
10 Deadly Sins of
SQL Server Configuration

The untold stories of a pentest monkey

Scott Sutherland
Network and Application Penetration Tester

Twitter: @_nullbind

Code: https://github.com/nullbind
https://github.com/netspi

Slides: http://slideshare.net/nullbind
http://slideshare.net/netspi

Blog: https://blog.netspi.com/author/scott-sutherland/

Who am I?

Presentation Overview

• Why security breaks

• Where security breaks

• SQL Server security basics

• Finding SQL Servers

• 10 deadly configurations

• What can be done

• Questions

Why Security

BREAKS

Why Security Breaks

• NOT the right skill set
‒ Most dev-ops and IT admins aren’t DBAs

‒ Modern DBMS can be complicated

• NOT a high priority / requirement
‒ Functionality

‒ Availability

‒ Performance

‒ Security

• NOT enough time

Where Security

BREAKS

Where Security Breaks

…at points of integration and trust

• Access to external sources

‒ Other databases

‒ Other servers

‒ On the file system / shares

• Cached authentication

• User impersonation

• Excessive privileges

• Explicit and implicit trusts

SQL Server

Security BASICS

SQL Server Security Basics: Services

What is SQL Server?

• SQL Server is software

• Each installation is called an “instance”
which runs as a set of Windows services
separate process, port, etc

• Services run with privileges of the Windows
service account

SQL Server Security Basics: Services

SQL Server Security Basics: Principals

Windows Server Level

• Windows accounts and groups

SQL Server Level

• SQL Server logins and SQL Server roles

Database Level

• Database users and database roles

SQL Server Security Basics: Principals

Windows Server Level

• Used to log into SQL Server

SQL Server Level

• Used to log into SQL Server

Database Level

• Database users are mapped to a login/account

• Used to access databases and data

SQL Server Security Basics: Principals

Windows Operating System

SQL Server Instance 1 (Windows Service)

Database 1

Table 2 Table 2 Table 3

Windows account
Domain\myuser2

Maps to database user
myuser2

Maps to database user
myuser1

SQL Server login
myuser1

SQL Server login
Domain\myuser2

SQL Server Security Basics: Roles

Important Server Roles

• Sysadmin role = DBA

• Public role = Everyone with connect

Important Database Roles

• Database owner = owns the database

• Db_owner role = any action in the database

Findings

SQL Servers

Finding SQL Servers: Unauthenticated

TCP/UDP Port Scanning

• Pros: Finds non domain instances

• Cons: Can be slow

Tools

• Metasploit

• Nessus

• SQLping3

• OSQL/SQLCMD

Finding SQL Servers: Authenticated

Service Principal Names (SPN)

• Pros: Fast and returns most SQL Servers on
the domain

• Cons: Will miss instances on non domain
systems

Tools

• setspn.exe

• adfind.exe

• Get-Spn.psm1

10 DEADLY

Configurations

10 Deadly Configurations

1. Logins with Sysadmin Privileges

2. Logins with IMPERSONATE Privileges

3. Database User Privileges

4. Procedures with SQL Injection

5. Public EXECUTE on Dangerous Procedures

6. Service Account Privileges

7. Domain User Privileges

8. Database Link Chaining and Excessive
Privileges

9. Weak and Default Passwords

10. No Transport Encryption

#1

Logins with

Sysadmin Privileges

#1 Logins with Excessive Privileges

What’s the issue?

• Applications connecting to SQL Server with
the “sa” login

• Applications connecting to SQL Server with
another login with the sysadmin role

#1 Logins with Excessive Privileges

Why is it a problem?

• Full access to all databases on server

• Often full access to the Windows server

• Free tools available for taking over the server

‒ Metasploit mssql_payload module

‒ Metasploit mssql_payload_sqli module

#1 Logins with Excessive Privileges

What are the attack requirements?

• SQL injection or a direct connection with
credentials to log into SQL Server

#1 Logins with Excessive Privileges

What’s the fix?

• Don’t use the “sa” login for your application

• Don’t assigned sysadmin privileges

• Do assign only the privileges necessary for the
application to meet functional requirements

#2

Logins with

IMPERSONATE Privileges

#2 Logins with IMPERSONATE privilege

What’s the issue?

• SQL Server logins with IMPERSONATE
privileges

#2 Logins with IMPERSONATE privilege

Why is it a problem?

• Intended to decrease privileges

• Often used to increase privileges

• Allows on demand escalation with no
constraints

• Sometimes results in sysadmin privileges

#2 Logins with IMPERSONATE privilege

What are the attack requirements?

• SQL injection or a direct connection with
credentials to log into SQL Server

• Login has privs to impersonate another login

• For sysadmin, login must of have privs to
impersonate a sysadmin or additional
escalation path

Why is it a problem?

#2 Manual Attack

Find logins that can be impersonated

#2 Manual Attack

Impersonate logins

#2 Manual Attack

Impersonate logins

#2 Manual Attack

Impersonate logins

#2 Automating the Attack

New Tools Released

• PowerShell

‒ Invoke-SqlServer-Escalate-ExecuteAs.psm1

• Metasploit

‒ mssql_escalate_execute_as.rb

‒ mssql_escalate_execute_as_sqli.rb

Why is it a problem?

#2 Automating the Attack

PowerShell

Why is it a problem?

#2 Automating the Attack

Metasploit

DEMO

#2 DEMO

DEMO

#2 Logins with IMPERSONATE privilege

What’s the fix?

• Don’t use the IMPERSONATE privilege to
access external resources

• Do consider using signed stored procedures as
an alternative

#3

Database Users with

Excess Privileges

#3 Database User Privileges

What’s the issue?

• Application logins used to connect to SQL
Server are mapped to database users that can
create stored procedures

• Example = db_owner database role

#3 Database User Privileges

Why is it a problem?

• Database users can create stored procedures
that EXECUTE AS OWNER

• Sysadmins own a lot of application databases

• So…database users can execute queries as
sysadmins

#3 Database User Privileges

What are the attack requirements?

• SQL injection or a direct connection with
credentials to log into SQL Server

• To escalate to sysadmin

‒ Database user can create procedures

‒ Sysadmin owns the database

‒ Database is flagged as trustworthy

Why is it a problem?

#3 Manual Attack

Db_owner Example

USE MyAppDb
GO
CREATE PROCEDURE sp_escalate_me
WITH EXECUTE AS OWNER
AS
EXEC sp_addsrvrolemember
'MyAppUser','sysadmin'
GO

Why is it a problem?

#3 Manual Attack

Db_owner Example

USE MyAppDb
GO
CREATE PROCEDURE sp_escalate_me
WITH EXECUTE AS OWNER
AS
EXEC sp_addsrvrolemember
'MyAppUser','sysadmin'
GO

SYSADMIN
is the

OWNER

#3 Automating the Attack

New Tools Released

• PowerShell

‒ Invoke-SqlServer-Escalate-Dbowner.psm1

• Metasploit

‒ mssql_escalate_dbowner.rb

‒ mssql_escalate_dbowner_sqli.rb

#3 Automating the Attack

PowerShell

#3 Automating the Attack

Metasploit

#3 DEMO

DEMO

#3 Database User Privileges

What’s the fix?

• Don’t provide database users with privileges
to create procedures

• Don’t allow sysadmins to own application
databases

• Don’t flag databases as trustworthy
(when possible)

#4
Procedures with

SQL Injection

#4 Procedures with SQL Injection

What’s the issue?

• Stored procedures using dynamic SQL
insecurely

• Stored procedures configured to run as a login
with excessive privileges

#4 Procedures with SQL Injection

Why is it a problem?

• Can be vulnerable to SQL injection

• Can provide unauthorized data access

• Can be used to escalate privileges in some
cases

#4 Procedures with SQL Injection

What are the attack requirements?

• SQL injection or a direct connection with
credentials to log into SQL Server

• Dynamic SQL is used in the procedure

• Concatenating strings

#4 Procedures with SQL Injection

What are the attack requirements?

• Privilege escalation requirements

‒ WITH EXECUTE AS OWNER

• Database does have to be marked as trusted

‒ Signed with a certificate login

• Database does NOT have to be marked as
trusted

Find Signed Stored Procedures with Dynamic SQL

#4 Manual Attack

Review Code

#4 Manual Attack

CREATE PROCEDURE sp_sqli2

@DbName varchar(max)

AS

BEGIN

Declare @query as varchar(max)

SET @query = 'SELECT name FROM

master..sysdatabases where name

like ''%'+ @DbName+'%'' OR

name=''tempdb''';

EXECUTE(@query)

END

GO

Review Code

#4 Manual Attack

CREATE PROCEDURE sp_sqli2

@DbName varchar(max)

AS

BEGIN

Declare @query as varchar(max)

SET @query = 'SELECT name FROM

master..sysdatabases where name

like ''%'+ @DbName+'%'' OR

name=''tempdb''';

EXECUTE(@query)

END

GO

PURE EVIL

Inject Query to Execute OS Commands

#4 Manual Attack

EXEC MASTER.dbo.sp_sqli2
'master'';EXEC master..xp_cmdshell ''whoami''--';

Inject Query to Execute OS Commands

#4 Manual Attack

EXEC MASTER.dbo.sp_sqli2
'master'';EXEC master..xp_cmdshell ''whoami''--';

INJECTION

Review Code

#4 Manual Attack

CREATE PROCEDURE sp_sqli2

@DbName varchar(max)

AS

BEGIN

Declare @query as varchar(max)

SET @query = 'SELECT name FROM

master..sysdatabases where name

like ''%master';EXEC

master..xp_cmdshell ''whoami''-

-%'' OR name=''tempdb''';
EXECUTE(@query)

END

GO

Inject Query to Execute OS Commands

#4 Manual Attack

#4 Automating the Attack

New Tools Released

• PowerShell

‒ Get-SqlServer-Escalate-SpSource.psm1

#4 Automating the Attack

New Tools Released

• PowerShell

‒ Get-SqlServer-Escalate-SpSource.psm1

Export Stored Procedures

#4 Automating the Attack

New Tools Released

• PowerShell

‒ Get-SqlServer-Escalate-SpSource.psm1

View Output

#4 Procedures with SQL Injection

What’s the fix?

• Do use parameterized queries

• Don’t concatenate strings in evil ways

• Don’t use EXECUTE AS OWNER to access
external resources

• Don’t flag databases are trustworthy

#4 Procedures with SQL Injection

What’s the fix?

• Do consider using signed procedures

1. Create certificate

2. Create login from certificate

3. Only assign required privileges to the
certificate login

4. Sign procedures with certificate to provide
access to required local and external
resources

#4 Procedures with SQL Injection

What’s the fix?

-- Create procedure with sqli fix
CREATE PROCEDURE sp_sqli_fix
@DbName varchar(max)
AS
BEGIN
SELECT name FROM
master..sysdatabases WHERE name =
'tempdb' OR name = @DbName;
END
GO

No EXECUTE AS OWNER

No concatenating
strings

#5
Public EXECUTE on

Dangerous Procedures

#5 Execute on Dangerous Procedures

What’s the issue?

• Dangerous stored procedures and functions
are available to the public server role by
default

#5 Execute on Dangerous Procedures

Why is it a problem?

• Remember, public = all logins

• Impact varies depending on procedure or
function

#5 Execute on Dangerous Procedures

Why is it a problem?

• xp_regread - Read registry as service account

• xp_dirtree - Capture/crack service account
NetNTLMv2 password hashes (35 billion a sec)

• SUSER_NAME - Enumerate SQL Server logins

• SUSER_SNAME - Enumerate domain users

#5 Execute on Dangerous Procedures

What are the attack requirements?

• SQL injection or a direct connection with
credentials to log into SQL Server

SUSER_SNAME Example: Get domain

#5 Manual Attack

Domain of SQL Server

SUSER_SNAME Example: Get Sample RID with SUSER_SID

#5 Many Attack

Full RID of
Domain Admins group

SUSER_SNAME Example: Extract Domain SID

#5 Manual Attack

Grab the first 48 Bytes of the full RID

RID = 0x0105000000000005150000009CC30DD479441EDEB31027D000020000
SID = 0x0105000000000005150000009CC30DD479441EDEB31027D0

SUSER_SNAME Example: Create new full RID

#5 Manual Attack

1. Start with number, 500
2. Convert to hex, F401
3. Pad with 0 to 8 bytes, F4010000
4. Concatenate the SID and the new RID

SID = 0x0105000000000005150000009CC30DD479441EDEB31027D0
RID = 0x0105000000000005150000009CC30DD479441EDEB31027D0F4010000

SUSER_SNAME Example: Enumerate Domain Account

#5 Manual Attack

1. Start with number, 500
2. Convert to hex, F401
3. Pad with 0 to 8 bytes, F4010000
4. Concatenate the SID and the new RID

SID = 0x0105000000000005150000009CC30DD479441EDEB31027D0
RID = 0x0105000000000005150000009CC30DD479441EDEB31027D0F4010000

Enumerated domain
user

SUSER_SNAME Example: Enumerate All Domain Accounts,
Groups, and Computers

#5 Manual Attack

1. Increment number
2. Repeat 10,000 or more times

SUSER_SNAME Example: Network Takeover

#5 Manual Attack

1. Dictionary attack
2. Escalate privileges locally
3. Escalate privileges on the domain

#5 Automating the Attack

New Tools Released

• PowerShell

‒ Get-SqlServer-Enum-SqlLogins.psm1

‒ Get-SqlServer-Enum-WinAccounts.psm1

• Metasploit

‒ mssql_enum_sql_logins.rb

‒ mssql_enum_domain_accounts.rb

‒ mssql_enum_domain_accounts_sqli.rb

#5 Automating the Attack

#5 Automating the Attack

#5 DEMO

What’s the fix?

#5 Execute on Dangerous Procedures

What’s the fix?

• Do deny execute privileges on dangerous
stored procedures and functions

• Do use one of the many hardening guides
available online or provided by Microsoft and
others

#6

Service Accounts with

Excessive Privileges

#6 Service Account Privileges

What’s the issue?

• SQL Server service (Windows) accounts
configured with local or domain admin
privileges

• The same SQL Server service (Windows)
account is often used to run multiple
unrelated servers or “shared”

#6 Service Account Privileges

Why is it a problem?

• Shared SQL Server service accounts have
inherit trust relationships, because the service
account has sysadmin privileges

#6 Service Account Privileges

Why is it a problem?

• Sysadmins can impersonate the SQL Server
service account

‒ xp_cmdshell

‒ agent options like cmdexec, PowerShell, and
vbscript

‒ Custom stored procedure

#6 Service Account Privileges

Why is it a problem?

• Oh yeah, don’t forget Public logins can steal
service account password hashes

#6 Service Account Privileges

What are the attack requirements?

• SQL injection or a direct connection with
credentials to log into SQL Server

• Service account is configured with local or
domain admins privileges

• xp_cmdshell, xp_dirtree, or xp_fileexists
procedure can be used

#6 Manual Attack: Execute as Service

Running OS
commands as

service account

Service account
is a local

administrator

#6 Manual Attack: Shared Accounts

In
te

rn
e
t

D
M

Z
In

tr
a
n

e
t

DB2

Captain Evil

DB1

Share Account +

Xp_cmdshell+

osql -E

#6 Manual Attack: SMB Relay

Captain Evil

Server A

Server B

1

2

3

4

5

#6 DEMO

What’s the fix?

#6 Service Account Privileges

What is the fix?

• Non-clustered servers

‒ Don’t run services as LocalSystem

‒ Don’t use local or domain accounts with local
administrator privileges

‒ Do use virtual service accounts

• Like a sandboxed NetworkService account

#6 Service Account Privileges

What is the fix?

• Clustered servers

‒ Do use domain accounts configured with least
privilege

‒ Don’t use the same service account across
servers that house unrelated applications

#7

Domain Users assigned

Excessive Privileges

#7 Domain User Privileges

What’s the issue?

• SQL Server Express installed on a domain
system gives ALL domain accounts CONNECT
privileges (through privilege inheritance)

‒ It can then carry over during upgrades

• Database administrators often provide all
domain accounts with database access

#7 Domain User Privileges

Windows Operating System

SQL Server Express

Database 1

Table 2 Table 2

BUILTIN\Users

NT AUTHORITY\Authenticated
Users

Domain Users

(EVERYONE)

#7 Domain User Privileges

Why is that a problem?

• All domain accounts have unauthorized access
to database servers

• During network penetration tests it often
leads to privilege escalation paths that end in
Domain Admin

#7 Domain User Privileges

What are the attack requirements?

• A domain account

• List of SQL Servers

‒ SPNs can be dumped from Active Directory

No scanning required ☺

#7 Manual Attack

#7 Automating the Attack

New Tools Released

• PowerShell

‒ Get-SqlServer-Escalate-CheckAccess.psm1

Other Tools

• Metasploit mssql_sql module

#7 Automating the Attack

New Tools Released

• PowerShell

‒ Get-SqlServer-Escalate-CheckAccess.psm1

PS C:\Get-SqlServer-Escalate-CheckAccess -ShowSum | export-csv c:\temp\sql-server-excessive-privs.csv
[*] --
[*] Start Time: 04/01/2014 10:00:00
[*] Domain: mydomain.com
[*] DC: dc1.mydomain.com
[*] Getting list of SQL Server instances from DC as mydomainmyuser...
[*] 5 SQL Server instances found in LDAP.
[*] Attempting to login into 5 SQL Server instances as mydomainmyuser...
[*] --
[-] Failed - server1.mydomain.com is not responding to pings
[-] Failed - server2.mydomain.com (192.168.1.102) is up, but authentication/query failed
[+] SUCCESS! - server3.mydomain.com,1433 (192.168.1.103) - Sysadmin: No - SvcIsDA: No
[+] SUCCESS! - server3.mydomain.comSQLEXPRESS (192.168.1.103) - Sysadmin: No - SvcIsDA: No
[+] SUCCESS! - server4.mydomain.comAppData (192.168.1.104) - Sysadmin: Yes - SvcIsDA: Yes
[*] --
[*] 3 of 5 SQL Server instances could be accessed.
[*] End Time: 04/01/2014 10:02:00 [*] Total Time: 00:02:00
[*] --

#7 Automating the Attack

New Tools Released

• PowerShell

‒ Get-SqlServer-Escalate-CheckAccess.psm1

PS C:\Get-SqlServer-Escalate-CheckAccess -ShowSum | export-csv c:\temp\sql-server-excessive-privs.csv
[*] --
[*] Start Time: 04/01/2014 10:00:00
[*] Domain: mydomain.com
[*] DC: dc1.mydomain.com
[*] Getting list of SQL Server instances from DC as mydomainmyuser...
[*] 5 SQL Server instances found in LDAP.
[*] Attempting to login into 5 SQL Server instances as mydomainmyuser...
[*] --
[-] Failed - server1.mydomain.com is not responding to pings
[-] Failed - server2.mydomain.com (192.168.1.102) is up, but authentication/query failed
[+] SUCCESS! - server3.mydomain.com,1433 (192.168.1.103) - Sysadmin: No - SvcIsDA: No
[+] SUCCESS! - server3.mydomain.comSQLEXPRESS (192.168.1.103) - Sysadmin: No - SvcIsDA: No
[+] SUCCESS! - server4.mydomain.comAppData (192.168.1.104) - Sysadmin: Yes - SvcIsDA: Yes
[*] --
[*] 3 of 5 SQL Server instances could be accessed.
[*] End Time: 04/01/2014 10:02:00 [*] Total Time: 00:02:00
[*] --

#7 Automating the Attack

New Tools Released

• PowerShell

‒ Get-SqlServer-Escalate-CheckAccess.psm1

#7 Domain User Privileges

What’s the fix?

• Don’t provide the “Domain Users” group with
privileges to log into any SQL Server

• Do remove the default login associated with
the “BUILTIN\Users” group

#8

Database Link
Chaining & Excessive Privileges

#8 Excessive Database Link Privileges

What the issue?

• Database links are being configured with
excessive privileges

• Database links can be crawled via
OPENQUERY

• xp_cmdshell can be used via OPENQUERY

#8 Excessive Database Link Privileges

Why is that a problem?

• Attackers can often gain sysadmin privileges by
crawling database link chains

• Move from low value database to high one

• Take over Windows server via xp_dirtree or
xp_cmdshell

• Cached credentials can be recovered by admins

#8 Excessive Database Link Privileges

What are the attack requirements?

• SQL injection or a direct connection with
credentials to log into SQL Server

• One or more database links

• Database links preconfigured with sysadmin
privileges

#8 Excessive Database Link Privileges

#8 Excessive Database Link Privileges

Penetration Test Stats

• Database links exist (and can be crawled) in
about 50% of environments we’ve seen

• The max number of hops we’ve seen is 12

• The max number of server crawled is 226

• Usually executed through SQL injection

#8 Automating the Attack

New Tools Released

• PowerShell

‒ Get-MSSQLLinkPasswords.psm1

By Antti Rantasaari

Old Tools Released

• Metasploit

‒ mssql_linkcrawler.rb

‒ mssql_linkcrawler_sqli.rb

#8 DEMO

What’s the fix?

#8 Excessive Database Link Privileges

What’s the fix?

• Don’t use database links if you don’t need
them

• Do configure them with least privilege

• Do configure them to inherit the privileges of
the current login when possible

#9

Weak or Default

Passwords

#9 Weak or Default Passwords

What’s the issue?

• Default sa account password

• Default vendor account passwords

• Weak passwords

‒ test:test

‒ sa:password

‒ Etc…

#9 Weak or Default Passwords

Why is it a problem?

• Attackers can quickly gain unauthorized
access to servers and data

• Tools for attack are everywhere

‒ Metasploit

‒ Hydra

‒ SQLPing3

‒ Etc..

#9 Weak or Default Passwords

What are the attack requirements?

• List of SQL Servers

‒ Usually requires scanning

#9 Weak or Default Passwords

What’s the fix?

• Do set strong password policies

‒ They can be inherited from the domain

• Do change default vendor passwords

• Do disable the default sa account

• Do enforce development environments

#10

No Transport

Encryption

#10 No Transport Encryption

What’s the issue?

• By default, database communications are not
encrypted

#10 No Transport Encryption

What is it a problem?

• Sensitive data can be exposed via MITM

• SQL injection via MITM

‒ Can result in database and system compromise

• Free tools available

‒Atticuss/SQLViking (Go see the talk!)

‒ Ettercap and fancy filters

https://github.com/Atticuss
https://github.com/Atticuss/SQLViking

#10 No Transport Encryption

What are the attack requirements?

• Man in the middle position or local admin on
the client/server

#10 No Transport Encryption

What’s the fix??

• Do enable SSL encryption

http://support.microsoft.com/kb/316898

What can be done?

What can be done?

Prevent Unauthorized Access

• Enforce least privilege everywhere

• Use secure impersonation methods

• Parameterize queries in stored procedures

Detect Attempted Attacks

• Profiler (server access)

• DML Triggers (data mods)

• DDL Triggers (structure mods)

• SQL Server Audit (server/database level)

Questions?

BE SAFE and

HACK RESPONSIBLY

