
Rocks Cluster
Administration

Learn how to manage your
Rocks Cluster Effectively

Module 1: Customizing Your Cluster

Customizing Nodes

• Using built in node attributes and the
Rocks Command line

• Using extend-node.xml files.
• Creating custom appliance types.

Attributes
• Attributes are settings within the

rocks database to enable and disable
features.

• Attributes are controlled by the rocks
command line. You will need to
become familiar with this utility
before beginning any Rocks
customization.

Example Attributes
• “rocks list attr” returns

system wide attributes.

– Info_ClusterName

– rocks_version

– Kickstart_Timezone

– Kickstart_Lang

– ssh_use_dns

– And many others.

• Changing these allows
you to reconfigure a
running cluster.

Appliance Attributes
• Appliance attributes are settings

within the rocks database to enable
and disable features on nodes based
on the selected appliance type.

• You can create custom appliances
that are as simple as compute nodes
with modified default attributes.

Ex: Appliance Attributes
• “rocks list appliance” returns a

list of available appliance types

– frontend

– compute

– nas

– network

– power

– ipmi

– tile

– login

• “rocks list appliance attr
compute” returns a list of
compute node attributes.

– managed

– pbs

Node Attributes
• Node attributes are settings for

individual nodes of the cluster. They
default to the appliance attributes,
but can be modified node to node.

Ex: Node Attributes
• “rocks list host attr”

returns a list of all node
attributes from all
nodes.

• “rocks list host attr
hostname” returns a list
of all attributes for the
requested host.

Rocks command line
• The rocks command line has limited

documentation, but decent on-line help. To get
help with the rocks command line simply type
“rocks” and hit enter. You will get a full list of
available rocks commands.

• The most widely used are:
– rocks list

– rocks set

– rocks sync

– rocks report

LAB 1:
Customizing with the Rocks Command

line.

In our example we will create a custom
appliance that adds X11 to the node

and makes it a submit host.
This would be a good fit for installing

Rocks on lab PCs to use them as
submission and job hosts.

First you will need to create the node
profile. This is done using a new node

XML file.
Start by copying

/export/rocks/install/site-profiles/5.4.3/nodes/skeleton.xml

To
/export/rocks/install/site-profiles/5.4.3/nodes/yourname.xml

Note: Substitute 5.4.3 for your rocks version and
your first name for yourname.xml.
$ cd /export/rocks/install/site-profiles/5.4.3/nodes

$ cp skeleton.xml yourname.xml

For our simple example we do not need
to edit the file as we are not adding

anything extra to the node. We will use
the rocks attributes for that. However,
let's take a look inside the file anyway.

The node XML file contains the
following sections:
• <description>
•<changelog>
•<main>
•<pre>
•<package>
•<post>

Description
• The description should contain a short

description of the purpose behind your node
definition.

• Ours should probably read something like this:
The lab node provides a method of installing Linux
based HPC nodes as access points to the cluster in
a lab environment. This allows the lab to be used
as computational resources outside of normal
operating hours.

Main
• This section will rarely be used in

custom appliances. It is used to
control the main commands within
the kickstart system.

• For example setting a root password.
– <rootpw>--iscrypted encryptedpassword</rootpw>

Pre section
• This section is mainly used for

custom partitioning of nodes.
• It uses standard shell scripting

directives as well as standard
kickstart variables.

• We will not cover custom partitioning
in this class unless someone requests
it.

Package section
• This is not so much a section as a series of tags. These tags tell a

package to install based on the internal package name.

• For example you can have an rpm file named john.rpm but it
contains a package definition for vim. You would install it using
<package>vim</package> not <package>john</package>

• One strange thing to keep in mind is that this will install the newest
package of a given name based on the time stamp of the rpm file
name, not the internal version number.

Post section
• This section contains any post installation scripting. These

scripts run after all RPMs have been installed, but before the
system boots for the first time.

• It is possible to write a post install script that works correctly on
an already running system, but fails when installed during the
initial cluster installation. If you plan on sharing your roll be
sure to test it in both scenarios.

• Wrapping <eval> tags around a section of the post install
causes it to execute on the head node after a node installs.

Next you will need to link your new
appliance into the Rocks appliance
graph. Since we are simply extending a
standard compute appliance this is
fairly easy.
You will need to create a graph XML file
in the /export/rocks/install/site-profiles/5.4.3/graphs/default
directory.

$ cd /export/rocks/install/site-profiles/5.4.3/graphs/default

$ edit yourname-app.xml

<?xml version="1.0" standalone="no"?>

<graph>

<description>

</description>

<changelog>

</changelog>

<edge from="yourname">

 <to>compute</to>

</edge>

<order gen="kgen" head="TAIL">

 <tail>yourname</tail>

</order>

</graph>

Sample content of graph XML files.

Now we have to rebuild the cluster
distribution to include our new

appliance files.
cd /export/rocks/install

rocks create distro

Only one student should do this step
after everyone has completed their

custom appliance configuration.
Let's take a quick break while the

system builds the distribution.

Now we have to add the custom
appliance to the database.

rocks add appliance yourname membership='yourname' \
shortname='yourinitials' node='yourname'

Now we need to tell the cluster that
your node gets X11 installed and is a

submit and execute host.
rocks set appliance attr yourname x11 true

rocks set appliance attr yourname exec_host true

rocks set appliance attr yourname submit_host true

Module 2: Adding Custom Applications

There are two basic ways to add
applications to a Rocks Cluster.

• NFS Mounted
•Locally Installed

There are also three different types of
custom applications you can install.

• From Source Code
• From Commercial Media

• From RPM Packages

NFS Mounted
The simplest method of adding software to the cluster is by using the
already existing NFS mounted applications folder “/share/apps”

1) Install the software on the head node following manufacturer
instructions. Pick /share/apps/application_name as the installation
location.
2) Add any custom environment settings to /etc/profile.d/appname.sh
3) Add /etc/profile.d/appname.sh to the 411 Service configuration

1) Add the file name to the list in /var/411/Files.mk
2)Execute make restart in /var/411

4)If there are no custom environment settings needed you do not have
to update the 411 service definitions.

The 411 Service
The 411 Service is an important part of the Rocks Cluster management
 suite and it is important that we cover a little of how it works here.
1)411 keeps configuration files consistent across the cluster.
2)The list of files that are the same everywhere is contained in
/var/411/Files.mk
3)The 411 service makes provisions for various configurations by node
type.

1)These node type configurations are stored in the
/var/411/Group.mk file.
2)Each group has its own subfolder that contains common
configuration files under /var/411/groups/groupname

4) Modifications to any file managed by the 411 service automatically
get pushed to the nodes in the cluster. It is important to look at this
configuration when doing customization.

Let's log into the cluster and look around the 411 configuration
directory now.

Locally Installed
Installing applications locally on the nodes is a lot harder, but has the
advantage of lower network impact.
1) Install the software on the head node following manufacturer
instructions. This can be installed anywhere. On our campus we
choose to use /opt/appname for our custom packages.
2) Add any custom environment settings to /etc/profile.d/appname.sh
3) No comes the tricky part, you have to figure out a method of
mirroring this application to the rest of the cluster nodes.

1)A simple way is to use the tentakel command along with an rsync
command to replicate the software to the other nodes. (It works,
but does not guarantee that all the nodes remain in sync over time)
2)The best method is to create an RPM of the installed files and add
your custom RPM to the configuration scripts.

Deploying RPM Software

• This is the easiest to deploy, mainly
because it already has a mostly
automated installation.

• To deploy RPM software you simply
copy the RPM into the contrib folder
of the Rocks install directory and add
it to a node.xml file.

Ex: Adding RPM
cp myfile.rpm /export/rocks/install/contrib/5.4.3/x86_64/RPMS

The you will need to edit or create an extend-compute.xml file.

cd /export/rocks/install/site-profiles/5.4.3/nodes

cp skeleton.xml extend-compute.xml (unless it already exists).

(In our lab we will use extend-yourname.xml)

You will need to add package tags to the xml file like so:

Just above the <post> tag in the file you will add a line like this:

<package>packagename</package>

Then exactly like the custom appliance you have to rebuild the distribution to make the package available.

cd /export/rocks/install

rocks create distro

(Only one student should do this step)

This will make the rpm available to the nodes. The way Rocks recommends adding the package to all the nodes
is to reinstall all the nodes. I feel that this is not necessary in most cases you can do the following:

tentakel yum install packagename

Installing Commercial Software

• This is best done either as an NFS
deployment, or as a custom roll.

• In our final lab we will build a custom
roll.

Installing Software from Source

• This is best done either as an NFS
deployment, or as a custom roll.

• If the source code has options for building
RPM files you can follow the procedures for
installing RPM based software.

• In our final lab we will build a custom roll.

Lab 2: Installing a Custom Application

Step one: Get the RPM rocks 5.4.3 is
based on CentOS 5.6 so you can use

RPMS designed for CentOS 5.6
For the lab pick one from here:

http://mirror.centos.org/centos/5.6/extras/x86_64/RPMS/

Step two: Copy your RPM to right place:
cp yourrpm.rpm /export/rocks/install/contrib/5.4.3/x86_64/RPMS

Step three: Update node.xml
Edit
/export/rocks/install/site-profiles/nodes/yourname.xml

Now we have to rebuild the cluster
distribution to include our new

appliance files.
cd /export/rocks/install

rocks create distro

Only one student should do this step
after everyone has completed their

custom appliance configuration.
Let's take a quick break while the

system builds the distribution.

Module 3: Rocks Rolls

What exactly is a Rocks Roll?
It is a set of xml files and software
distribution packages designed for easy
deployment to Rocks clusters.
What is the advantage of a Roll?
The main advantage is portability to
multiple clusters. If you only manage
one cluster the processes we discussed
so far will work fine.

How does a roll Work?
The contents of a roll are basically the
same set of XML files we have already
discussed. A roll consists of node.xml
files, graph.xml files, and software
packages, organized in a manner that
allows them to be automatically
installed to cluster nodes.

In newer version of Rocks the
developers have made it very easy to
create custom Rolls, but it still requires
that you have an understanding of how
they work, and a basic knowledge of
xml. We will begin by examining the
contents of a Rocks Roll source code
directory.

Structure of a Roll

➔ Makefile

➔ graphs

➔ default
➔ rollname.xml

➔ nodes

➔ rollname.xml

➔ RPMS

➔ src

➔ Makefile

➔ linux.mk

➔ rollname
➔ Makefile

➔ version.mk

➔ sunos.mk

➔ Usersguide
➔ Makefile

➔ copyrights.sgml

➔ Images
➔ i-01.png

➔ index.sgml

➔ installing.sgml

➔ preface.sgml

➔ using.sgml

➔ version.mk

➔ version.mk

• The only files you
need to worry about
for simple rolls are
the rollname.xml
files under graphs
and nodes.

• More complex rolls
will require adding
contents to the src
folder.

Lab 3: Build a Custom Roll

Create a Roll Directory
• On Rocks 5.3 System or newer
cd /export/site-roll/rocks/src/roll
rocks create new roll yourname
This will result in a roll called
yourname. You can also specify a
version number to match the version of
a particular software package you are
installing.

Part I: Packages
•Rolls require packages to be in native OS format.
 (RPM for Linux PKG for Solaris)
•Advantages to using packages:

•You can inspect software with native tools.
•Can install by hand using OS tools.
•Easy to track because OS knows about the
package.

•Disadvantages
•You have to create the package
•Mechanisms can cause odd behavior.

Package build requirements:
● All requirements are met by using a
frontend node for the build process.
● Faith

●There is a large set of included make
rules that allow us to quickly package
software.
●You must trust what the system is
doing.

Different Ways of Packaging Software:
●Build or install the software by hand, then
point “#rocks create package” at the
installation directory.
●Build an RPM spec file.
●Use the Rocks-supplied Make infrastructure.
●We will build a package using the first and
last methods. Building packages using RPM
spec files is beyond the scope of this course.

The remainder of the lab instructions
will be in the form of a handout.

	Sample Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

