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Foreword

MSnbase is under active developed; current functionality is evolving and new

features will be added. This software is free and open-source software. If you

use it, please support the project by citing it in publications:

Laurent Gatto and Kathryn S. Lilley. MSnbase - an R/Bioconductor

package for isobaric tagged mass spectrometry data visualization,

processing and quantitation. Bioinformatics 28, 288-289 (2011).

Questions and bugs

You are welcome to contact me directly about MSnbase. For bugs, typos,

suggestions or other questions, please file an issue in our tracking system1 pro-

viding as much information as possible as well as the output of sessionInfo().

If you wish to reach a broader audience for general questions about pro-

teomics analysis using R, you may want to use the Bioconductor mailing list2.

1https://github.com/lgatto/MSnbase/issues
2https://stat.ethz.ch/mailman/listinfo/bioconductor
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1 Introduction

MSnbase (Gatto and Lilley, 2012) aims are providing a reproducible research

framework to proteomics data analysis. It should allow researcher to easily

mine mass spectrometry data, explore the data and its statistical properties

and visually display these.

MSnbase also aims at being compatible with the infrastructure implemented

in Bioconductor, in particular Biobase. As such, classes developed specifically

for proteomics mass spectrometry data are based on the eSet and Expression

classes. The main goal is to assure seamless compatibility with existing meta

data structure, accessor methods and normalisation techniques.

This vignette illustrates MSnbase utility using a dummy data sets provided

with the package without describing the underlying data structures. More

details can be found in the package, classes, method and function documen-

tations. A description of the classes is provided in the MSnbase-development

vignette.

Speed and memory requirements Raw mass spectrometry file are generally

several hundreds of MB large and most of this is used for binary raw spectrum

data. As such, data containers can easily grow very large and thus require

large amounts of RAM. This requirement is being tackled by avoiding to load

the raw data into memory and using on-disk random access to the content of

mzXML/mzML data files on demand. When focusing on reporter ion quantitation,

a direct solution for this is to trim the spectra using the trimMz method to

select the area of interest and thus substantially reduce the size of the Spectrum

objects. This is illustrated in section 6.2 on page 21 of the MSnbase-demo

vignette.

The independent handling of spectra is ideally suited for parallel processing.

The quantify method now performs reporter peaks quantitation in parallel.

More functions are being updated.

2 Data structure and content

2.1 Importing experiments

MSnbase is able to import raw MS data stored in one of the XML-based formats

as well as peak lists in the mfg format3

3Mascot Generic Format – http://www.matrixscience.com/help/data_file_help.

html#GEN
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Raw data The XML-based formats, mzXML (Pedrioli et al., 2004), mzData (Or-

chard et al., 2007) and mzML (Martens et al., 2010) can be imported with the

readMSData function, as illstrated below (see ?readMSData for more details).

> file <- dir(system.file(package = "MSnbase", dir = "extdata"),

+ full.names = TRUE, pattern = "mzXML$")

> rawdata <- readMSData(file, msLevel = 2, verbose = FALSE)

Either MS1 or MS2 spectra can be loaded at a time by setting the msLevel

parameter accordingly. In this document, we will use the itraqdata data

set, provided with MSnbase. It includes feature metadata, accessible with the

fData accessor. The metadata includes identification data for the 55 MS2

spectra.

Peak lists Peak lists can often be exported after spectrum processing from

vendor-specific software and are also used as input to search engines. Peak

lists in mgf format can be imported with the function readMgfData (see

?readMgfData for details) to create experiment objects. Experiments or indi-

vidual spectra can be exported to an mgf file with the writeMgfData methods

(see ?writeMgfData for details and examples).

Experiments with multiple runs Although it is possible to load and pro-

cess multiple files serially and later merge the resulting quantitation data as

show in section 12 (page 41), it is also feasible to load several raw data files at

once. Here, we report the analysis of an LC-MSMS experiment were 14 liquid

chromatography (LC) fractions were loaded using readMSData on a 32-cores

servers with 128 Gb of RAM. It took about 90 minutes to read the 14 un-

centroided mzXML raw files (4.9 Gb on disk in total) and create a 3.3 Gb raw

data object (an MSnExp instance, see next section). Quantitation of 9 reporter

ions (iTRAQ9 object, see 2.4) for 88690 features was performed in parallel on

16 processors and took 76 minutes. The resulting quantitation data was only

22.1 Mb and could easily be further processed and analysed on a standard

laptop computer.

Since verions 1.13.5, parallel support is provided by the BiocParallel and var-

ious backends including multicore (forking), simple networf network of work-

stations (SNOW) using sockets, forking or MPI among others.

See also section 7.2 to import quantitative data stored in spreadsheets into R

for further processing using MSnbase. The MSnbase-io vignette gives a general

overview of MSnbase’s input/ouput capabilites.
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2.2 MS experiments

Raw data is contained in MSnExp objects, that stores all the spectra of an

experiment, as defined by one or multiple raw data files.

> library("MSnbase")

> itraqdata

Object of class "MSnExp"

Object size in memory: 1.87 Mb

- - - Spectra data - - -

MS level(s): 2

Number of MS1 acquisitions: 1

Number of MSn scans: 55

Number of precursor ions: 55

55 unique MZs

Precursor MZ's: 401.74 - 1236.1

MSn M/Z range: 100 2069.27

MSn retention times: 19:9 - 50:18 minutes

- - - Processing information - - -

Data loaded: Wed May 11 18:54:39 2011

MSnbase version: 1.1.22

- - - Meta data - - -

phenoData

rowNames: 1

varLabels: sampleNames sampleNumbers

varMetadata: labelDescription

Loaded from:

dummyiTRAQ.mzXML

protocolData: none

featureData

featureNames: X1 X10 ... X9 (55 total)

fvarLabels: spectrum ProteinAccession ProteinDescription

PeptideSequence

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

> head(fData(itraqdata))

spectrum ProteinAccession

X1 1 BSA
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X10 10 ECA1422

X11 11 ECA4030

X12 12 ECA3882

X13 13 ECA1364

X14 14 ECA0871

ProteinDescription PeptideSequence

X1 bovine serum albumin NYQEAK

X10 glucose-1-phosphate cytidylyltransferase VTLVDTGEHSMTGGR

X11 50S ribosomal subunit protein L4 SPIWR

X12 chaperone protein DnaK TAIDDALK

X13 succinyl-CoA synthetase alpha chain SILINK

X14 NADP-dependent malic enzyme DFEVVNNESDPR

As illustrated above, showing the experiment textually displays it’s content:

� Information about the raw data, i.e. the spectra.

� Specific information about the experiment processing4 and package ver-

sion. This slot can be accessed with the processingData method.

� Other meta data, including experimental phenotype, file name(s) used to

import the data, protocol data, information about features (individual

spectra here) and experiment data. Most of these are implemented as in

the eSet class and are described in more details in their respective man-

ual pages. See ?MSnExp and references therein for additional background

information.

The experiment meta data associated with an MSnExp experiment is of

class MIAPE. It stores general information about the experiment as well as

MIAPE (Minimum Information About a Proteomics Experiment) infor-

mation (Taylor et al., 2007, 2008). This meta-data can be accessed with

the experimentData method. When available, a summary of MIAPE-

MS data can be printed with the msInfo method. See ?MIAPE for more

details.

2.3 Spectra objects

The raw data is composed of the 55 MS spectra. The spectra are named in-

dividually (X1, X10, X11, X12, X13, X14, ...) and stored in a environment.

They can be accessed individually with itraqdata[["X1"]] or itraqdata[[1]],

4this part will be automatically updated when the object is modified with it’s ad hoc
methods, as illustrated later
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or as a list with spectra(itraqdata). As we have loaded our experiment

specifying msLevel=2, the spectra will all be of level 2 (or higher, if available).

> sp <- itraqdata[["X1"]]

> sp

Object of class "Spectrum2"

Precursor: 520.7833

Retention time: 19:9

Charge: 2

MSn level: 2

Peaks count: 1922

Total ion count: 26413754

Attributes of individual spectra or of all spectra of an experiment can be

accessed with their respective methods: precursorCharge for the precursor

charge, rtime for the retention time, mz for the MZ values, intensity for the

intensities, ... see the Spectrum, Spectrum1 and Spectrum2 manuals for more

details.

> peaksCount(sp)

[1] 1922

> head(peaksCount(itraqdata))

X1 X10 X11 X12 X13 X14

1922 1376 1571 2397 2574 1829

> rtime(sp)

[1] 1149.31

> head(rtime(itraqdata))

X1 X10 X11 X12 X13 X14

1149.31 1503.03 1663.61 1663.86 1664.08 1664.32

2.4 Reporter ions

Reporter ions are defined with the ReporterIons class. Specific peaks of

interest are defined by a MZ value, a with around the expected MZ and a name
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(and optionally a colour for plotting, see section 3). ReporterIons instances

are required to quantify reporter peaks in MSnExp experiments. Instances for

the most commonly used isobaric tags like iTRAQ 4-plex and 8-plex and TMT

tags are already defined in MSnbase. See ?ReporterIons for details about how

to generate new ReporterIons objects.

> iTRAQ4

Object of class "ReporterIons"

iTRAQ4: '4-plex iTRAQ' with 4 reporter ions

- 114.1 +/- 0.05 (red)

- 115.1 +/- 0.05 (green)

- 116.1 +/- 0.05 (blue)

- 117.1 +/- 0.05 (yellow)

3 Plotting raw data

3.1 Default plots

Spectra can be plotted individually or as part of (subset) experiments with

the plot method. Full spectra can be plotted (using full=TRUE), specific

reporter ions of interest (by specifying with reporters with reporters=iTRAQ4

for instance) or both (see figure 1).

It is also possible to plot all spectra of an experiment (figure 2). Lets start

by subsetting the itraqdata experiment using the protein accession numbers

included in the feature metadata, and keep the 6 from the BSA protein.

> sel <- fData(itraqdata)$ProteinAccession == "BSA"

> bsa <- itraqdata[sel]

> bsa

Object of class "MSnExp"

Object size in memory: 0.1 Mb

- - - Spectra data - - -

MS level(s): 2

Number of MS1 acquisitions: 1

Number of MSn scans: 3

Number of precursor ions: 3

3 unique MZs
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> plot(sp, reporters = iTRAQ4, full = TRUE)
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Figure 1: Raw MS2 spectrum with details about reporter ions.

Precursor MZ's: 434.95 - 651.92

MSn M/Z range: 100 1351.77

MSn retention times: 19:9 - 36:17 minutes

- - - Processing information - - -

Data loaded: Wed May 11 18:54:39 2011

Data [logically] subsetted 3 spectra: Sat Mar 21 19:00:59 2015

MSnbase version: 1.1.22

- - - Meta data - - -

phenoData

rowNames: 1

varLabels: sampleNames sampleNumbers

varMetadata: labelDescription

Loaded from:

dummyiTRAQ.mzXML

protocolData: none

featureData

featureNames: X1 X52 X53

fvarLabels: spectrum ProteinAccession ProteinDescription

PeptideSequence
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fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

> as.character(fData(bsa)$ProteinAccession)

[1] "BSA" "BSA" "BSA"

These can then be visualised together by plotting the MSnExp object, as

illustrated on figure 2.

3.2 Customising your plots

The MSnbase plot methods have a logical plot parameter (default is TRUE),

that specifies if the plot should be printed to the current device. A plot object

is also (invisibly) returned, so that it can be saved as a variable for later use

or for customisation.

MSnbase uses the ggplot2 package to generate plots, which can subsequently

easily be customised. More details about ggplot2 can be found in Wickham

(2009) (especially chapter 8) and on http://had.co.nz/ggplot2/. Finally, if a

plot object has been saved in a variable p, it is possible to obtain a summary

of the object with summary(p). To view the data frame used to generate the

plot, use p@data.
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> plot(bsa, reporters = iTRAQ4, full = FALSE) + theme_gray(8)
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Figure 2: Experiment-wide raw MS2 spectra. The y-axes of the individual spectra
are automatically rescaled to the same range. See section 7.4 to rescale peaks
identically.
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4 Tandem MS identification data

4.1 Adding identification data

MSnbase is able to integrate identification data from mzIdentML (Jones et al.,

2012) files.

We first load two example files shipped with the MSnbase containing raw

data (as above) and the corresponding identification results respectively. The

raw data is read with the readMSData, as demonstrated above. As can be

seen, the default feature data only contain spectra numbers5.

> ## find path to a mzXML file

> quantFile <- dir(system.file(package = "MSnbase", dir = "extdata"),

+ full.name = TRUE, pattern = "mzXML$")

> ## find path to a mzIdentML file

> identFile <- dir(system.file(package = "MSnbase", dir = "extdata"),

+ full.name = TRUE, pattern = "mzid$")

> ## create basic MSnExp

> msexp <- readMSData(quantFile, verbose = FALSE)

> head(fData(msexp), n = 2)

spectrum

X1.1 1

X2.1 2

The addIdentificationData method takes an MSnExp instance (or an MSnSet

instance storing quantitation data, see section 7.1) as first argument and one

or multiple mzIdentML file names (as a character vector) as second one and

updates the MSnExp feature data using the identification data read from the

mzIdentML file(s).

> ## add identification information

> msexp <- addIdentificationData(msexp, filenames = identFile,

+ verbose = FALSE)

> head(fData(msexp), n = 2)

spectrum scan number(s) passthreshold rank

X1.1 1 1 TRUE 1

X2.1 2 2 TRUE 1

5More data about the spectra is of course available in an MSnExp object, as illustrated in
the previous sections. See also ?pSet and ?MSnExp for more details.
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calculatedmasstocharge experimentalmasstocharge chargestate

X1.1 645.0375 645.3741 3

X2.1 546.9633 546.9586 3

ms-gf:denovoscore ms-gf:evalue ms-gf:rawscore ms-gf:specevalue

X1.1 77 79.36958 -39 5.527468e-05

X2.1 39 13.46615 -30 9.399048e-06

assumeddissociationmethod isotopeerror isdecoy post pre end

X1.1 CID 1 FALSE A R 186

X2.1 CID 0 FALSE A K 62

start accession length

X1.1 170 ECA0984;ECA3829 231

X2.1 50 ECA1028 275

description

X1.1 DNA mismatch repair protein;acetolactate synthase isozyme III large subunit

X2.1 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase

pepseq modified modification

X1.1 VESITARHGEVLQLRPK FALSE NA

X2.1 IDGQWVTHQWLKK FALSE NA

databaseFile identFile nprot npep.prot npsm.prot

X1.1 erwinia_carotovora.fasta 2 2 1 1

X2.1 erwinia_carotovora.fasta 2 1 1 1

npsm.pep

X1.1 1

X2.1 1

Finally we can use idSummary to summarise the percentage of identified

features per quantitation/identification pairs.

> idSummary(msexp)

quantFile identFile coverage

1 1 2 0.6

4.2 Filtering identification data

One can remove the features that have not been identified using removeNoId.

This function uses by default the pepseq feature variable to search the presence

of missing data (NA values) and then filter these non-identified spectra.
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> fData(msexp)$pepseq

[1] "VESITARHGEVLQLRPK" "IDGQWVTHQWLKK" NA

[4] NA "LVILLFR"

> msexp <- removeNoId(msexp)

> fData(msexp)$pepseq

[1] "VESITARHGEVLQLRPK" "IDGQWVTHQWLKK" "LVILLFR"

> idSummary(msexp)

quantFile identFile coverage

1 1 2 1

Similarly, the removeMultipleAssignment method can be used to filter out

non-unique features, i.e. that have been assigned to protein groups with more

than one member. This function uses by default the nprot feature variable.

Note that removeNoId and removeMultipleAssignment methods can also

be called on MSnExp instances.

4.3 Calculate Fragments

MSnbase is able to calculate theoretical peptide fragments via calculateFragments.

> calculateFragments("ACEK",

+ type=c("a", "b", "c", "x", "y", "z"))

Modifications used: C=160.030649

mz ion type pos z seq

1 44.04947 a1 a 1 1 A

2 204.08012 a2 a 2 1 AC

3 333.12271 a3 a 3 1 ACE

4 461.21767 a4 a 4 1 ACEK

5 72.04439 b1 b 1 1 A

6 232.07504 b2 b 2 1 AC

7 361.11762 b3 b 3 1 ACE

8 489.21258 b4 b 4 1 ACEK

9 89.07094 c1 c 1 1 A

10 249.10158 c2 c 2 1 AC
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11 378.14417 c3 c 3 1 ACE

12 506.23913 c4 c 4 1 ACEK

13 173.09207 x1 x 1 1 K

14 302.13466 x2 x 2 1 EK

15 462.16530 x3 x 3 1 CEK

16 533.20242 x4 x 4 1 ACEK

17 147.11280 y1 y 1 1 K

18 276.15539 y2 y 2 1 EK

19 436.18604 y3 y 3 1 CEK

20 507.22315 y4 y 4 1 ACEK

21 130.08625 z1 z 1 1 K

22 259.12884 z2 z 2 1 EK

23 419.15949 z3 z 3 1 CEK

24 490.19660 z4 z 4 1 ACEK

It is also possible to match these fragments against an Spectrum2 object.

> pepseq <- fData(msexp)$pepseq[1]

> calculateFragments(pepseq, msexp[[1]], type=c("b", "y"))

Modifications used: C=160.030649

mz ion type pos z seq error

1 100.0005 b1 b 1 1 V 0.07522824

4 429.2563 b4 b 4 1 VESI -0.02189010

21 513.3047 y4 y 4 1 LRPK 0.04598246

23 754.4504 y6 y 6 1 LQLRPK 0.04293155

25 982.5354 y8 y 8 1 EVLQLRPK 0.06897061

10 1080.5867 b10 b 10 1 VESITARHGE -0.04344392

5 Quality control

The current section is not executed dynamically for package size and processing

time constrains. The figures and tables have been generated with the respective

methods and included statically in the vignette for illustration purposes.

MSnbase allows easy and flexible access to the data, which allows to visu-

alise data features to assess it’s quality. Some methods are readily available,

although many QC approaches will be experiment specific and users are en-

courage to explore their data.

17



The plot2d method takes one MSnExp instance as first argument to produce

retention time vs. precursor MZ scatter plots. Points represent individual

MS2 spectra and can be coloured based on precursor charge (with second

argument z="charge"), total ion count (z="ionCount"), number of peaks in

the MS2 spectra z="peaks.count") or, when multiple data files were loaded,

file z="file"), as illustrated on figure 3. The lower right panel is produced

for only a subset of proteins. See the method documentation for more details.

Figure 3: Illustration of the plot2d output.

The plotDensity method illustrates the distribution of several parameters

of interest (see figure 4). Similarly to plot2d, the first argument is an MSnExp

instance. The second is one of precursor.mz, peaks.count or ionCount,

whose density will be plotted. An optional third argument specifies whether

the x axes should be logged.

The plotMzDelta method6 implements the M/Z delta plot from Foster et al.

(2011) The M/Z delta plot illustrates the suitability of MS2 spectra for iden-

tification by plotting the M/Z differences of the most intense peaks. The

resulting histogram should optimally shown outstanding bars at amino acid

residu masses. More details and parameters are described in the method doc-

umentation (?plotMzDelta). Figure 5 has been generated using the PRIDE

experiment 12011, as in Foster et al. (2011).

6The code to generate the histograms has been contributed by Guangchuang Yu from Jinan
University, China.
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Figure 4: Illustration of the plotDensity output.

In section 11 on page 39, we illustrate how to assess incomplete reporter ion

dissociation.

6 Data processing

6.1 Cleaning spectra

There are several methods implemented to perform basic data manipulation.

Low intensity peaks can be set to 0 with the removePeaks method from spec-

tra or whole experiments. The intensity threshold below which peaks are re-

moved is defined by the t parameter. t can be specified directly as a numeric.

The default value is the character "min", that will remove all peaks equal to

the lowest non null intensity in any spectrum. We observe the effect of the

removePeaks method by comparing total ion count (i.e. the total intensity in

a spectrum) with the ionCount method before (object itraqdata) and after

(object experiment) for spectrum X55. The respective spectra are shown on

figure 6 (page 20).

> experiment <- removePeaks(itraqdata, t = 400, verbose = FALSE)

> ## total ion current

> ionCount(itraqdata[["X55"]])

[1] 555408.8

> ionCount(experiment[["X55"]])

[1] 499769.6

Unlike the name might suggest, the removePeaks method does not actually

remove peaks from the spectrum; they are set to 0. This can be checked

using the peaksCount method, that returns the number of peaks (including 0
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Histogram of Mass Delta Distributions for PRIDE experiment 12011
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Figure 5: Illustration of the plotMzDelta output for the PRIDE experiment
12011, as in figure 4A from Foster et al. (2011).
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Figure 6: Same spectrum before (left) and after setting peaks ¡= 400 to 0.

intensity peaks) in a spectrum. To effectively remove 0 intensity peaks from

spectra, and reduce the size of the data set, one can use the clean method.

The effect of the removePeaks and clean methods are illustrated on figure 7

on page 22.
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> ## number of peaks

> peaksCount(itraqdata[["X55"]])

[1] 1726

> peaksCount(experiment[["X55"]])

[1] 1726

> experiment <- clean(experiment, verbose = FALSE)

> peaksCount(experiment[["X55"]])

[1] 442

6.2 Focusing on specific MZ values

Another useful manipulation method is trimMz, that takes as parameters

and MSnExp (or a Spectrum) and a numeric mzlim. MZ values smaller then

min(mzlim) or greater then max(mzmax) are discarded. This method is par-

ticularly useful when one wants to concentrate on a specific MZ range, as for

reporter ions quantification, and generally results in substantial reduction of

data size. Compare the size of the full trimmed experiment to the original 1.87

Mb.

> range(mz(itraqdata[["X55"]]))

[1] 100.0002 977.6636

> experiment <- trimMz(experiment, mzlim = c(112,120))

> range(mz(experiment[["X55"]]))

[1] 113.0532 117.1219

> experiment

Object of class "MSnExp"

Object size in memory: 0.29 Mb

- - - Spectra data - - -

MS level(s): 2

Number of MS1 acquisitions: 1

Number of MSn scans: 55

Number of precursor ions: 55
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Figure 7: This figure illustrated the effect or the removePeaks and clean meth-
ods. The left-most spectrum displays two peaks, of max height 3 and 7 respectively.
The middle spectrum shows the result of calling removePeaks with argument t=3,
which sets all data points of the first peak, whose maximum height is smaller or
equal to t to 0. The second peak is unaffected. Calling clean after removePeaks
effectively deletes successive 0 intensities from the spectrum, as shown on the right
plot.
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55 unique MZs

Precursor MZ's: 401.74 - 1236.1

MSn M/Z range: 112.04 119.87

MSn retention times: 19:9 - 50:18 minutes

- - - Processing information - - -

Data loaded: Wed May 11 18:54:39 2011

Curves <= 400 set to '0': Sat Mar 21 19:01:02 2015

Spectra cleaned: Sat Mar 21 19:01:04 2015

MZ trimmed [112..120]

MSnbase version: 1.1.22

- - - Meta data - - -

phenoData

rowNames: 1

varLabels: sampleNames sampleNumbers

varMetadata: labelDescription

Loaded from:

dummyiTRAQ.mzXML

protocolData: none

featureData

featureNames: X1 X10 ... X9 (55 total)

fvarLabels: spectrum ProteinAccession ProteinDescription

PeptideSequence

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

As can be seen above, all processing performed on the experiment is recorded

and displayed as integral part of the experiment object.

7 MS2 isobaric tagging quantitation

7.1 Reporter ions quantitation

Quantitation is performed on fixed peaks in the spectra, that are specified with

an ReporterIons object. A specific peak is defined by it’s expected mz value

and is searched for within mz ± width. If no data is found, NA is returned.

> mz(iTRAQ4)

[1] 114.1 115.1 116.1 117.1
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> width(iTRAQ4)

[1] 0.05

The quantify method takes the following parameters: an MSnExp experi-

ment, a character describing the quantification method, the reporters to be

quantified and a strict logical defining whether data points ranging outside of

mz ± width should be considered for quantitation. Additionally, a progress bar

can be displaying when setting the verbose parameter to TRUE. Three quantifi-

cation methods are implemented, as illustrated on figure 8: trapezoidation

returns the area under the peak of interest, max returns the apex of the peak

and sum returns the sum of all intensities of the peak. See ?quantify for more

details.

The quantify method returns MSnSet objects, that extend the well-known

eSet class defined in the Biobase package. MSnSet instances are very similar

to ExpressionSet objects, except for the experiment meta-data that captures

MIAPE specific information. The assay data is a matrix of dimensions n×m,

where m is the number of features/spectra originally in the MSnExp used as

parameter in quantify and m is the number of reporter ions, that can be

accessed with the exprs method. The meta data is directly inherited from the

MSnExp instance.

> qnt <- quantify(experiment,

+ method = "trap",

+ reporters = iTRAQ4,

+ strict = FALSE,

+ verbose = FALSE)

> qnt

MSnSet (storageMode: lockedEnvironment)

assayData: 55 features, 4 samples

element names: exprs

protocolData: none

phenoData

sampleNames: iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

varLabels: mz reporters

varMetadata: labelDescription

featureData

featureNames: X1 X10 ... X9 (55 total)
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Figure 8: The different quantitation methods are illustrated above. Quantitation
using sum sums all the data points in the peaks to produce, for this example, 7,
whereas method max only uses the peak’s maximum intensity, 3. Trapezoidation
calculates the area under the peak taking the full with into account (using
strict=FALSE gives 0.375) or only the width as defined by the reporter (using
strict=TRUE gives 0.2).
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fvarLabels: spectrum ProteinAccession ... collision.energy

(15 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation: No annotation

- - - Processing information - - -

Data loaded: Wed May 11 18:54:39 2011

Curves <= 400 set to '0': Sat Mar 21 19:01:02 2015

Spectra cleaned: Sat Mar 21 19:01:04 2015

MZ trimmed [112..120]

iTRAQ4 quantification by trapezoidation: Sat Mar 21 19:01:07 2015

MSnbase version: 1.1.22

> head(exprs(qnt))

iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

X1 1347.6158 2247.3097 3927.6931 7661.1463

X10 739.9861 799.3501 712.5983 940.6793

X11 27638.3582 33394.0252 32104.2879 26628.7278

X12 31892.8928 33634.6980 37674.7272 37227.7119

X13 26143.7542 29677.4781 29089.0593 27902.5608

X14 6448.0829 6234.1957 6902.8903 6437.2303

If no peak is detected for a reporter ion peak, the respective quantitation

value is set to NA. In our case, there is 1 such case in row 41. We will remove

the offending line using the filterNA method. The pNA argument defines the

percentage of accepted missing values per feature. As we do not expect any

missing peaks, we set it to be 0 (which is also the detault value).

> table(is.na(qnt))

FALSE TRUE

219 1

> qnt <- filterNA(qnt, pNA = 0)

> sum(is.na(qnt))

[1] 0

The filtering criteria for filterNA can also be defined as a pattern of columns
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that can have missing values and columns that must not exhibit any. See

?filterNA for details and examples.

The infrastructure around the MSnSet class allows flexible filtering using the

[ sub-setting operator. Below, we mimic the behaviour of filterNA(, pNA =

0) by calculating the row indices that should be removed, i.e. those that have

at least on NA value and explicitly remove these row. This method allows one

to devise and easily apply any filtering strategy.

> whichRow <- which(is.na((qnt))) %% nrow(qnt)

> qnt <- qnt[-whichRow, ]

See also the plotNA method to obtain a graphical overview of the complete-

ness of a data set.

7.2 Importing quantitation data

If quantitation data is already available as a spreadsheet, it can be imported,

along with additional optional feature and sample (pheno) meta data, with the

readMSnSet function. This function takes the respective text-based spread-

sheet (comma- or tab-separated) file names as argument to create a valid

MSnSet instance.

Note that the quantitation data of MSnSet objects can also be exported to

a text-based spreadsheet file using the write.exps method.

MSnbase also supports the mzTab format7, a light-weight, tab-delimited file

format for proteomics data. mzTab files can be read into R with readMzTabData

to create and MSnSet instance. MSnSet objects can also be exported to mzTab

with the writeMzTabData function.

See the MSnbase-io vignette for a general overview of MSnbase’s input/ouput

capabilites.

7.3 Peak adjustments

Single peak adjustment In certain cases, peak intensities need to be ad-

justed as a result of peak interferance. For example, the +1 peak of the

phenylalanine (F, Phe) immonium ion (with m/z 120.03) inteferes with the

121.1 TMT reporter ion. Below, we calculate the relative intensity of the +1

peaks compared to the main peak using the Rdispo package.

7http://code.google.com/p/mztab/
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> library(Rdisop)

> ## Phenylalanine immonium ion

> Fim <- getMolecule("C8H10N")

> getMass(Fim)

[1] 120.0813

> isotopes <- getIsotope(Fim)

> F1 <- isotopes[2, 2]

> F1

[1] 0.08573496

If desired, one can thus specifically quantify the F immonium ion in the MS2

spectrum, estimate the intensity of the +1 ion (0.0857% of the F peak) and

substract this calculated value from the 121.1 TMT reporter intensity.

The above principle can also be generalised for a set of overlapping peaks,

as described below.

Reporter ions purity correction Impurities in the reporter reagents can also

bias the results and can be corrected when manufacturers provide correction

coefficients. These generally come as percentages of each reporter ion that have

masses differing by -2, -1, +1 and +2 Da from the nominal reporter ion mass

due to isotopic variants. The purityCorrect method applies such correction

to MSnSet instances. It also requires a square matrix as second argument,

impurities, that defines the relative percentage of reporter in the quantified

each peak. See ?purityCorrect for more details.

> impurities <- matrix(c(0.929, 0.059, 0.002, 0.000,

+ 0.020, 0.923, 0.056, 0.001,

+ 0.000, 0.030, 0.924, 0.045,

+ 0.000, 0.001, 0.040, 0.923),

+ nrow = 4)

> qnt.crct <- purityCorrect(qnt, impurities)

> head(exprs(qnt))

iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

X1 1347.6158 2247.3097 3927.6931 7661.1463

X10 739.9861 799.3501 712.5983 940.6793

X11 27638.3582 33394.0252 32104.2879 26628.7278
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X12 31892.8928 33634.6980 37674.7272 37227.7119

X13 26143.7542 29677.4781 29089.0593 27902.5608

X14 6448.0829 6234.1957 6902.8903 6437.2303

> head(exprs(qnt.crct))

iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

X1 1402.9442 2214.0346 3762.2549 8114.4429

X10 779.4666 793.0792 678.8083 985.2003

X11 29034.3781 33271.0470 31484.7131 27279.1383

X12 33618.9092 33046.3075 37031.6133 38492.1376

X13 27508.0038 29440.9296 28390.4561 28814.2463

X14 6809.7600 6090.7894 6799.5030 6636.1450

The makeImpuritiesMatrix can be used to create impurity matrices. It

opens a rudimentary spreadsheet that can be directly edited.

7.4 Normalisation

A MSnSet object is meant to be compatible with further downstream packages

for data normalisation and statistical analysis. There is also a normalise (also

available as normalize) method for expression sets. The method takes and

instance of class MSnSet as first argument, and a character to describe the

method to be used:

quantiles Applies quantile normalisation (Bolstad et al., 2003) as imple-

mented in the normalize.quantiles function of the preprocessCore pack-

age.

quantiles.robust Applies robust quantile normalisation (Bolstad et al.,

2003) as implemented in the normalize.quantiles.robust function of

the preprocessCore package.

vsn Applies variance stabilisation normalization (Huber et al., 2002) as im-

plemented in the vsn2 function of the vsn package.

max Each feature’s reporter intensity is divided by the maximum of the re-

porter ions intensities.

sum Each feature’s reporter intensity is divided by the sum of the reporter

ions intensities.
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See ?normalise for more methods. A scale method for MSnSet instances,

that relies on the base::scale function.

> qnt.max <- normalise(qnt, "max")

> qnt.sum <- normalise(qnt, "sum")

> qnt.quant <- normalise(qnt, "quantiles")

> qnt.qrob <- normalise(qnt, "quantiles.robust")

> qnt.vsn <- normalise(qnt, "vsn")

The effect of these are illustrated on figure 9 and figure 10 reproduces figure

3 of Karp et al. (2010) that described the application of vsn on iTRAQ reporter

data.

Note that it is also possible to normalise individual spectra or whole MSnExp

experiments with the normalise method using the max method. This will

rescale all peaks between 0 and 1. To visualise the relative reporter peaks,

one should this first trim the spectra using method trimMz as illustrated in

section 6, then normalise the MSnExp with normalise using method="max" as

illustrated above and plot the data using plot (figure 11).

Additional dedicated normalisation method are available for MS2 label-free

quantitation, as described in section 9 and in the quantify documentation.

8 Feature aggregation

The above quantitation and normalisation has been performed on quantitative

data obtained from individual spectra. However, the biological unit of interest

is not the spectrum but the peptide or the protein. As such, it is important to

be able to summarise features that belong to a same group, i.e. spectra from

one peptide, peptides that originate from one protein, or directly combine all

spectra that have been uniquely associated to one protein.

MSnbase provides one function, combineFeatures, that allows to aggregate

features stored in an MSnSet using build-in or user defined summary function

and return a new MSnSet instance. The three main arguments are described

below. Additional details can be found in the method documentation.

combineFeatures’s first argument, object, is an instance of class MSnSet,

as has been created in the section 7.1 for instance. The second argument,

groupBy, is a factor than has as many elements as there are features in the

MSnSet object argument. The features corresponding to the groupBy levels

will be aggregated so that the resulting MSnSet output will have length(levels(groupBy))

features. Here, we will combine individual MS2 spectra based on the protein

30



●
●
●

●●

●

●
●●
●

●●

●

● ●
●

●

●●●
●

●

●

●

●
●
●

iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

0
50

00
0

10
00

00
15

00
00

Non−normalised data

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

0.
2

0.
4

0.
6

0.
8

1.
0

Maximum

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

0.
1

0.
2

0.
3

0.
4

0.
5

Sum

●

●

●

●●

●

● ●
●

●

●●

●

● ●
●

●

●●

●

●

●

●
●

●

●

●

●

iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

0
20

00
0

40
00

0
60

00
0

80
00

0

Quantile

●

●

●

●
●

●

● ●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

Robust quantile

● ● ● ●

iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

4
6

8
10

12
14

16

vsn

Figure 9: Comparison of the normalisation MSnSet methods. Note that vsn also
glog-transforms the intensities.
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Figure 10: CV versus signal intensity comparison for log2 and vsn transformed
data. Lines indicate running CV medians.

they originate from. As shown below, this will result in 40 new aggregated

features.

> gb <- fData(qnt)$ProteinAccession

> table(gb)

gb

BSA ECA0172 ECA0435 ECA0452 ECA0469 ECA0621 ECA0631 ECA0691

3 1 2 1 2 1 1 1

ECA0871 ECA0978 ECA1032 ECA1093 ECA1104 ECA1294 ECA1362 ECA1363

1 1 1 1 1 1 1 1

ECA1364 ECA1422 ECA1443 ECA2186 ECA2391 ECA2421 ECA2831 ECA3082

1 1 1 1 1 1 1 1

ECA3175 ECA3349 ECA3356 ECA3377 ECA3566 ECA3882 ECA3929 ECA3969

1 2 1 1 2 1 1 1

ECA4013 ECA4026 ECA4030 ECA4037 ECA4512 ECA4513 ECA4514 ENO

1 2 1 1 1 1 6 3

> length(unique(gb))

[1] 40
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Figure 11: Experiment-wide normalised MS2 spectra. The y-axes of the individual
spectra is now rescaled between 0 and 1 (highest peak), as opposed to figure 2.
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The third argument, fun, defined how to combine the features. Predefined

functions are readily available and can be specified as strings (fun="mean",

fun="median", fun="sum", fun="weighted.mean" or fun="medianpolish"

to compute respectively the mean, media, sum, weighted mean or median pol-

ish of the features to be aggregated). Alternatively, is is possible to supply user

defined functions with fun=function(x) { ... }. We will use the median

here.

> qnt2 <- combineFeatures(qnt, groupBy = gb, fun = "median")

Combined 54 features into 40 using median

> qnt2

MSnSet (storageMode: lockedEnvironment)

assayData: 40 features, 4 samples

element names: exprs

protocolData: none

phenoData

sampleNames: iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

varLabels: mz reporters

varMetadata: labelDescription

featureData

featureNames: BSA ECA0172 ... ENO (40 total)

fvarLabels: spectrum ProteinAccession ... CV.iTRAQ4.117

(19 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation: No annotation

- - - Processing information - - -

Data loaded: Wed May 11 18:54:39 2011

Curves <= 400 set to '0': Sat Mar 21 19:01:02 2015

Spectra cleaned: Sat Mar 21 19:01:04 2015

MZ trimmed [112..120]

iTRAQ4 quantification by trapezoidation: Sat Mar 21 19:01:07 2015

Subset [55,4][54,4] Sat Mar 21 19:01:07 2015

Removed features with more than 0 NAs: Sat Mar 21 19:01:07 2015

Dropped featureData's levels Sat Mar 21 19:01:07 2015

Combined 54 features into 40 using median: Sat Mar 21 19:01:10 2015

MSnbase version: 1.1.22
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9 Label-free MS2 quantitation

9.1 Peptide counting

Note that if samples are not multiplexed, label-free MS2 quantitation by spec-

tral counting is possible using MSnbase. Once individual spectra have been

assigned to peptides and proteins (see section 4), it becomes straightforward

to estimate protein quantities using the simple peptide counting method, as

illustrated in section 8.

> sc <- quantify(msexp, method = "count")

> ## lets modify out data for demonstration purposes

> fData(sc)$accession[1] <- fData(sc)$accession[2]

> fData(sc)$accession

[1] "ECA1028" "ECA1028" "ECA0510"

> sc <- combineFeatures(sc, groupBy = fData(sc)$accession,

+ fun = "sum")

Combined 3 features into 2 using sum

> exprs(sc)

1

ECA0510 1

ECA1028 2

Such count data could then be further analyses using dedicated count meth-

ods (originally developed for high-throughput sequencing) and directly avail-

able for MSnSet instances in the msmsTests Bioconductor package.

9.2 Spectral counting and intensity methods

The spectral abundance factor (SAF) and the normalised form (NSAF) (Pao-

letti et al., 2006) as well as the spectral index (SI) and other normalised varia-

tions (SIGI and SIN) (Griffin et al., 2010) are also available. Below, we illustrate

how to apply the normalised SIN to the experiment containing identification

data produced in section 4.

The spectra that did not match any peptide have already been remove with

the removeNoId method. As can be seen in the following code chunk, the

first spectrum could not be matched to any single protein. Non-identified
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spectra and those matching multiple proteins are removed automatically prior

to any label-free quantitation. Once can also remove peptide that do not match

uniquely to proteins (as defined by the nprot feature variable column) with

the removeMultipleAssignment method.

> fData(msexp)[, c("accession", "nprot")]

accession nprot

X1.1 ECA0984;ECA3829 2

X2.1 ECA1028 1

X5.1 ECA0510 1

Note that the label-free methods implicitely apply feature aggregation (sec-

tion 8) and normalise (section 7.4) the quantitation values based on the total

sample intensity and or the protein lengths (see Paoletti et al. (2006) and

Griffin et al. (2010) for details).

Let’s now proceed with the quantitation using the quantify, as in section

7.1, this time however specifying the method of interest, SIn (the reporters

argument can of course be ignored here). The required peptide-protein map-

ping and protein lengths are extracted automatically from the feature meta-

data using the default accession and length feature variables.

> siquant <- quantify(msexp, method = "SIn")

Combined 2 features into 2 using sum

> processingData(siquant)

- - - Processing information - - -

Data loaded: Sat Mar 21 19:01:00 2015

Filtered 2 unidentified peptides out: Sat Mar 21 19:01:01 2015

Removed 1 features assigned to multiple proteins: Sat Mar 21 19:01:10 2015

Combined 2 features into 2 using sum: Sat Mar 21 19:01:10 2015

Quantification by SIn: Sat Mar 21 19:01:10 2015

MSnbase version: 1.14.2

> exprs(siquant)

1

ECA0510 0.003588641

ECA1028 0.001470129
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Other label-free methods can be applied by specifiying the appropriate

method argument. See ?quantify for more details.

10 Spectra comparison

10.1 Plotting two spectra

MSnbase provides functionality to compare spectra against each other. The

first notable function is plot. If two Spectrum2 objects are provided plot will

draw two plots: the upper and lower panel contain respectively the first and

second spectrum. Common peaks are drawn in a slightly darker colour.

> centroided <- pickPeaks(msexp, verbose=FALSE)

> plot(centroided[[2]], centroided[[3]])
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10.2 Comparison metrics

Currently MSnbase supports three different metrics to compare spectra against

each other: common to calculate the number of common peaks, cor to calculate

the Pearson correlation and dotproduct to calculate the dot product. See

?compareSpectra to apply other arbitrary metrics.

> compareSpectra(centroided[[2]], centroided[[3]],

+ fun = "common")

[1] 9

> compareSpectra(centroided[[2]], centroided[[3]],

+ fun = "cor")

[1] 0.006813591

> compareSpectra(centroided[[2]], centroided[[3]],

+ fun = "dotproduct")

[1] 0.008130662

compareSpectra supports MSnExp objects as well.

> compareSpectra(centroided, fun="cor")

X1.1 X2.1 X5.1

X1.1 NA -0.0003689564 0.001305087

X2.1 -0.0003689564 NA 0.006813591

X5.1 0.0013050868 0.0068135912 NA

Below, we illustrate how to compare a set of spectra using a hierarchical

clustering.

> dm <- as.dist(compareSpectra(centroided, fun="cor"))

> plot(hclust(dm))
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11 Quantitative assessment of incomplete

dissociation

Quantitation using isobaric reporter tags assumes complete dissociation be-

tween the reporter group (red on figure 12), balance group (blue) and peptide

(the peptide reactive group is drawn in green). However, incomplete dissocia-

tion does occur and results in an isobaric tag (i.e reporter and balance groups)

specific peaks.

MSnbase provides, among others, a ReporterIons object for iTRAQ 4-plex

that includes the 145 peaks, called iTRAQ5. This can then be used to quantify

the experiment as show in section 7.1 to estimate incomplete dissociation for

each spectrum.

39



Figure 12: iTRAQ 4-plex isobaric tags reagent consist of three parts: (1) a
charged reporter group (MZ of 114, 115, 116 and 117) that is unique to each of
the four reagents (red), (2) an uncharged mass balance group (28-31 Da) (blue)and
(3) a peptide reactive group (NHS ester) that binds to the peptide. In case of
incomplete dissociation, the reporter and balance groups produce a specific peaks
at MZ 145.

> iTRAQ5

Object of class "ReporterIons"

iTRAQ4: '4-plex iTRAQ and reporter + balance group' with 5 reporter ions

- 114.1 +/- 0.05 (red)

- 115.1 +/- 0.05 (green)

- 116.1 +/- 0.05 (blue)

- 117.1 +/- 0.05 (yellow)

- 145.1 +/- 0.05 (grey)

> incompdiss <- quantify(itraqdata,

+ method = "trap",

+ reporters = iTRAQ5,

+ strict = FALSE,

+ verbose = FALSE)

> head(exprs(incompdiss))

iTRAQ5.114 iTRAQ5.115 iTRAQ5.116 iTRAQ5.117 iTRAQ5.145

X1 1347.6158 2247.3097 3927.6931 7661.1463 2063.8947

X10 739.9861 799.3501 712.5983 940.6793 467.3615

X11 27638.3582 33394.0252 32104.2879 26628.7278 13543.4565

X12 31892.8928 33634.6980 37674.7272 37227.7119 11839.2558

X13 26143.7542 29677.4781 29089.0593 27902.5608 12206.5508

X14 6448.0829 6234.1957 6902.8903 6437.2303 427.6654

Figure 13 compares these intensities for the whole experiment.
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Figure 13: Boxplot and scatterplot comparing intensities of the 4 reporter ions
(or their sum, on the right) and the incomplete dissociation specific peak.

12 Combining MSnSet instances

Combining mass spectrometry runs can be done in two different ways depend-

ing on the nature of these runs. If the runs represent repeated measures of

identical samples, for instance multiple fractions, the data has to be combine

along the row of the quantitation matrix: all the features (along the rows) rep-

resent measurements of the same set of samples (along the columns). In this

situation, described in section 12.1, two experiments of dimensions n1 (rows)

by m (columns and n2 by m will produce a new experiment of dimensions

n1 + n2 by m.

When however, different sets of samples have been analysed in different

mass spectrometry runs, the data has to be combined along the columns of

the quantitation matrix: some features will be shared across experiments and

should thus be aligned on a same row in the new data set, whereas unique

features to one experiment should be set as missing in the other one. In

this situation, described in section 12.2, two experiments of dimensions n1 by

m1 and n2 by m2 will produce a new experiment of dimensions uniquen1 +

uniquen2 + sharedn1,n2 by m1 +m2. The two first terms of the first dimension

will be complemented by NA values.

Default MSnSet feature names (X1, X2, . . . ) and sample names (iTRAQ4.114,

iTRAQ4.115, iTRAQ4.116, . . . ) are not informative. The features and samples

of these anonymous quantitative data-sets should be updated before being

combined, to guide how to meaningfully merge them.
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12.1 Combining identical samples

To simulate this situation, let us use quantiation data from the itraqdata

object that is provided with the package as experiment 1 and the data from

the rawdata MSnExp instance created at the very beginning of this document.

Both experiments share the same default iTRAQ 4-plex reporter names as

default sample names, and will thus automatically be combined along rows.

> exp1 <- quantify(itraqdata, reporters = iTRAQ4,

+ verbose = FALSE)

> sampleNames(exp1)

[1] "iTRAQ4.114" "iTRAQ4.115" "iTRAQ4.116" "iTRAQ4.117"

> exp2 <- quantify(rawdata, reporters = iTRAQ4,

+ verbose = FALSE)

> sampleNames(exp2)

[1] "iTRAQ4.114" "iTRAQ4.115" "iTRAQ4.116" "iTRAQ4.117"

It important to note that the features of these independent experiments

share the same default anonymous names: X1, X2, X3, . . . , that however

represent quantitation of distinct physical analytes. If the experiments were

to be combined as is, it would result in an error because data points for the

same feature name (say X1) and the same sample name (say iTRAQ4.114)

have different values. We thus first update the feature names to explicitate

that they originate from different experiment and represent quantitation from

different spectra using the convenience function updateFeatureNames. Note

that updating the names of one experiment would suffice here.

> head(featureNames(exp1))

[1] "X1" "X10" "X11" "X12" "X13" "X14"

> exp1 <- updateFeatureNames(exp1)

> head(featureNames(exp1))

[1] "X1.exp1" "X10.exp1" "X11.exp1" "X12.exp1" "X13.exp1"

[6] "X14.exp1"

> head(featureNames(exp2))

[1] "X1.1" "X2.1" "X3.1" "X4.1" "X5.1"
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> exp2 <- updateFeatureNames(exp2)

> head(featureNames(exp2))

[1] "X1.1.exp2" "X2.1.exp2" "X3.1.exp2" "X4.1.exp2" "X5.1.exp2"

The two experiments now share the same sample names and have different

feature names and will be combined along the row. Note that all meta-data is

correctly combined along the quantitation values.

> exp12 <- combine(exp1, exp2)

Warning in combine(experimentData(x), experimentData(y)):

unknown or conflicting information in MIAPE field ’email’; using information

from first object ’x’

> dim(exp1)

[1] 55 4

> dim(exp2)

[1] 5 4

> dim(exp12)

[1] 60 4

12.2 Combine different samples

Lets now create two MSnSets from the same raw data to simulate two differ-

ent independent experiments that share some features. As done previously

(see section 8), we combine the spectra based on the proteins they have been

identified to belong to. Features can thus naturally be named using protein ac-

cession numbers. Alternatively, if peptide sequences would have been used as

grouping factor in combineFeatures, then these would be good feature name

candidates.

> set.seed(1)

> i <- sample(length(itraqdata), 35)

> j <- sample(length(itraqdata), 35)

> exp1 <- quantify(itraqdata[i], reporters = iTRAQ4,
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+ verbose = FALSE)

> exp2 <- quantify(itraqdata[j], reporters = iTRAQ4,

+ verbose = FALSE)

> exp1 <- droplevels(exp1)

> exp2 <- droplevels(exp2)

> table(featureNames(exp1) %in% featureNames(exp2))

FALSE TRUE

12 23

> exp1 <- combineFeatures(exp1,

+ groupBy = fData(exp1)$ProteinAccession)

Combined 35 features into 27 using mean

> exp2 <- combineFeatures(exp2,

+ groupBy = fData(exp2)$ProteinAccession)

Combined 35 features into 27 using mean

> head(featureNames(exp1))

[1] "BSA" "ECA0435" "ECA0469" "ECA0621" "ECA0631" "ECA0978"

> head(featureNames(exp2))

[1] "BSA" "ECA0172" "ECA0435" "ECA0452" "ECA0469" "ECA0621"

The droplevels drops the unused featureData levels. This is required to

avoid passing absent levels as groupBy in combineFeatures. Alternatively,

one could also use factor(fData(exp1)$ProteinAccession) as groupBy ar-

gument.

The feature names are updated automatically by combineFeatures, using

the groupBy argument. Proper feature names, reflecting the nature of the

features (spectra, peptides or proteins) is critical when multiple experiments

are to be combined, as this is done using common features as defined by their

names (see below).

Sample names should also be updated to replace anonymous reporter names

with relevant identifiers; the individual reporter data is stored in the phenoData

and is not lost. A convenience function updateSampleNames is provided to ap-

pend the MSnSet’s variable name to the already defined names, although in
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general, biologically relevant identifiers are preferred.

> sampleNames(exp1)

[1] "iTRAQ4.114" "iTRAQ4.115" "iTRAQ4.116" "iTRAQ4.117"

> exp1 <- updateSampleNames(exp1)

> sampleNames(exp1)

[1] "iTRAQ4.114.exp1" "iTRAQ4.115.exp1" "iTRAQ4.116.exp1"

[4] "iTRAQ4.117.exp1"

> sampleNames(exp1) <- c("Ctrl1", "Cond1", "Ctrl2", "Cond2")

> sampleNames(exp2) <- c("Ctrl3", "Cond3", "Ctrl4", "Cond4")

At this stage, it is not yet possible to combine the two experiments, because

their feature data is not compatible yet; they share the same feature vari-

able labels, i.e. the feature data column names (spectrum, ProteinAccession,

ProteinDescription, . . . ), but the part of the content is different because the

original data was (in particular all the spectrum centric data: identical pep-

tides in different runs will have different retention times, precursor intensities,

. . . ). Feature data with identical labels (columns in the data frame) and names

(row in the data frame) are expected to have the same data and produce an

error if not conform.

> stopifnot(all(fvarLabels(exp1) == fvarLabels(exp2)))

> fData(exp1)["BSA", 1:4]

spectrum ProteinAccession ProteinDescription PeptideSequence

BSA 1 BSA bovine serum albumin NYQEAK

> fData(exp2)["BSA", 1:4]

spectrum ProteinAccession ProteinDescription PeptideSequence

BSA 52 BSA bovine serum albumin QTALVELLK

Instead of removing these identical feature data columns, one can use a sec-

ond convenience function, updateFvarLabels, to update feature labels based

on the experiements variable name and maintain all the metadata.
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> exp1 <- updateFvarLabels(exp1)

> exp2 <- updateFvarLabels(exp2)

> head(fvarLabels(exp1))

[1] "spectrum.exp1" "ProteinAccession.exp1"

[3] "ProteinDescription.exp1" "PeptideSequence.exp1"

[5] "file.exp1" "retention.time.exp1"

> head(fvarLabels(exp2))

[1] "spectrum.exp2" "ProteinAccession.exp2"

[3] "ProteinDescription.exp2" "PeptideSequence.exp2"

[5] "file.exp2" "retention.time.exp2"

It is now possible to combine exp1 and exp2, including all the meta-data,

with the combine method. The new experiment will contain the union of

the feature names of the individual experiments with missing values inserted

appropriately.

> exp12 <- combine(exp1, exp2)

> dim(exp12)

[1] 35 8

> pData(exp12)

mz reporters

Ctrl1 114.1 iTRAQ4

Cond1 115.1 iTRAQ4

Ctrl2 116.1 iTRAQ4

Cond2 117.1 iTRAQ4

Ctrl3 114.1 iTRAQ4

Cond3 115.1 iTRAQ4

Ctrl4 116.1 iTRAQ4

Cond4 117.1 iTRAQ4

> exprs(exp12)[25:28, ]

Ctrl1 Cond1 Ctrl2 Cond2 Ctrl3 Cond3

ECA4513 10154.95 10486.94 11018.19 11289.552 NA NA

ECA4514 20396.49 20832.98 23280.82 23693.574 15965.52 16206.91

ENO 50826.03 31978.10 NA 7528.967 39965.73 24967.40
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ECA0172 NA NA NA NA 17593.55 18545.62

Ctrl4 Cond4

ECA4513 NA NA

ECA4514 18455.76 18704.058

ENO NA 5925.663

ECA0172 19361.84 18328.237

> exp12

MSnSet (storageMode: lockedEnvironment)

assayData: 35 features, 8 samples

element names: exprs

protocolData: none

phenoData

sampleNames: Ctrl1 Cond1 ... Cond4 (8 total)

varLabels: mz reporters

varMetadata: labelDescription

featureData

featureNames: BSA ECA0435 ... ECA4512 (35 total)

fvarLabels: spectrum.exp1 ProteinAccession.exp1 ...

CV.iTRAQ4.117.exp2 (38 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation: No annotation

- - - Processing information - - -

Combined [35,8] and [27,4] MSnSets Sat Mar 21 19:01:19 2015

MSnbase version: 1.1.22

In summary, when experiments with different samples need to be com-

bined (along the columns), one needs to (1) clarify the sample names using

updateSampleNames or better manually, for biological relevance and (2) up-

date the feature data variable labels with updateFvarLabels. The individual

experiments (there can be more than 2) can then easily be combined with the

combine method while retaining the meta-data.

If runs for the same sample (different fractions for example) need to be com-

bines, one needs to (1) differentiate the feature provenance with updateFeatureNames

prior to use combine.
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12.3 Averaging MSnSet instances

It is sometimes useful to average a set of replicated experiments to facilitate

their visualisation. This can be easily achieved with the averageMSnSet func-

tion, which takes a list of valid MSnSet instances as input and creates a new

object whose expression values are an average of the original values. A value

of dispersion (disp) and a count of missing values (nNA) is recorded in the fea-

ture metadata slot. The average and dispersion are computed by default as the

median and (non-parametric) coefficient of variation (see ?npcv for details),

although this can easily be parametrised, as described in ?averageMSnSet.

The next code chunk illustrates the averaging function using three replicated

experiments from Tan et al. (2009) available in the pRolocdata package.

> library("pRolocdata")

> data(tan2009r1)

> data(tan2009r2)

> data(tan2009r3)

> avgtan <- averageMSnSet(list(tan2009r1, tan2009r2, tan2009r3))

> head(exprs(avgtan))

X114 X115 X116 X117

P20353 0.3605000 0.3035000 0.2095000 0.1265000

P53501 0.4299090 0.1779700 0.2068280 0.1852625

Q7KU78 0.1704443 0.1234443 0.1772223 0.5290000

P04412 0.2567500 0.2210000 0.3015000 0.2205000

Q7KJ73 0.2160000 0.1830000 0.3420000 0.2590000

Q7JZN0 0.0965000 0.2509443 0.4771667 0.1750557

> head(fData(avgtan)$disp)

X114 X115 X116 X117

P20353 0.076083495 0.1099127 0.109691169 0.14650198

P53501 0.034172542 0.2640556 0.005139653 0.17104568

Q7KU78 0.023198743 0.4483795 0.027883087 0.04764499

P04412 0.053414021 0.2146751 0.090972139 0.27903810

Q7KJ73 0.000000000 0.0000000 0.000000000 0.00000000

Q7JZN0 0.007681865 0.1959534 0.097873350 0.06210542

> head(fData(avgtan)$nNA)

X114 X115 X116 X117
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P20353 1 1 1 1

P53501 1 1 1 1

Q7KU78 0 0 0 0

P04412 1 1 1 1

Q7KJ73 2 2 2 2

Q7JZN0 0 0 0 0

We are going to visualise the average data on a principle component (PCA)

plot using the plot2D function from the pRoloc package Gatto et al. (2014).

In addition, we are going to use the measure of dispersion to highlight aver-

ages with high variability by taking, for each protein, the maximum observed

dispersion in the 4 samples. Note that in the default implementation, disper-

sions estimated from a single measurement (i.e. that had 2 missing values in

our example) are set to 0; we will set these to the overal maximum observed

dispersion.

> disp <- rowMax(fData(avgtan)$disp)

> disp[disp == 0] <- max(disp)

> range(disp)

[1] 0.01152877 1.20888923

> library("pRoloc")

> plot2D(avgtan, cex = 7 * disp)
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13 MSE data processing

MSnbase can also be used for MSE data independent acquisition from Waters

instrument. The MSE pipeline depends on the Bioconductor synapter package

(Bond et al., 2013) that produces MSnSet instances for indvidual acquisitions.

The MSnbase infrastructure can subsequently be used to further combine ex-

periments, as shown in section 12.2 and apply top3 quantitation using the

topN method.

14 Session information

� R version 3.1.3 (2015-03-09), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C,

LC_TIME=en_US.UTF-8, LC_COLLATE=C, LC_MONETARY=en_US.UTF-8,

LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
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sampling 2.6, scales 0.2.4, sendmailR 1.2-1, sfsmisc 1.0-27, splines 3.1.3,

stringr 0.6.2, survival 2.38-1, tools 3.1.3, vsn 3.34.0, xtable 1.7-4,

zlibbioc 1.12.0

References

B M Bolstad, R A Irizarry, M Astrand, and T P Speed. A comparison of

normalization methods for high density oligonucleotide array data based on

variance and bias. Bioinformatics, 19(2):185–93, 2003.

N J Bond, P V Shliaha, K S Lilley, and L Gatto. Improving qualitative and

quantitative performance for mse-based label-free proteomics. J Proteome

51



Res, 12(6):2340–53, Jun 2013. doi: 10.1021/pr300776t. URL http://pubs.

acs.org/doi/abs/10.1021/pr300776t.

Joseph M Foster, Sven Degroeve, Laurent Gatto, Matthieu Visser, Rui Wang,

Johannes Griss, Rolf Apweiler, and Lennart Martens. A posteriori quality

control for the curation and reuse of public proteomics data. Proteomics, 11

(11):2182–94, 2011. doi: 10.1002/pmic.201000602.

L Gatto, L M Breckels, S Wieczorek, T Burger, and K S Lilley. Mass-

spectrometry-based spatial proteomics data analysis using pRoloc and

pRolocdata. Bioinformatics, 30(9):1322–4, May 2014. doi: 10.1093/

bioinformatics/btu013.

Laurent Gatto and Kathryn S Lilley. MSnbase – an R/Bioconductor pack-

age for isobaric tagged mass spectrometry data visualization, processing

and quantitation. Bioinformatics, 28(2):288–9, Jan 2012. doi: 10.1093/

bioinformatics/btr645.

Robert C. Gentleman, Vincent J. Carey, Douglas M. Bates, Ben Bolstad, Mar-

cel Dettling, Sandrine Dudoit, Byron Ellis, Laurent Gautier, Yongchao Ge,

Jeff Gentry, Kurt Hornik, Torsten Hothorn, Wolfgang Huber, Stefano Iacus,

Rafael Irizarry, Friedrich Leisch, Cheng Li, Martin Maechler, Anthony J.

Rossini, Gunther Sawitzki, Colin Smith, Gordon Smyth, Luke Tierney, Jean

Y. H. Yang, and Jianhua Zhang. Bioconductor: open software develop-

ment for computational biology and bioinformatics. Genome Biol, 5(10):

–80, 2004. doi: 10.1186/gb-2004-5-10-r80. URL http://dx.doi.org/10.

1186/gb-2004-5-10-r80.

N M Griffin, J Yu, F Long, P Oh, S Shore, Y Li, J A Koziol, and J E Schnitzer.

Label-free, normalized quantification of complex mass spectrometry data for

proteomic analysis. Nat Biotechnol, 28(1):83–9, Jan 2010. doi: 10.1038/nbt.

1592.

Wolfgang Huber, Anja von Heydebreck, Holger Sueltmann, Annemarie

Poustka, and Martin Vingron. Variance stabilization applied to microarray

data calibration and to the quantification of differential expression. Bioin-

formatics, 18 Suppl. 1:S96–S104, 2002.

Andrew R. Jones, Martin Eisenacher, Gerhard Mayer, Oliver Kohlbacher, Jen-

nifer Siepen, Simon J. Hubbard, Julian N. Selley, Brian C. Searle, James

Shofstahl, Sean L. Seymour, Randall Julian, Pierre-Alain Binz, Eric W.

Deutsch, Henning Hermjakob, Florian Reisinger, Johannes Griss, Juan An-

tonio Vizcano, Matthew Chambers, Angel Pizarro, and David Creasy. The

52

http://pubs.acs.org/doi/abs/10.1021/pr300776t
http://pubs.acs.org/doi/abs/10.1021/pr300776t
http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://dx.doi.org/10.1186/gb-2004-5-10-r80


mzIdentML data standard for mass spectrometry-based proteomics results.

Molecular & Cellular Proteomics, 11(7), 2012. doi: 10.1074/mcp.M111.

014381. URL http://www.mcponline.org/content/11/7/M111.014381.

abstract.

Natasha A Karp, Wolfgang Huber, Pawel G Sadowski, Philip D Charles,

Svenja V Hester, and Kathryn S Lilley. Addressing accuracy and preci-

sion issues in itraq quantitation. Mol. Cell Proteomics, 9(9):1885–97, 2010.

doi: 10.1074/mcp.M900628-MCP200.

Lennart Martens, Matthew Chambers, Marc Sturm, Darren Kes sner, Fredrik

Levander, Jim Shofstahl, Wilfred H Tang, Andreas Ro mpp, Steffen Neu-

mann, Angel D Pizarro, Lu isa Montecchi-Palazzi, Natalie Tasman, Mike

Coleman, Florian Reisinger, Pune et Souda, Henning Hermjakob, Pierre-

Alain Binz, and Eric W Deutsch. mzml - a community standard for mass

spectrometry data. Molecular & Cellular Proteomics : MCP, 2010. doi:

10.1074/mcp.R110.000133.

Sandra Orchard, Luisa Montechi-Palazzi, Eric W Deutsch, Pierre-Alain Binz,

Andrew R Jones, Norman Paton, Angel Pizarro, David M Creasy, Jérôme
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