333444 4 Theselevelsare ordered. They are
not just arbitrary labels. (For that, we would need the factor function.)

r2 <- rep(1:4,8)
r1 <- rep(rep(1:4,rep(4,4)),2)

The above two lines create vectors representing the levels of each variable for each subject. The rep command
for r2 says to repeat the sequence 1 2 3 4, 8 times. The rep command for r1 says take the sequence 1 2 3 4, then
repeat the first element 4 times, the second element 4 times, etc. It does this by using a vector as its second argument.
That vector is rep(4,4), which means repeat the number 4, 4 times. So rep(4,4) is equivalenttoc(4 4 4 4). The
last argument, 2, in the command for r1 means that the whole sequence is repeated twice. Notice that r1 and r2 are
the codes for one row of the matrix rspl.

nsubl <- nrow(rspl)
subjl <- as.factor(rep(l:nsubl,32))

nsubl is just the number of subjects (5 in the example), the number of rows in the matrix rspl. The vector subj1
is what we will need to assign a subject number to each observation. It consists of the sequence 1 2 3 4 5, repeated
32 times. It corresponds to the columns of rspl.

abrl <- data.frame(abl=as.vector(rspl),subl=subji,
dcostl=rep(rl,rep(nsubl,32)),abcostl=rep(r2,rep(nsubl,32)))

The data.frame function puts together several vectors into a data.frame, which has rows and columns like a
matrix.3 Each vector becomes a column. The as.vector function reads down by columns, that is, the first column,
then the second, and so on. So ab is how a vector in which the first nsubl1 elements are the same as the first column of
rspl, thatis,1 1 1 1 1. The first 15elementsofabare: 1 1 11112121232 2 1. Notice how we can
define names within the arguments to the data. frame function. Of course, sub now represents the subject number of
each observation. The first 10 elements of sublarel 2 3 4 5 1 2 3 4 5. The variable abcost now refers to the
value of r2. Notice that each of the 32 elements of r2 is repeated nsub times. Thus the first 15 values of abcost1 are
1111122222333 3 3. Hereare the first 10 rows of abr1:

abl subl dcostl abcostl

[EEN
[EEN
[EEN
[EEN

2 © 0O ~NOUAWNER
PNRPNNR R R R R
R WNEFE NN
PR RPRRPRPRRPRPREREPR
NNNONNON R R R R

The following line makes a table of the means of abrl, according to the values of dcostl (rows) and abcostl
(columns).

3Thechi nd function does the same thing but makes a matrix instead of a data frame.



4 READING AND TRANSFORMING DATA 13

ctabl <- tapply(abri[,1],list(abrl[,3],abrl[,4]),mean)

It uses the function tapply, which is like the apply function except that the output is a table. The first argument
is the vector of data to be used. The second argument is a list supplying the classification in the table. This list has two
columns corresponding to the columns of abr representing the classification. The third argument is the function to be
applied to each grouping, which in this case is the mean. Here is the resulting table:

A WDN P
a b wpN
oo o e
o Ul bk~ W
PR ON
[e23M &2 B N IV}
N RN W
o 01 01 W
®©n o

The following line provides a plot corresponding to the table.
matplot(ctabl, type="1")

Type | means lines. Each line plots the four points in a column of the table. If you want it to go by rows, use
t(ctabl) instead of ctabl. The function t() transposes rows and columns.

Finally, the following line does a regression of the response on the two classifiers, actually an analysis of variance.
summary(aov(abl = dcostl + abcostl + Error(subl/(dcostl + abcostl)),data=abr))

The function aov, like Im, fits a linear model, because dcostl and abcost1 are numerical variables, not factors
(although subl is a factor). The model is defined by its first argument (to the left of the comma), where ™ separates the
dependent variable from the predictors. The second element defines the data frame to be used. The summary function
prints a summary of the regression. (The Im and aov objects themselves contains other things, such as residuals, many
of which are not automatically printed.) We explain the Error term later, but the point of it is to make sure that we
test against random variation due to subjects, that is, test “across subjects.” Here is some of the output, which shows
significant effects of both predictors:

Error: subl
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 4 52.975 13.244

Error: subl:dcostl

Df Sum Sg Mean Sq F value Pr(>F)
dcostl 1 164.711 164.711 233.63 0.0001069 ***
Residuals 4 2.820 0.705

Error: subl:abcostl

Df Sum Sq Mean Sq F value Pr(>F)
abcostl 1 46.561 46.561 41.9 0.002935 **
Residuals 4 4.445 1.111

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 145 665.93 4.59
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4.3 Other ways to read in data

First example. Here is another example of creating a matrix with one row per observation.

sympl <- read.table("sympl.data",header=T)
syl <- as.matrix(sympl[,c(1:17)])

The first 17 columns of symp1l are of interest. The file sympl.data contains the names of the variables in its first
line. The header=T (an abbreviation for header=TRUE) makes sure that the names are used; otherwise the variables
will be names V1, V2, etc.

grl <- factor(sympl$groupl)

The variable groupl, which is in the original data, is a factor that is unordered.
The next four lines create the new matrix, defining identifiers for subjects and items in a questionnaire.

syvl <- as.vector(syl)

subjl <- factor(rep(l:nrow(syl),ncol(syl)))

item <- factor(rep(1:ncol(syl),rep(nrow(syl),ncol(syl))))
grp <- rep(grl,ncol(syl))

cgrp <- ((grp==2) | (grp==3))+0

The variable cgrp is a code for being in grp 2 or 3. The reason for adding 0 is to make the logical vector of T and
F into a numeric vector of 1 and 0.

The following three lines create a table from the new matrix, plot the results, and report the results of an analysis
of variance.

sytab <- tapply(syv, list(item,grp),mean)
matplot(sytab, type="1")
svim <- aov(syv T item + grp + item*grp)

Second example. In the next example, the data file has labels. We want to refer to the labels as if they were variables
we had defined, so we use the attach function.

19 <- read.table("tax9.data",header=T)
attach(t9)

Third example. In the next example, the data file has no labels, so we can read it with scan. The scan function just
reads in the numbers and makes them into a vector, that is, a single column of numbers.

abhl <- matrix(scan('abhl.data"),,224,byrow=T))

We then apply the matrix command to make it into a matrix. (There are many other ways to do this.) We know
that the matrix should have 224 columns, the number of variables, so we should specify the number of columns. If you
say help(matrix) you will see that the matrix command requires several arguments, separated by commas. The first is
the vector that is to be made into a matrix, which in this case is scan(*'abhl.data'). We could have given this vector
a name, and then used its name, but there is no point. The second and third arguments are the number of rows and the
number of columns. We can leave the number of rows blank. (That way, if we add or delete subjects, we don’t need to
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change anything.) The number of columns is 224. By default, the matrix command fills the matrix by columns, so we
need to say byrow=TRUE or byrow=T to get it to fill by rows, which is what we want. (Otherwise, we could just leave
that field blank.)

We can refer to elements of abhl by abhl1[row,column]. For example, abh[1,2] is the sex of the first subject.
We can leave one part blank and get all of it, e.g., abh1[,2] is a vector (column of numbers) representing the sex of
all the subjects.

4.4 Other ways to transform variables

4.4.1 Contrasts

Suppose you have a matrix t1 with 4 columns. Each row is a subject. You want to contrast the mean of columns 1
and 3 with the mean of columns 2 and 4. A t-test would be fine. (Otherwise, this is the equivalent of the cmatrix
command in Systat.) Here are three ways to do it. The first way calculates the mean of the columns 1 and 3 and

subtracts the mean of columns 2 and 4. The result is a vector. When we apply t.test() to a vector, it tests whether
the mean of the values is different from 0.

t.test(apply(tifc(1,3),],2,mean)-apply(tl[c(2,4),],2,mean))

The second way multiplies the matrix by a vector representing the contrast weights, 1, -1, 1, -1. Ordinary
multiplication of a matrix by a vector multiplies the rows, but we want the columns, so we must apply t() to transform
the matrix, and then transform it back.
t.test(t(t(tl)*c(1,-1,1,-1)))

or

contrl <- c(1,-1,1,-1)
t.test(t(t(tl)*contrl))

The third way is the most elegant. It uses matrix multiplication to accomplish the same thing.

contrl <- c(1,-1,1,-1)
t.test(tl %*% contrl)

4.4.2 Averaging items in a within-subject design
Suppose we have a matrix t2, with 32 columns. Each row is a subject. The 32 columns represent a 8x4 design. The
first 8 columns represent 8 different levels of the first variable, at the first level of the second variable. The next 8

columns are the second level of the second variable, etc. Suppose we want a matrix in which the columns represent
the 8 different levels of the first variable, averaged across the second variable.

First method: loop. One way to do it — inelegantly but effectively — is with a loop. First, we set up the resulting
matrix. (We can’t put anything in it this way if it doesn’t exist yet.)

m2 <- t2[,c(1:8)]*0

The idea here is just to make sure that the matrix has the right number of rows, and all 0’s. Now here is the loop:
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for (i in 1:8) m2[,i] <- apply(t2[,i+c(8*0:3)],1,mean)

Here, the index 1 is stepped through the columns of m2, filling each one with the mean of four columns of t2. For
example, the first column of m2 is the mean of columns 1, 9, 17, and 25 of t2. This is because the vector c(8*0:3) is
0, 8, 16, 24. The apply function uses 1 as its second argument, which means to apply the function mean across rows.

Second method: matrix multiplication. Now here is a more elegant way, but one that requires an auxiliary matrix,
which may use memory if that is a problem. This time we want the means according to the second variable, which has
four levels, so we want a matrix with four columns. We will multiply the matrix t2 by an auxiliary matrix cO.

The matrix c0 has 32 rows and four columns. The first column is 1,1,1,1,1,1,1,1 followed by 24 0’s. This is the
result of rep(c(1,0,0,0),rep(8,4)), which repeats each of the elements of 1,0,0,0 eight times (since rep(8,4)
means 8,8,8,8). The second column is 8 0’s, 8 1’s, and 16 0’s.

c0 <- cbind(rep(c(1,0,0,0),rep(8,4)),rep(c(0,1,0,0),rep(8,4)),
rep(c(0,0,1,0),rep(8,4)),rep(c(0,0,0,1),rep(8,4)))
c2 <- t2 %*% c0

The last line above uses matrix multiplication to create the matrix ¢2, which has 4 columns and one row per
subject. Note that the order here is important; switching t2 and c0 will not work.

4.4.3 Selecting cases or variables

There are several other ways for defining new matrices or data frames as subsets of other matrices or data frames.

One very useful function is which(), which yields the indices for which its argument is true. For example, the
output of which(3:10 > 4) isthe vector3 4 5 6 7 8, because the vector 3:10 has a length of 8, and the first two
places in it do not meet the criterion that their value is greater than 4. With which(), you can use a vector to select
rows or columns from a matrix (or data frame). For example, suppose you have nine variables in a matrix m9 and you
want to select three sub-matrices, one consisting of variables 1, 4, 7, another with 2, 5, 8, and another with 3, 6, 9.
Define mvec so that it isthevector1 2 31 2 31 2 3.

mvec9 <- rep(1:3,3)

m9a <- m9[,which(mvec9 == 1)]
m9b <- m9[,which(mvec9 == 2)]
m9c <- m9[,which(mvecd == 3)]

You can use the same method to select subjects by any criterion, putting the which() expression before the comma
rather than after it, so that it indicates rows.

4.4.4 Recoding and replacing numbers

Suppose you have m1 a matrix of data in which 99 represents missing data, and you want to replace each 99 with NA.
Simply say m1[m1==99] <- NA. Note that this will work only if m1 is a matrix (or vector), not a data frame (which
could result from a read.table() command). You might need to use the as.matrix() function first.

Sometimes you want to recode a variable, e.g., a column in a matrix. If g1[,3] is a 7-point scale and you want to
reverse it, you can say

ql[,3] <- 8 - qi[,3]
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Here is a more complicated example. This time g2[ ,c(2,4)] are two columns that must be recoded by switching
1 and 2 but leaving responses of 3 or more intact. To do this, say

92[,c(2,4] <- (@2[,c(2,9)] < 3) * 3 - q2[,c(Z,)]) +
(a2[,c(2,9] >= 3) * q2[,c(2,4)]

Here the expression g2[,c(2,4)] < 3is a two-column matrix full of TRUE and FALSE. By putting it in parenthe-
ses, you can multiply it by numbers, and TRUE and FALSE are treated as 1 and 0, respectively. Thus, (g2[,c(2,4)]
<3) * (3 -0q2[,c(2,4)]) switches 1 and 2, for all entries less than 3. The expression (q2[,c(2,4)] >= 3) *
g2[,c(2,4)] replaces all the other values, those greater than or equal to 3, with themselves.

Finally, here is an example that will switch 1 and 3, 2 and 4, but leave 5 unchanged, for columns 7 and 9

q3L,c(7,9] <- (@3[,c(7,9)]==1)*3 + (a3[,c(7,9)]==2)*4 +
(a3[,c(7,9]1==3)*1 + (a3[,c(7,9]1==4)*2 + (a3[,c(7,9)]==5)*5

Notice that this works because everything on the right of <- is computed on the values in g3 before any of these values
are replaced.

4.4.5 Replacing characters with numbers

Sometimes you have questionnaire data in which the responses are represented as (for example) “y” and “n” (for yes
and no). Suppose you want to convert these to numbers so that you can average them. The following command does
this for a matrix g1, whose entries are y, n, or some other character for “unsure.” It convertsy to 1 and n to -1, leaving
0 for the “unsure” category.

ql <- (@1[.1=="y") - (ql[.1=="n")

In essence, this works by creating two new matrices and then subtracting one from the other, element by element.

4.5 Using R to compute course grades

Here is an example that might be useful as well as instructive. Suppose you have a set of grades including a midterm
with two parts m1 and m2, a final with two parts, and two assignments. You told the students that you would standardize
the midterm scores, the final scores, and each of the assignment scores, then compute a weighted sum to determine
the grade. Here, with comments, is an R file that does this. The critical line is the one that standardizes and computes
a weighted sum, all in one command.

gl <- read.csv(''grades.csv", header=F) # get the list of scores
al <- as.vector(gl[,4])

ml <- as.vector(gl[,5])

m2 <- as.vector(gl[,6])

a2 <- as.vector(gl[,7])

fl <- as.vector(gl[,8])

f2 <- as.vector(gl[,9])

al[al=="NA"] <- 0 # missing assignment 1 gets a 0

m <- 2*ml+m2 # compute midterm score from the parts
f <- f1+f2

gdf <- data.frame(al,a2,m,f)

gr <- apply(t(scale(gdf))*c(.10,.10,.30,.50),2,sum)
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# The last line standardizes the scores and computes their weighted sum
# The weights are .10, .10, .30, and .50 for al, a2, m, and f
geut <- c(-2,-1.7,-1.4,-1.1,-.80,-.62,-.35,-.08,.16,.40,.72,1.1,2)
# The last line defines cutoffs for letter grades.
glabels <- c('f","d","d+"," c-","c","c+","b-","b", "b+","a-","a", "a+")
gletter <- cut(gr,gcut,glabels) # creates a vector of letter grades
grd <- cbind(gl[,1:2],round(gr,digits=4),gletter) # makes a matrix
# gl[,1:2] are students’ names
grd[order(gr),] # sorts the matrix in rank order and prints it
round(table(gletter)/.83,1) # prints, with rounding

# the .83 is because there are 83 students, also gets percent
gcum <- as.vector(round(cumsum(table(gletter)/.83),1))
names(gcum) <- glabels
gcum # prints cumulative sum of students with different grades
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R can do presentation-quality and publication-quality graphics. These often require some trial-and-error manipulation
of labels, line styles, axes, fonts, etc., and you should consult the help pages and the Introduction for more details.
The emphasis in this section is on the use of graphics for data exploration, but we provide some leads into the more
advanced uses.

One trick with graphics is to know how each of the various graphics commands responds (or fails to respond) to
each kind of data object: data.frame, matrix, and vector. Often, you can be surprised.

5.1 Default behavior of basic commands

Here is the default behavior for each object for each of some of the plotting commands, e.g., plot(x1) where x1 is a
vector, matrix, or data frame.

tion, height is value

is column

vector matrix data.frame
plot values as function of position 2nd column as function of 1st plots of each column as func-
tion of others
boxplot | one box for whole vector one box for all values in matrix | one box for each column (vari-
able)
barplot | one bar for each position, | one bar for each column, sum- | error
height is value ming successive values in col-
ors
matplot | one labeled point for each posi- | X axis is row, Y is value, label | X axis is row, Y is value, label

is column

The barplot of a matrix is an interesting display worth studying. Each bar is stack of smaller bars in different
colors. Each smaller bar is a single entry in the matrix. The colors represent the row. Adjacent negative and positive
values are combined. (It is easier to understand this plot if all values have the same sign.)

5.2 Other graphics

To get a bar plot of the column means in a data frame df1, you need to say
barplot(height=apply(dfl),2,mean)).
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To get a nice parallel coordinate display like that in Systat, use matplot but transform the matrix and use lines
instead of points, that is: matplot(t(matl),type="1""). You can abbreviate type with t.

matplot(vl, ml, type="I") also plots the columns of the matrix m1 on one graph, with v1 as the horizontal
axis. This is a good way to get plots of two functions on one graph.

To get scatterplots of the columns of a matrix against each other, use pairs(x1), where x1 is a matrix or data
frame. (This is like “splom” in Systat, which is the default graph for correlation matrices.)

Suppose you have a measure y1 that takes several different values, and you want to plot histograms of y1 for dif-
ferent values of x1, next to each other for easy comparison. The variable x1 has only two or three values. A good plot is
stripchart(yl = x1, method="stack”). Whenyl is more continuous, try stripchart(yl = x1, method="jitter”).

Here are some other commands in their basic form. There are several others, and each of these has several variants.
You need to consult the help pages for details.

plot(vl,v2) makes a scatterplot of v2 as a function of v1. If v1 and v2 take only a small number of values, so
that the plot has many points plotted on top of each other, try plot(jitter(vl),jitter(v2)).

hist(x1) gives a histogram of vector x1.
coplot(yl = x1 | z1) makes several plots of y1 as a function of x1, each for a different range of values of z1.
interaction.plot(factorl,factor2,vl) shows how v1 depends on the interaction of the two factors.

Many wonderful graphics functions are available in the Grid and Lattice packages. Many of these are illustrated
and explained in Venables and Ripley (1999).

5.3 Saving graphics

To save agraph as a png file, say png(*"filel.png™). Thenrunthe command to draw the graph, such as plot(x1,y1).
Then say dev.off(). You can change the width and height with arguments to the function. There are many other
formats aside from png, such as pdf, and postscript. See help(Devices).

There are also some functions for saving graphics already made, which you can use after the graphic is plotted:
dev.copy2eps("filel.eps'™) and dev2bitmap().

5.4 Multiple figures on one screen

The par() function sets graphics parameters. One type of parameter specifies the number and layout of multiple
figures on a page or screen. This has two versions, mfrow and mfcol. The command par (mfrow=c(3,2)), sets the
display for 3 rows and 2 columns, filled one row at a time. The command fpar(mfcol=c(3,2)) also specifies 3 rows
and 2 columns, but they are filled one column at a time as figures are plotted by other commands.

Here is an example in which three histograms are printed one above the other, with the same horizontal and vertical
axes and the same bar widths. The breaks are every 10 units. The freq=FALSE command means that densities are
specified rather than frequencies. The ylim commands set the range of the vertical axis. The dev.print line prints
the result to a file. The next three lines print out the histogram as numbers rather than a plot; this is accomplished with
print=FALSE. These are then saved to hfilel.

par(mfrow=c(3,1))

hist(vectorl,breaks=10*1:10, freq=FALSE,ylim=c(0, .1))
hist(vector2,breaks=10*1:10, freq=FALSE,ylim=c(0, .1))
hist(vector3,breaks=10*1:10, freq=FALSE,ylim=c(0, -1))
dev.print(png,file="filel_png",width=480,height=640)

hl <- hist(vectorl,breaks=10*1:10, freq=FALSE,ylim=c(0, .1),plot=FALSE)
h2 <- hist(vector2,breaks=10*1:10, freq=FALSE,ylim=c(0, .1),plot=FALSE)
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h3 <- hist(vector3,breaks=10*1:10, freq=FALSE,ylim=c(0, .1),plot=FALSE)
sink("hfilel™)

hl

h2

h3

sink()

For simple over-plotting, use par(new=T). Of course, this will also plot axis labels, etc. To avoid that, you might
say par(new=T,ann=F). (Apparent undocumented feature: this setting conveniently disappears after it is used once.)
To plot several graphs of the same type, you can also use points(), lines(), or matplot().

5.5 Other graphics tricks

When you use plot() with course data (e.g., integers), it often happens that points fall on top of each other. There are
at least three ways to deal with this. One is to use stripchart() (see above). Another is to apply jitter() to one or
both of the vectors plotted against each other, e.g., plot(jitter(vl),v2). Athirdisto use sunflowerplot(vl,v2),
which uses symbols that indicated how many points fall in the same location.

Use i1dentify() to find the location and index of a point in a scatterplot made with plot(). Indicate the point
you want by clicking the mouse on it. The function locator() just gives the coordinates of the point. This is useful
for figuring out where you want to add things to a plot, such as a legend.

text() uses a vector of strings instead of points in a plot. If you want a scatterplot with just these name, first make
an empty plot (with type="n") to get the size of the plot correct) and then use the text command, e.g.:

X <= 1:5

plot(x,x"2,type="n")

text(x,x"2, labels=c(*'one","two","three", " four","five™),col=x)
In this case, the col=x argument plots each word in a different color.

To put a legend on a plot, you can use the “legend="argument of the plotting function, or the legend() function,
e.g., legend(3,4, legend=c("'Self","Trust™),fill=c("'gray25","gray75')). This example illustrates the use
of gray colors indicated by number, which is convenient for making graphics for publication. (For presentation or data
exploration, the default colors are usually excellent.)

Several functions will draw various things on graphs. polygon() and segments() draw lines. They differ in the
kind of input they want, and the first one closes the polygon it draws.

6 Statistics

This section is not a summary of all statistics but, rather, a set of notes on procedures that are more useful to the kind
of studies that psychology researchers do.

6.1 Very basic statistics

Here is a list of some of the commands psychologists use all the time:
t.test(al,bl) — Test the difference between the means of vectors al and bl.

t.test(al,bl,paired=TRUE) or t.test(al,bl,p=T), or, evensimpler, t.test(bl-al) — Test the difference
between means of vectors al and b1 when these represent paired measures, e.g., variables for the same subject. The
vectors can be parts of matrices or data.frames. A good plot to look at is
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plot(al,bl)
abline(0,1)

This plots bl as a function of al and then draws a diagonal line with an intercept of 0 and a slope of 1. Another plot
is matplot(t(cbind(al,bl)),type="1"), which shows one line for each pair.

Sometimes you want to do a t-test comparing two groups represented in the same vector, such as males and females.
For example, you have a vector called agel and a vector called sex1, both of the same length. Subject i1’s age and sex
areagel[il] andsex1[i1]. Thenatestto see if the sexes differ in age is t. test(agel[sex1==0],agel[sex1==1])
(or perhaps t.test(agel[sex1==0],agel[sex1==1],var.equal=T) for the assumption of equal variance). A good
plot to do with this sort of test is
stripchart(agel sexl,method="jitter”) (or stripchart(agel sexl,method="stack”) if there are only a
few ages represented).

The binomial test (sign test) for asking whether heads are more likely than tails (for example) uses prop.test(hl,nl),
where h1 is the number of heads and n1 is the number of coin tosses. Suppose you have two vectors al and b1 of the
same length, representing pair of observations on the same subjects, and you want to find whether al is higher than
b1 more often than the reverse. Then you can say prop.test(sum(al>bl), sum(al>bl)+sum(al<bl)). The use of
the sum of sums as the second argument excludes those cases where al==b1. prop.test can also be used to compare
several different proportions. (See the help file.)

chisq.test(x1) does a chi-square test on a matrix x1, where the cells represent counts in a classification table.
There are several other ways of using this function. One other useful one is chisg.test(al,bl), where al and bl
are vectors or factors of the same length, representing the levels on which observations are classified. For example,

al <- ¢(1,1,1,1,1,
bl <- ¢(1,1,1,1,1,
chisg.test(al,bhl)

11
1

will yield an almost significant result, since the two vectors match except for two cases. If you want a Fisher exact test
instead of chi-square (for a 2x2 table), you just use fisher.test() instead of chisq.test().

A related test is mantelhaen.test. It, and many useful nonparametric tests, are in the ctest package (which
is loaded automatically but has its own help listing separate from base). Some of these tests can be exact. More
generally, see the loglin function, which requires no special package, and the loglIm function in the MASS package,
which allows models to be specified in a form like linear models.

cor(al) — Show the correlations of the columns for a matrix or data frame al.
cor.test(al,bl) — Show the correlation between vectors al and b1 and its significance.

Partial correlation is the correlation of the residuals, and this is one way to compute it. Thus, the partial correlation
of x1 and y1, partialling z1, is cor(Im(x1~z1)$resid, Im(y17z1)$resid). Aswe shall explain, Im is the function to
fit a linear model, and resid is one of the elements that it returns (not usually printed, but available). The significance
of the partial correlation is the same as the significance of the regression coefficient, so (again, as we shall explain) use
summary(Im(x1 = y1 + z1)) to getit.

For factor analysis, you need the mva library, so say library(mva) to load it. The main command is factanal (m1, factors=3).
(The number of factors can be varied.) Varimax is the default rotation, but you can also say, for example, factanal (m1,factors=4,rota

Principal components analysis is also in the mva library. The most useful commands are print(prcomp(x1))
to get the components of matrix or data.frame x1, and plot(prcomp(x1)) to see a scree plot of the variances ac-
counted for by the components. The eigenvalues are the squares of the sdev values that are part of the output of
print(prcomp(x1)).

The same library also does cluster analysis, e.g., kmeans(x1,3) where 3 is the number of clusters. If you want to
define a factor identifying the cluster of each subject, you can say
fl <- as.factor(kmeans(x1,3)$cluster), or, if you just want the numbers and don’t care about whether you
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have a factor, vl <- kmeans(x1,3)$cluster. To see aplot of the variable means for the 3 clusters, say matplot(t(vl),t="1").
(The last part abbreviates type="1ines".

Multiple tests are well handled by the multtest package, with is part of the Bioconductor packages. (See Section
2.2.2.) The documentation in that package provides a good introduction, with citations. The classic Bonferroni method
is often unnecessarily conservative. On the other hand, multiple tests can sometimes be avoided by clear statement of
a hypothesis and an effort to find the single best test of it.

6.2 Linear regression and analysis of variance (anova)
If you want to find whether y1 depends on x1 and x2, the basic thing you need is
Im(yl = x1 + x2)
If these variables are part of a data frame called df1, then you can sayl Im(y1 =~ x1 + x2, data=dfl), or you

can say attach(df1) before you run the analysis.
Note that Im() by itself doesn’t do much that is useful. If you want a summary table, one way to get it is to say

summary(Im(y =~ x1 + x2))

The coefficients are unstandardized. If you want standardized coefficients, use summary(Im(scale(y)  scale(x1)
+ scale(x2))). The scale() function standardizes vectors by default (and it does many other things, which you
can see from help(scale)).

Another way to get a summary is with anova(). The anova() command is most useful when you want to compare
two models. For example, suppose that you want to ask whether x3 and x4 together account for additional variance
after x1 and x2 are already included in the regression. You cannot tell this from the summary table that you get from

summary(Im(yl =~ x1 + x2 + x3 + x4))
That is because you get a test for each coefficient, but not the two together. So, you can do the following sequence:

modell <- Im(yl = x1 + x2)
model2 <- Im(yl = x1 + x2 + x3 + x4)
anova(modell,model?2)

As you might imagine, this is an extremely flexible mechanism, which allows you to compare two nested mod-
els, one with many predictors not contained in the other. Note that anova reports sums of squares sequentially,
building up by adding the models successively. It is thus different from the usual report of a multiple regression,
summary(Im(...)). Note also that you can add and drop variables from a model without retyping the model, using
the functions add() and drop().

6.3 Reliability of a test

Suppose Vv1 is a matrix in which the rows are subjects and each column is a test item. You want to calculate the
coefficient alpha, a measure of the reliability of the test (Lord & Novick, 1968, p. 88):

a " [1_ ZO'Z(Yi)]

_ 2
n—1 o%

Here is the expression of this in R. The expression nv is the number of variables. (If you know this, you can just
put it in the formula instead of nv).
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nvl <- ncol(vl)
(nvl/(nv1-1))*(1 - sum(apply(vl,2,var))/var(apply(vl,1,sum)))

Crucial here is the use of the apply function to rows and columns. The first use of apply finds the variance of
each column of the matrix. The 2 indicates columns. Then we take the sum of these. The second application finds the
total score for each subject by applying the function sum to each row. We then find the variance of this sum.

Another way to compute alpha involves the variance-covariance matrix of the items.
tvarl <- var(vl, na.rm = FALSE) # missing data aborts var()

The sum of values along the main diagonal of the variance-covariance matrix (tvarl) equals the numerator of the
right-hand term in the formula, and the sum of all elements in tvarl equals the denominator, so alpha is:

(nvl/(nv1-1)) * (1 - sum(diag(tvarl))/sum(tvarl))

This approach is better for large data sets, because the apply function uses a lot of memory.

Now suppose that you want to see what happens if you delete item 3. You can do this by deleting variables in each
formula (remembering in each case to change the value of nv1):

(nvl/(nv1-1)*(1 - sum(apply(vi[,-3],2,var))/var(apply(vli[-3],1,sum)))
(nv1/(nv1-2)) * (1 - sum(diag(tvar[-3,-3]))/sum(tvar[-3,-3]))

The advantage of using the variance-covariance matrix is that the effect of deleting certain items can be determined
easily.

6.4 Goodman-Kruskal gamma

The Goodman-Kruskal gamma statistic (also known as y) is like tau (t) except for the denominator. It is an easily
interpreted measure of rank correlation between two vectors v1 and v2. The idea is to consider all pairs of observations
in each vector: observations 1 and 2, 1 and 3, and so on. Count the number of times their ordering agrees, and call
this S+. Count the number of times their ordering disagrees and call this S-. If one variable is tied, this does not count
either way. Then y= fracS+ —S—S+ +S—. In other words, it is the number of agreements minus the number of
disagreements, all divided by the total of agreements and disagreements. A y of 1 means that the correlation is as high
as it can be, given the ties.

Gamma is available in the Hmisc package, in the rcorr.cens() function. To compute it for v1 and v1, say
rcorr.cens(vl,v2,0utx=T). The outx argument concerns whether ties are ignored (as they should be). The Dxy value is
what you want.

An instructive, but slower, function to compute gamma is:

goodman <- function(x,y){
Rx <- outer(x,x,function(u,v) sign(u-v))
Ry <- outer(y,y,function(u,v) sign(u-v))
S1 <- Rx*Ry
return(sum(S1)/sum(abs(S1)))}

To compute gamma for v1 and v2, say goodman(v1,v2).
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6.5 Inter-rater agreement

An interesting statistical question came up when we started thinking about measuring the agreement between two
people coding video-tapped interviews. This section discusses two such measures. One is the percentage agreement
among the raters, the other is the kappa statistic commonly used for assessing inter-rater reliability (not to be confused
with the R function called kappa). We will first summarize how either of them is derived, then we will use an example
to show that kappa is better than percentage agreement.

Our rating task is as follows. Two raters, LN and GF, viewed the video-tapped interviews of 10 families. The raters
judged the interviews on a check list of 8 items. The items were about the parent’s attitude and goals. The rater marks
a ’yes’ on an item if the parents expressed feelings or attitudes that fit the item and 'no’ otherwise. A yes is coded as
landanoO.

The next table shows how the two raters classified the 10 families on ltems 2 and 4.

Family
Item 2
A B C D E F G H I 1
LN 0 0 0 0 1 1 1 1 1 1
GF 0 1 1 1 1 1 1 1 1 1
Item 4

LN O 1 0 0 1 1 0 0 0 O
GF 0 1. 0 0 1 0 0 1 0 1

Note that in both items, the two raters agreed on the classifications of 7 out of 10 families. However, In Item 2,
rater LN gave more no’s and GF gave about equal yeses and no’s. In Item 4, rater GF gave 9 yeses and only 1 no. It
turns out that this tendency to say yes or no affects the raters’ agreement adjusted for chance. We will get to that in a
moment.

Suppose that Item 2 was whether or not our interviewees thought that “learning sign language will mitigate the
development of speech for a child who is deaf or hard of hearing”. We want to know how much LN and GF agreed.
The agreement is what we call an inter-rater reliability. They might agree positively (both LN and GF agreed that the
parents thought so) or negatively (i.e., a no - no pair).

Our first measure, the percentage of agreement, is the proportion of families that the raters made the same classi-
fications. We get a perfect agreement (100%) if the two raters make the same classification for every family. A zero
percent means complete disagreement. This is straightforward and intuitive. People are familiar with a 0% to 100%
scale.

One problem with percent agreement is that it does not adjust for chance agreement, the chance that the raters
happen to agree on a particular family. Suppose, for example, that after the raters have forgotten what they did the
first time, we ask them to view the videotape of family A again. Pure chance may lead to a disagreement this time; or
perhaps even an agreement in the opposite direction.

That is where the K statistic comes in. Statistics like kappa adjust for chance agreement by subtracting them out:

Pr(observed agreement) — Pr(chance agreement)
~ Pr(maximum possible agreement) — Pr(chance agreement) ’

where the chance agreement depends on the marginal classifications. The marginal classifications, in our case, refer
to each rater’s propensity to say “yes” or “no”. The chance agreement depends in part on how extreme the raters are.
If, for example, rater 1 gave 6 yeses and 4 no’s and rater 2 gave 9 yeses and only 1 no, then there is a higher chance
for the raters to agree on yes-yes rather than no-no; and a disagreement is more likely to occur when rater 2 says yes
and rater 1 says no.

Therefore, for the same proportion of agreement, the chance-adjusted kappa may be different. Although we do not
usually expect a lot of difference. We can use the following example to understand how it works.
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The numbers in the following table are the number of families who were classified by the raters. In both items,
raters LN and GF agreed on the classification of 7 families and disagreed on 3 families. Note that they had very
different marginal classifications.

If we only look at the percentage of agreement, then LN and GF have the same 70% agreement on Items 2 and 4.
However, the k agreement is 0.29 for Item 2 and 0.35 for Item 4.

Item 2 Item 4
rater GF rater GF
yes no marginal yes no marginal
rater yes 6 0 6 2 1 3
LN no 3 1 4 2 5 7
9 1 10 4 6 10

Why? We can follow the formula to find out. In both items, the observed agreement, when expressed as counts,
is the sum of the numbers along the diagonal. For Item 2 it is (6 + 1) = 7. Divide that by 10 you get 70% agreement.
The maximum possible number of agreement is therefore 10/10.

The chance agreement for Item 2 is (6/10) x (9/10) + (4/10) x (1/10). That is the probability of both raters said
‘yes’ plus both said ‘no’. Rater LN gave 6 yeses and GF gave 9 yeses. There is a % probability for LN to say yes and

a % probability for GF to say yes. Therefore, the joint probability, i.e., the chance for us to get a yes-yes classification,
is £ x 15. Similarly, the probability of a no-no classification is 15 x 1.

For Item 2, we have k = 15 — 25 /19 — 38— 0.29. The k for Item 4 is 15 — 2%/13 — 24 = 0.35. The kappa

statistics are different between Items 2 and 4 because their chance agreements are different. One is % and the other

is %. The marginals of the two tables show us that the two raters made more yes judgments in one instance and more
no judgments in the other. That in itself is OK, the raters make the classifications according to what they observe.
There is no reason for them to make equal amount of yeses and no’s. The shift in the propensity to make a particular
classification inevitably affects getting an agreement by chance. This correction for chance may lead to complications
when the raters are predominantly positive or negative. The paper by Guggenmoos-Holzmann (1996) has a good
discussion.*

The same principle applies to two raters making multiple classifications such as ‘aggressive’, ‘compulsive’, and
‘neurotic’, or some other kinds of judgments. An important thing to remember is that we are only using kappa to
compare classifications that bear no rank-ordering information. Here a ‘yes’ classification is not better or worse than
a ‘no’. There are other ways to check agreement, for example, between two teachers giving letter grades to homework
assignments. An ‘A+’ grade is better than an “A-’. But that is a separate story.

Kappa is available in the e1071 package as classAgreement(), which requires a contingency table as input.

The following function, which is included for instructional purposes (given that R already has a function for kappa),
also computes the kappa agreement between two vectors of classifications. Suppose we want to calculate the agreement
between LN and GF on Item 2, across 10 interviews. The vector rl contains the classifications from LN, which is
c(, 0, 0, 0, 1, 1, 1, 1, 1, 1);andr2contains GF’s classifications,c(0, 1, 1, 1, 1, 1, 1, 1, 1, 1).
The kappaFor2 function returns the overall k statistic and the standard error. The test statistic is based on a z test, and
the two-tailed p-value for the null hypothesis that kK = 0 is also returned.

kappaFor2 <- function(rl, r2, na.method = "na.rm"™)
{
if (na.method == "na.rm")
na.rm <- T
else na.rm <- F
ttab <- table(rl, r2)

4Guggenmoos-Holzmann, 1. (1996). The meaning of kappa: probabilistic concepts of reliability and validity revisited. Journal of Clinical
Epidemiology, 49(7), 775-782.
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tsum <- sum(ttab, na.rm = na.rm)

#

# change the counts into proportions

#

ttab <- ttab/tsum

#

# find the marginals

#

tml <- apply(ttab, 1, sum, na.rm = na.rm)
tm2 <- apply(ttab, 2, sum, na.rm = na.rm)
#

agreeP <- sum(diag(ttab), na.rm = na.rm)
chanceP <- sum(tml * tm2, na.rm = na.rm)
kappa2 <- (agreeP - chanceP)/(1 - chanceP)

kappaSE <- 1/((1 - chanceP) * sqrt(tsum)) * sqrt(chanceP +
chanceP™2 - sum(tml * tm2 * (tml + tm2), na.rm = na.rm))

# browser()

kz <- kappa2/kappaSE

kp <- 2 * (1 - pnorm(kz))

ans <- c(kappa2, kappaSE, kz, kp)

names(ans) <- c("kappa", "S.E.", "z.stat", "p.value")

return(ans)

Sometimes a function requires further editing. Suppose the kappaFor2 function is entered at R’s system prompt
(i.e., the > character), and there was an error. Then we can type the command kappaFor2 <- emacs(kappaFor2) to
edit its contents with the emacs editor; or use vi() for the visual editor. In the above function there is a browser()
command, commented out by a # character. The browser() command is used to debug a function. Each time R runs
the kappaFor2 function, it stops at the point where a working browser() command was set, and we can debug the
function by examining the variables inside the function.

We run the function kappaFor2 and the results show that the agreement on Item 2 is not reliably greater than 0,
with a two-tail p-value of about 0.20.

> kappaFor2(rl = c(0, 0, 0, 0, 1, 1, 1, 1, 1, 1),
r2=c(, 1,1,1,1,1,1,1,1,1))
kappa S.E. z.stat p.value
0.2857143 0.2213133 1.2909944 0.1967056

6.6 Generating random data for testing

Suppose you want to test that the last two formulas yield the same result, but you don’t have any data handy. You can
generate a sample of 10 Likert-type, 5-point scale responses from 100 Ss as follows:

vl <- matrix(sample(c(l, 2, 3, 4, 5), size=1000, replace=T), ncol=10)

6.7 Within-subject correlations and regressions

Suppose you have a set of 8 items with 2 measures for each, and each subject answers both questions about each item.
You want to find out how the answers to the two questions correlate within each subject, across the 8 items. Then you
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want to find the average, across subjects, of these within-subject correlations. The matrices m1 and m2 contain the data
for the questions. Each matrix has 8 columns, corresponding to the 8 items, and one row per subject. The following
will doit:

nsubl <- nrow(ml)
corsl <- rep(NA,nsubl)
for (i in 1:nsubl) corsi[i] <- cor(mi[i,],m2[i,])

The first line finds the number of subjects, nsubl. The second line creates an vector of nsubl NA’s to hold the
correlations, one for each subject. The third line fills this vector with the correlations using a loop, which uses i
to index the subject. Now, if we want to do a t test to see if the correlations are positive, for example, we can say
t.test(corsl).

Similarly, you can store within-subject regressions in a matrix, as in the following example.

# first set up a matrix to hold the results, including the intercept
regl <- matrix(NA,4,nsubl) # nsubl is the number of subjects

for (x in 1:ns) regl[x] <- Im(yl[x,1™x1[x,]+x2[x,]+x3[x,])$coefficients
t.test(regl[,1]) # is the mean intercept positive?

t.test(regl[,2]) # is the mean first coefficient positive?

This works because Im() produces a list, and element coefficients of that list is the coefficients. This element
itself may be decomposed into the intercept, the first coefficient, and so on.

6.8 Advanced analysis of variance examples

We now turn to repeated-measure analysis of variance using the aov() function in R.%> The aov() function is used
to produce a Univariate ANOVA table similar to the one produced by SAS, SPSS, and Systat. The SAS syntax of an
identical analysis is also listed in example 2 for comparison.5”

6.8.1 Example 1: Mixed effects model (Hays, 1988, Table 13.21.2, p. 518)

The following example shows you how to carry out repeated-measure analysis of variance. Repeated-measure designs
are common in experimental psychology. We use the data in Hays (1988), but we change the story behind it to make it
easier to understand. Imagine a psychologist is asked to conduct a study to help design the control panel of a machine
that delivers medicine by intravenous infusion. The main purpose of the study is to find the best shape and color of
the buttons on the control panel to improve efficiency and prevent potential errors. The psychologist wants to know
how quickly users (physicians) respond to buttons of different colors and shapes. To simplify the example, suppose
that the psychologist hypothesizes that bright colors are easier to see than dark colors so the users respond to them
faster. In addition, she thinks that users can spot circles faster than squares. Thus she has two effects to test, one for
color (a bright color compared to a dark color) and the other for shape (round vs. square), and she wants to know if the
physician respondents show shorter reaction time with a particular color and shape combination.

5We drop our convention here of using numbers in made-up variable names, in order to be consistent with the original names in the examples
we cite.

6The following examples are inspired by the examples of Gabriel Baud-Bovy, <baudbovy@ pshpl. uni ge. ch> contributed to S-News
<http://ww stat.cnu. edu/ s- news/ >, entitled “ANOVAs and MANOVAs for repeated measures (solved examples),” dated 2/17/1998.

"The statistics theory behind the syntax can be found in the references so detailed explanations are not provided here. The examples are:
1) Hays, Table 13.21.2, p. 518 (1 dependent variable, 2 independent variables: 0 between, 2 within)
2) Maxwell and Delaney, p. 497 (1 dependent variable, 2 independent variables: 0 between, 2 within)
3) Stevens, Ch. 13.2, p. 442 (1 dependent variable, 1 independent variable: 0 between, 1 within)
4) Stevens, Ch. 13.12, p. 468 (1 dependent variable, 3 independent variables: 1 between, 2 within)
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The psychologists knows that she will be able to recruit only some physicians to run the test apparatus. Thus she
wants to collect as many test results as possible from a single respondent. Each physician is then given four trials, one
with a test apparatus of round red buttons, one with square red buttons, one with round gray buttons, and one with
square gray buttons. Here the users only try each arrangement once, but in real life the psychologist could ask the
users to repeat the tests several times in random order to get a more stable response time.

An experimental design like this is called a “repeated measure” design because each respondent is measured
repeatedly. In social sciences it is often referred to as a within-subject design because the measurements are made
repeatedly within individual subjects. The variables shape and color are therefore called within-subject variables.
It is possible to do the experiment between subjects, that is, each reaction time data point comes from a different
subject. A completely between-subject experiment is also called a randomized design. If done between-subject, the
experimenter would need to recruit four times as many subjects. This is not a very efficient way of collecting data

This example has 2 within-subject variables and no between subject variables:
e one dependent variable: time required to solve the puzzles
e one random effect: subject (see Hays for reasons why)

o 2 within-subject fixed effects: shape (2 levels), color (2 levels)

We first enter the reaction time data into a vector datal. Then we will transform the data into appropriate format
for the repeated analysis of variance using aov().

datal<-c(

49,47,46,47,48,47,41,46,43,47,46,45,

48,46,47,45,49,44 ,44,45,42,45,45,40,
49,46,47,45,49,45,41,43,44,46,45,40,
45,43,44,45,48,46,40,45,40,45,47,40) # across subjects then conditions

We can take a look at the data in a layout that is easier to read. Each subject takes up a row in the data matrix.

> matrix(datal, ncol= 4, dimnames =
+ list(paste(*'subj", 1:12), c("Shapel.Colorl"”, "Shape2.Colorl”,
+ "Shapel.Color2", "Shape2.Color2™)))

Shapel.Colorl Shape2.Colorl Shapel.Color2 Shape2.Color2

subj 1 49 48 49 45
subj 2 47 46 46 43
subj 3 46 47 47 44
subj 4 47 45 45 45
subj 5 48 49 49 48
subj 6 47 44 45 46
subj 7 41 44 41 40
subj 8 46 45 43 45
subj 9 43 42 44 40
subj 10 47 45 46 45
subj 11 46 45 45 47
subj 12 45 40 40 40

Next we use the data.frame() function to create a data frame Hays . df that is appropriate for the aov() function.

Hays.df <- data.frame(rt = datal,
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subj = factor(rep(paste(*'subj™, 1:12, sep="""), 4)),
shape = factor(rep(rep(c(‘'shapel™, "shape2™), c(12, 12)), 2)),
color = factor(rep(c(colorl™, "color2"™), c(24, 24))))

The experimenter is interested in knowing if the shape (shape) and the color (color) of the buttons affect the
reaction time (rt). The syntax is:

aov(rt = shape * color + Error(subj/(shape * color)), data=Hays.df)

We provide the aov() function with a formula, rt =~ shape * color. The asterisk is a shorthand for shape +
color + shape:color. The Error(subj/(shape * color)) is very important for getting the appropriate statisti-
cal tests. We will first explain what the syntax means, then we will explain why we do it this way.

The Error(subj/(shape * color)) statement is used to break down the sums of squares into several pieces
(called error strata). The statement is equivalentto Error(subj + subj:shape + subj:color + subj:shape:color),
meaning that we want to separate the following error terms: one for subject, one for subject by shape interaction, one
for subject by color interaction, and one for subject by shape by color interaction.

This syntax generates the appropriate tests for the within-subject variables shape and color. When you run a
summary() after an analysis of variance model, you get

> summary(aov(rt = shape * color + Error(subj/(shape*color)), data=Hays.df))

Error: subj
Df Sum Sg Mean Sq F value Pr(>F)
Residuals 11 226.500 20.591

Error: subj:shape

Df Sum Sg Mean Sq F value Pr(>F)
shape 1 12.0000 12.0000 7.5429 0.01901 *
Residuals 11 17.5000 1.5909

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ~ 1

Error: subj:color

Df Sum Sq Mean Sq F value Pr(>F)
color 1 12.0000 12.0000 13.895 0.003338 **
Residuals 11 9.5000 0.8636

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ~ 1

Error: subj:shape:color

Df Sum Sq Mean Sq F value Pr(>F)
shape:color 1 1.200e-27 1.200e-27 4.327e-28 1
Residuals 11  30.5000 2.7727

Note that the shape of the button is tested against the subject by shape interaction, shown in the subj - shape error
stratum. Similarly, color is tested against subject by color interaction. The last error stratum, the Error: subj:shape:color
piece, shows that the two-way interaction shape:color is tested against the sum of square of subj :shape:color.

Without the Error(subj/(shape * color)) formula, you get the wrong statistical tests:

summary(aov(rt ~ shape * color, data=Hays.df))
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Df Sum Sqg Mean Sq F value Pr(>F)
shape 1 12.000 12.000 1.8592 0.1797
color 1 12.000 12.000 1.8592 0.1797
shape:color 1 1.342e-27 1.342e-27 2.080e-28 1.0000
Residuals 44  284.000 6.455

All the variables are tested against a common entry called “Residuals”. The “Residuals” entry is associated with 44
degrees of freedom. This common Residuals entry is the sum of all the pieces of residuals in the previous output of
Error(subj/(shape * color)), with 11 degrees of freedom in each of the four error strata.

Hays (1988) provides explanations on why we need a special function like Error(). In this experiment the
psychologist only wants to compare the reaction time differences between round and square buttons. She is not
concerned about generalizing the effect to buttons of other shapes. We say that the reaction time difference between
round and square buttons a “fixed” effect. The variable shape is a “fixed” factor, meaning that in this case the number
of possible shapes is fixed to two—round and square. The reaction time differences between the two conditions do
not generalize beyond these two shapes. Similarly, the variable color is also considered fixed (again the effect not
generalizable to colors other than red and gray).

However, the experimenter is concerned about generalizing the findings to other potential test subjects. The 12
subjects reported here belong to a random sample of numerous other potential users of the device. The study would not
be very useful without this generalizability because the results of the experiments would only apply to these particular
12 test subjects. Thus the effect associated with the variable subject is considered “random.”

In a repeated-measure design where the within-subject factors are considered fixed effects and the only random
effect comes from subjects, the within-subject factors are tested against their interaction with the random subject effect.
The appropriate F tests are the following:

F(shape in subj) = MS(shape) / MS(shape : subj) = 13.895
F(color in subj) = MS(color) / MS(color : subj) = 7.543

What goes inside the Error() statement, and the order in which they are arranged, are very important in ensuring
correct statistical tests. Suppose you only ask for the errors associated with subj, subj:shape, and subj:color,
without the final subj :shape:color piece, you use a different formula: Error(subj/(shape + color)). You get
the following output instead:

> summary(aov(rt = shape * color + Error(subj/(shape*color)),
data=Hays.df))

[identical output as before ... snipped ]

Error: Within

Df Sum Sqg Mean Sq F value Pr(>F)
shape:color 1 1.185e-27 1.185e-27 4.272e-28 1
Residuals 11  30.5000 2.7727

Note that Error() lumps the shape:color and subj:shape:color sums of squares into a “Within” error
stratum. The “Residuals” in the Within stratum is actually the last piece of sum of square in the previous output
(subj :shape:color).

By using the plus signs instead of the asterisk in the formula, you only get Error(subj + subj:shape +
subj:color). The Error() function labels the last stratum as “Within”. Everything else remains the same. This
difference is important, especially when you have more than two within-subject variables. We will return to this point
later.
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The Error() statement gives us the correct statistical tests. Here we show you two examples of common errors.
The first mistakenly computes the repeated measure design as if it was a randomized, between-subject design. The
second only separates the subject error stratum. The aov() function will not prevent you from fitting these models
because they are legitimate. But the tests are not what we want.

summary(aov(rt =~ (shape * color) * subj, data=Hays.df))
summary(aov(rt = shape * color + Error(subj), data=Hays.df))

In a repeated-measure design, there is the between-subject variability (e.g., response time fluctuations due to
individual differences) and the within-subject variability (an individual may sometimes respond faster or slower across
different questions). Error() inside an aov() is used to handle these multiple sources of variabilities.

The Error(subj/(shape * color)) statement says that the shape and color of the buttons are actually nested
within individual subjects. That is, the changes in response time due to shape and color should be considered within
the subjects.

An analogy helps in understanding why repeated measurements are equivalent to designs with variables nested
within subjects. In an agricultural experiment Federer (1955, p. 274; cited in Chambers and Hastie, 1993, pp. 157-
159) tested the effect of chemical treatments on the rate of germination for seeds. The seeds were planted in different
greenhouse flats. Due to differences in light, moisture, and temperature, seeds planted in different flats are likely to
grow at a different rate. These differences have nothing to do with the treatment, so Federer separated the effect of
different flats in the analysis.

Similarly, buttons on a control panel are given to different subjects. The time it takes each subject to perform
the tests is likely to vary considerably. In aov() we use the syntax shape %in% subj to represent that the effect of
the shape variable is actually nested within the subj variable. Also, we want to separate the effect due to individual
subjects. We use subj / shape to mean that we want to model the effects of subjects, plus the effect of shape within
subjects. R expands the forward slash into ( subj + ( shape %in% subj) ).

6.8.2 Example 2: Maxwell and Delaney, p. 497

It is the same design as in the previous example, with two within and a subject effect. We repeat the same R syntax,
then we include the SAS GLM syntax for the same analysis. Here we have:

one dependent variable: reaction time

two independent variables: visual stimuli are tilted at 0, 4, and 8 degrees; with noise absent or present. Each
subject responded to 3 tilt x 2 noise = 6 trials.

The data are entered slightly differently; their format is like what you would usually do with SAS, SPSS, and
Systat.

MD497.dat <- matrix(c(

420, 420, 480, 480, 600, 780,
420, 480, 480, 360, 480, 600,
480, 480, 540, 660, 780, 780,
420, 540, 540, 480, 780, 900,
540, 660, 540, 480, 660, 720,
360, 420, 360, 360, 480, 540,
480, 480, 600, 540, 720, 840,
480, 600, 660, 540, 720, 900,
540, 600, 540, 480, 720, 780,
480, 420, 540, 540, 660, 780),
ncol = 6, byrow = T) # byrow=T so the matrix’s layout is exactly like this



6 STATISTICS 32

Next we transform the data matrix into a data frame. Note that we use very simple names for the variables. You
can actually use very elaborated names for your variables. For example, you can use a combination of upper- and
lower-case words to name the rt variable VisualStiReactionTime. But usually it is a good idea to use simple and
mnemonic variable names. That’s way we call this data frame MD497.df (page 497 in the Maxwell and Delaney
book).

MD497.df <- data.frame(

rt = as.vector(MD497.dat),

subj = factor(rep(paste(‘'s", 1:10, sep="""), 6)),

deg = factor(rep(rep(c(0,4,8), c(10, 10, 10)), 2)),
noise = factor(rep(c('no.noise"”, "noise™), c(30, 30))))

Then we test the main effects and the interaction in one aov() model. The syntax is the same as in the Hays
example:

taov <- aov(rt ~ deg * noise + Error(subj / (deg + noise)), data=MD497.df)
summary (taov)

The following SAS GLM does the same univariate analysis, plus some multivariate tests. Maxwell and Delaney
summarized the conditions under which one wants to trust the multivariate results more than the univariate results. In
SAS, each row contains the data from one subject, across 3 degrees of tilt and two levels of noise. The GLM syntax
has a class option where the between-subject factors are listed (if any).

data rtl;

input degONA deg4NA deg8NA degONP deg4NP deg8NP;
cards;

420 420 480 480 600 780
420 480 480 360 480 600
480 480 540 660 780 780
420 540 540 480 780 900
540 660 540 480 660 720
360 420 360 360 480 540
480 480 600 540 720 840
480 600 660 540 720 900
540 600 540 480 720 780
480 420 540 540 660 780

proc glm data=rtl;

model degONA deg4NA deg8NA degONP deg4NP deg8NP = ;
repeated noise 2 (0 1), degree 3 (0 4 8) / summary ;
run;

6.8.3 Example 3: More Than Two Within-Subject Variables

Earlier we noted that Error(subj/(shape * color)), which uses an asterisk to connect shape and color, produces
detailed breakdown of the variance components. The Error(subj/(shape + color)) statement prints out what you
specifically ask for and lumps the remainder into a “Within” stratum. It appears as if you can use the two formulae
interchangeably, as long as you are careful in interpreting the almost identical results. This is not true if you have more
than two within-subject fixed effects and one random effect associated with the subjects.
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The next hypothetical example & shows that aov(a * b * ¢ + Error(subj/(a*b*c))) gives you all the ap-
propriate statistical tests for interactions ina:b, b:c, anda:c; butaov(a * b * ¢ + Error(subj/(atb+c))) does
not. The problem with the latter is because the second part of its syntax, Error(subj/(atb+c)), is inconsistent with
the first part, aov(a * b * c). As aresult Error() lumps everything other than Error: subj:a, Error: subj:b,
and Error: subj:c into a common entry of residuals.

For beginners it is helpful to keep the two parts consistent. It is easier to remember too. However, it is very
important to know that there are other cases where consistent syntax is not the only rule of thumb. For example, when
some of your experimental conditions should be considered “random.” In the example of designing a control panel of
a medical device, you may wish to generalize the findings to other potential design specifications. Another situation
is when the stimuli you present to your subjects are a random sample of numerous other possible stimuli. A good
example is the “language-as-fixed-effect fallacy” paper by Clark (1973). Clark showed that many studies in linguistics
had a mistake in treating the effect associated with words as a fixed effect. The studies he cited typically used for
stimuli a sample of English words (somewhat randomly selected). However, these studies typically analyzed the effect
associated with words as a fixed effect (like what we are doing with shape and color). Many statistically significant
findings disappeared when Clark treated them appropriately as random effects.

subj <- gl(10, 32, 320) # 10 subjects, each tested 32 times, total length 320
a <-gl@2, 16, 320) # first 16 trials with al then next 16 with a2
b <-gl(2, 8, 320) # first 8 triasl with bl, then next 8 with b2, etc.
c <-gl@, 4, 320)
X <- rnorm(320)
dl <- data.frame(subj, a, b, c, x)
d2 <- aggregate(x, list(a =a, b = b, ¢c = ¢, subj = subj), mean)
summary(al <- aov(x ~ a * b * ¢ + Error(subj/(a*b*c)), d2))
summary(a2 <- aov(x ~ a * b * ¢ + Error(subj/(atb+c)), d2))
summary(a3 <- aov(x ~ a * b * ¢ + Error(subj/(a*b*c)), di))

6.8.4 Example 4: Stevens, 13.2, p.442; a simpler design with only one within variable

one random effect (subject)

1 fixed effect (drug)

data <- c¢(

30,14,24,38,26,

28,18,20,34,28,

16,10,18,20,14,

34,22,30,44,30)

Stv.df <- data.frame(rt=data,

subj = factor(rep(paste(*'subj™, 1:5, sep=""), 4)),

drug = factor(rep(paste('drug”, 1:4, sep=""), c(5,5,5,5))))

We only have one within-subject variable (drug) so that the syntax is simply drug nested within subject.
summary(aov(rt ~ drug + Error(subj/drug), data = Stv.df))
Again, F is incorrect if the mean square of the drug effect is not compared with the correct error mean square

(in this case it should be the mean square of subj:drug). Without the Error(subj/drug) term, R treats it like a
completely randomized design.

8contributed by Christophe Pallier
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summary(aov(rt = drug, data = Stv.df))

6.8.5 Example 5: Stevens pp. 468 — 474 (one between, two within)

The original data came from Elashoff (1981).% It is a test of drug treatment effect by one between-subject factor:
group (two groups of 8 subjects each) and two within-subject factors: drug (2 drugs) and dose (3 doses).

Ela.mat <-matrix(c(
19,22,28,16,26,22,
11,19,30,12,18,28,
20,24,24,24,22,29,
21,25,25,15,10,26,
18,24,29,19,26,28,
17,23,28,15,23,22,
20,23,23,26,21,28,
14,20,29,25,29,29,
16,20,24,30,34,36,
26,26,26,24,30,32,
22,27,23,33,36,45,
16,18,29,27,26,34,
19,21,20,22,22,21,
20,25,25,29,29,33,
21,22,23,27,26,35,
17,20,22,23,26,28), nrow = 16, byrow = T)

We first put them in a multivariate format, using the cbind.data.frame() function

Ela.mul <- chind.data.frame(subj=1:16, gp=factor(rep(1:2,rep(8,2))), Ela.mat)
dimnames(Ela.mul)[[2]] <-
c(*'subj","gp","d11","d12","d13",""d21"","d22","d23") # d12 = drug 1, dose 2

Here is the command for transferring it to the univariate format.

Ela.uni <- data.frame(effect = as.vector(Ela.mat),

subj = factor(paste(''s", rep(1:16, 6), sep="")),

gp = factor(paste(*'gp", rep(rep(c(l, 2), c(8,8)), 6), sep="")),

drug = factor(paste("dr", rep(c(l, 2), c(48, 48)), sep=""")),
dose=factor(paste(*'do”, rep(rep(c(1,2,3), rep(16, 3)), 2), sep="")),
row.names = NULL)

As we discussed earlier, we can use the tapply() function to calculate the means across various conditions. We
can think of it as using one statement to run the mean() function 12 times! The output matrix is very useful for
plotting.

tapply(Ela.uni$effect, IND = list(Ela.uni$gp, Ela.uni$drug, Ela.uni$dose),
FUN = mean)

9“Data for the panel session in software for repeated measures analysis of variance” Proceedings of the Statistical Computing Section of the
American Statistical Association.
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We can also easily custom design a function se() to calculate the standard error for the means. R does not have a
built-in function for that purpose, but there is really no need because the standard error is just the square root (R has
the sqrt() function) of the variance (var()), divided by the number of observations (length()). We can use one
line of tapply() to get all standard errors. The se() makes it easy to find the confidence intervals for those means.
Later we will demonstrate how to use the means and standard errors we got from tapply() to plot the data.

se <- function(x)
{
y <- x[!is.na(x)] # remove the missing values
sgrt(var(as.vector(y))/length(y))

Without further delay, here is our repeated ANOVA with one between effect and two within effects:

1. Two error strata, one **Within** and one between (subject)

(a) The following syntax is only accurate for the between-subject, gp effect alone. The tests in the **Within**
table are incorrect because they are all lumped together in the entry labeled “Residual SS”.

summary(aov(effect = gp * drug * dose + Error(subj), data=Ela.uni))

(b) The next command performs the correct tests of all effects. We use Error(subj + subj:drug + subj:dose)
to test gp, drug, dose and their interactions. Worth noting is that R knows that the gp effect goes with the
subject error stratum, although we did not mention gp in the Error() statement.

summary(aov(effect = gp * drug * dose + Error(subj/(dose+drug)), data=Ela.uni))

2. In R, we not only can use the built-in functions such as aov() to do the analyses, we can also take advantage of
R’s flexibility and do many analyses by hand. The following examples demonstrate that some of the ANOVA
tests we did earlier with the aov() function can also be done manually with contrasts.

(a) We can use the following contrast to test the group effect. On the left hand side of the aov() model, we
use matrix multiplication (%*%) to apply the contrast (contr) to each person’s 6 data points. As a result,
each person’s 6 data points become one number that is actually the person’s total score summed across all
conditions. The matrix multiplication is the same asdoing1 * d11 + 1 * d12 + 1 * d13 + 1 * d21
+ 1 * d22 + 1 * d23 for each person.

Then we use the aov() function to compare the total scores across the two groups. We can verify that
in this output the F statistic for the gp marginal effect is exactly the same as the one in the the previous

aov(... Error()) output, although the sums of squares are different because the contrast is not scaled
to length 1.
contr <- matrix(c(

1,

1,

1,

1,

1,

1), ncol = 1)

taov <- aov(cbind(dll,d12,d13,d21,d22,d23) %*% contr ~ gp, data = Ela.mul)
summary(taov, intercept = T)
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(b)

(©

(d)

The following contrast, when combined with the aov() function, will test the drug main effect and
drug:group interaction. The contrast c(1, 1, 1, -1, -1, -1) applies positive 1’s to columns 1:3 and
negative 1°s to columns 4:6. Columns 1:3 contain the data for drug 1 and 4:6 for drug 2, respectively. So
the contrast and the matrix multiplication generates a difference score between drugs 1 and 2. When we
use aov() to compare this difference among two groups, we actually test the drug:gp interaction.

contr <- matrix(c(
1,

1,

1,

-1,

_1’

-1), ncol = 1)

tmp<-aov(cbind(d11,d12,d13,d21,d22,d23) %*% contr =~ gp, Ela.mul)
summary(tmp, intercept= T)

The next contrast, when combined with the manova() function in R-1.2.0 or later, tests the dose main
effect and the dose:group interaction. The first contrast c(1, 0, -1, 1, 0, -1) tests if the difference
between dose 1 and dose 3 are statistically significant across groups; and the second contrastc(0, 1, -1,
0, 1, -1) teststhe difference between dose 2 and dose 3 across two groups. When tested simultaneously
with manova(), we get

contr <- matrix(c(
1, 0,
0, 1,
-1,-1,
1, 0,
0, 1,
-1,-1

), nrow = 6, byrow = T)

tmp <- manova(chind(d11,d12,d13,d21,d22,d23) %*% contr ~ gp, Ela.mul)
summary(tmp, test="Wilks", intercept = T)

Another manova() contrast, which tests drug:dose interaction and drug:dose:group interaction.

contr <- matrix(c(

1,-1,

0, 2,

-1,-1,

-1, 1,

0,-2,

1, 1), nrow = 6, byrow = T)

tmp<-manova(cbind(d11,d12,d13,d21,d22,d23) %*% contr ~ gp, Ela.mul)
summary(tmp, test="Wilks", intercept = T)

6.8.6 Graphics with error bars

Next we will demonstrate how to use R’s powerful graphics functions to add error bars to a plot. The example uses
the Elashoff example discussed earlier. In this example we will briefly show how visual representations compliment
the statistical tests. We use R’s jpg() graphics driver to generate a graph that can be viewed by a web browser. The
command syntax may appear intimidating for beginners, but it is worth the increased efficiency in the long run.
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You can also use the postscript() graphics driver to generate presentation-quality plots. PostScript files can
be transformed into PDF format so that nowadays the graphs generated by R can be viewed and printed by virtually
10
anyone.

Typically the graphs are first generated interactively with drivers like X11(), then the commands are saved and
edited into a script file. A command syntax script eliminates the need to save bulky graphic files.

First we start the graphics driver jpg() and name the file where the graph(s) will be saved.

attach(Ela.uni)
Jjpeg(file = "ElasBar.jpg")

Then we find the means, the standard errors, and the 95% confidence bounds of the means.

tmean <- tapply(effect, IND = list(gp, drug, dose), mean)

tse <- tapply(effect, IND = list(gp, drug, dose), se)

tharHeight <- matrix(tmean, ncol=3)

dimnames(tbarHeight) <- list(c("gpldrl™,"gp2drl”, gpldr2", "gp2dr2™),
c("'dosel”,"dose2" ,"dose3"))

tn <- tapply(effect, IND = list(gp, drug, dose), length)

tu <- tmean + qt(.975, df=tn-1) * tse # upper bound of 95% confidence int.

tl <- tmean + qt(.025, df=tn-1) * tse # lower bound

tcol <- c("blue"”, "darkblue™, "yellow", "orange'") # color of the bars

After all the numbers are computed, we start building the barplot. First we plot the bars without the confidence
intervals, axes, labels, and tick marks. Note that the barplot() function returns the x-axis values at where the center
of the bars are plotted. Later we will use the values in tbars to add additional pieces.

thars <- barplot(height=tbarHeight, beside=T, space=c(0, 0.5),
ylab=""", xlab=""", axes=F, names.arg=NULL, ylim=c(-15, 40),
col=tcol)

Then we add the 95% confidence intervals of the means to the bars.

segments(xO=tbars, xl=tbars, yO=tl, yl=tu)
segments(x0=tbars-.1, xl=tbars+0.1, yO=tl, yl=tl) # lower whiskers
segments(x0=tbars-.1, xl=tbars+0.1, yO=tu, yl=tu) # upper whiskers

The axes labels are added.

axis(2, at = seq(0, 40, by=10), labels = rep("", 5), las=1)
tx <- apply(tbars, 2, mean) # center positions for 3 clusters of bars

We plot the horizontal axis manually so that we can ask R to put things at exactly where we want them.

segments(x0=0, xl=max(tbars)+1.0, y0=0, y1=0, Ity=1, Iwd = 2)
text(c('Dose 1", "Dose 2", "Dose 3"), x = tx, y = -1.5, cex =1.5)
mtext(text=seq(0,40,by=10), side = 2, at = seq(0,40,by=10),

line = 1.5, cex =1.5, las=1)
mtext(text="Drug Effectiveness", side = 2, line = 2.5, at = 20, cex =1.8)

100ne converter isps2pdf , or try GhostScript.
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Finally we want to plot the legend of the graph manually. R also has a legend() function, although less flexible.

txl <- ¢(0, 1, 1, 0)

tyl <- c(-15, -15, -13, -13)

polygon(x=tx1, y=tyl, col=tcol[1])

polygon(x=tx1, y=tyl + 2.5, col=tcol[2]) # 2nd, moved 2.5 points up
polygon(x=tx1, y=tyl + 5, col=tcol[3]) # 3rd

polygon(x=tx1, y=tyl + 7.5, col=tcol[4]) # last

Finally, we add the legend labels for the filled rectangles.

text(x = 2.0, y = -14, labels="group 1, drug 1", cex = 1.5, adj = 0)
text(x = 2.0, y = -11.5, labels="group 2, drug 1", cex = 1.5, adj = 0)
text(x = 2.0, y = -9, labels="group 1, drug 2", cex = 1.5, adj = 0)
text(x = 2.0, y = -6.5, labels="group 2, drug 2", cex = 1.5, adj = 0)

The greatest effectiveness is attained by subjects in group 2 when drug 2 is given. This suggests a group by drug
interaction, which is confirmed by the aov() results outlined earlier. It also indicates an increasing effectiveness from
dose 1 to 3, which is also confirmed by the statistics.

6.9 UseError() for repeated-measure ANOVA

In this section we give an intuitive explanation to the use of the Error() statement for repeated-measure analysis of
variance. These explanations are different than what are typically covered in advanced textbooks. The conventional
method focuses on deriving the appropriate error terms for specific statistical tests. We use an intuitive method, which
will show that using Error () inside an aov() function is actually the same as performing t-tests using contrasts.

The conventional explanation is computationally and theoretically equivalent to what we are about to summarize.
Detailed theoretical explanations can be found in most advanced textbooks, including the book by Hoaglin, Mosteller,
and Tukey (1991). Explanations of the technical details can be found in the book by Chambers and Hastie (1992).

We first review Analysis of Variance using a method commonly seen in most introductory textbooks. This method
uses an ANOVA table to describes how much of the total variability is accounted for by all the related variables.
An ANOVA table is exactly what aov() does for you. We first apply this method to the Hays.df data described
earlier (but repeated here), then we use the ANOVA table to explain why we must add the Error() statement in an
aov() command in order to get the appropriate significance tests. Finally we draw a connection between Error()
and specific t-tests tailored for repeated-measure data.

6.9.1 Basic ANOVA table with aov()

The aov() function generates a basic ANOVA table if Error() is not inserted. Applying a simple aov() to the
Hays.df data, you get an ANOVA table like the following:

summary(aov(rt = subj * color * shape, data = Hays.df))
Df Sum Sq Mean Sq

subj 11 226.500 20.591
color 1 12.000 12.000
shape 1 12.000 12.000
subj:color 11 9.500 0.864
subj :shape 11 17.500 1.591
color:shape 1 1.493e-27 1.493e-27

subj:color:shape 11 30.500 2.773
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R analyzes how reaction time differs depending on the subjects, color and the shape of the stimuli. Also, you can
have R tell you how they interact with one another. A simple plot of the data may suggest an interaction between color
and shape. A color:shape interaction occurs if, for example, the color yellow is easier to recognize than red when it
comes in a particular shape. The subjects may recognize yellow squares much faster than any other color and shape
combinations. Therefore the effect of color on reaction time is not the same for all shapes. We call this an interaction.

The above aov() statement divides the total sum of squares in the reaction time into pieces. By looking at the size
of the sums of squares (Sum Sq in the table), you can get a rough idea that there is a lot of variability among subjects
and negligible in the color:shape interaction.

So we are pretty sure that the effect of color does not depend on what shape it is. The sum of square for
color:shape is negligible. Additionally, the subj variable has very high variability, although this is not very in-
teresting because this happens all the time. We always know for sure that some subjects respond faster than others.

Obviously we want to know if different colors or shapes make a difference in the response time. One might
naturally think that we do not need the subj variable in the aov() statement. Unfortunately doing so in a repeated
design can cause misleading results:

summary(aov(rt = color * shape, data = Hays.df))

Df Sum Sqg Mean Sq F value Pr(>F)
color 1 12.000 12.000 1.8592 0.1797
shape 1 12.000 12.000 1.8592 0.1797
color:shape 1 1.246e-27 1.246e-27 1.931e-28 1.0000
Residuals 44  284.000 6.455

This output can easily deceive you into thinking that there is nothing statistically significant! This is where
Error() is needed to give you the appropriate test statistics.

6.9.2 Using Error() within aov()

It is important to remember that summary() generates incorrect results if you give it the wrong model. Note that in the
statement above the summary() function automatically compares each sum of square with the residual sum of square
and prints out the F statistics accordingly. In addition, because the aov() function does not contain the subj variable,
aov() lumps every sum of squares related to the subj variable into this big Residuals sum of squares. You can
verify this by adding up those entries in our basic ANOVA table (226.5+ 9.5+ 17.5+ 1.49E — 27 + 30 = 284).

R does not complain about the above syntax, which assumes that you want to test each effect against the sum of
residual errors related to the subjects. This leads to incorrect F statistics. The residual error related to the subjects is
not the correct error term for all. Next we will explain how to find the correct error terms using the Error () statement.
We will then use a simple t-test to show you why we want to do that.

6.9.3 The Appropriate Error Terms

In a repeated-measure design like that in Hays, the appropriate error term for the color effect is the subj :color sum
of squares. Also the error term for the other within-subject, shape effect is the subj : shape sum of squares. The error
term for the color:shape interaction is then the subj:color:shape sum of squares. A general discussion can be
found in Hoaglin’s book. In the next section we will examine in some detail the test of the color effect.

For now we will focus on the appropriate analyses using Error(). We must add an Error(subj/(shape +
color)) statement within aov(). This repeats an earlier analysis.

summary(aov(rt =~ color * shape + Error(subj/(color + shape)), data = Hays.df))
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Error: subj
Df Sum Sg Mean Sq F value Pr(>F)
Residuals 11 226.500 20.591

Error: subj:color

Df Sum Sg Mean Sq F value Pr(>F)
color 1 12.0000 12.0000 13.895 0.003338 **
Residuals 11 9.5000 0-8636

Signif. codes: 0 “**** (0.001 *“**> 0.01 *“** 0.05 “.” 0.1 *~ 1

Error: subj:shape

Df Sum Sg Mean Sq F value Pr(>F)
shape 1 12.0000 12.0000 7.5429 0.01901 *
Residuals 11 17.5000 1.5909

Signif. codes: 0 “***> (0.001 *“*** 0.01 *“** 0.05 “.” 0.1 <~ 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)
color:shape 1 1.139e-27 1.139e-27 4.108e-28 1
Residuals 11  30.5000 2.7727

As we mentioned before, the Error(subj/(color + shape)) statement is the short hand for dividing all the
residual sums of squares—in this case all subject-related sums of squares—into three error strata. The remaining sums
of squares are lumped into a Within stratum.

The Error() statement says that we want three error terms separated in the ANOVA table: one for subj,
subj:color, and subj:shape, respectively. The summary() and aov() functions are smart enough to do the rest
for you. The effects are arranged according to where they belong. In the output the color effect is tested against the
correct error term subj :color, etc. If you add up all the Residuals entries in the table, you will find that it is exactly
284, the sum of all subject-related sums of squares.

6.9.4 Sources of the Appropriate Error Terms

In this section we use simple examples of t-tests to demonstrate the need of the appropriate error terms. Rigorous
explanations can be found in Edwards (1985) and Hoaglin, Mosteller, and Tukey (1991). We will demonstrate that the
appropriate error term for an effect in a repeated ANOVA is exactly identical to the standard error in a t statistic for
testing the same effect.

Let’s use the data in Hays (1988), which we show here again as hays.mat (See earlier example for how to read in
the data).

hays.mat

Shapel.Colorl Shape2.Colorl Shapel.Color2 Shape2.Color2
subj 1 49 48 49 45
subj 2 47 46 46 43
subj 3 46 47 47 44
subj 4 47 45 45 45
subj 5 48 49 49 48
subj 6 47 44 45 46
subj 7 41 44 41 40
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subj 8 46 45 43 45
subj 9 43 42 44 40
subj 10 47 45 46 45
subj 11 46 45 45 47
subj 12 45 40 40 40

In a repeated-measure experiment the four measurements of reaction time are correlated by design because they
are from the same subject. A subject who responds quickly in one condition is likely to respond quickly in other
conditions as well.

To take into consideration these differences, the comparisons of reaction time should be tested with differences
across conditions. When we take the differences, we use each subject as his/her own control. So the difference in
reaction time has the subject’s baseline speed subtracted out. In the hays.mat data we test the color effect by a
simple t-test comparing the differences between the columns of “Colorl” and “Color2.”

Using the t.test() function, this is done by

t.test(x
+ paired

hays.mat[, 1] + hays.mat[, 2], y = hays.mat[, 3] + hays.mat[, 4],
7

Paired t-test

data: hays.mat[, 1] + hays.mat[, 2] and hays.mat[, 3] + hays.mat[, 4]
t = 3.7276, df = 11, p-value = 0.003338
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.819076 3.180924
sample estimates:
mean of the differences
2

An alternative is to test if a contrast is equal to zero, we talked about this in earlier sections:

t.test(hays.mat %*% c(1, 1, -1, -1))
One Sample t-test

data: hays.mat %*% c(1, 1, -1, -1)
t = 3.7276, df = 11, p-value = 0.003338
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.819076 3.180924
sample estimates:
mean of x
2

Thisc(l, 1, -1, -1) contrast is identical to the first t-test. The matrix multiplication (the %*% operand) takes
care of the arithmetic. It multiplies the first column by a constant 1, add column 2, then subtract from that columns 3
and 4. This tests the color effect. Note that the p-value of this t test is the same as the p-values for the first t test and
the earlier F test.

It can be proven algebraically that the square of a t-statistic is identical to the F test for the same effect. So this fact
can be used to double check the results. The square of our t-statistic for color is 3.72762 = 13.895, which is identical
to the F statistic for color.
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Now we are ready to draw the connection between a t-statistic for the contrast and the F-statistic in an ANOVA
table for repeated-measure aov(). The t statistic is a ratio between the effect size to be tested and the standard error
of that effect. The larger the ratio, the stronger the effect size. The formula can be described as follows:

A
s/yn’
where the numerator is the observed differences and the denominator can be interpreted as the expected differences

due to chance. If the actual difference is substantially larger than what you would expect, then you tend to think that
the difference is not due to random chance.

M

Similarly, an F test contrasts the observed variability with the expected variability. In a repeated design we must
find an appropriate denominator by adding the the Error () statement inside an aov() function.

The next two commands show that the error sum of squares of the contrast is exactly identical to the Residual
sum of squares for the subj :color error stratum.

tvec <- hays.mat %*% c(1, 1, -1, -1)/2
sum((tvec - mean(tvec))2)
[1] 9.5

The sum of squares of the contrast is exactly 9.5, identical to the residual sum of squares for the correct F test. The
scaling factor 1/2 is critical because it provides correct scaling for the numbers. By definition a statistical contrast
should have a vector length of 1. This is done by dividing each element of the contrast vector by 2, turning it to c(1/2,
172, -1/2, -1/2). The scaling does not affect the t-statistics. But it becomes important when we draw a connection
between a t-test and an F test.

You get the standard error of the t-statistic if you do the following:

sqrt(sum((tvec - mean(tvec))™2 / 11) / 12)
[1] 0.2682717

The first division of 11 is for calculating the variance; then you divide the variance by the sample size of 12, take
the square root, you have the standard error for the t-test. You can verify it by running se(hays.mat %*% c(1, 1,
-1, -1)/2).

6.9.5 Verify the Calculations Manually

All the above calculations by aov() can be verified manually. This section summarizes some of the technical details.
This also gives you a flavor of how Analysis Of Variance can be done by matrix algebra. First we re-arrange the raw
data into a three-dimensional array. Each element of the array is one data point, and the three dimensions are for the
subject, the shape, and the color, respectively.

hays.A <- array(hays.dat, dim=c(12, 2, 2))
dimnames(hays.A) <- list(paste(“subj™, 1:12, sep = "),
+ c("Shapel”, "Shape2™), c(*Colorl™, "Color2™))

Because at this point we want to solve for the effect of color, we use the apply() function to average the reaction
time over the two shapes.

Ss.color <- apply(hays.A, c(1, 3), mean) # Ss x color: average across shape
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Next we test a t-test contrast for the color effect, which is the same as t.test(Ss.color %*% c(1, -1)). Also
note that the square of the t statistic is exactly the same as the F test.

Contr <- c(1, -1)

Ss.color.Contr <- Ss.color %*% Contr

mean(Ss.color.Contr) / (sqrt(var(Ss.color.Contr) / length(Ss.color.Contr)))
[.1]

[1,] 3.727564

The above t-test compares the mean of the contrast against the standard error of the contrast, which is sqrt(var(Ss.color.Contr)
/ length(Ss.color.Contr))

Now we can verify that the sum of square of the contrast is exactly the same as the error term when we use aov()
with the Error(subj:color) stratum.

sum((Ss.color.Contr - mean(Ss.color.Contr))~2)
[1] 9.5

6.10 Logistic regression

Multiple regression is usually not appropriate when we regress a dichotomous (yes-no) variable on continuous pre-
dictors. The assumptions of normally distributed error are typically violated. So we usually use logistic regression
instead. That is, we assume that the probability of a “yes” is certain function of a weighted sum of the predictors, the
inverse logit. In other words, if Y is the probability of a “yes” for a given set of predictor values Xy, Xo, ..., the model
says that

Y
log V= Do+ b1X1+boXo+ ... +error

The function log 11(_\( is the logit function. This is the “link function” in logistic regression. Other link functions
are possible in R. If we represent the right side of this equation as X, then the inverse function is

X
VLA
146X

In R, when using such transformations as this one, we use glm (the generalized linear model) instead of Im. We
specify the “family” of the model to get the right distribution. Here the family is called binomial. Suppose the
variable y has a value of 0 or 1 for each subject, and the predictors are x1, x2, and x3. We can thus say

summary(gIm(y = x1 + x2 + x3, family=binomial))

to get the basic analysis, including p values for each predictor. Psychologists often like to ask whether the overall
regression is significant before looking at the individual predictors. Unfortunately, R does not report the overall
significance as part of the summary command. To get a test of overall significance, you must compare two models.
One way to do this is:

glml <- gIm(y = x1 + x2 + x3, family=binomial)
gm0 <- gIm(y = 1, family=binomial)
anova(glImo,glml,test="Chisq")
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6.11 Log-linear models

Another use of glm is log-linear analysis, where the family is poisson rather than binomial. Suppose we have a table
called t1.data like the following (which you could generate with the help of expand.grid()). Each row represents
the levels of the variables of interest. The last column represents the number of subjects with that combination of levels.
The dependent measure is actually expens vs. notexpens. The classification of subjects into these categories depended
on whether the subject chose the expensive treatment or not. The variable “cancer” has three values (cervic, colon,
breast) corresponding to the three scenarios, so R makes two dummy variables, “cancercervic” and “cancercolon”.
The variable “cost” has the levels “expens” and “notexp”. The variable “real” is "real” vs. “hyp” (hypothetical).

cancer cost real count
colon notexp real 37
colon expens real 20
colon notexp hyp 31
colon expens hyp 15
cervic notexp real 27
cervic expens real 28
cervic notexp hyp 52
cervic expens hyp 6
breast notexp real 22
breast expens real 32
breast notexp hyp 25
breast expens hyp 27

The following sequence of commands does one analysis:

tl <- read.table("tl.data",header=T)
summary(gIm(count = cancer + cost + real + cost*real,
family=poisson(), data=tl)

This analysis asks whether “cost” and “real” interact in determining “count,” that is, whether the response is affected
by “real.” See the chapter on Generalized Linear Models in Venables and Ripley (1999) for more discussion of how
this works.

6.12 Conjoint analysis

In true conjoint analysis, we present a subject with stimuli made by crossing at least two different variables. For
example, in one study, Baron and Andrea Gurmankin presented each subject with 56 items in a random order. The
items consisted of each of each of eight medical conditions (ranging from a wart to immediate death) at each of seven
probability levels, and the subjects provided a badness rating for each of the 56 items. The assumption of conjoint
analysis is that the subject behaves as if he represents the disutility of each condition as a number, and the probability
as another number, adds the two numbers, and transforms the result monotonically into the response scale provided.
The representation of probability is a monotonic function of the given probability.

When we analyze the data, we try to recover the three transformations so as to get the best fit assuming that
this model is true. The three transformations are the assignment of numbers to the probabilities, the assignment of
numbers to the conditions, and the function relating the result to the response scale. (In this case, if the subject fol-
lowed expected-utility theory, the probability would be transformed logarithmically, so that the additive representation
corresponded to multiplication.)

R does not have a conjoint analysis package as such. But the Acepack package contains a function called ace(),
for “alternating conditional expectations,” which does essentially what we want. It maximizes the variance in the



7 REFERENCES 45

dependent variable (the response) that is explained by the predictors (probability and condition), by using an iterative
process. Here is an example in which the response is called bad, which is a matrix in which the rows are subjects, and
within each row the probabilities are in groups of 8, with the conditions repeated in each group.

probs <- rep(1:7,rep(8,7))

conds <- gl(8,1,56)

cnames <- c(“wart","toe","deaf1","legl","leg2","blind","bbdd",""death")
pnames <- c('.001",".0032","_01","_.032",".1",".32","1")

c.wt.ace <- matrix(0,ns,8) # resulting numbers for conditions
p-wt.ace <- matrix(0,ns,7) # resulting transformed probabilities
bad.ace <- matrix(0,ns,56) # transformed responses

for (i in 1:ns) # fit the model for each subject
{avl <- ace(chind(probs,conds),bad[i,],l1in=1)
bad.ace[i,] <- avl$ty
p.wt.ace[i,] <- avl$tx[8*0:6+1,1]
c.wt.ace[i,] <- avi$tx[1:8,2]
}

In the end, the matrices p.wt.ace, c.wt.ace and bad.ace should have the transformed numbers, one row per
subject.

6.13 Imputation of missing data

Schafer and Graham (2002) provide a good review of methods for dealing with missing data. R provides many of the
methods that they discuss. One method is multiple imputation, which is found in the Hmisc package. Each missing
datum is inferred repeated from different samples of other variables, and the repeated inferences are used to determine
the error. It turns out that this method works best with the ols() function from the Design package rather than with
(the otherwise equivalent) Im() function. Here is an example, using the data set t1.

library(Hmisc)

f <- areglmpute(Cv1l+v2+v3+v4, n.impute=20,
fweighted=.2, defaultLinear=T, data=tl)

library(Design)

fmp <- fit.mult.impute(vl~v2+v3, ols, f, data=tl)

summary (fmp)

The first command (f) imputes missing values in all four variables, using the other three for each variable. The
second command (fmp) estimates a regression model in which v1 is predicted from two of the remaining variables. A
variable can be used (and should be used, if it is useful) for imputation even when it is not used in the model.
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