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Artificial Intelligence is no substitute for the real thing.



Types of Machine Learning

• Supervised Learning
– classification

• Unsupervised Learning
– clustering
– class discovery

• Feature Selection
– identification of features associated with good

prediction



Components of Machine
Learning

• features: which variables or attributes of
the samples are going to be used to cluster
or classify

• distance: what method will we use to
decide whether two samples are similar or
not

• model: how do we cluster or classify
– eg: kNN, neural nets, hierarchical clustering



Components of Machine
Learning

Once these have been selected (or a set of
candidates) we can use cross-validation to:

1. estimate the generalization error
2. perform model selection (could select

distance or features as well)
3. feature selection (in a different way to 2)



Two Key Theorems

• No Free Lunch: (Section 9.2.1, Duda Hart
and Stork)

   All learning algorithms have the same
expected generalization error, when the
expectation is taken over all possible
classification functions.



No Free Lunch

• “If the goal is to obtain good generalization
performance, there are no context-independent or
usage-independent reasons to favor one learning
or classification method over another. If one
algorithm seems to outperform another in a
particular situation, it is a consequence of its fit to
the particular pattern recognition problem, not the
general superiority of the algorithm.”

• (p.454 of DHS)



Ugly Duckling Theorem
• there is no problem- or purpose-independent

selection of features that may be used to define
similarity among objects for classification.

• Here similarity is measured by counting the
number of predicates (drawn from a finite stock)
shared by the two feature vectors being compared.

• The theorem establishes that the number of
predicates shared by any pair of patterns is a fixed
constant, independent of the choice of patterns.

• Thus domain-specific knowledge plays an
essential role in the identification of genuinely
informative feature sets



An Experiment

• to be concrete I will consider a microarray
experiment – but similar considerations
arise for almost all genomic experiments

• in this experiment Affymetrix chips were
used

• the data consist of N (say 100) samples,
associated phenotypic data and expression
estimates for G probes (~10,000 genes)



An Experiment

• supervised learning is used to see if the
expression estimates can reliably predict
phenotype

• feature selection is the process of
determining which genes are the best
predictors of a particular phenotype

• unsupervised machine learning is applied
to determine how many different classes or
groups there are



Getting to Know Your Data

• statisticians call this EDA (Exploratory
Data Analysis)

• it generally consists of some model free
examinations of the data to ensure some
general consistency with expectations



Correlation matrices



Correlation matrices



Distances

• inherent in all machine learning is the
notion of distance

• there are very many different distances
(Euclidean, Manhatten, 1-correlation)

• the choice of distance is important and in
general substantially affects the outcome

• the choice of distance should be made
carefully



Distances

• distances can be thought of as matrices
where the value in row i column j is the
distance between sample i and sample j (or
between genes i and j)

• these matrices are called distance matrices
• in most cases they are symmetric



Distances
• clustering methods work directly on the

distance matrix
• Nearest-Neighbor classifiers use distance

directly
• Linear Discriminant Analysis uses

Mahalanobis distance
• Support Vector Machines are based on

Euclidean distance between observations



Distances
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Distance

• it is not simple to select the distance
function

• you should decide what you are looking for
– patterns of expression in a time course

experiment
– genes related because they are affected by the

same transcription factor
– samples with known phenotypes and related

expression profiles



Distances: Time-course

• you might want genes that are
– correlated
– anti-correlated
– lagged

• 1-correlation is the correct distance only for
the first one of these

• correlation measures linear association and
is not resistant (one outlier can ruin it)
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Distances: Transcription Factors

• suppose that we can induce a specific
transcription factor

• we might want to find all direct targets
• does anyone know what the pattern of

expression should be?
• use some known targets to help select a

distance



Distances: Phenotype

• T-ALL can be classified according to their
stage of differentiation (T1,T2,T3,T4)

• this is done on the basis of the detection of
antigens on the surface of the cell

• these antigens can be directly associated
with a gene

• look at the expression of those genes and
use that to help find/select genes like the
known ones



Multidimensional Scaling

• distance data is very high dimensional
• if we have N samples and G genes
• then distance between sample i and j is in

G dimensional space
• this is very hard to visualize and hence

methods that can reduce that
dimensionality to two or three dimensions
are interesting

• but only if they provide a reasonable
reduction of the data



MDS
• three main ways of doing this

– classical MDS
– Sammon mapping

places more emphasis on smaller
dissimilarities

– Shepard-Kruskal non-metric scaling
   based on the order of the distances not

their values



MDS

• the quality of the representation in k
dimensions will depend on the magnitude
of the first k eigenvalues.

• The data analyst should choose a value for
k that is small enough for ease
representation but also corresponds to a
substantial “proportion of the distance
matrix explained”.



Classical MDS



Classical MDS



MDS

• N.B. The MDS solution reflects not only the
choice of a distance function, but also the
features selected.

• If features were selected to separate the data into
two groups (e.g., on the basis of two-sample t-
statistics), it should come as no surprise that an
MDS plot has two groups. In this instance MDS
is not a confirmatory approach.





Supervised Learning

• the general problem:

    Identify mRNA expression patterns that
reliably predict phenotype.



Supervised Learning: 4 Steps

1. feature selection: includes transformation,
eg: log(x), x/y, etc

2. model selection: involves distance selection
3. training set: used to determine the model

parameters
4. test set: should be independent of the

training set and it is used to assess the
performance of the classifier from Step 2



Supervised Learning: Goal

  To identify a set of features, a predictor (classifier)
and all parameters of the predictor so that if
presented (with a new sample we can predict its
class with an error rate that is similar to that
obtained in Step 4).



Supervised Learning: Problems

• to reliably estimate the error rate will
require an enormous sample (if it is small)

• therefore the test set is wasteful in practice;
samples are expensive and valuable

• if there are lots of features we cannot hope
to explore all possible variants

• there are too many models
• there are too many distances



A Simpler Goal

• we want some form of generalizability
• we want to select features and a model that

are appropriate for prediction of new cases
 (not looking for Mr. Right but rather Mr.

NotTooWrong)
• all models are wrong, but some models are

useful



Supervised Learning

• training error/prediction error: this is the
error rate on the training sample

• the training error is overly optimistic
• the test error/generalization error: is the

error rate that will occur when a new
independent sample is used (randomly
chosen from the population of interest)



Supervised Learning

• there is sometimes benefit in considering
class specific error rates

• some classes may be easy to predict and
others hard

• especially if classes are not equally
represented in the sample (or if we want to
treat the errors differently)



Machine Learning: Mathematics

• Let Y denote the true class and X denote
features chosen from the available set X

• Suppose that Y = f(X) + e
• so the true class is some function f of the

features plus some random error
• so we must extract X from X
• then estimate model parameters to get
• finally get



Machine Learning: Mathematics

• the training set gives us observations for
which we know both y and x – the true
class and the features

• we select the parameters of the model so
that we minimize (in some way) the errors

• e.g. we want to find functions that minimize

• there are an infinite number of functions
that make this zero



Supervised Learning

• so we must put some restrictions on the
class of models that we will consider

• it is also worth observing at this time that
model complexity is clearly an issue

• more complex models fit better
• in any comparison of models it is essential

that the complexity be adjusted for
• Occam’s Razor: we prefer simple

explanations to complex ones



Supervised Learning

• bias: the difference between what is being
predicted and the truth

• variance: the variability in the estimates
• generally low bias and low variance are

preferred
• it is difficult to achieve this
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Supervised Learning

• The classifier can make one of three
decisions:
– classify the sample according to one of the

phenotypic groups
– doubt: it cannot decide which group
– outlier: it does not believe the sample belongs

to any group



Supervised Learning

• Suppose that sample i has feature vector x
• The decision made by the classifier is called
          and the true class is y
• We need to measure the cost of identifying

the class as          when the truth is y
• this is called the loss function
• the loss will be zero if the classifier is

correct and something positive if it is not



Loss Functions

• loss functions are important concepts
because they can put different weights on
different errors

• for example, mistakenly identifying a
patient who will not achieve remission as
one who will is probably less of problem
than the reverse – we can make that
loss/cost much higher



Feature Selection

• in most of our experiments the features
must be selected

• part of what we want to say is that we have
found a certain set of features (genes) that
can accurately predict phenotype

• in this case it is important that feature
selection be included in any error
estimation process



Classifiers

• k-NN classifiers – the predicted class for
the new sample is that of the k-NNs

• doubt will be declared if there is not a
majority (or if the number required is too
small)

• outlier will be declared if the new sample is
too far from the original data



k-NN Classifier
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k-NN

• larger values of k correspond to less
complex models

• they typically have low variance but high
bias

• small values of k (k=1) are more complex
models

• they typically have high variance but low
bias





Discriminant Analysis

• we contrast the k-NN approach with linear
and quadratic discriminant analysis (lda, qda)

• lda seeks to find a linear combination of the
features which maximizes the ratio of its
between-group variance to its within group
variance

• qda seeks a quadratic function (and hence is a
more complex model)



QDA LDA



Cross-validation

• while keeping a separate test set is
conceptually a good idea it is wasteful of
data

• some sample reuse ideas should help us to
make the most of our data without unduly
biasing the estimates of the predictive
capability of the model (if applied correctly)



Cross-validation

• the general principle is quite simple
– our complete sample is divided into two parts
– the model is fit on one part and the fit assessed

on the other part
– this can be repeated many times; each time we

get an estimate of the error rate
– the estimates are correlated, but that’s ok, we

just want to average them



Cross-validation

• leave-one-out is the most popular
• each sample is left out in turn, then the

model fit on the remaining N-1 samples
• the left out sample is supplied and its class

predicted
• the average of the prediction errors is used

to estimate the training error



Cross-validation

• this is a low bias (since N-1 is close to N
we are close to the operating characteristics
of the test) but high variance

• there are arguments that suggest leaving
out more observations each time would be
better

• the bias increases but may be more than
offset but the reduction in variance



Cross-validation

• Uses include
• estimating the error rate
• model selection: try a bunch of models

choose the one with the lowest cross-
validation error rate

• feature selection: select features that
provide good prediction in most of the
subsamples



General Comments

• there is in general no best classifier (there
are some theorems in this regard)

• it is very important to realize that if one
classifier works very poorly and you try a
different classifier which works very well,
then someone has probably made a mistake!

• the advantages to SVM or k-NN, for
example, are not generally so large that one
works and the other doesn’t



Unsupervised Learning

• in statistics this is known as clustering
• in some fields it is known as class discovery
• the basic idea is to determine how many

groups there are in your data and which
variables seem to define the groupings

• the number of possible groups is generally
huge and so some stochastic component is
generally needed



What is clustering?

• Clustering algorithms are methods to
divide a set of n observations into g groups
so that within group similarities are larger
than between group similarities

• the number of groups, g, is generally
unknown and must be selected in some way

• implicitly we must have already selected
both features and a distance!



Clustering

• the application of clustering is very much
and art

• there are interactions between the distance
being used and the method

• one difference between this and
classification is that there is no training
sample and the groups are unknown before
the process begins

• unlike classification (supervised learning)
there is no easy way to use cross-validation



Clustering

• class discovery: we want to find new and
interesting groups in our data

• to do a good job the features, the distance
and the clustering algorithm will have to be
considered with some care

• the appropriate choices will depend on the
questions being asked and the available data



Clustering

• probably some role for outlier
• any group that contained an outlier would

probably have a large value for any
measure of within cluster homogeneity

• fuzzy clustering plays the role of doubt
– objects are assigned a weight (or probability of

belonging to each cluster)



Clustering: QC

• one of the first things that a data analyst
should do with normalized microarray data
is to cluster the data

• the clusters should be compared to all
known experimental features
– when the samples were assayed
– what reagents were used
– any batch effects



Clustering: QC

• if the clusters demonstrate a strong
association with any of these characteristics
it will be difficult to interpret the data

• it is important, therefore, to design your
experiment

• do not do all the type A samples on day 1
and all the type B on day 2



Aside: Experimental Design

• do not randomly decide which day to do a
sample

• instead you should block (and randomize
within blocks) to ensure proper balance
across all important factors

• e.g half of the A’s should be done on day 1
and half on day 2, the same as for the B’s
(but random assignment won’t give you that)



Clustering

Two (and a half) types:
• hierarchical – generate a hierarchy of

clusters going from 1 cluster to n
• partitioning – divide the data into g groups

using some (re)allocation algorithm
• fuzzy clustering: each object has a set of

weights suggesting the probability of it
belonging to each cluster



Hierarchical Clustering

Two types
• agglomerative – start with n groups, join

the two closest, continue
• divisive – start with 1 group, split into 2,

then into 3,…, into n
• need both between observation distance

and between group/cluster distance



Hierarchical Clustering

• between group distances
• single linkage – distance between two

clusters is the smallest distance between an
element of each group

• average linkage – distance between the two
groups is the average of all pairwise
distances

• complete linkage – distance is the maximum



Hierarchical Clustering

• agglomerative clustering is not a good
method to detect a few clusters

• divisive clustering is probably better
• divisive clustering is not deterministic (as

implemented)
• the space of all possible splits is too large

and we cannot explore all
• so we use some approximations



Hierarchical Clustering

• agglomerative: start with all objects in their
own cluster then gradually combine the
closest to

• many ways to do this but there is an exact
solution

• divisive: start with all objects in the same
group, split into two, then three,
then…until n



Dendrograms

• the output of a hierarchical clustering is
usually presented as a dendrogram

• this is a tree structure with the observations
at the bottom (the leafs)

• the height of the join indicates the distance
between the left branch and the right branch



Dendrograms

• dendrograms are NOT visualization methods
• they do not reveal structure in data they

impose structure on data
• the cophenetic correlation can be used to

assess the degree to which the dendrogram
induced  distance agrees with the the
distance measure used to compute the
dendrogram
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Dendrograms

• the cophenetic correlation can help to
determine whether the distances
represented in the dendrogram reflect those
used to construct it

• even if this correlation is high that is no
guarantee that the dendrogram represents
real clusters
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• the dendrogram was
cut to give three
groups

0110AML

710ALL T-cell

0217ALL B-cell

321Group
Average Linkage
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Single Linkage
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1100AML

080ALL T-cell

1117ALL B-cell

321Group

Complete Linkage
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1100AML

080ALL T-cell

1315ALL B-cell

321Group

Divisive Clustering



Partitioning Methods

• the other broad class of clustering
algorithms are the partitioning methods

• the user selects some number of groups, g
• group or cluster centers are determined and

objects are assigned to some set of initial
clusters

• some mechanism for moving points and
updating cluster centers is used



Partitioning Methods

• many different methods for doing this but
the general approach is as follows:

• select the number of groups, G
• divide the samples into G different groups

(randomly)
• iteratively select observations and

determine whether the overall gof will be
improved by moving them to another group



Partitioning

• this algorithm is then applied to the data
until some stopping criterion is met

• the solution is generally a local optimal not
necessarily a global optimal

• the order in which the samples are
examined can have an effect on the outcome

• this order is generally randomly selected



Partitioning Methods

• among the most popular of these methods
are
– k-Means
– PAM
– self-organizing maps



Partitioning Methods

• pam: partitioning around mediods
• cluster centers are actual examples
• we define a distance between samples and

how many groups
• then we apply pam which sequentially

moves the samples and updates the centers



PAM – ALL/AML

• pam was applied to the data from Golub et
al.

• the results (for three groups) were:

1100AML

080ALL T-cell

1018ALL B-cell

321Group
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PAM

• the next plot is called a silhouette plot
• each observation is represented by a

horizontal bar
• the groups are slightly separated
• the length of a bar is a measure of how

close the observation is to its assigned
group (versus the others)
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Silhouette plot of pam(x = as.dist(d), k = 3, diss = TRUE)

Average silhouette width :  0.53

n = 38 3  clusters  Cj

j :  nj | avei!Cj  si

1 :   18  |  0.40

2 :   8  |  0.54

3 :   12  |  0.73



How Many Groups do I have?

• this is a hard problem
• there are no known reliable answers
• you need to define more carefully what you

mean by a group
• the next two slides ask whether there are

four groups in the ALL/AML data
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These two components explain 48.99 % of the point variability.
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How Many Groups

• for microarray experiments the question
has often been stated more in terms of the
samples by genes, false color displays

• there one is interested in finding relatively
large blocks of genes with relatively large
blocks of samples where the expression
level is the same for all

• this is computationally very hard



Clustering Genomic Data

• in my examples (and in most applications I
am aware of) I simply selected genes that
looked like they differentiated the two
major groups

• I could also do clustering on all 3,000-odd
genes

• I could select genes according to pathway
or GO category or … and do a separate
clustering for each



Clustering Genomic Data

• it seems to me that there is a lot to be
gained from thinking about the features and
trying to use some known biology

• using subsets of the features rather than all
of them to see whether there are interesting
groups could be quite enlightening

• this requires collaboration between
biologists and statisticians



Clustering

• one of the biggest problems here is a lack
of a common interface

• many different software programs all are
slightly different

• many tools are not yet implemented
• this is changing as both computational

biology and data mining have spurred an
interest in this field



Feature Selection

• this is perhaps the hardest part of the
machine learning process

• it is also very little studied and there are
few references that can be used for guidance

• the field of data-mining offers some
suggestions



Feature Selection

• in most problems we have far too many
features and must do some reduction

• for our experiment many of the genes may
not be expressed in the cell type under
examination

• or they may not be differentially expressed
in the phenotype of interest



Feature Selection

• non-specific feature selection is the process
of selecting features that show some
variation across our samples without regard
to phenotype

• for example we could select genes that
show a certain amount of variability



Feature Selection

• specific feature selection is the process of
selecting features that align with or predict
a particular phenotype

• for example we may select features that
show a large fold change when comparing
two groups of interest (patients in
remission versus those for whom cancer
has returned)



Feature Selection

• most feature selection is done univariately
• most models are multivariate
• we know, from the simplest setting, that the

best two variable model may not contain
the best single variable

• improved methods of feature selection are
badly needed



Feature Selection: CV

• there are two different ways to consider
using CV for feature selection

• have an algorithm for selecting features
• obtain M different sets of features
• for each set of features (with the distance

and model fixed) compute the CV error
• select the set of features with the smallest

error



Feature Selection: CV

• a different method is to put the feature
selection method into the algorithm

• for each CV subset perform feature
selection

• predict those excluded
• could select those features that were

selected most often



Feature Selection: CV

• a slight twist would be to weight the
features according to the subsample
prediction error

• give those features involved in models that
had good predictive capabilities higher

• select the features with the highest
combined weight



Feature Selection

• if we want to find those features which best
predict the duration of remission we must
also use supervised learning (classification)
to predict duration of remission

• then we must use some method for
determining which features provide the best
prediction

• we will return to this interesting question a
bit later



Some References
• Classification, 2nd ed., A. D. Gordon,

Chapman & Hall (it’s about clustering), 1999
• Pattern Recognition and Neural Networks, B.

D. Ripley, Cambridge Univ. Press, 1996
• The Elements of Statistical Learning, T.

Hastie, R. Tibshirani, J. Friedman, Springer,
2001

• Pattern Classification, 2nd ed., R. Duda, P.
Hart and D. Stork, Wiley, 2000.

• Finding Groups in Data, L. Kaufman and P. J.
Rousseeuw, Wiley, 1990.



Neural Networks

• a mechanism for making predictions
• they can be arbitrarily complex (some

caution must be used when comparing to
other methods)

• consist of a set of nodes arranged in layers



Neural Network

Hidden Layer OutputInput



Neural Networks

• each node (unit) sums its inputs, adds a
constant to form the total input

• a node specific function function fk() is then
applied to the total input to yield the total
output

• the output then becomes the input for the
next layer

• the output from the final layer constitutes
the prediction
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Neural Networks

• for a unit k we assume the output is given
by

• to be useful we need to obtain values for
the wij

• this is difficult and is usually based on the
use of a training set



Neural Networks

• convergence is difficult to assess: even
when you have an independent test set

• it seems that one seldom needs more than
one hidden layer to accommodate the
problems we are encountering with
microarrays

• more hidden layers imply a more complex
model



Thanks

• Sabina Chiaretti
• Vincent Carey
• Sandrine Dudoit
• Beiying Ding
• Xiaochun Li
• Denise Scholtens

• Jeff Gentry
• Jianhua Zhang
• Jerome Ritz
• Alex Miron
• J. D. Iglehart
• A. Richardson


