
Communication within the Iterative Solver Template

Library (ISTL)∗

Markus Blatt

Interdisziplinäres Zentrum für Wissenschaftliches Rechnen,

Universität Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg,

email: Markus.Blatt@iwr.uni-heidelberg.de

April 27, 2005

Abstract

This document describes usage and interface of the classes meant for setting up
the communication within a parallel programm using ISTL. As most of the commu-
nication in distributed programm occur in the same pattern it is often more efficient
(and of course more easy for the programmer) to build the communication pattern
once in the programm and then use multiple times (e. g. at each iteration step of an
iterative solver).

Contents

1 Introduction 1

2 Communication Software Components 2

2.1 ParallelIndexSet 2

2.2 ParallelLocalIndex 3
2.3 Remote Indices 4
2.4 Communication Interface 5
2.5 Communicator 6

3 Collective Communication 7

1 Introduction

When using the data parallel programming model a set of processes works collectively on
the same set of finite data objects. These might be elements of a finite element grid or
vector entries in a linear algebra computation. Each process works on different partitions
of the global data. Only for this partition it computes updated values.

In large scale parallel codes it is advisable to store the data partition in a local data
structure directly in the local memory of the process. Due to data dependencies the
process needs to access data in the partition of other processes, too. This can either be
done by communicating these values on demand between the processes whenever they
are accessed. This results in data structures that are aware of the data distribution. Or
by augmenting the partition of the process such that it additionally includes the data
values that the other values depend on. Note that now the partitioning is not disjoint
any more but overlapping. Of course the values other processes compute for need to be
updated using communication at so called synchronisation points of the algorithm

In the latter case the data structures do not need to know anything about the data
distribution. This demands more effort from the parallel algorithm designer to make

∗Part of the Distributed and Unified Numerics Environment (DUNE) which is available from the site
http://www.dune-project.org/

1

sure that the data used for computations is valid, i.e. contains an updated value if
another process computes the data for it. Still it allows for fewer synchronisation points
in the algorithms as even in collective operations all input data may already be updated
from other processes due to a previous operation. Between the necessary synchronisation
points one can take advantage of the fast local memory access.

Consider representing a random access container x on a set of processes P = {0, . . . , P−
1}. It is represented by individual pieces xp, where xp is the piece stored on process p of
the P processes participating in the calculation. Although the global representation of
the container is not available on any process, a process p needs to know how the entries
of its local piece xp correspond to the entries of the global container x, which would be
used in a sequential program.

2 Communication Software Components

From an abstract point of view a random access container x : I → K provides a mapping
from an index set I ⊂ N0 onto a set of objects K. Note that we do not require I to be
consecutive. The piece xp of the container x stored on process p is a mapping xp : Ip → K,
where Ip ⊂ I. Due to efficiency the entries of xp should be stored consecutively in memory.
This means that for the local computation the data must be addressable by a consecutive
index starting from 0.

When using adaptive discretisation methods there might be the need to reorder the
indices after adding and/or deleting some of the discretisation points. Therefore this
index does not need to be persistent and can easily be changed. We will call this index
local index.

For the communication phases of our algorithms these locally stored entries must also
be addressable by a global identifier. It is used to store the received values at and to
retrieve the values to be sent from the correct local position in the consecutive memory
chunk. To ease the addition and removal of discretisation points this global identifier has
to be persistent but does not need to be consecutive. We will call this global identifier
global index.

2.1 ParallelIndexSet

Let I ⊂ N0 be an arbitrary, not necessarily consecutive, index set identifying all discreti-
sation points of the computation. Furthermore, let

(Ip)p∈P ,
⋃

p∈P

Ip = I

be an overlapping decomposition of the global index set I into the sets of indices Ip
corresponding to the global indices of the values stored locally in the chunk of process p.

Then the class

template <typename TG, typename TL > class ParallelIndexSet;

realises the one to one mapping

γp : Ip −→ Ilocp := [0, np)

of the globally unique index onto the local index.
The template parameter TG is the type of the global index and TL is the type of

the local index. The only prerequisite of TG is that objects of this type are comparable

2

Figure 1: Index sets for array redistribution

using the less-than-operator <. Not that this prerequisite still allows attaching further
information to the global index or even using this information as the global index. The
type TL has to be convertible to std::size_t as it is used to address array elements.

The pairs of global and local indices are ordered by ascending global index. It is
possible to access the pairs via operator[](TG& global) in log(n) time, where n is the
number of pairs in the set. In an efficient code it is advisable to access the index pairs
using the provided iterators over the index pairs.

Due to the ordering, the index set can only be changed, i.e. index pairs added
or deleted, in a special resize phase. By calling the functions beginResize() and
endResize() the programmer indicates that the resize phase starts and ends, respec-
tively. During the call of endResize() the deleted indices will be removed and the added
index pairs will be sorted and merged with the existing ones.

2.2 ParallelLocalIndex

When dealing with overlapping index sets in distributed computing there often is the
need to distinguish different partitions of an index set.

This is accomplished by using the class

template <typename TA> class ParallelLocalIndex;

as the type for the local index of class ParallelIndexSet. Here the template parameter
TA is the type of the attributes used, e.g. an enumeration Flags defined by

enum Flags {owner , ghost };

where owner marks the indices k ∈ Ip owned by process p and ghost the indices k 6∈ Ip
owned by other processes.

As an example let us look at an array distributed between two processes. In Figure
2 one can see the array a as it appears in a sequential program. Below there are two
different distributions of that array. The local views s0 and s1 are the parts process 0
and 1 store in the case that a is divided into two blocks. The local views t0 and t1 are
the parts of a that process 0 and 1 store in the case that a is divided into 4 blocks and
process 0 stores the first and third block and process 1 the second and fourth block.
The decompositions have an overlap of one and the indices have the attributes owner

and ghost visualised by white and shaded cells, respectively. The index sets Is and It
corresponding to the decompositions sp and tp, p ∈ {0, 1}, are shown in Figure 1 as sets
of triples (g, l, a). Here g is the global index, l is the local index and a is the attribute
(either o for owner or g for ghost).

3

0 1 2 3 4 5 6 7 8 9 10 11

global array

a:

0 1 2 3 4 5 6 5 6 7 8 9 10 11

0 1 2 3 5 6 7 8 9 2 3 4 5 6 8 9 10 11

local views

P0 P1

s0: s1:

t0: t1:

Figure 2: Redistributed array

The following code snippet demonstrates how to set up the index set Is on process 0:

typedef ParallelLocalIndex <Flags > LocalIndex;

typedef ParallelIndexSet <int , LocalIndex > PIndexSet;

PIndexSet sis;

sis.beginResize ();

if(rank ==0){

sis.add(11, LocalIndex (0, ghost));

for(int i=1; i<=6; i++)

sis.add(i-1, LocalIndex(i, owner , i <=1||i>5));

sis.add(0, LocalIndex (7, ghost));

2.3 Remote Indices

To set up communication between the processes every process needs to know which
indices are also known to other processes and which attributes are attached to them on
the remote side. There are scenarios where data is exchanged between different index
sets, e.g. if the data is agglomerated on lesser processes or redistributed. Therefore
communication is allowed to occur between different decompositions of the same index
set.

Let I ⊂ N be the global index set and

(Isp)p∈P ,
⋃

p∈P

Isp = I, and (Itp)p∈P ,
⋃

p∈P

Itp = I

be two overlapping decompositions of the same index set I. Then an instance of class
RemoteIndices on process p ∈ P stores the sets of triples

rsp→q = {(g, (l, a), b) | g ∈ Isq ∧ g ∈ Itp, l = γsp(g), a = αs
p(l), b = αt

q(γ
t
q(g))} (1)

and

rtp→q = {(g, (l, a), b) | g ∈ Isq ∧ g ∈ Itp, l = γtp(g), a = αt
p(l), b = αs

p(γ
s
p(g))} , (2)

for all q ∈ P. Here αs
p and αt

p denote the mapping of local indices on process p onto
attributes for the index set Isp and Itp as realised by ParallelLocalIndex. Note that the
sets rsp→q and rtp→q will only be nonempty if the processes p and q manage overlapping
index sets.

4

For our example in Figure 2 and Figure 1 the interface between Is and It on process
0 is:

rs0→0 = {(0, (0, o), o), (1, (1, o), o), (2, (2, o), o), (3, (3, o), g), (5, (5, o), g), (6, (6, g), o)}

rt0→0 = {(0, (0, o), o), (1, (1, o), o), (2, (2, o), o), (3, (3, g), o), (5, (4, g), o), (6, (5, o), g)}

rs0→1 = {(2(2, o), g), (3, (3, o), o), (4, (4, o), o), (5, (5, o), o), (6, (6, g), g)}

rt0→1 = {(5, (4, g), g), (6, (5, o), o), (7, (6, o), o), (8, (7, o), o), (9, (8, g), o)}

This information can either be calculated automatically by communicating all indices in
a ring or set up by hand if the user has this information available. Assuming that sis is
the index set Is and tis the index set It set up as described in the previous subsection
and comm is an MPI communicator then the simple call

std::cout <<rank <<" isxset: "<<sis <<std::endl;

on all processes automatically calculates this information and stores it in riRedist. For
a parallel calculation on the local views s0 and s1 calling

riRedist.rebuild <true >();

on all processes builds the necessary information in riS.

2.4 Communication Interface

With the information provided by class RemoteIndices the user can set up arbitrary com-
munication interfaces. These interfaces are realised in template<typename T> class Interface,
where the template parameter T is the custom type of the ParallelIndexSet represent-
ing the index sets. Using the attributes attached to the indices by ParallelLocalIndex

the user can select subsets of the indices for exchanging data, e.g. send data from indices
marked as owner to indices marked as ghost.

Basically the interface on process p manages two sets for each process q it shares
common indices with:

isp→q = {l|(g, (l, a), b) ∈ rsp→q|a ∈ As ∧ b ∈ At}

and
itp→q = {l|(g, (l, a), b) ∈ rtp→q|a ∈ At ∧ b ∈ As} ,

where As and At are the attributes marking the indices where the source and target of
the communication will be, respectively.

In our example these sets on process 0 will be stored for communication if As = {o}
and At = {o, g}:

is0→0 = {0, 1, 3, 5} it0→0 = {0, 1, 3, 4}

is0→1 = {2, 3, 4, 5} it0→1 = {5, 6, 7, 8} .

The following code snippet would build the interface above in infRedist as well as
the interface infS to communicate between indices marked as owner and ghost on the
local array views s0 and s1:

RemoteIndices <PIndexSet > riS(sis ,sis , comm , v, true);

riS.rebuild <false >();

std::cout <<std::endl <<"begin"<<rank <<" riS="<<riS <<" end"<<rank <<std::en

5

Combine <EnumItem <Flags ,ghost >,EnumItem <Flags ,owner >,Flags > ghostFlags;

EnumItem <Flags ,owner > ownerFlags;

Combine <EnumItem <Flags ,ghost >, EnumItem <Flags ,owner > > allFlags;

2.5 Communicator

Using the classes from the previous sections all information about the communica-
tion is available and we are set to communicate data values of arbitrary container
types. The only prerequisite for the container type is that its values are addressable
via operator[](size_t index). This should be safe to assume.

An important feature of our communicators is that we are not only able to send one
data item per index, but also different numbers of data elements (of the same type) for
each index. This is supported in a generic way by the traits class template<class V> struct CommPolicy

describing the container type V. The typedef IndexedType is the atomic type to be
communicated and typedef IndexedTypeFlag is either SizeOne if there is only one
data item per index or VariableSize if the number of data items per index is variable.

The default implementation works for all array-like containers which provide only
one data item per index. For all other containers the user has to provide its own custom
specialisation.

The class template<class T> class BufferedCommunicator performs the actual
communication. The template parameter T describes the type of the parallel index set.
It uses the information about the communication interface provided by an object of class
Interface to set up communication buffers for a container containing a specific data
type. It is also responsible for gathering the data before and scattering the data after the
communication step. The strict separation of the interface description from the actual
buffering and communication allows for reusing the interface information with various
different container and data types.

Before the communication can start one has to call the build method with the data
source and target containers as well as the communication interface as arguments. As-
suming s and t as arrays si and ti, respectively, then

std::cout <<"inf "<<rank <<": "<<infS <<std::endl;

typedef std::vector <double > Container;

demonstrates how to set up the communicator bCommRedist for the array redistribution
and bComm for a parallel calculation on the local views si. The build function calculates
the size of the messages to send to other processes and allocates buffers for the send and
receive actions. The representatives s and t are needed to get the number of data values
at each index in the case of variable numbers of data items per index. Note that, due
to the generic programming techniques used, the compiler knows if the number of data
points is constant for each index and will apply a specialised algorithm for calculating
the message size without querying neither s nor t. Clean up of allocated resources is
done either by calling the method free() or automatically in the destructor.

The actual communication takes place if one of the methods forward and backward

is called. In our case in bCommRedist the forward method sends data from the local
views si to the local views ti according to the interface information and the backward

method in the opposite direction.

6

The following code snippet first redistributes the local views si of the global array to
the local views ti and performs some calculation on this representation. Afterwards the
result is communicated backwards.

BufferedCommunicator bComm;

BufferedCommunicator bCommRedist;

bComm.build(s, s, infS);

Note that both methods have a different template parameter, either CopyData or
AddData. These are policies for gathering and scattering the data items. The former just
copies the data from and to the location. The latter copies from the source location but
adds the received data items to the target entries. Assuming our data is stored in simple
C-arrays AddData could be implemented like this:

template <typename T>

struct AddData{

typedef typename T:: value_type IndexedType;

static double gather(const T& v, int i){

return v[i];

}

static void scatter(T& v, double item , int i){

v[i]+= item;

}

};

Note that arbitrary manipulations can be applied to the communicated data in both
methods.

For containers with multiple data items associated with one index the methods gather
and scatter must have an additional integer argument specifying the sub-index.

3 Collective Communication

While communicating entries of array-like structures is a prominent task in scientific
computing codes one must not neglect collective communication operations, like gathering
and scattering data from and to all processes, respectively, or waiting for other processes.
An abstraction for these operations is crucial for decoupling the communication from the
parallel programming paradigm used.

Therefore we designed template<class T> class CollectiveCommunication which
provides information of the underlying parallel programming paradigm as well as the
collective communication operations as known from MPI. See Table 1 for a list of all
functions.

Currently there is a default implementation for sequential programs as well as a
specialisation working with MPI. This approach allows for running parallel programs se-
quentially without any parallel overhead simply by choosing the sequential specialisation
at compile time. Note that the interface is far more convenient to use than the C++
interface of MPI. The latter is a simple wrapper around the C implementation without
taking advantage of the power of generic programming.

The collective communication classes were developed before the release of Boost.MPI
[Gregor and Troyer(2006)]. In contrast to Boost.MPI it was never meant as a full generic

7

Function Description

int rank() Get the rank of the process
int size() Get the number of processes
template<typename T> T sum (T& in) Compute global sum
template<typename T> T prod (T& in) Compute global product
template<typename T> T min (T& in) Compute global minimum
template<typename T> T max (T& in) Compute global maximum
void barrier() Wait for all processes.
template<typename T> int broadcast (T* inout, int len, int root)Broadcast an array from root to all

other processes
template<typename T> int gather (T* in, T* out, int len, int root)Gather arrays at a root process
template<typename BinaryFunction, typename Type> int allreduce(Type* in, Type* out, intCombine values from all processes

on all processes. Combine function
is given with BinaryFunction

Table 1: Collective Communication Functions

implementation of all MPI functions. Instead it is restricted to the most basic subset
of collective operations needed to implement finite element methods and iterative solver
using the previously described components. This lean interface should make it possible
to easily port this approach to thread based parallelisation as well as other parallelisation
paradigms. This would allow code to easily switch between different paradigms

References

[Gregor and Troyer(2006)] D. Gregor and M. Troyer. Boost.MPI.
http://www.boost.org/, 2006.

8

	Introduction
	Communication Software Components
	ParallelIndexSet
	ParallelLocalIndex
	Remote Indices
	Communication Interface
	Communicator

	Collective Communication

