Package ‘GenomelnfoDb’

April 10, 2015

Title Utilities for manipulating chromosome and other 'seqname’
identifiers

Description Contains data and functions that
define and allow translation between different chromosome
sequence naming conventions (e.g., ~ chrl" versus “"1"),
including a function that attempts to place sequence names in
their natural, rather than lexicographic, order.

Version 1.2.5

Author Sonali Arora, Martin Morgan, Marc Carlson, H. Pages

Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>
biocViews Genetics, DataRepresentation, Annotation, GenomeAnnotation

Depends R (>= 3.1), methods, stats4, BiocGenerics, S4Vectors (>=
0.2.0), IRanges (>= 1.99.26)

Imports methods, BiocGenerics, S4Vectors

Suggests GenomicRanges, Rsamtools, GenomicAlignments, BSgenome,
GenomicFeatures, BSgenome.Scerevisiae. UCSC.sacCer2,
BSgenome.Celegans.UCSC.ce2, BSgenome.Hsapiens. NCBI.GRCh38,
TxDb.Dmelanogaster. UCSC.dm3.ensGene, RUnit, BiocStyle, knitr

License Artistic-2.0

Collate utils.R assembly-utils.R fetchExtendedChromInfoFromUCSC.R
rankSeqlevels.R seqinfo.R seglevelsStyle.R seqlevels-wrappers.R
Seqinfo-class.R GenomeDescription-class.R

VignetteBuilder knitr
Video http://youtu.be/wdEjCYSXa7w

R topics documented:

fetchExtendedChromInfoFromUCSC
GenomeDescription-class
rankSeqlevels e
seqinfo oL e
Seqinfo-class

2 fetchExtendedChromInfoFromUCSC

seqlevels-wrappers e e e e e e e 15
seqlevelsStyle L e 18
Index 22

fetchExtendedChromInfoFromUCSC
Fetching chromosomes info for some of the UCSC genomes

Description

Fetch the chromosomes info for some of the UCSC genomes. Only supports hg38, hgl9, hgl8,
mm10, mm9, dm3, sacCer3, and sacCer2 at the moment.

Usage

fetchExtendedChromInfoFromUCSC(genome,
goldenPath_url="http://hgdownload.cse.ucsc.edu/goldenPath™)

Arguments

genome A single string specifying the UCSC genome e.g. "sacCer3".

goldenPath_url A single string specifying the URL to the UCSC goldenPath location. This
URL is used internally to build the full URL to the ’chromInfo’ MySQL dump
containing chromosomes information for genome. See Details section below.

Details

Chromosomes information (e.g. names and lengths) for any UCSC genome is stored in the UCSC
database in the chromInfo’ table, and is normally available as a MySQL dump at:

goldenPath_url/<genome>/database/chromInfo.txt.gz

fetchExtendedChromInfoFromUCSC downloads and imports that table into a data frame, keeps
only the UCSC_seqlevels and UCSC_seqlengths columns (after renaming them), and adds the
circular logical column.

Then, if this UCSC genome is based on an NCBI assembly (e.g. hg38 is based on GRCh38), the
NCBI seqlevels and GenBank accession numbers are extracted from the NCBI assembly report and
the UCSC seqlevels matched to them (using some guided heuristic). Finally the NCBI seqlevels
and GenBank accession numbers are added to the returned data frame.

Value

A data frame with 1 row per seqlevel in the UCSC genome, and at least 3 columns:

¢ UCSC_seqlevels: Character vector with no NAs. This is the chrom field of the UCSC
"chromInfo’ table for the genome. See Details section above.

fetchExtendedChromInfoFromUCSC 3

* UCSC_seglengths: Integer vector with no NAs. This is the size field of the UCSC ’chromInfo’
table for the genome. See Details section above.

* circular: Logical vector with no NAs. This knowledge is stored in the GenomeInfoDb
package itself for the supported genomes.

If the UCSC genome is *not* based on an NCBI assembly (e.g. sacCer2), there are no additional
columns and a warning is emitted. Note that, in this case, the rows are not sorted in any particular
order.

If the UCSC genome is based on an NCBI assembly (e.g. sacCer3), the returned data frame has 3
additional columns:

* NCBI_seqlevels: Character vector. This information is obtained from the NCBI assembly
report for the genome. Will contain NAs for UCSC seqlevels with no corresponding NCBI se-
qlevels (e.g. for chrM in hg18 or chrUextra in dm3), in which case fetchExtendedChromInfoFromuCSC
emits a warning.

¢ SequenceRole: Factor with levels assembled-molecule, unlocalized-scaffold, unplaced-scaffold,
alt-scaffold, and pseudo-scaffold. This information is obtained from the NCBI assem-
bly report for the genome. Can contain NAs but no warning is emitted in that case.

* GenBankAccn: Character vector. This information is obtained from the NCBI assembly report
for the genome. Can contain NAs but no warning is emitted in that case.

Note that, in this case, the rows are sorted by level in the SequenceRole column, thatis, assembled-molecules
first, then unlocalized-scaffolds, etc, and NAs last.
Note
Only supports the hg38, hgl9, hgl8, mm10, mm9, dm3, sacCer3, and sacCer2 genomes at the
moment. More will come...
Author(s)

H. Pages

See Also

* The seqlevels getter and setter.
* The seqlevelsStyle getter and setter.

* The getBSgenome utility in the BSgenome package for searching the installed BSgenome data
packages.

Examples

A. BASIC EXAMPLE
e

The sacCer3 UCSC genome is based on an NCBI assembly (RefSeq Assembly
ID is GCF_000146045.2):
sacCer3_chrominfo <- fetchExtendedChromInfoFromUCSC("sacCer3")

GenomeDescription-class

sacCer3_chrominfo

But the sacCer2 UCSC genome is not:
sacCer2_chrominfo <- fetchExtendedChromInfoFromUCSC("sacCer2")
sacCer2_chrominfo

Bt e
B. USING fetchExtendedChromInfoFromUCSC() TO PUT UCSC SEQLEVELS ON
THE GRCh38 GENOME
e

Load the BSgenome.Hsapiens.NCBI.GRCh38 package:
library(BSgenome)
genome <- getBSgenome("”GRCh38") # this loads the
BSgenome.Hsapiens.NCBI.GRCh38 package

A quick look at the GRCh38 seqlevels:
length(seqlevels(genome))
head(seglevels(genome), n=30)

Fetch the extended chromosomes info for the hg38 genome:
hg38_chrominfo <- fetchExtendedChromInfoFromUCSC("hg38")
dim(hg38_chrominfo)

head(hg38_chrominfo, n=30)

2 sanity checks:

1. Check the NCBI seqglevels:

stopifnot(setequal (hg38_chrominfo$NCBI_seqlevels, seqlevels(genome)))
2. Check that the sequence lengths in hg38_chrominfo (which are

#it coming from the same chromInfo table as the UCSC seqlevels)
are the same as in genome:
stopifnot(

identical(hg38_chrominfo$UCSC_seqlengths,
unname (seqglengths(genome) [hg38_chrominfo$NCBI_seqlevels]))

)

Extract the hg38 seqlevels and put the GRCh38 seqglevels on it as

the names:

hg38_seqlevels <- setNames(hg38_chrominfo$UCSC_seqlevels,
hg38_chrominfo$NCBI_seqglevels)

Set the hg38 seqlevels on genome:
seqlevels(genome) <- hg38_seqlevels[seglevels(genome)]
head(seglevels(genome), n=30)

GenomeDescription-class
GenomeDescription objects

GenomeDescription-class 5

Description

A GenomeDescription object holds the meta information describing a given genome.

Details

In general the user will not need to manipulate directly a GenomeDescription instance but will
manipulate instead a higher-level object that belongs to a class that extends the GenomeDescription
class. For example, the top-level object defined in any BSgenome data package is a BSgenome
object and the BSgenome class contains the GenomeDescription class. Thus a BSgenome object
is also a GenomeDescription object and can therefore be treated as such. In other words all the
methods described below will work on it.

Accessor methods
In the code snippets below, x is a GenomeDescription object.

organism(x): Return the target organism for this genome e.g. "Homo sapiens”, "Mus musculus”,
"Caenorhabditis elegans”, etc...

species(x): Return the target species for this genome e.g. "Human”, "Mouse”, "Worm", etc...
provider(x): Return the provider of this genome e.g. "UCSC", "BDGP", "FlyBase", etc...

providerVersion(x): Return the provider-side version of this genome. For example UCSC uses
versions "hg18", "hg17", etc... for the different Builds of the Human genome.

releaseDate(x): Return the release date of this genome e.g. "Mar. 2006".

releaseName(x): Return the release name of this genome, which is generally made of the name
of the organization who assembled it plus its Build version. For example, UCSC uses "hg18"
for the version of the Human genome corresponding to the Build 36.1 from NCBI hence the
release name for this genome is "NCBI Build 36.1".

bsgenomeName (x): Uses the meta information stored in x to make the name of the corresponding
BSgenome data package (see the available.genomes function in the BSgenome package for
details about the naming scheme used for those packages). Of course there is no guarantee
that a package with that name actually exists.

seqinfo(x) Gets information about the genome sequences. This information is returned in a Se-
qinfo object. Each part of the information can be retrieved separately with segnames(x),
seqlengths(x), and isCircular(x), respectively, as described below.

seqnames(x) Gets the names of the genome sequences. segnames(x) is equivalent to segnames (seqinfo(x)).
seqlengths(x) Gets the lengths of the genome sequences. seqlengths(x) is equivalent to seqlengths(seqinfo(x)).

isCircular(x) Returns the circularity flags of the genome sequences. isCircular(x) is equiva-
lent to isCircular(seqinfo(x)).

Author(s)

H. Pages

See Also

* The available.genomes function and the BSgenome class in the BSgenome package.
* The Seqinfo class.

6 rankSeqlevels

Examples

library(BSgenome.Celegans.UCSC.ce2)
class(Celegans)

is(Celegans, "GenomeDescription")
provider(Celegans)
seqinfo(Celegans)

gendesc <- as(Celegans, "GenomeDescription”)
class(gendesc)

gendesc

provider(gendesc)

seqinfo(gendesc)

bsgenomeName (gendesc)

rankSeqlevels Assign sequence IDs to sequence names

Description

rankSeqlevels assigns a unique ID to each unique sequence name in the input vector. The returned
IDs span 1:N where N is the number of unique sequence names in the input vector.

orderSeqlevels is similar to rankSeqglevels except that the returned vector contains the order
instead of the rank.

Usage

rankSeqlevels(segnames, X.is.sexchrom=NA)
orderSeqlevels(segnames, X.is.sexchrom=NA)

Arguments

seqnames A character vector or factor containing sequence names.

X.is.sexchrom A logical indicating whether X refers to the sexual chromosome or to chromo-
some with Roman Numeral X. If NA, rankSeqlevels does its best to "guess".

Value

An integer vector of the same length as seqnames that tries to reflect the “natural” order of seq-
names, e.g.,chr1, chr2, chr3, ...

The values in the returned vector span 1:N where N is the number of unique sequence names in the
input vector.

Author(s)

H. Pages for rankSeqlevels, orderSeqglevels added by Sonali Arora <sarora@fhcrc.org>

See Also

* sortSeqlevels for sorting the sequence levels of an object in "natural" order.

seqinfo 7

Examples

library(BSgenome.Scerevisiae.UCSC. sacCer2)
rankSeglevels(segnames(Scerevisiae))
rankSeqglevels(segnames(Scerevisiae)[c(1:5,5:1)1)

newchr <- paste0("chr"”,c(1:3,6:15,4:5,16:22))
newchr

orderSeqglevels(newchr)

rankSeqglevels(newchr)

seqinfo Accessing/modifying sequence information

Description

A set of generic functions for getting/setting/modifying the sequence information stored in an ob-
ject.

Usage

seginfo(x)
seqinfo(x, new20ld=NULL, force=FALSE) <- value

segnames (x)
segnames(x) <- value

seqlevels(x)

seqlevels(x, force=FALSE) <- value
sortSeqlevels(x, X.is.sexchrom=NA)
seqlevelsInUse(x)

seqlevels0(x)

seqlengths(x)
seqlengths(x) <- value

isCircular(x)
isCircular(x) <- value

genome (x)
genome(x) <- value

Arguments
X The object from/on which to get/set the sequence information.
new2old The new2old argument allows the user to rename, drop, add and/or reorder the

"sequence levels" in x.

8 seqinfo

new2old can be NULL or an integer vector with one element per row in Seqinfo
object value (i.e. new2old and value must have the same length) describing
how the "new" sequence levels should be mapped to the "old" sequence levels,
that is, how the rows in value should be mapped to the rows in seqinfo(x).
The values in new2old must be >= 1 and <= length(seqginfo(x)). NAs are
allowed and indicate sequence levels that are being added. Old sequence levels
that are not represented in new2old will be dropped, but this will fail if those
levels are in use (e.g. if x is a GRanges object with ranges defined on those
sequence levels) unless force=TRUE is used (see below).

If new201d=NULL, then sequence levels can only be added to the existing ones,

that is, value must have at least as many rows as seqinfo(x) (i.e. length(values) >= length(seqginfo
and also seqlevels(values)[seq_len(length(seglevels(x)))] mustbe iden-

tical to seqlevels(x).

force Force dropping sequence levels currently in use. This is achieved by drop-
ping the elements in x where those levels are used (hence typically reducing
the length of x).

value Typically a Seqinfo object for the seqinfo setter.

Either a named or unnamed character vector for the seqlevels setter.
A vector containing the sequence information to store for the other setters.

X.is.sexchrom A logical indicating whether X refers to the sexual chromosome or to chromo-
some with Roman Numeral X. If NA, sortSeqlevels does its best to "guess".

Details

The Seqinfo class plays a central role for the functions described in this man page because:

* All these functions (except seqinfo, seqlevelsInUse, and seqlevels0) work on a Seqinfo
object.

* For classes that implement it, the seqinfo getter should return a Seqinfo object.

* Default seqlevels, seqlengths, isCircular, and genome getters and setters are provided.
By default, seqlevels(x) does seqlevels(seqinfo(x)), seqlengths(x) does seqlengths(seginfo(x)),
isCircular(x) does isCircular(seqinfo(x)), and genome (x) does genome (seqginfo(x)).
So any class with a seqinfo getter will have all the above getters work out-of-the-box. If, in
addition, the class defines a seqinfo setter, then all the corresponding setters will also work
out-of-the-box.

Examples of containers that have a seqinfo getter and setter: the GRanges, GRangesList, and
SummarizedExperiment classes in the GenomicRanges package; the GAlignments, GAlign-
mentPairs, and GAlignmentsList classes in the GenomicAlignments package; the TxDb class
in the GenomicFeatures package; the BSgenome class in the BSgenome package; etc...

The GenomicRanges package defines seqinfo and seqinfo<- methods for these low-level data
types: List, RangesList and RangedData. Those objects do not have the means to formally store
sequence information. Thus, the wrappers simply store the Seqinfo object within metadata(x).
Initially, the metadata is empty, so there is some effort to generate a reasonable default Seqinfo.
The names of any List are taken as the seqnames, and the universe of RangesList or RangedData
is taken as the genome.

seqinfo 9

Note

The full list of methods defined for a given generic can be seen with e.g. showMethods(”seqinfo")

or showMethods ("segnames™) (for the getters), and showMethods ("seqinfo<-") or showMethods("segnames<-")
(for the setters aka replacement methods). Please be aware that this shows only methods defined in

packages that are currently attached.

Author(s)

H. Pages

See Also

» The seqlevelsStyle generic getter and setter.
* Seqinfo objects.

* GRanges, GRangesList, and SummarizedExperiment objects in the GenomicRanges pack-
age.

* GAlignments, GAlignmentPairs, and GAlignmentsList objects in the GenomicAlignments
package.

» TxDb objects in the GenomicFeatures package.
* BSgenome objects in the BSgenome package.
* seqlevels-wrappers for convenience wrappers to the seqlevels getter and setter.

e rankSeqlevels, on which sortSeqlevels is based.

Examples

B — oo o
Finding methods.
B m o

showMethods ("seqinfo”)
showMethods ("seqinfo<-")

showMethods ("segnames”)
showMethods ("seqnames<-")

showMethods ("seqlevels")
showMethods ("seqlevels<-")

if (interactive()) {
library(GenomicRanges)
?GRanges-class

3
Tt nC T EE S
Modify seqlevels of an object.

B m oo

Overlap and matching operations between objects require matching

10

seqlevels. Often the seqlevels in one must be modified to match

the other. The seqglevels() function can rename, drop, add and reorder
seqlevels of an object. Examples below are shown on TxDb

and GRanges but the approach is the same for all objects that have
a Seqinfo class.

library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)
txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene
seqlevels(txdb)

Rename:
seqlevels(txdb) <- sub("chr”, "", seqlevels(txdb))
seqlevels(txdb)

seqlevels(txdb) <- pasteO("CH", seqglevels(txdb))
seqlevels(txdb)

seqlevels(txdb)[seqlevels(txdb) == "CHM"] <- "M"
seqlevels(txdb)

gr <- GRanges(rep(c(”"chr2"”, "chr3”, "chrM"), 2), IRanges(1:6, 10))

Add:

seqlevels(gr) <- c("chr1”, seqlevels(gr), "chr4")
seqlevels(gr)

seqlevelsInUse(gr)

Reorder:
seqlevels(gr) <- rev(seqlevels(gr))
seqlevels(gr)

Drop all unused seqglevels:
seqlevels(gr) <- seqglevelsInUse(gr)

Drop some seqlevels in use:
seqlevels(gr, force=TRUE) <- setdiff(seqlevels(gr), "chr3")
gr

Rename/Add/Reorder:
seqlevels(gr) <- c("chr1”, chr2="chr2", chrM="Mitochondrion")
seqlevels(gr)

e
Sort seglevels in "natural” order
B m o

sortSeqlevels(c(”11", "Y", "1", 10", "9", "M" 6 "2"))

seqlevels <- c("chrXI”, "chrY", "chrl", "chrX", "chrIX", "chrM", "chrII")
sortSeqlevels(seglevels)

sortSeqlevels(seqlevels, X.is.sexchrom=TRUE)

sortSeqlevels(seglevels, X.is.sexchrom=FALSE)

seqinfo

Seqinfo-class 11

seqlevels <- c("chr2RHet”, "chr4", "chrUextra”, "chrYHet",
"chrM”, "chrXHet", "chr2LHet”, "chrU”,
"chr3L", "chr3rR", "chr2rR", "chrX")
sortSeqlevels(seqlevels)

gr <- GRanges()
seqlevels(gr) <- seqlevels
sortSeqlevels(gr)

B — o
Subset objects by seqglevels.
e

tx <- transcripts(txdb)
seqlevels(tx)

Drop M, keep all others.
seqlevels(tx, force=TRUE) <- seqlevels(tx)[seqlevels(tx) != "M"]
seqlevels(tx)

Drop all except ch3L and ch3R.
seqlevels(tx, force=TRUE) <- c("ch3L", "ch3R")
seqlevels(tx)

e e
Restore original seqglevels.
B m o

Applicable to TxDb objects only.
Not run:

seqlevelsO(txdb)

seqlevels(txdb)

End(Not run)

Seginfo-class Seqginfo objects

Description

A Seqinfo object is a table-like object that contains basic information about a set of genomic se-
quences. The table has 1 row per sequence and 1 column per sequence attribute. Currently the only
attributes are the length, circularity flag, and genome provenance (e.g. hg19) of the sequence, but
more attributes might be added in the future as the need arises.

Details

Typically Seqinfo objects are not used directly but are part of higher level objects. Those higher
level objects will generally provide a seqinfo accessor for getting/setting their Seqinfo component.

12 Seqinfo-class

Constructor

Seginfo(segnames, seqlengths=NA, isCircular=NA, genome=NA): Creates a Seqinfo object.

Accessor methods

In the code snippets below, x is a Seqinfo object.

length(x): Return the number of sequences in x.

segnames(x), segnames(x) <- value: Get/set the names of the sequences in x. Those names
must be non-NA, non-empty and unique. They are also called the sequence levels or the keys
of the Seqinfo object.

Note that, in general, the end-user should not try to alter the sequence levels with segnames (x) <- value.
The recommended way to do this is with seqlevels(x) <- value as described below.
names(x), names(x) <- value: Same as segnames(x) and segnames(x) <- value.

seqglevels(x): Same as segnames(x).

seqlevels(x) <- value: Can be used to rename, drop, add and/or reorder the sequence levels.
value must be either a named or unnamed character vector. When value has names, the
names only serve the purpose of mapping the new sequence levels to the old ones. Otherwise
(i.e. when value is unnamed) this mapping is implicitly inferred from the following rules:

(1) If the number of new and old levels are the same, and if the positional mapping between
the new and old levels shows that some or all of the levels are being renamed, and if the levels
that are being renamed are renamed with levels that didn’t exist before (i.e. are not present in
the old levels), then seqlevels(x) <- value will just rename the sequence levels. Note that
in that case the result is the same as with segnames(x) <- value but it’s still recommended
to use seqlevels(x) <- value as it is safer.

(2) Otherwise (i.e. if the conditions for (1) are not satisfied) seqlevels(x) <- value will
consider that the sequence levels are not being renamed and will just perform x <- x[valuel.

See below for some examples.
seglengths(x), seqlengths(x) <- value: Get/set the length for each sequence in x.
isCircular(x), isCircular(x) <- value: Get/set the circularity flag for each sequence in x.

genome(x), genome(x) <- value: Get/set the genome identifier or assembly name for each
sequence in X.

Subsetting
In the code snippets below, x is a Seqinfo object.

x[1]: A Seqinfo object can be subsetted only by name i.e. i must be a character vector. This is a
convenient way to drop/add/reorder the rows (aka the sequence levels) of a Seqinfo object.

See below for some examples.

Coercion

In the code snippets below, x is a Seqinfo object.

as.data.frame(x): Turns x into a data frame.

Seqinfo-class 13

Combining Seqinfo objects

There are no ¢ or rbind method for Seqinfo objects. Both would be expected to just append the
rows in y to the rows in x resulting in an object of length length(x) + length(y). But that would
tend to break the constraint that the seqnames of a Seqinfo object must be unique keys.

So instead, a merge method is provided.

In the code snippet below, x and y are Seqinfo objects.

merge(x, y): Merge x and y into a single Seqginfo object where the keys (aka the seqnames)
are union(segnames(x), segnames(y)). If a row in y has the same key as a row in x,
and if the 2 rows contain compatible information (NA values are compatible with anything),
then they are merged into a single row in the result. If they cannot be merged (because they
contain different seqlengths, and/or circularity flags, and/or genome identifiers), then an error
is raised. In addition to check for incompatible sequence information, merge(x, y) also
compares segnames(x) with seqnames(y) and issues a warning if each of them has names
not in the other. The purpose of these checks is to try to detect situations where the user might
be combining or comparing objects based on different reference genomes.

intersect(x, y): Finds the intersection between two Seqinfo objects by merging them and
subsetting for the intersection of their sequence names. This makes it easy to avoid warnings
about the objects not being subsets of each other during overlap operations.

Author(s)

H. Pages

See Also

seqinfo

B = m e
A. BASIC MANIPULATION OF A Seqinfo OBJECT
e

Note that all the arguments (except genome) must have the
same length. genome can be of length 1, whatever the lengths
of the other arguments are.
x <- Seqginfo(segnames=c("chr1”, "chr2", "chr3", "chrM"),
seglengths=c(100, 200, NA, 15),
isCircular=c(NA, FALSE, FALSE, TRUE),
genome="toy")

Accessors:
length(x)
seqgnames (x)
names(x)
seqlevels(x)
seqlengths(x)

14

Seqinfo-class

isCircular(x)
genome (x)

Get a compact summary:
summary (x)

Subset by names:
x[c("chrY”, "chr3”, "chri")]

Rename, drop, add and/or reorder the sequence levels:

XX <- X

seglevels(xx) <- sub("chr”, "ch", seqlevels(xx)) # rename
XX

seqlevels(xx) <- rev(seqlevels(xx)) # reorder

XX

seqlevels(xx) <- c("ch1”, "ch2", "chY") # drop/add/reorder
XX

seqlevels(xx) <- c(chY="Y", ch1="1", "22") # rename/reorder/drop/add
XX

B —m
B. MERGING 2 Seqinfo OBJECTS
B~

y <- Seqginfo(segnames=c("chr3”, "chr4", "chrM"),
seqlengths=c(300, NA, 15))
y

This issues a warning:
merge(x, y) # rows for chr3 and chrM are merged

To get rid of the above warning, either use suppressWarnings() or
set the genome on y:

suppressWarnings(merge(x, y))

genome(y) <- genome(x)

merge(x, y)

Note that, strictly speaking, merging 2 Seginfo objects is not
a commutative operation, i.e., in general z1 <- merge(x, y)

is not identical to z2 <- merge(y, x). However z1 and z2

are guaranteed to contain the same information (i.e. the same
rows, but typically not in the same order):

merge(y, Xx)

This contradicts what x says about circularity of chr3 and chrM:
isCircular(y)[c("chr3”, "chrM")] <- c(TRUE, FALSE)

y
if (interactive()) {
merge(x, y) # raises an error

}

Sanity checks:
stopifnot(identical(x, merge(x, Seqinfo())))

seqlevels-wrappers 15

stopifnot(identical(x, merge(Seqinfo(), x)))
stopifnot(identical(x, merge(x, x)))

seqlevels-wrappers Convenience wrappers to the seqlevels() getter and setter

Description

Keep, drop or rename seqlevels in objects with a Seqinfo class.

Usage
keepSeqlevels(x, value, ...)
dropSeqglevels(x, value, ...)
renameSeqlevels(x, value, ...)
restoreSeqlevels(x, ...)

keepStandardChromosomes(x, species=NULL)

Arguments
X Any object having a Seqinfo class in which the seqlevels will be kept, dropped
or renamed.
value A named or unnamed character vector.
Names are ignored by keepSeqlevels and dropSeqglevels. Only the values in
the character vector dictate which seqlevels to keep or drop.
In the case of renameSeqlevels, the names are used to map new sequence levels
to the old (names correspond to the old levels). When value is unnamed, the
replacement vector must the same length and in the same order as the original
seqlevels(x).
species The species name of the Seqinfo class in which the seqlevels will be kept,
dropped or renamed.
Arguments passed to other functions.
Details

Matching and overlap operations on range objects often require that the seqlevels match before a
comparison can be made (e.g., findOverlaps). keepSeqlevels, dropSeglevels and renameSeqlevels
are high-level convenience functions that wrap the low-level seqlevels function.

keepSeqglevels, dropSeqlevels: Subsetting operations that modify the size of x. keepSeqlevels
keeps only the seqlevels in value and removes all others. dropSeglevels drops the levels in value
and retains all others. If value does not match any seqlevels in x an empty object is returned.

renameSeqlevels: Rename the seqlevels in x to those in value. If value is a named character
vector, the names are used to map the new seqlevels to the old. When value is unnamed, the
replacment vector must be the same length and in the same order as the original seqlevels(x).

16 seqlevels-wrappers

restoreSeqlevels: Restore the seqlevels in x back to the original values. Applicable only when x
is a TxDb. The function re-initializes the TxDb which resets the seqlevels, removes masks and any
other previous modifications.

keepStandardChromosomes:Subsetting operation that returns only the ’standard’ Chromosomes.
We define ’standard chromosomes’ as those chromosomes which represent sequences in the assem-
bly that are not scaffolds. Also referred to as ’assembly molecule’ on NCBI. Applicable when x
has a Seqinfo object. This function determines which seqlevels need to be kept using the organism’s
supported by GenomelInfoDb. The user can also specify the species to get the standard Chromsomes
in x.

Value

The x object with seqlevels removed or renamed. If x has no seqlevels (empty object) or no replace-
ment values match the current seqlevels in x the unchanged x is returned.

Author(s)

Valerie Obenchain <vobencha@fhcrc.org>, Sonali Arora <sarora@fhcrc.org>

See Also

* seqinfo ## Accessing sequence information

* Seqinfo ## The Seqinfo class

Examples

B oo
keepSeqlevels / dropSeqglevels
B o m o mmm

GRanges / GAlignments:

library(GenomicRanges)

gr <- GRanges(c("chr1”, "chr1", "chr2", "chr3"), IRanges(1:4, width=3))
seqlevels(gr)

Keep only chri

chr1 <- keepSeqlevels(gr, "chri1")

Drop chrl. Both chr2 and chr3 are kept.

chr2 <- dropSeqlevels(gr, "chr1")

library(Rsamtools) # for the ex1.bam file
library(GenomicAlignments) # for readGAlignments()

fl <- system.file("extdata”, "ex1.bam"”, package="Rsamtools")
gal <- readGAlignments(fl)

If value is named, the names are ignored.

seq2 <- keepSeqlevels(gal, c(foo="seq2"))

seqlevels(seq2)

GRangesList / GAlignmentsList:

seqlevels-wrappers

grl <- split(gr, as.character(segnames(gr)))
dropSeqlevels(grl, c("chr1”, "chr2"))

galist <- split(gal, as.character(seqgnames(gal)))
keepSeqlevels(galist, "seq2")

TxDb:

A TxDb cannot be directly subset with keepSeqlevels
and dropSeqglevels.
library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene
seqlevels(txdb)

Not run:

keepSeqlevels(txdb, "chr2L") ## fails

End(Not run)

GRanges or GRangesLists extracted from the TxDb can be subset.
txbygene <- transcriptsBy(txdb, "gene")

seqlevels(txbygene)

chr2lL <- keepSeqlevels(txbygene, "chr2L")

seqlevels(chr2lL)

B — o
renameSeqlevels
B m o

GAlignments:

seqlevels(gal)

Rename seq2 to chr2 with a named or unnamed vector.
gal2a <- renameSeqlevels(gal, c(seq2="chr2"))

gal2b <- renameSeqlevels(gal, c("seql”, "chr2"))

Names that do not match existing seqlevels are ignored.
This attempt at renaming does nothing.

gal3 <- renameSeqlevels(gal, c(foo="chr2"))
identical(seqlevels(gal), seqlevels(gal3))

TxDb:

seqlevels(txdb)

When the seglevels of a TxDb are renamed, all future
extractions reflect the modified seqlevels.
renameSeqlevels(txdb, sub(”chr”, "CH", seqglevels(txdb)))
renameSeqlevels(txdb, c(CHM="M"))

seqlevels(txdb)

transcripts <- transcripts(txdb)
identical(seqlevels(txdb), seqglevels(transcripts))

B — o
restoreSeqlevels

17

18 seqlevelsStyle

Restore seglevels in a TxDb to original values.
Not run:

restoreSeglevels(txdb)

seqlevels(txdb)

End(Not run)

B — o
keepStandardChromosomes
e

gr <- GRanges(c(paste0("chr”,c(1:3)), "chr1_gl000191_random”,
"chr1_gl000192_random”), IRanges(1:5, width=3))

gr

grl <- split(gr,seqgnames(gr))

##GRanges
keepStandardChromosomes(gr)

##GRangesList
keepStandardChromosomes(grl)

plantgr <- GRanges(c(1:5,"MT","P1td","wrong"), IRanges(1:8,width=5))
keepStandardChromosomes(plantgr, species="Arabidopsis thaliana")

seqlevelsStyle Conveniently rename the seqlevels of an object according to a given

style

Description

The seqlevelsStyle getter and setter can be used to get the current seqlevels style of an object
and to rename its seqlevels according to a given style.

Usage

seqlevelsStyle(x)
seqlevelsStyle(x) <- value

Related low-level utilities:

genomeStyles(species)

extractSeqlevels(species, style)
extractSeqlevelsByGroup(species, style, group)
mapSeqglevels(segnames, style, best.only=TRUE, drop=TRUE)
seqlevelsInGroup(segnames, group, species, style)

seqlevelsStyle 19

Arguments
X The object from/on which to get/set the seqlevels style.
value A single character string that sets the seqnameStyle for x.
species The genus and species of the organism in question separated by a single space.
Don’t forget to capitalize the genus.
style a character vector with a single element to specify the style.
group Group can be ’auto’ for autosomes, ’sex’ for sex chromosomes/allosomes, ’cir-
cular’ for circular chromosomes. The default is ’all” which returns all the chro-
mosomes.
best.only if TRUE (the default), then only the "best" sequence renaming maps (i.e. the rows
with less NAs) are returned.
drop if TRUE (the default), then a vector is returned instead of a matrix when the matrix
has only 1 row.
seqnames a character vector containing the labels attached to the chromosomes in a given
genome for a given style. For example : For Homo sapiens, NCBI style - they
are " l ||’||2||’|V3||’...’”XII’HYH’IIMT"
Details

seqlevelsStyle(x), seqlevelsStyle(x) <- value: Get the current seqlevels style of an object,
or rename its seqlevels according to the supplied style.

genomeStyles: Different organizations have different naming conventions for how they name the
biologically defined sequence elements (usually chromosomes) for each organism they support.
The Seqnames package contains a database that defines these different conventions.

genomeStyles() returns the list of all supported seqname mappings, one per supported organism.
Each mapping is represented as a data frame with 1 column per seqname style and 1 row per
chromosome name (not all chromosomes of a given organism necessarily belong to the mapping).

genomeStyles(species) returns a data.frame only for the given organism with all its supported seq-
name mappings.

extractSeqlevels: Returns a character vector of the seqnames for a single style and species.

extractSeqlevelsByGroup: Returns a character vector of the seqnames for a single style and
species by group. Group can be "auto’ for autosomes, ’sex’ for sex chromosomes/ allosomes, ’cir-
cular’ for circular chromosomes. The default is "all’ which returns all the chromosomes.

mapSeqlevels: Returns a matrix with 1 column per supplied sequence name and 1 row per se-
quence renaming map compatible with the specified style. If best.only is TRUE (the default), only
the "best" renaming maps (i.e. the rows with less NAs) are returned.

seqlevelsInGroup: It takes a character vector along with a group and optional style and species.If
group is not specified , it returns "all" or standard/top level seqnames. Returns a character vector of
seqnames after subsetting for the group specified by the user. See examples for more details.

Value

For seqlevelsStyle returns a single character string containing the style of the seqlevels supplied.
Note that this information is not stored in x but inferred by looking up a seqlevels style database
stored inside GenomeInfoDb.

20 seqlevelsStyle

For extractSeqlevels, extractSeqlevelsByGroup and seqlevelsInGroup returns a character
vector of seqlevels for given supported species and group.

For mapSeqlevels returns a matrix with 1 column per supplied sequence name and 1 row per
sequence renaming map compatible with the specified style

For genomeStyle : If species is specified returns a data.frame containg the seqlevels style and its
mapping for a given organism. If species is not specified, a list is returned with one list per species
containing the seqlevels style with the corresponding mappings.

Author(s)

Sonali Arora <sarora@fhcrc.org>, Martin Morgan , Marc Carlson, H. Pages

Examples

B o
seqlevelsStyle() getter and setter
B m oo

find the seqname Style for a given character vector
seqlevelsStyle(paste0("chr”, 1:30))

Rename the seglevels of a GRanges object with the seqglevelsStyle()
setter:

library(GenomicRanges)

gr <- GRanges(rep(c(”chr2”, "chr3", "chrM"), 2), IRanges(1:6, 10))

seqlevelsStyle(gr)
seqlevelsStyle(gr) <- "NCBI"
gr

seqlevelsStyle(gr)
seqlevelsStyle(gr) <- "dbSNP"
gr

seqlevelsStyle(gr)
seqlevelsStyle(gr) <- "UCSC"
gr

B = o m o mm
Related low-level utilities
e

names(genomeStyles())
genomeStyles("Homo_sapiens™)
"UCSC" %in% names(genomeStyles("Homo_sapiens”))

List the supported segname style for the given species and the given
style

extractSeqlevels(species="Drosophila_melanogaster” , style="Ensembl”)

List all sex chromosomes for Homo sapiens using style UCSC

seqlevelsStyle 21

3 groups are supported: auto for autosomes, sex for allosomes
and circular for circular chromosomes
extractSeqlevelsByGroup(species="Homo_sapiens”, style="UCSC", group="sex")

find whether the segnames belong to a given group
newchr <- paste0("chr”,c(1:22,"X","Y","M","1_gl000192_random”,"4_ctg9"))
seqlevelsInGroup(newchr, group="sex")

newchr <- as.character(c(1:22,"X","Y","MT"))
seqlevelsInGroup(newchr, group="all","Homo_sapiens”,”NCBI")

if we have a vector conatining segnames and we want to verify the
species and style for them , we can use:

seqnames <- c("chr1”,"chr9”, "chr2", "chr3"”, "chr10")

all(seqnames %in% extractSeqlevels(”Homo_sapiens”, "UCSC"))

find mapped seglevelsStyles for exsiting segnames
mapSeqglevels(c("chrII”, "chrIII”, "chrM"), "NCBI")
mapSeqlevels(c("chrII”, "chrIII", "chrM"), "Ensembl"”)

Index

*Topic classes
GenomeDescription-class, 4
Seginfo-class, 11

+Topic manip
fetchExtendedChromInfoFromUCSC, 2
rankSeqlevels, 6

*Topic methods
GenomeDescription-class, 4
seqginfo, 7
Seqinfo-class, 11
seqlevels-wrappers, 15

+Topic utilities
seqlevels-wrappers, 15

[,Seqginfo-method (Seqinfo-class), 11

as.data.frame, Seqinfo-method
(Seqinfo-class), 11
available.genomes, 5

BSgenome, 5, 8, 9

bsgenomeName (GenomeDescription-class),
4

bsgenomeName , GenomeDescription-method
(GenomeDescription-class), 4

class:GenomeDescription
(GenomeDescription-class), 4
class:Seqinfo (Seqinfo-class), 11

dropSeqlevels (seqlevels-wrappers), 15

extractSeqlevels (seqlevelsStyle), 18
extractSeqlevelsByGroup
(seqlevelsStyle), 18

fetchExtendedChromInfoFromUCSC, 2

GAlignmentPairs, 8, 9
GAlignments, 8, 9
GAlignmentsList, 8, 9
genome (seqinfo), 7

22

genome, ANY-method (seqginfo), 7

genome, Seqinfo-method (Seginfo-class),
11

genome<- (seqinfo), 7

genome<-,ANY-method (seqinfo), 7

genome<-, Seqinfo-method
(Seqinfo-class), 11

GenomeDescription
(GenomeDescription-class), 4

GenomeDescription-class, 4

genomeStyles (seqlevelsStyle), 18

getBSgenome, 3

GRanges, 8, 9

GRangeslList, 8, 9

intersect,Seqinfo, Seqinfo-method
(Seqinfo-class), 11
isCircular (seqinfo), 7
isCircular,ANY-method (seqinfo), 7
isCircular,Seqinfo-method
(Seqinfo-class), 11
isCircular<- (seqinfo), 7
isCircular<-,ANY-method (seqinfo), 7
isCircular<-,Seqginfo-method
(Seqinfo-class), 11

keepSeqlevels (seqlevels-wrappers), 15
keepStandardChromosomes
(seqlevels-wrappers), 15

length,Seqinfo-method (Seqinfo-class),
11

mapSeqglevels (seglevelsStyle), 18
merge,missing,Seqinfo-method
(Seqinfo-class), 11
merge,NULL, Seqinfo-method
(Seqinfo-class), 11
merge, Seqinfo,missing-method
(Seqinfo-class), 11

INDEX

merge, Seqinfo,NULL-method
(Seqinfo-class), 11

merge, Seqinfo, Seqinfo-method
(Seqinfo-class), 11

names, Seqinfo-method (Seqinfo-class), 11
names<-,Seqinfo-method (Seqinfo-class),
11

orderSeqlevels (rankSeqlevels), 6

organism (GenomeDescription-class), 4

organism,GenomeDescription-method
(GenomeDescription-class), 4

provider (GenomeDescription-class), 4

provider,GenomeDescription-method
(GenomeDescription-class), 4

providerVersion
(GenomeDescription-class), 4

providerVersion,GenomeDescription-method

(GenomeDescription-class), 4

rankSeqlevels, 6, 9
releaseDate (GenomeDescription-class), 4
releaseDate,GenomeDescription-method
(GenomeDescription-class), 4
releaseName (GenomeDescription-class), 4
releaseName, GenomeDescription-method
(GenomeDescription-class), 4
renameSeqlevels (seqlevels-wrappers), 15
restoreSeqlevels (seqlevels-wrappers),
15

Seqinfo, 5,8, 9, 15, 16
Seginfo (Seginfo-class), 11
seqinfo, 7, 13, 16
seqinfo,GenomeDescription-method
(GenomeDescription-class), 4
Seqginfo-class, 11
seqinfo<- (seqinfo), 7
seqlengths (seqinfo), 7
seqlengths,ANY-method (seqinfo), 7
seqlengths, Seqinfo-method
(Seqinfo-class), 11
seqlengths<- (seqinfo), 7
seqlengths<-,ANY-method (seqinfo), 7
seqlengths<-,Seqinfo-method
(Seqinfo-class), 11
seqlevels, 3

23

seglevels (seqinfo), 7
seqlevels,ANY-method (seqinfo), 7
seqlevels,Seqinfo-method
(Seginfo-class), 11
seqlevels-wrappers, 9, 15
seqlevelsO (seqinfo), 7
seqlevels<- (seqinfo), 7
seqlevels<-,ANY-method (seqinfo), 7
seqlevels<-,Seginfo-method
(Seqinfo-class), 11
seqlevelsInGroup (seglevelsStyle), 18
seqlevelsInUse (seqinfo), 7
seqlevelsInUse,CompressedList-method
(seqinfo), 7
seqlevelsInUse,Vector-method (seqinfo),
7
seqlevelsStyle, 3, 9, 18
seqlevelsStyle,ANY-method
(seqlevelsStyle), 18
seqlevelsStyle,character-method
(seqlevelsStyle), 18
seglevelsStyle<- (seqlevelsStyle), 18
seglevelsStyle<-,ANY-method
(seqlevelsStyle), 18
seqgnames (seqinfo), 7
seqgnames, GenomeDescription-method
(GenomeDescription-class), 4
seqgnames, Seqinfo-method
(Seginfo-class), 11
seqnames<- (seqinfo), 7
seqgnames<-, Seqginfo-method
(Seginfo-class), 11
segnameStyle (seqlevelsStyle), 18
seqnameStyle, ANY-method
(seqlevelsStyle), 18
segnameStyle<- (seqlevelsStyle), 18
segnameStyle<-,ANY-method
(seqlevelsStyle), 18
show, GenomeDescription-method
(GenomeDescription-class), 4
show, Seqinfo-method (Seqinfo-class), 11
sortSeqlevels, 6
sortSeqlevels (seqinfo), 7
sortSeqlevels,ANY-method (seqinfo), 7
sortSeqlevels,character-method
(seqinfo), 7
species (GenomeDescription-class), 4
species,GenomeDescription-method

24 INDEX

(GenomeDescription-class), 4
SummarizedExperiment, 8, 9
summary, Seqinfo-method (Seqinfo-class),
11
summary.Seqinfo (Seginfo-class), 11

TxDb, 8§, 9

	fetchExtendedChromInfoFromUCSC
	GenomeDescription-class
	rankSeqlevels
	seqinfo
	Seqinfo-class
	seqlevels-wrappers
	seqlevelsStyle
	Index

