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1 Overview

Please note that most of the following is now outdated. This document will remain for one more re-
lease cycle while all annaffy based tools are deprecated, and once they become defunct this document
will be removed. Please see the replacement vignette called UsingReportingTools, which explains
how to use the refactored functions that now rely on ReportingTools for HTML output.

This package is made up of various ’wrapper’ functions that I use to help automate some of the more
routine aspects of my job as a Biostatistician in a microarray core facility. Since the vast majority of analyses
I do are based on data from Affymetrix GeneChips, the focus of these functions are also directed towards this
platform. This does not however preclude these functions from being extended to other platforms including
other oligonucleotide arrays as well as spotted cDNA arrays.

2 Introduction

For most analyses, I follow the precepts of Literate Statistical practice [1]. The basic idea being that the
document used to present an analysis is also what is used to do the analysis. To do this, I use Emacs/ESS
(Emacs speaks statistics) [2] and an Sweave document [3].

An Sweave document is a file (with an .Rnw extension) that contains text and LATEX markup that will
be used to create (usually) a PDF document, as well as R code that will be used to create plots or tables in
the resulting document, and/or to provide finished output suitable for presentation to your client(s). Usually
the Sweave document does both. Note that this vignette (as are most BioConductor vignettes) is produced
using an Sweave document.

The learning curve for LATEX and the other markup required to create a functional Sweave document
can be steep. However, it is well worth the effort to learn for anybody who is routinely required to do statistical
analyses and present the results to others. For anybody interested in learning about Sweave, the two best
sources of information (in my opinion) are the Sweave User Manual, and just about any BioConductor vignette.
The .Rnw file for most BioC vignettes can be found in the R-Home/library/¡packagename¿/doc directory. In
addition, there is an example Sweave document in the example directory for this package that is the basis for
most of the analyses I do.

Because I do all of my analyses using Sweave, most of the functions in this package are designed
for both interactive and non-interactive use. In addition, most functions will output information that may be
useful to present in the resulting text document.
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http://www.ci.tuwien.ac.at/~leisch/Sweave
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3 Interactive Analyses

3.1 Quality Control

For these examples, I will be using some data that were generated in our microarray core. The experiment is
a simple comparison of two different cell lines, one of which is sensitive to a particular treatment, whereas the
other is not. One set of samples was prepared using the Affymetrix in vitro translation kit, whereas the other set
of samples was prepared using the NuGen Ovation kit. There are three biological replicates for each sample type.
The celfiles can be found in the examples directory of this package (R-home/library/affycoretools/example).

For some analyses it may not be necessary to generate a report detailing the analysis, or you simply
may want to do a quick quality check to ensure the raw data are of high enough quality to proceed with
the analysis. In this case we can just do some quality control plots and compute expression measures using
affystart.

The affystart function may be used to compute rma, gcrma or mas5 expression values. In the case
of mas5 expression values, the output (written to a text file in the working directory) includes the P/M/A calls
and associated p-values.

library("affycoretools")

pd <- new("AnnotatedDataFrame",

data = read.table("pdata.txt", header = TRUE, row.names = 1))

eset <- affystart(groups = rep(1:4, each = 3),

groupnames = unique(paste(pData(pd)[,1],

pData(pd)[,2], sep = "-")),

phenoData = pd)

##

Figure 1 is the usual density plot – we have found that this plot is one of the more informative quality
control plots available, at least for rma. Any chips with high background (curve shifted to the right) invariably
need to be re-done, which in this case usually means re-fragmenting the cRNA and re-hybridizing to a new
chip. With these data I expect much more variability due to the differences in the IVT kits that were used for
the two sample sets. However, a case could be made that sample12 needs to be re-done.

Figure 2 is an RNA degradation plot – this is supposed to give some idea of how much degradation of
mRNA occured, and how well the IVT step went. This plot is moderately useful, but not nearly as informative
as the density plot. Here we can see that the slope of the lines for the two groups is quite different, indicating
that the two IVT kits give distinctly different results.

Figure 3 is a plot of the first two principal components from a principal components analysis (PCA).
Basically, this is used to show the overall structure of the data. This is another very useful plot. In most
cases we expect replicate samples to group together, indicating general similarity in overall expression patterns.
It may be difficult however to determine from this plot how closely samples are grouping – for instance, the
NuGen samples appear to be quite well separated on the y-axis. To determine how meaningful this separation
is, we need a screeplot.

Figure 4 shows the screeplot for this PCA. Each bar shows how much of the overall variance is
captured by each principal component. Here we can see that the first PC captures the vast majority of the
variance, which indicates that the separation of the samples on the y-axis (the second PC) is actually quite
small, so the samples are grouping fairly tightly.
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Figure 1: Density plot

The affystart function calls three other functions to make these plots (plotHist, plotDeg, and
plotPCA), which can all be called individually to make just one of these plots, or in the case of plotPCA, to
make either the PCA or the screeplot.

3.2 Computing Differential Expression

After checking the quality control plots (and maybe looking at other QC plots that are available in the affyPLM
package), the next step is to make comparisons and output lists of differentially expressed genes. Because of
the obvious differences between the two sample sets, it is probably preferable to compute expression values
separately and then combine the data.

eset1 <- affystart(filenames = list.celfiles()[1:6],

plot = FALSE, pca = FALSE)

eset2 <- affystart(filenames = list.celfiles()[7:12],

plot = FALSE, pca = FALSE)

eset <- new("ExpressionSet",

exprs = cbind(exprs(eset1), exprs(eset2)),

phenoData = pd,

http://bioconductor.org/packages/release/bioc/html/affyPLM.html
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Figure 2: RNA degradation plot

annotation = annotation(eset1))

I do most of my analyses using the limma package. I find that this package is capable of analyzing
most of the experiments that I see. I also like to use the annaffy package for creating output to give to my
clients. The HTML tables that can be produced using this package can either be posted on the web or an
intranet, or simply emailed to the client. Because I use both of these packages together on a regular basis,
some of my functions are designed to link the results from a limma analysis to the annaffy package.

The data set we are using for this vignette was originally produced in order to see how comparable
the results from the two IVT kits were. One way to make this comparison is to fit a linear model, compute
contrasts of sensitive and insensitive samples for each sample set, and then look for genes that are significant
in both contrasts.

First, we filter the data, removing those genes that appear not to be expressed in either sample. The
criterion here is at least three of the samples have to have expression values greater than 26.

library(genefilter)

##

## Attaching package: ’genefilter’

http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/annaffy.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/annaffy.html
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Figure 3: PCA plot

##

## The following object is masked from ’package:base’:

##

## anyNA

f1 <- kOverA(3, 6)

filt <- filterfun(f1)

index <- genefilter(eset, filt)

eset <- eset[index,]

After filtering out the ’unexpressed’ genes, we fit a linear model and extract contrasts of interest.
Explaining the following code is beyond the scope of this vignette – for more information on fitting linear
models using limma, please see the “LIMMA User’s guide”.

library(limma)

grps <- paste(pData(eset)[,1],

pData(eset)[,2], sep = ".")

design <- model.matrix(~ 0 + factor(grps))

colnames(design) <- levels(factor(grps))

http://bioconductor.org/packages/release/bioc/html/limma.html
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Figure 4: Screeplot

ugrps <- unique(grps)

contrasts <- matrix(c(1, -1, 0, 0, 0, 0, 1, -1),

ncol = 2, dimnames = list(ugrps,

paste(ugrps[c(1,3)], ugrps[c(2,4)],

sep = " - ")))

fit <- lmFit(eset, design)

fit2 <- contrasts.fit(fit, contrasts)

## Warning in contrasts.fit(fit, contrasts): row names of contrasts don’t match col names

of coefficients

fit2 <- eBayes(fit2)

Printing out the design and contrast matrices may be helpful:

design

## Affy.Insensitive Affy.Sensitive NuGen.Insensitive NuGen.Sensitive

## 1 0 1 0 0

## 2 0 1 0 0
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## 3 0 1 0 0

## 4 1 0 0 0

## 5 1 0 0 0

## 6 1 0 0 0

## 7 0 0 0 1

## 8 0 0 0 1

## 9 0 0 0 1

## 10 0 0 1 0

## 11 0 0 1 0

## 12 0 0 1 0

## attr(,"assign")

## [1] 1 1 1 1

## attr(,"contrasts")

## attr(,"contrasts")$`factor(grps)`

## [1] "contr.treatment"

contrasts

## Affy.Sensitive - Affy.Insensitive NuGen.Sensitive - NuGen.Insensitive

## Affy.Sensitive 1 0

## Affy.Insensitive -1 0

## NuGen.Sensitive 0 1

## NuGen.Insensitive 0 -1

Once we have fit the model and extracted contrasts of interest, the next step is to output some results.
We might first want to look at a Venn diagram that shows how many genes were differentially expressed in
each sample. Note here that if we use the vennCounts function in limma with include = “both”, then we will
select genes that are significant in both comparisons, but without requiring the genes be differentially expressed
in the same direction. In this case it does not make sense to count a gene as being differentially expressed in
both sample sets unless the direction is the same. In other words, if a given gene appears to be upregulated
in the sensitive samples when we use the Affy IVT kit, but downregulated in the sensitive samples when we
use the NuGen Ovation kit, it does not make sense to say that the results agree (e.g., are in the intersection
of the Venn diagram). Therefore, we will use the vennCounts2 function, with method = “same”, which will
require the same direction as well.

rslt <- decideTests(fit2)

vc <- vennCounts2(rslt, method = "same")

vennDiagram(vc, cex = 0.8)

Figure 5 shows the Venn diagram for this analysis.

At this point we may wish to output lists of the genes that are unique to each comparison, as well as
the genes that are common to both. To do this, we use the vennSelect function.

vennSelect(eset, design, rslt, contrasts, fit2)

This will output both HTML and text files containing the gene names, links to various online databases
(for the HTML files), and the expression values for the samples in question. The file names will be extracted
from the column names of the TestResults object (produced as a result of calling decideTests above).
Note that decideTests uses the column names of the contrasts matrix to make the column names of the
TestResults object, so it is important to set up the contrasts matrix with reasonable names. Reasonable

http://bioconductor.org/packages/release/bioc/html/limma.html
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Affy.Sensitive − Affy.InsensitiveNuGen.Sensitive − NuGen.Insensitive
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Figure 5: Venn Diagram

being defined here as:

� Something that will make sense as the name for the resulting tables.
� Names that will be acceptable as part of a filename for your particular operating system.

Alternatively, we may simply want to output lists of genes that are significant in each of the contrasts
at a given p-value and/or fold change.
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limma2annaffy(eset, fit2, design,

contrasts, annotation(eset),

pfilt = 0.05)

This will output two HTML tables containing all genes that are significant at an adjusted p-value of
0.05 (default multiplicity correction using false discovery rate [4]). The gene lists will be sorted in descending
p-value order, so theoretically the more ’interesting’ genes will be at the top of the list. We have the option
of outputting text files as well. I generally do so, because it is not uncommon for my clients to want to open
these files in a spreadsheet program and do some further exploration, and the HTML tables tend not to work
well.

Another analysis that we may wish to perform (although it doesn’t make much sense here), is to look
for Gene Ontology terms that are ’enriched’ in the set of significant genes. The GOstats package is quite
useful for this sort of analysis, but the output is not always as compact as one might like. My clients generally
just want to see a list of GO terms that are enriched, as well as the p-values associated with each term.

We can get the Affy probe IDs for the genes in the intersection of the Venn diagram, and then use
those IDs to look for GO terms that are ’enriched’ in that set of of probes.

index1 <- vennSelect(x = rslt, indices.only = TRUE)[[3]]

probids <- unique(getLL(featureNames(eset)[index1],

annotation(eset)))

univ <- unique(getLL(featureNames(eset),

annotation(eset)))

params <- new("GOHyperGParams", geneIds = probids,

universeGeneIds = univ,

annotation = annotation(eset),

conditional = TRUE, ontology = "MF")

hyp <- hyperGTest(params)

htmlReport(hyp, file = "GO MF terms.html",

categorySize = 10)

This function outputs an HTML file that can be opened using a web browser.

4 Non-Interactive Analyses

It is relatively simple to write a vignette for interactive analysis using a given package. It is not simple to do
the same for a non-interactive analysis because by definition there is no active interaction with R. Therefore,
instead of trying to explain things in this vignette, I have placed an example Sweave document in the examples
directory of this package (R-home/library/affycoretools/examples) that will re-create the above analyses and
output a PDF file as well as the HTML and text files. Between this example and the Sweave User Manual, it
should be relatively straightforward to figure out how to do something similar for your own analyses.

5 Session information

The version of R and packages loaded when creating this vignette were:

http://bioconductor.org/packages/release/bioc/html/GOstats.html
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R version 3.1.1 Patched (2014-09-25 r66681)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8

[4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets methods

[9] base

other attached packages:

[1] genefilter_1.48.0 hgfocuscdf_2.15.0 ReportingTools_2.6.0 knitr_1.7

[5] hgu95av2.db_3.0.0 org.Hs.eg.db_3.0.0 limma_3.22.0 affycoretools_1.38.0

[9] GO.db_3.0.0 RSQLite_0.11.4 DBI_0.3.1 AnnotationDbi_1.28.0

[13] GenomeInfoDb_1.2.0 IRanges_2.0.0 S4Vectors_0.4.0 affy_1.44.0

[17] Biobase_2.26.0 BiocGenerics_0.12.0

loaded via a namespace (and not attached):

[1] AnnotationForge_1.8.0 BBmisc_1.7 BSgenome_1.34.0

[4] BatchJobs_1.4 BiocInstaller_1.16.0 BiocParallel_1.0.0

[7] BiocStyle_1.4.0 Biostrings_2.34.0 Category_2.32.0

[10] DESeq2_1.6.0 Formula_1.1-2 GGally_0.4.8

[13] GOstats_2.32.0 GSEABase_1.28.0 GenomicAlignments_1.2.0

[16] GenomicFeatures_1.18.0 GenomicRanges_1.18.0 Hmisc_3.14-5

[19] KernSmooth_2.23-13 MASS_7.3-35 Matrix_1.1-4

[22] OrganismDbi_1.8.0 PFAM.db_3.0.0 R.methodsS3_1.6.1

[25] R.oo_1.18.0 R.utils_1.34.0 RBGL_1.42.0

[28] RColorBrewer_1.0-5 RCurl_1.95-4.3 Rcpp_0.11.3

[31] RcppArmadillo_0.4.450.1.0 Rsamtools_1.18.0 VariantAnnotation_1.12.0

[34] XML_3.98-1.1 XVector_0.6.0 acepack_1.3-3.3

[37] affyio_1.34.0 annaffy_1.38.0 annotate_1.44.0

[40] base64enc_0.1-2 biomaRt_2.22.0 biovizBase_1.14.0

[43] bit_1.1-12 bitops_1.0-6 brew_1.0-6

[46] caTools_1.17.1 checkmate_1.4 cluster_1.15.3

[49] codetools_0.2-9 colorspace_1.2-4 dichromat_2.0-0

[52] digest_0.6.4 edgeR_3.8.0 evaluate_0.5.5

[55] fail_1.2 ff_2.2-13 foreach_1.4.2

[58] foreign_0.8-61 formatR_1.0 gcrma_2.38.0

[61] gdata_2.13.3 geneplotter_1.44.0 ggbio_1.14.0

[64] ggplot2_1.0.0 gplots_2.14.2 graph_1.44.0

[67] grid_3.1.1 gridExtra_0.9.1 gtable_0.1.2

[70] gtools_3.4.1 highr_0.3 hwriter_1.3.2

[73] iterators_1.0.7 lattice_0.20-29 latticeExtra_0.6-26

[76] locfit_1.5-9.1 munsell_0.4.2 nnet_7.3-8
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[79] oligoClasses_1.28.0 plyr_1.8.1 preprocessCore_1.28.0

[82] proto_0.3-10 reshape_0.8.5 reshape2_1.4

[85] rpart_4.1-8 rtracklayer_1.26.0 scales_0.2.4

[88] sendmailR_1.2-1 splines_3.1.1 stringr_0.6.2

[91] survival_2.37-7 tools_3.1.1 xtable_1.7-4

[94] zlibbioc_1.12.0
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