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Abstract

1 Introduction

2 Definitions and notation

Let the symbol | denote failure.

2.1 Field elements

Let F be a finite field of prime order p. For an element = € I, let res(x) be
the integer representative of z € [0, p—1]. We call an element z € F negative
if res(x) is odd. Call an element in F square if it is a quadratic residue, i.e.
if there exists /Z € F such that \/z° = z. There will in general be two such
square roots; let the notation y/z mean the unique non-negative square root
of z. If p=1 (mod 4), then F contains an element i := /—1.

Let £ := [logys p|. Each = € I has a unique little-endian byte representation,
namely the sequence

-1
F_to_bytes(z) := [b;]'5 where b; € [0,255] and Z 280 . b; = res(z)
=0

[[TODO: bytes to []]
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2.2 Groups

For an abelian group G with identity O, let nG denote the subgroup of G
which are of the form n - g for some g € G. Let G, denote the n-torsion
group of G, namely the subgroup {g € G:n-g= O}.

2.3 Edwards curves

We will work with twisted Edwards elliptic curves of the form

Ea,d:y2+a-x2:l+d~w2-y2

where z,y € F. Twisted Edwards curves curves have a group law

T1Y2 + T2Y1  Y1Y2 — aT1T2 )

x1,Y1 + xr2,Y2) = ;
( y ) ( 4 ) <1 + dxlxgylyg 1-— d.’L‘l.T}leyQ

with identity point O := (0,1) and group inverse operation

—(.T,y) - (_:U?y)

The group law is called complete if is produces the correct answer (rather
than e.g. 0/0) for all points on the curve. The above formulas are complete
when d and ad are nonsquare in F, which implies that a is square. When
these conditions hold, we also say that the curve itself is complete.

Let the number of points on the curve be

#Ea,d =h- q
where ¢ is prime and h € {4,8}. We call h the cofactor.

For P = (z,y) € E, we can define the projective homogeneous form of P as
(X,Y, Z) with Z # 0 and
(z,y) = (X/Z2,Y/Z)

and the extended homogeneous form as (X,Y, Z, T) where additionally XY =
ZT. Extended homogeneous form is popular because it supports simple and
efficient complete addition formulas [?].



2.4 Montgomery curves

When a — d is square in F, the twisted Edwards curve E, 4 is isomorphic to
the Montgomery curve

d
vQ—u'<u2+2‘a+ ‘u—i-l)
a—d

by the map

(u,0) (1+y 1+y 1 2 >
U, V) = , =
-y 1-y 2 Va—d

(2.y) = <u Va—d u—l)

with inverse

v 2 7 w41

If M = (u,v) is a point on the Montgomery curve, then the u-coordinate
of 2M is (u? — 1)%/(4v?) is necessarily square. It follows that if (x,7) is a
point on E, 4, and a — d is square, then (14 y)/(1 — y) is also square.

Likewhise, when d — a is square in F, E, 4 is isomorphic to the Montgomery

curve J
v2:u-(u2—2-a+ -u—|—1>
a—d

by the map

(u, ) <y+1 y+1 1 2 >
u,v) = , =
y—1 y—1 =z Jd—a

(z.y) = <u Vd—a l—i-u)

2 7 1—u

with inverse

3 Lemmas

First, we characterize the 2-torsion and 4-torsion groups.
Lemma 1. Let E, 4 be a complete Edwards curve. Its 2-torsion subgroup is
generated by (0,—1). The j-torsion subgroup is generated by (1/+/a,0).

Adding the 2-torsion generator to (z,y) produces (—z,—y). Adding the 4-
torsion generator (1/+/a,0) produces (y//a, —x - \/a)



Proof. Inspection. O

Lemma 2. Let E, g4 be a complete twisted Edwards curve over F, and P, =
(x1,y1) be any point on it. Then there are exactly two points Po = (x2,y2)
satisfying x1y2 = x2y1, namely Py itself and (—x1,—y1). That is, there are
etther 0 or 2 points on any line through the origin.

Proof. Plugging into the group operation gives
T1Ys = Toy1 <= P1 — Py = (0,y3)

for some y3. Plugging x = 0 into the curve equation gives y = =41, the
2-torsion points. Adding back, we have P, = P} + (0,+1) = (£x1,+y1) as
claimed. O

Lemma 3. If E, 4 is a complete Edwards curve, then a®? —ad is square in F
(and thus a — d is square in F) if and only if the cofactor of Eq 4 is divisible
by 8.

Proof. Doubling an 8-torsion generator (x,y) should produce a 4-torsion
generator, i.e. a point with y = 0. From the doubling formula, this happens
precisely when y? = ax?, or 2az? = 1 + adz*. This has roots in F if and
only if its discriminant 4a® — 4ad is square, so that a® — ad is square. ]

Lemma 4. If (x2,y2) = 2 (z1,v1) is an even point in E, 4, then (1 — ax3)
is a quadratic residue in F. [[TODO: (y3 —1)]].

Proof. The doubling formula has

oy = 2x191
Y2 + ax?

2 2\ 2
2 Y1 —an
1—azx; = (2+2>
Y1 ary

is a quadratic residue. Now for any point (z,y) € E, 4, we have

so that

(¥ —1)- (1 —az?) =9 + az? — 1 — az’y® = (d — a)z%y?

which is a quadratic residue by Lemma 3. O



4 The Espresso groups

Let E be a complete twisted Edwards curve with a € {£1} and cofactor 4
or 8. We describe the Espresso group G(E) as

Espresso(E) := 2E/E}, /5

This group has prime order gq.

4.1 Group law

The group law on Espresso(E) is the same as that on E.

4.2 Equality
Two elements P := (z1,y1) and P» := (x2,y2) in Espresso(E) are equal if
they differ by an element of Ej, 5.

If h = 4, the points are equal if Pj — P» € E5. By Lemma 2, this is equivalent
to
L1Y2 = T2Y1

If h = 8, the points are equal if P, — P, € E4. By Lemmas 1 and 2, this is
equivalent to
T1Y2 = T2Y1 O T1T2 = —ayiy2

These equations are homogeneous, so they may be evaluated in projective
homogeneous form with X; and Y; in place of x; and y;

4.3 Encoding
We now describe how to encode a point P = (x,y) to bytes. The require-
ments of encoding are that

e Any point P € 2F can be encoded.

e Two points P, () have the same encoding if and only if P —Q € Ej, 5.

When h = 4, we encode a point as \/a(y — 1)/(y + 1)



