
tapkee methods

Contents

1 Diffusion map 2
1.1 References . 2

2 Factor analysis 2
2.1 References . 3

3 Hessian Locally Linear Embedding 3
3.1 References . 4

4 Isomap 4
4.1 References . 4

5 Kernel Principal Component Analysis 4
5.1 References . 4

6 Laplacian Eigenmaps 5
6.1 References . 5

7 Locally Linear Embedding 5

8 Locally Linear Embedding 6
8.1 References . 7

9 Linear Local Tangent Space Alignment 7
9.1 References . 7

10 Locality Preserving Projections 7
10.1 References . 7

11 Local Tangent Space Alignment 7

12 Kernel Local Tangent Space Alignment 8
12.1 References . 8

13 Classic multidimensional scaling 8

14 Neighborhood Preserving Embedding 9

15 Principal Component Analysis 9

1

16 Random projection 9

17 Stochastic Proximity Embedding 10
17.1 Reference . 10

18 Stochastic Neighbour Embedding 10

19 t-Distributed Stochastic Neighbour Embedding 11
19.1 References . 11

1 Diffusion map

The diffusion map algorithm performs the following steps to embed feature vectors x1, . . . , xN :

• Compute N ×N gaussian kernel matrix K such that

Ki,j = exp

{
−d

2(xi, xj)

ω

}
,

where d : X ×X → R is a distance function and ω > 0 is a width of the kernel.

• Transform the matrix K using the following equations

Ki,j ←
Ki,j

(pipj)q
,

where pi =
∑N

j=1Kj,i. Only q = 1 for ‘standard’ diffusion map is currently supported. Then,

recompute pi =
∑N

j=1Kj,i again and do

Ki,j ←
Ki,j√
pipj

.

• Construct embedding with dim = d from the solution of the following partial eigenproblem

Kf = λf

for d + 1 largest eigenvalues. Form the embedding matrix such that the i-th coordinate
(i = 1, . . . , N) of j-th largest eigenvector (j = 2, . . . , d+ 1) corresponds to j-th coordinate of
projected i-th vector, normalized by λti and the first eigenvector corresponding to λ1 = 1.

1.1 References

• Coifman, R., & Lafon, S. (2006). Diffusion maps

2 Factor analysis

Factor analysis aims at describing how several observed variables are correlated to each other by
means of identifying a set of unobserved variables, the so-called factors. Desirably, the number of
factors is shorter than the number of observed variables.

Factor analysis is an iterative algorithm. First of all the projection matrix is initialized randomly
and the factors variance is set to the identity. Then, every iteration consists of the following steps:

2

http://linkinghub.elsevier.com/retrieve/pii/S1063520306000546

• Compute the regularized inverse covariance matrix of the projection.

• Update the factors variance matrix.

• Update the projection matrix.

• Check for convergence using the log-likelihood of the model. If the difference between the
current log-likelihood and the previous iteration’s log-likelihood is below a threshold, then
the algorithm has converged.

2.1 References

• Spearman, C. (1904). General Intelligence, Objectively Determined and Measured.

3 Hessian Locally Linear Embedding

Just like the Local Tangent Space Alignment, the Hessian Locally Linear Embedding algorithm is
very similar to the Locally Linear Embedding algorithm.

Given a set of feature vectors X = {x1, x2, . . . xN} the HLLE algorithm proposes to perform
the following steps:

• Identify nearest neighbors. For each x ∈ X identify its k nearest neighbors, i.e. a set Nx of k
feature vectors such that

arg min
Nx

∑
xn∈Nx

‖x− xn‖22

• Analyze hessian of each local patch. For each x ∈ X compute the Gram matrix G of its
neighbors such that Gi,j = (N i

x,N
j
x) and center it. Compute its t (the number of required

features) eigenvectors v1, . . . vt. Construct hessian approximating matrix

Y =
[
1k v1 . . . vt v1 · v1 . . . v1 · vt . . .

]
,

where · : X ×X → X denotes coefficient-wise product. Normalize columns of the matrix Y
and then compute matrix

Q = Y Y T

and put it to the sparse alignment matrix L (initially set by zeroes) using the following
procedure:

L← L+Q.

• Embedding through eigendecomposition. To obtain t features (coordinates) of embedded
vectors solve the partial eigenproblem

Lf = λf,

for smallest eigenvalues λ1, . . . , λt, λt+1 and its corresponding eigenvectors f1, . . . , ft, ft+1.
Drop the smallest eigenvalue λ1 ∼ 0 (with its corresponding eigenvector) and form embedding
matrix such that i-th coordinate (i = 1, . . . , N) of j-th eigenvector (j = 1, . . . , t) corresponds
to j-th coordinate of projected i-th vector.

3

http://www.mendeley.com/catalog/general-intelligence-objectively-determined-measured/

3.1 References

• Donoho, D., & Grimes, C. (2003). Hessian eigenmaps: new locally linear embedding tech-
niques for high-dimensional data

4 Isomap

The Isomap algorithm can be considered as a modification of the classic Multidimensional Scaling
algorithm. The algorithm itself consists of the following steps:

• For each feature vector x ∈ X find k its nearest neighbors and construct the sparse neighbor-
hood graph.

• Compute squared distances matrix D such as Di,j = d2(xi, xj).

• Relax distances with shortest (so-called geodesic) distances on the sparse neighborhood graph
(e.g. with Dijkstra’s algorithm).

• Center the matrix D with subtracting row mean, column mean and adding the grand mean.
Multiply D element-wise with −0.5.

• Compute embedding with the t eigenvectors that correspond to the largest eigenvalues of the
matrix D; normalize these vectors with dividing each eigenvector by the square root of its
corresponding eigenvalue. Form the final embedding with eigenvectors as rows and projected
feature vectors as columns.

4.1 References

• Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A global geometric framework for
nonlinear dimensionality reduction

5 Kernel Principal Component Analysis

The Kernel Principal Component Analysis algorithm is a generalization of the PCA algorithm. The
algorithm performs the following steps

• Compute the kernel matrix K such that Ki,j = k(xi, xj) where k : X ×X → R is a Mercer
kernel function and X is a set of feature vectors
x1, x2, . . . , xN

• Center the matrix K with subtracting row mean, column mean and adding the grand mean.

• Compute embedding with the t eigenvectors that correspond to the largest eigenvalues of the
matrix D; normalize these vectors with dividing each eigenvectors with square root of its
corresponding eigenvalue. Form the final embedding with eigenvectors as rows and projected
feature vectors as columns.

5.1 References

• Schölkopf, B., Smola, A., & Müller, K. R. (1997). Kernel principal component analysis

4

http://www-stat.stanford.edu/~donoho/Reports/2003/HessianEigenmaps.pdf
http://www-stat.stanford.edu/~donoho/Reports/2003/HessianEigenmaps.pdf
http://www.robots.ox.ac.uk/~az/lectures/ml/tenenbaum-isomap-Science2000.pdf
http://www.robots.ox.ac.uk/~az/lectures/ml/tenenbaum-isomap-Science2000.pdf

6 Laplacian Eigenmaps

The Laplacian Eigenmaps algorithm performs the following simple steps to embed given feature
vectors x1, . . . , xN :

• Identify nearest neighbors. For each x ∈ X identify its k nearest neighbors, i.e. a set Nx of k
feature vectors such that

arg min
Nx

∑
xn∈Nx

d(x, xn),

where d : X ×X → R is a distance function.

• Construct weight matrix. Initially setting N ×N matrix W to zero, set

Wi,j = exp

{
−d

2(xi, xj)

τ

}
iff for i-th vector xi neighbors set Nxi contains xj and vice versa (so-called mutual neighbor-

hood). Find a diagonal matrix D such that Di,i =
∑N

j=1Wj,i.

• Find embedding throught eigendecomposition. To obtain t features (coordinates) of embedded
vectors solve the partial generalized eigenproblem

(D −W)f = λDf,

for smallest eigenvalues λ1, . . . , λt, λt+1 and its corresponding eigenvectors f1, . . . , ft, ft+1.
Drop the smallest eigenvalue λ1 ∼ 0 (with the corresponding eigenvector) and form embedding
matrix such that i-th coordinate (i = 1, . . . , N) of j-th eigenvector (j = 1, . . . , t) corresponds
to j-th coordinate of projected i-th vector.

6.1 References

• Belkin, M., & Niyogi, P. (2002). Laplacian Eigenmaps and Spectral Techniques for Embedding
and Clustering

7 Locally Linear Embedding

Given a set of feature vectors X = {x1, x2, . . . xN} the Locally Linear Embedding algorithm pro-
poses to perform the following steps:

• Identify nearest neighbors. For each x ∈ X identify its k nearest neighbors, i.e. a set Nx of k
feature vectors such that

arg min
Nx

∑
xn∈Nx

‖x− xn‖22

• Compute linear reconstruction weights. For each x ∈ X compute weight vector w ∈ Rn that
minimizes

‖x−
k∑

i=1

wiN i
x‖2, w.r.t. ‖w‖2 = 1

5

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.9400&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.9400&rep=rep1&type=pdf

where N i
x is a i-th element of the set Nx. The solution of the problem stated above can be

found from the normalized solution of the following equation:

Gw = 1k,

where G is a k × k matrix such that Gi,j = (x−N i
x)(x−N j

x) and 1k ∈ Rk is a vector of all
ones. Obviously, the problem comes ill-posed in case k gets more than dimension of feature
space X. This can be avoided with the regularization:

G← G+ εE,

where E is an identity matrix and ε is a pre-defined constant reconstruction shift (usually
10−3). Once w is computed it is stored into the sparse alignment matrix L (initially set by
zero) with the following procedure:

LI,I ← LI,I +W,

where I is a set containing indices of all element of the set Nx and x itself, LI,I denotes all
(i, j) elements of the sparse matrix L such that i, j ∈ I and

W =

[
1 −w
−wT wTw

]
.

• Embedding through eigendecomposition. To obtain t features (coordinates) of embedded
vectors solve the partial eigenproblem

Lf = λf,

for smallest eigenvalues λ1, . . . , λt, λt+1 and its corresponding eigenvectors f1, . . . , ft, ft+1.
Drop the smallest eigenvalue λ1 ∼ 0 (with the corresponding eigenvector) and form embedding
matrix such that i-th coordinate (i = 1, . . . , N) of j-th eigenvector (j = 1, . . . , t) corresponds
to j-th coordinate of projected i-th vector.

8 Locally Linear Embedding

The Locally Linear Embedding algorithm can be generalized for spaces with defined dot product
function k(x, y) (so-called RKHS) in the elegant way. Using the following equation

||x− y||22 = (x, x)− 2(x, y) + (y, y)

we may transform the nearest neighbors problem to the following form:

arg min
Nx

∑
xn∈Nx

[k(x, x)− 2k(x, xn) + k(xn, xn)] .

The matrix G can be formulated in terms of dot product as well. To find G using only dot
products we can compute the Gram matrix K such that Ki,j = k(xi, xj) and center it using the
matrix Ck = Ek − 1

k11T :
G = KCkK.

There is an efficient way to compute that - it is can be done with subtracting a column mean of K
from each column of K, subtracting a row mean of K from each row of K and adding the grand
mean of all elements of K to K.

6

http://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space

8.1 References

• Sam Roweis’ page on LLE
• Saul, L. K., Ave, P., Park, F., & Roweis, S. T. (2001). An introduction to Locally Linear

Embedding
• Zhao, D. (2006) Formulating LLE using alignment technique

9 Linear Local Tangent Space Alignment

The Linear Local Tangent Space Alignment is a modification of the LTSA algorithm. Main differ-
ence (just like in NPE and LLE) of linear and original LTSA methods lies in the way of constructing
embedding. Instead of solving common for LLE and LTSA eigenproblem, LLTSA requires solving
the following generalized eigenproblem:

RLRT f = λRRT f,

where R is a matrix containing all feature vectors x1, . . . , xN row-wise. The problem is solved for
smallest eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λt and its corresponding eigenvectors f1, . . . , ft. To find final
embedding LLTSA forms a matrix such that i-th coordinate (i = 1, . . . , N) of j-th eigenvector
(j = 1, . . . , t) corresponds to j-th coordinate of projected i-th vector.

9.1 References

• Zhang, T., Yang, J., Zhao, D., & Ge, X. (2007). Linear local tangent space alignment and
application to face recognition

10 Locality Preserving Projections

The Locality Preserving Projections algorithm can be viewed as a linear approximation of the
Laplacian Eigenmaps algorithm. It reproduces first two steps of the Laplacian Eigenmaps and the
difference lies in the step 3. To obtain t features (coordinates) of embedded vectors LPP solves the
partial generalized eigenproblem

R(D −W)RT f = λRDRT f,

where R contains all feature vectors row-wise, for smallest eigenvalues λ1, . . . , λt, λt+1 and its corre-
sponding eigenvectors f1, . . . , ft, ft+1. Drop the smallest eigenvalue λ1 ∼ 0 (with the corresponding
eigenvector) and form embedding matrix such that i-th coordinate (i = 1, . . . , N) of j-th eigenvector
(j = 1, . . . , t) corresponds to j-th coordinate of projected i-th vector.

10.1 References

• He, X., & Niyogi, P. (2003). Locality Preserving Projections

11 Local Tangent Space Alignment

The Local Tangent Space Alignment algorithm is pretty similar to the Locally Linear Embedding
algorithm.

Given a set of feature vectorsX = {x1, x2, . . . xN} the Local Tangent Space Alignment algorithm
performs the following steps:

7

http://www.cs.nyu.edu/~roweis/lle/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.7319&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.7319&rep=rep1&type=pdf
http://linkinghub.elsevier.com/retrieve/pii/S0031320306002160
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.2698
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.2698
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.7147&rep=rep1&type=pdf

• Identify nearest neighbors. For each x ∈ X identify its k nearest neighbors, i.e. a set Nx of k
feature vectors such that

arg min
Nx

∑
xn∈Nx

‖x− xn‖22

• Perform principal component analysis of each local neighborhood patch. For each x ∈ X com-
pute the Gram matrix G of its neighbors such that Gi,j = (N i

x,N
j
x) and center it. Compute

its t (the number of required features) eigenvectors and store it in the matrix V . Compute
matrix

Q =
[
1k V

] [1k
V

]
and put it to the sparse alignment matrix L (initially set by zeroes) using the following
procedure:

L← L+ Ek −Q.

• Embedding through eigendecomposition. To obtain t features (coordinates) of embedded
vectors solve the partial eigenproblem

Lf = λf,

for smallest eigenvalues λ1, . . . , λt, λt+1 and its corresponding eigenvectors f1, . . . , ft, ft+1.
Drop the smallest eigenvalue λ1 ∼ 0 (with the corresponding eigenvector) and form embedding
matrix such that i-th coordinate (i = 1, . . . , N) of j-th eigenvector (j = 1, . . . , t) corresponds
to j-th coordinate of projected i-th vector.

12 Kernel Local Tangent Space Alignment

Like the Locally Linear Embedding algorithm, LTSA allows generalization for Mercer kernel func-
tions. Nearest neighbors computation in KLTSA is identical to one in KLTSA and the matrix G
in the step 2 is naturally replaced with matrix Ki,j = k(N i

x,N
j
x).

12.1 References

• Zhang, Z., & Zha, H. (2002). Principal Manifolds and Nonlinear Dimension Reduction via
Local Tangent Space Alignment

13 Classic multidimensional scaling

The classic multidimensional scaling algorithm is probably the simplest dimensionality reduction
algorithm which reduced data in an attempt to keep pairwise distances the same. The algorithm
itself is:

• For a given set of vectors X = x1, x2, . . . , xN compute the pairwise distances matrix D such
that Di,j = d(xi, xj),

• Square each element of the distances matrix D and center the matrix with subtracting row
mean, column mean and adding the grand mean.

8

http://arxiv.org/abs/cs/0212008
http://arxiv.org/abs/cs/0212008

• Compute embedding with the t eigenvectors that correspond to the largest eigenvalues of the
matrix D; normalize these vectors with dividing each eigenvectors with square root of its
corresponding eigenvalue. Form the final embedding with eigenvectors as rows and projected
feature vectors as columns.

14 Neighborhood Preserving Embedding

The Neighborhood Preserving Embedding (NPE) algorithm can be considered as a linear approx-
imation of the Locally Linear Embedding algorithm. Thus most of computation routines can be
shared with LLE. The NPE algorithm uses steps 1 and 2 of the Locally Linear Embedding and the
main difference lies in the eigendecomposition based embedding.

According to the NPE algorithm embedding can be found from the solution of the following
partial generalized eigenproblem:

RLRf = λRRT f

where R is a matrix containing all feature vectors x1, . . . , xN row-wise. The problem is solved for
smallest eigenvalues λ1, . . . , λt and its corresponding eigenvectors f1, . . . , ft. The final embedding
is obtained with a matrix such that i-th coordinate (i = 1, . . . , N) of j-th eigenvector (j = 1, . . . , t)
corresponds to j-th coordinate of projected i-th vector.

References

• He, X., Cai, D., Yan, S., & Zhang, H.-J. (2005). Neighborhood preserving embedding

15 Principal Component Analysis

The Principal Component Analysis is probably the oldest dimension reduction algorithm which
comes in various flavours today. The simplest ‘version’ of the PCA algorithm could look like that:

• Subtract mean feature vector from each feature vector of a set X = {x1, x2, . . . , xN}.

• Compute the covariance matrix C using all feature vectors.

• Find top t (desired dimension of embedded space) and form projection matrix P with eigen-
vectors as columns.

• Project the data with Y = PX.

16 Random projection

The Random projection algorithm is yet more simple algorithm (comparing to PCA and MDS). It
can be said that the algorithm is based on Johnson-Lindenstrauss lemma that states that a small
number of vectors in high-dimensional space can be embedded into a space of much lower dimension
with keeping pairwise distances nearly preserved. The algorithm itself is:

• Construct random basis matrix P with normalized random gaussian vectors as columns.

• Project data with left multiplication with generated matrix Y = PX.

9

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1544858

17 Stochastic Proximity Embedding

Stochastic Proximity Embedding (SPE) acts on a set of N vectors Y = {y1, y2, . . . yN} with corre-
sponding symmetric distance matrix Dij in the following manner:

1. Choose an initial learning rate λ.

2. Initialize randomly the point coordinates in the embedded space X = {x1, x2, . . . xN}.

3. Select at random a pair of points with indices i and j. For a prescribed number of iterations
S, compute their distances in the embedded space,

di,j = ‖xi − xj‖

; if di,j 6= Di,j then update the coordinates of the selected points by

xi ← xi + λ
1

2

Dij − dij
dij + ε

(xi − xj),

xj ← xj + λ
1

2

Dij − dij
dij + ε

(xj − xi).

4. Decrease the learning rate λ by δλ|0 < δ < 1. λ is decreased to avoid oscillatory behaviour.

5. Repeat steps 3 and 4 for a predetermined number of iterations C.

SPE is an interesting method because of its simplicity and efficiency, as it scales linearly with
the sample size N .

17.1 Reference

• D. K. Agrafiotis. “Stochastic Proximity Embedding,” Journal of Computational Chemistry,
2003.

18 Stochastic Neighbour Embedding

Stochastic Neighbour Embedding (SNE) uses conditional probability densities in order to model
pairwise similarities between data points, rather than using Euclidean distances directly. The
similarity of the point xj to the point xi is the conditional probability pj|i, which is the probability
that xj would be xi’s neighbour taking into account that neighbourhoods are built in proportion
to Gaussian probability densities centered at xi. Formally,

pj|i =
exp(−‖xi − xj‖2/2σ2i)∑
k 6=i exp(−‖xi − xk‖2/2σ2i)

where σi is the variance of the Gaussian centered on xi, whose computation will be later explained.
The similarities in the low-dimensional space are defined in a similar way. However, the variance
of the Gaussian distributions employed are fixed to 1√

2
this time, i.e.

qj|i =
exp(−‖xi − xj‖2)∑
k 6=i exp(−‖xi − xk‖2)

.

10

Intuitively, if the low-dimensional points Yi and Yj map correctly the similarity between their
high-dimensional counterparts xi and xj , then pj|i and qj|i will be close to each other. SNE aims
at making these quantities as close as possible minimizing the sum of Kullback-Leibler divergences
over all the data set. Thus, the cost function is

C =
∑
i

KL(Pi‖Qi) =
∑
i

∑
j

pj|i log
pj|i

qj|i
.

Unfortunately, there exists no optimal value of the Gaussian variance for all the points in the
data set since the data may vary considerably throughout the data set. SNE chooses the value of
each sigmai performing binary search so that a user specified value for the Shannon entropy of Pi

is achieved.

19 t-Distributed Stochastic Neighbour Embedding

There are two main issues related to SNE that t-Distributed Stochastic Neighbour Embedding
(t-SNE) addresses:

• SNE’s cost function using gradient descent is faster optimized using symmetric similarities.
Therefore, t-SNE uses joint probability distributions pij and qij instead of conditional distri-
butions.

• t-SNE uses Student’s t instead of Gaussian distributions to handle better the so-called crowd-
ing problem.

19.1 References

• Van der Maaten, L., Hinton, G. (2008). Visualizing Data using t-SNE. 3

11

http://jmlr.csail.mit.edu/papers/v9/vandermaaten08a.html

	Diffusion map
	References

	Factor analysis
	References

	Hessian Locally Linear Embedding
	References

	Isomap
	References

	Kernel Principal Component Analysis
	References

	Laplacian Eigenmaps
	References

	Locally Linear Embedding
	Locally Linear Embedding
	References

	Linear Local Tangent Space Alignment
	References

	Locality Preserving Projections
	References

	Local Tangent Space Alignment
	Kernel Local Tangent Space Alignment
	References

	Classic multidimensional scaling
	Neighborhood Preserving Embedding
	Principal Component Analysis
	Random projection
	Stochastic Proximity Embedding
	Reference

	Stochastic Neighbour Embedding
	t-Distributed Stochastic Neighbour Embedding
	References

