--
output:
BiocStyle::html_document
---
```{r style, echo = FALSE}
BiocStyle::markdown()
```
# Visualisation of proteomics data using R and Bioconductor
[Laurent Gatto](http://proteome.sysbiol.cam.ac.uk/lgatto/),
[Lisa Breckels](http://cpu.sysbiol.cam.ac.uk/) and
[Sebastian Gibb](http://sebastiangibb.de/research.html)
```{r env, message=FALSE, echo=FALSE}
library("RforProteomics")
library("BiocInstaller")
library("mzR")
library("MSnbase")
library("knitr")
library("rpx")
library("xtable")
library("RColorBrewer")
library("MALDIquant")
library("MALDIquantForeign")
library("pRoloc")
library("pRolocdata")
```
## Introduction
### References
- CRAN Task View: Graphic Displays & Dynamic Graphics & Graphic
Devices & Visualization:
http://cran.r-project.org/web/views/Graphics.html
- CRAN Task View: Web Technologies and Services:
http://cran.r-project.org/web/views/WebTechnologies.html
- ggplot2
[book](http://link.springer.com/book/10.1007%2F978-0-387-98141-3)
(syntax is slightly outdated) ([code](http://ggplot2.org/book/)),
[web page](http://ggplot2.org/) and
[on-line docs](http://docs.ggplot2.org/current/)
- lattice
[book](http://lmdvr.r-forge.r-project.org/figures/figures.html) and
[web page](http://lattice.r-forge.r-project.org/)
- *R Graphics* [book](https://www.stat.auckland.ac.nz/~paul/RG2e/)
- [R Cookbook](http://www.cookbook-r.com/Graphs/) and
[R Graphics Cookbook](http://shop.oreilly.com/product/0636920023135.do)
### Relevant packages
```{r packs, cache=TRUE, warning=FALSE, echo=FALSE}
library("RforProteomics")
pp <- proteomicsPackages()
msp <- massSpectrometryPackages()
```
There are currently `r nrow(pp)`
[Proteomics](http://bioconductor.org/packages/devel/BiocViews.html#___Proteomics)
and `r nrow(msp)`
[MassSpectrometry](http://bioconductor.org/packages/devel/BiocViews.html#___MassSpectrometry)
packages in Bioconductor version `r as.character(biocVersion())`.
Other non-Bioconductor packages are described in the `RforProteomics`
[vignette](http://bioconductor.org/packages/devel/data/experiment/vignettes/RforProteomics/inst/doc/RforProteomics.pdf).
```{r pptab, echo=FALSE, results='asis'}
kable(pp, format = "html")
```
```{r msptab, echo=FALSE, results='asis'}
kable(msp, format = "html")
```
## Ascombe's quartet
```{r anscombe, echo = FALSE, results='asis'}
kable(anscombe, format = "html")
```
```{r anscombetab}
tab <- matrix(NA, 5, 4)
colnames(tab) <- 1:4
rownames(tab) <- c("var(x)", "mean(x)",
"var(y)", "mean(y)",
"cor(x,y)")
for (i in 1:4)
tab[, i] <- c(var(anscombe[, i]),
mean(anscombe[, i]),
var(anscombe[, i+4]),
mean(anscombe[, i+4]),
cor(anscombe[, i], anscombe[, i+4]))
```
```{r anstabdisplay, echo=FALSE}
kable(tab)
```
```{r anscombefig}
ff <- y ~ x
par(mfrow = c(2, 2), mar = c(4, 4, 1, 1))
for (i in 1:4) {
ff[2:3] <- lapply(paste0(c("y","x"), i), as.name)
plot(ff, data = anscombe, pch = 19, xlim = c(3, 19), ylim = c(3, 13))
abline(lm(ff, data = anscombe))
}
```
```{r anscombe, ref.label='anscombefig', echo=FALSE, dev='pdf'}
```
## The MA plot example
The following code chunk connects to the `PXD000001` data set on the
ProteomeXchange repository and fetches the `mzTab` file. After missing
values filtering, we extract relevant data (log2 fold-changes and
log10 mean expression intensities) into `data.frames`.
```{r, makemadata, warning=FALSE, cache=TRUE}
library("rpx")
px1 <- PXDataset("PXD000001")
mztab <- pxget(px1, "PXD000001_mztab.txt")
library("MSnbase")
qnt <- readMzTabData(mztab, what = "PEP")
sampleNames(qnt) <- reporterNames(TMT6)
qnt <- filterNA(qnt)
## may be combineFeatuers
spikes <- c("P02769", "P00924", "P62894", "P00489")
protclasses <- as.character(fData(qnt)$accession)
protclasses[!protclasses %in% spikes] <- "Background"
madata42 <- data.frame(A = rowMeans(log(exprs(qnt[, c(4, 2)]), 10)),
M = log(exprs(qnt)[, 4], 2) - log(exprs(qnt)[, 2], 2),
data = rep("4vs2", nrow(qnt)),
protein = fData(qnt)$accession,
class = protclasses)
madata62 <- data.frame(A = rowMeans(log(exprs(qnt[, c(6, 2)]), 10)),
M = log(exprs(qnt)[, 6], 2) - log(exprs(qnt)[, 2], 2),
data = rep("6vs2", nrow(qnt)),
protein = fData(qnt)$accession,
class = protclasses)
madata <- rbind(madata42, madata62)
```
### The traditional plotting system
```{r, mafig1}
par(mfrow = c(1, 2))
plot(M ~ A, data = madata42, main = "4vs2",
xlab = "A", ylab = "M", col = madata62$class)
plot(M ~ A, data = madata62, main = "6vs2",
xlab = "A", ylab = "M", col = madata62$class)
```
```{r mafig1pdf, ref.label='mafig1', echo=FALSE, dev='pdf', fig.width=9, fig.height=6}
```
### lattice
```{r mafig2}
library("lattice")
latma <- xyplot(M ~ A | data, data = madata,
groups = madata$class,
auto.key = TRUE)
print(latma)
```
```{r mafig2pdf, ref.label='mafig2', echo=FALSE, dev='pdf', fig.width=8, fig.height=6}
```
### ggplot2
```{r mafig3}
library("ggplot2")
ggma <- ggplot(aes(x = A, y = M, colour = class), data = madata,
colour = class) +
geom_point() +
facet_grid(. ~ data)
print(ggma)
```
```{r mafig3pdf, ref.label='mafig3', echo=FALSE, dev='pdf', fig.width=8, fig.height=6}
```
### Customization
```{r macols}
library("RColorBrewer")
bcols <- brewer.pal(4, "Set1")
cls <- c("Background" = "#12121230",
"P02769" = bcols[1],
"P00924" = bcols[2],
"P62894" = bcols[3],
"P00489" = bcols[4])
```
```{r macust}
ggma2 <- ggplot(aes(x = A, y = M, colour = class),
data = madata) + geom_point(shape = 19) +
facet_grid(. ~ data) + scale_colour_manual(values = cls) +
guides(colour = guide_legend(override.aes = list(alpha = 1)))
print(ggma2)
```
```{r macustpdf, ref.label='macust', echo=FALSE, dev='pdf', fig.width=8, fig.height=6}
```
### The `MAplot` method for `MSnSet` instances
```{r mafigmsnset}
MAplot(qnt, cex = .8)
```
### An interactive `shiny` app for MA plots
This app is based on Mike Love's
[shinyMA](https://github.com/mikelove/shinyMA) application, adapted
for a proteomics data. A screen shot is displayed below. To start the
application:
```{r shinyMA, eval=FALSE}
shinyMA()
```

The application is also available online at
[https://lgatto.shinyapps.io/shinyMA/](https://lgatto.shinyapps.io/shinyMA/).
## Visualising mass spectrometry data
### Direct access to the raw data
```{r mapsprep}
library("lattice")
library("mzR")
mzf <- pxget(px1, 6)
ms <- openMSfile(mzf)
hd <- header(ms)
ms1 <- which(hd$msLevel == 1)
rtsel <- hd$retentionTime[ms1] / 60 > 30 & hd$retentionTime[ms1] / 60 < 35
library("MSnbase")
(M <- MSmap(ms, ms1[rtsel], 521, 523, .005, hd))
```
```{r mapsheat}
ff <- colorRampPalette(c("yellow", "steelblue"))
trellis.par.set(regions=list(col=ff(100)))
plot(M, aspect = 1, allTicks = FALSE)
```
```{r mapsheadpdf, ref.label='mapsheat', echo=FALSE, dev='pdf'}
```
```{r maps3D}
M@map[msMap(M) == 0] <- NA
plot3D(M, FALSE)
```
```{r maps3Dpdf, ref.label='maps3D', echo=FALSE, dev='pdf'}
```
```{r rglmap, eval=FALSE}
library("rgl")
plot3D(M, TRUE)
```
```{r msdetails}
lout <- matrix(NA, ncol = 10, nrow = 8)
lout[1:2, ] <- 1
for (ii in 3:4)
lout[ii, ] <- c(2, 2, 2, 2, 2, 2, 3, 3, 3, 3)
lout[5, ] <- rep(4:8, each = 2)
lout[6, ] <- rep(4:8, each = 2)
lout[7, ] <- rep(9:13, each = 2)
lout[8, ] <- rep(9:13, each = 2)
i <- ms1[which(rtsel)][1]
j <- ms1[which(rtsel)][2]
ms2 <- (i+1):(j-1)
layout(lout)
par(mar=c(4,2,1,1))
chromatogram(ms)
abline(v = hd[i, "retentionTime"], col = "red")
par(mar = c(3, 2, 1, 0))
plot(peaks(ms, i), type = "l", xlim = c(400, 1000))
legend("topright", bty = "n",
legend = paste0(
"Acquisition ", hd[i, "acquisitionNum"], "\n",
"Retention time ", formatRt(hd[i, "retentionTime"])))
abline(h = 0)
abline(v = hd[ms2, "precursorMZ"],
col = c("#FF000080",
rep("#12121280", 9)))
par(mar = c(3, 0.5, 1, 1))
plot(peaks(ms, i), type = "l", xlim = c(521, 522.5),
yaxt = "n")
abline(h = 0)
abline(v = hd[ms2, "precursorMZ"], col = "#FF000080")
##par(mar = omar)
par(mar = c(2, 2, 0, 1))
for (ii in ms2) {
p <- peaks(ms, ii)
plot(p, xlab = "", ylab = "", type = "h", cex.axis = .6)
legend("topright", legend = paste0("Prec M/Z\n",
round(hd[ii, "precursorMZ"], 2)),
bty = "n", cex = .8)
}
```
```{r msdetailspdf, ref.label='msdetails', echo=FALSE, dev='pdf', fig.width=10, fig.height=8}
```
```{r maps3D2}
M2 <- MSmap(ms, i:j, 100, 1000, 1, hd)
plot3D(M2)
```
```{r maps3D2pdf, ref.label='maps3D2', echo=FALSE, dev='pdf'}
```
MS barcoding
```{r barcode, fig.height=2, fig.width=12}
par(mar=c(4,1,1,1))
image(t(matrix(hd$msLevel, 1, nrow(hd))),
xlab="Retention time",
xaxt="n", yaxt="n", col=c("black","steelblue"))
k <- round(range(hd$retentionTime) / 60)
nk <- 5
axis(side=1, at=seq(0,1,1/nk), labels=seq(k[1],k[2],k[2]/nk))
```
### The MSnbase infrastructure
```{r msnbviz}
library("MSnbase")
data(itraqdata)
itraqdata2 <- pickPeaks(itraqdata, verbose = FALSE)
plot(itraqdata[[25]], full=TRUE, reporters = iTRAQ4)
par(oma = c(0, 0, 0, 0))
par(mar = c(4, 4, 1, 1))
plot(itraqdata2[[25]], itraqdata2[[28]], sequences = rep("IMIDLDGTENK", 2))
```
```{r msnbvizpdf, ref.label='msnbviz', echo=FALSE, dev='pdf', fig.width=8, fig.height=8}
```
### Preprocessing of MALDI-MS spectra
The following code chunks demonstrate the usage of the mass spectrometry
preprocessing and plotting routines in the `MALDIquant` package. `MALDIquant`
uses the traditional graphics system. Therefore `MALDIquant` overloads the
traditional functions `plot`, `lines` and `points` for its own data types. These
data types represents spectrum and peak lists as S4 classes. Please see the
`MALDIquant` [vignette](http://cran.r-project.org/web/packages/MALDIquant/vignettes/MALDIquant-intro.pdf)
and the corresponding [website](http://strimmerlab.org/software/maldiquant/)
for more details.
After loading some example data a simple `plot` draws the raw spectrum.
```{r mqraw}
library("MALDIquant")
data("fiedler2009subset", package="MALDIquant")
plot(fiedler2009subset[[14]])
```
After some preprocessing, namely variance stabilization and smoothing, we use
`lines` to draw our baseline estimate in our processed spectrum.
```{r mqestimatebaseline}
transformedSpectra <- transformIntensity(fiedler2009subset, method = "sqrt")
smoothedSpectra <- smoothIntensity(transformedSpectra, method = "SavitzkyGolay")
plot(smoothedSpectra[[14]])
lines(estimateBaseline(smoothedSpectra[[14]]), lwd = 2, col = "red")
```
After removing the background removal we could use `plot` again to draw our
baseline corrected spectrum.
```{r mqremovebaseline}
rbSpectra <- removeBaseline(smoothedSpectra)
plot(rbSpectra[[14]])
```
`detectPeaks` returns a `MassPeaks` object that offers the same traditional
graphics functions. The next code chunk demonstrates how to mark the detected
peaks in a spectrum.
```{r mqpeaks}
cbSpectra <- calibrateIntensity(rbSpectra, method = "TIC")
peaks <- detectPeaks(cbSpectra, SNR = 5)
plot(cbSpectra[[14]])
points(peaks[[14]], col = "red", pch = 4, lwd = 2)
```
Additional there is a special function `labelPeaks` that allows to draw the *M/Z*
values above the corresponding peaks. Next we mark the 5 top peaks in the
spectrum.
```{r mqlabelpeaks, echo = -(1:2)}
plot(cbSpectra[[14]])
points(peaks[[14]], col = "red", pch = 4, lwd = 2)
top5 <- intensity(peaks[[14]]) %in% sort(intensity(peaks[[14]]),
decreasing = TRUE)[1:5]
labelPeaks(peaks[[14]], index = top5, avoidOverlap = TRUE)
```
Often multiple spectra have to be recalibrated to be comparable. Therefore
`MALDIquant` warps the spectra according to so called reference or landmark
peaks. For debugging the `determineWarpingFunctions` function offers some
warping plots. Here we show only the last 4 plots:
```{r mqwarp, fig.keep = "last"}
par(mfrow = c(2, 2))
warpingFunctions <- determineWarpingFunctions(peaks,
tolerance = 0.001,
plot = TRUE,
plotInteractive = TRUE)
par(mfrow = c(1, 1))
warpedSpectra <- warpMassSpectra(cbSpectra, warpingFunctions)
warpedPeaks <- warpMassPeaks(peaks, warpingFunctions)
```
In the next code chunk we visualise the need and the effect of the
recalibration.
```{r mqwarped}
sel <- c(2, 10, 14, 16)
xlim <- c(4180, 4240)
ylim <- c(0, 1.9e-3)
lty <- c(1, 4, 2, 6)
par(mfrow = c(1, 2))
plot(cbSpectra[[1]], xlim = xlim, ylim = ylim, type = "n")
for (i in seq(along = sel)) {
lines(peaks[[sel[i]]], lty = lty[i], col = i)
lines(cbSpectra[[sel[i]]], lty = lty[i], col = i)
}
plot(cbSpectra[[1]], xlim = xlim, ylim = ylim, type = "n")
for (i in seq(along = sel)) {
lines(warpedPeaks[[sel[i]]], lty = lty[i], col = i)
lines(warpedSpectra[[sel[i]]], lty = lty[i], col = i)
}
par(mfrow = c(1, 1))
```
The code chunks above generate plots that are very similar to the figure 7 in
the corresponding paper *"Visualisation of proteomics data using R"*. Please
find the code to exactly reproduce the figure at:
https://github.com/sgibb/MALDIquantExamples/blob/master/R/createFigure1_color.R
## Genomic and protein sequences
These visualisations originate from the `Pbase`
[`Pbase-data`](http://bioconductor.org/packages/devel/bioc/vignettes/Pbase/inst/doc/Pbase-data.html)
and
[`mapping`](http://bioconductor.org/packages/devel/bioc/vignettes/Pbase/inst/doc/mapping.html) vignettes.
### Imaging mass spectrometry
The following code chunk downloads a MALDI imaging dataset from a
mouse kidney shared by
[Adrien Nyakas and Stefan Schurch](http://figshare.com/articles/MALDI_Imaging_Mass_Spectrometry_of_a_Mouse_Kidney/735961)
and generates a plot with the mean spectrum and three slices of
interesting *M/Z* regions.
```{r mqims, cache=TRUE, eval=FALSE, warning=FALSE}
library("MALDIquant")
library("MALDIquantForeign")
spectra <- importBrukerFlex("http://files.figshare.com/1106682/MouseKidney_IMS_testdata.zip", verbose = FALSE)
spectra <- smoothIntensity(spectra, "SavitzkyGolay", halfWindowSize = 8)
spectra <- removeBaseline(spectra, method = "TopHat", halfWindowSize = 16)
spectra <- calibrateIntensity(spectra, method = "TIC")
avgSpectrum <- averageMassSpectra(spectra)
avgPeaks <- detectPeaks(avgSpectrum, SNR = 5)
avgPeaks <- avgPeaks[intensity(avgPeaks) > 0.0015]
oldPar <- par(no.readonly = TRUE)
layout(matrix(c(1,1,1,2,3,4), nrow = 2, byrow = TRUE))
plot(avgSpectrum, main = "mean spectrum",
xlim = c(3000, 6000), ylim = c(0, 0.007))
lines(avgPeaks, col = "red")
labelPeaks(avgPeaks, cex = 1)
par(mar = c(0.5, 0.5, 1.5, 0.5))
for (i in seq(along = avgPeaks)) {
range <- mass(avgPeaks)[i] + c(-1, 1)
plotImsSlice(spectra, range = range,
main = paste(round(range, 2), collapse = " - "))
}
par(oldPar)
```

### An interactive `shiny` app for Imaging mass spectrometry
There is also an interactive
[MALDIquant IMS shiny app](https://github.com/sgibb/ims-shiny) for demonstration
purposes. A screen shot is displayed below. To start the application:
```{r ims-shiny, eval=FALSE}
library("shiny")
runGitHub("sgibb/ims-shiny")
```

## Spatial proteomics
```{r spatprot}
library("pRoloc")
library("pRolocdata")
data(tan2009r1)
## these params use class weights
fn <- dir(system.file("extdata", package = "pRoloc"),
full.names = TRUE, pattern = "params2.rda")
load(fn)
setStockcol(NULL)
setStockcol(paste0(getStockcol(), 90))
w <- table(fData(tan2009r1)[, "pd.markers"])
(w <- 1/w[names(w) != "unknown"])
tan2009r1 <- svmClassification(tan2009r1, params2,
class.weights = w,
fcol = "pd.markers")
ptsze <- exp(fData(tan2009r1)$svm.scores) - 1
```
```{r spatplot, fig.width=12, fig.height=6}
lout <- matrix(c(1:4, rep(5, 4)), ncol = 4, nrow = 2)
layout(lout)
cls <- getStockcol()
par(mar = c(4, 4, 1, 1))
plotDist(tan2009r1[which(fData(tan2009r1)$PLSDA == "mitochondrion"), ],
markers = featureNames(tan2009r1)[which(fData(tan2009r1)$markers.orig == "mitochondrion")],
mcol = cls[5])
legend("topright", legend = "mitochondrion", bty = "n")
plotDist(tan2009r1[which(fData(tan2009r1)$PLSDA == "ER/Golgi"), ],
markers = featureNames(tan2009r1)[which(fData(tan2009r1)$markers.orig == "ER")],
mcol = cls[2])
legend("topright", legend = "ER", bty = "n")
plotDist(tan2009r1[which(fData(tan2009r1)$PLSDA == "ER/Golgi"), ],
markers = featureNames(tan2009r1)[which(fData(tan2009r1)$markers.orig == "Golgi")],
mcol = cls[3])
legend("topright", legend = "Golgi", bty = "n")
plotDist(tan2009r1[which(fData(tan2009r1)$PLSDA == "PM"), ],
markers = featureNames(tan2009r1)[which(fData(tan2009r1)$markers.orig == "PM")],
mcol = cls[8])
legend("topright", legend = "PM", bty = "n")
plot2D(tan2009r1, fcol = "svm", cex = ptsze, method = "kpca")
addLegend(tan2009r1, where = "bottomleft", fcol = "svm", bty = "n")
```
```{r spatplotpdf, ref.label='spatplot', echo=FALSE, dev='pdf', fig.width=12, fig.height=6}
```
See the
[`pRoloc-tutorial`](http://bioconductor.org/packages/release/bioc/vignettes/pRoloc/inst/doc/pRoloc-tutorial.pdf)
vignette (pdf) from the
[`pRoloc`](http://bioconductor.org/packages/release/bioc/html/pRoloc.html)
package for details about spatial proteomics data analysis and visualisation.
## Session information
```{r si}
print(sessionInfo(), locale = FALSE)
```