
A tutorial on spatiotemporal partially observed Markov process

models via the R package spatPomp

Kidus Asfaw1, Joonha Park2, Aaron A. King1 and Edward L. Ionides1∗
1University of Michigan, 2University of Kansas, ∗correspondence to ionides@umich.edu

Abstract

We describe a computational framework for modeling and statistical inference on high-
dimensional stochastic dynamic systems. Our primary motivation is the investigation of metapop-
ulation dynamics arising from a collection of spatially distributed, interacting biological pop-
ulations. To make progress on this goal, we embed it in a more general problem: inference
for a collection of interacting partially observed nonlinear non-Gaussian stochastic processes.
Each process in the collection is called a unit; in the case of spatiotemporal models, the units
correspond to distinct spatial locations. The dynamic state for each unit may be discrete or
continuous, scalar or vector valued. In metapopulation applications, the state can represent
a structured population or the abundances of a collection of species at a single location. We
consider models where the collection of states has a Markov property. A sequence of noisy
measurements is made on each unit, resulting in a collection of time series. A model of this
form is called a spatiotemporal partially observed Markov process (SpatPOMP). The R package
spatPomp provides an environment for implementing SpatPOMP models, analyzing data using
existing methods, and developing new inference approaches. Our presentation of spatPomp re-
views various methodologies in a unifying notational framework. We demonstrate the package
on a simple Gaussian system and on a nontrivial epidemiological model for measles transmission
within and between cities. We show how to construct user-specified SpatPOMP models within
spatPomp.

This version was compiled on October 25, 2024 using spatPomp 0.37.0 with pomp 5.11.0.1 and
R 4.4.1. Source code for this article is at https://github.com/ionides/spatPomp-article.
Materials are provided under the Creative Commons Attribution License.

1 Introduction

A spatiotemporal partially observed Markov process (SpatPOMP) model consists of incomplete
and noisy measurements of a latent Markov process having spatial as well as temporal structure. A
SpatPOMP model is a special case of a vector-valued partially observed Markov process (POMP)
where the latent states and the measurements are indexed by a collection of spatial locations
known as units. Many biological, social and physical systems have the spatiotemporal structure,
dynamic stochasticity and imperfect observability that characterize SpatPOMP models. This paper
discusses investigation of SpatPOMP models using the spatPomp software package (Asfaw et al.,
2023), written in R (R Core Team, 2022a).

Modeling and inference for spatiotemporal dynamics has long been considered a central chal-
lenge in ecology and epidemiology. Bjørnstad and Grenfell (2001) identified six challenges of data

1

analysis for ecological and epidemiological dynamics: (i) combining measurement noise and process
noise; (ii) including covariates in mechanistically plausible ways; (iii) continuous time models; (iv)
modeling and estimating interactions in coupled systems; (v) dealing with unobserved variables; (vi)
spatiotemporal models. Challenges (i) through (v) require nonlinear time series analysis methodol-
ogy, and this has been successfully addressed over the past two decades via the framework of POMP
models. Software packages such as pomp (King et al., 2016), nimble (Michaud et al., 2021), LiBBi
(Murray, 2015) and mcstate (FitzJohn et al., 2020) nowadays provide routine access to widely
applicable modern inference algorithms for POMP models, as well as platforms for sharing models
and data analysis workflows. However, the Monte Carlo methods on which these packages depend
do not scale well for high-dimensional systems and so are not practically applicable to SpatPOMP
models. Thus, challenge (vi) requires state-of-the-art algorithms with favorable scalability.

The spatPomp package brings together general purpose methods for carrying out Monte Carlo
statistical inference that meet all the requirements (i) through (vi). For this purpose, spatPomp pro-
vides an abstract representation for specifying SpatPOMP models. This ensures that SpatPOMP
models formulated with the package can be investigated using a range of methods, and that new
methods can be readily tested on a range of models. In its current form, spatPomp is appropriate
for data analysis with a moderate number of spatial units (say, 100) having nonlinear and non-
Gaussian dynamics. In particular, spatPomp is not targeted at very large spatiotemporal systems
such as those that arise in geophysical data assimilation (Anderson et al., 2009). Spatiotemporal
systems with Gaussian dynamics can be investigated with spatPomp, but a variety of alternative
methods and software are available in this case (Wikle et al., 2019; Sigrist et al., 2015; Cappello
et al., 2020).

The spatPomp package builds on the pomp package described by King et al. (2016). Math-
ematically, a SpatPOMP model is also a POMP model, and this property is reflected in the
object-oriented design of spatPomp. The package is implemented using S4 classes (Chambers,
1998; Genolini, 2008; Wickham, 2019) and the basic class 'spatPomp' extends the class 'pomp'
provided by pomp. This allows new methods to be checked against extensively tested methods in
the low-dimensional settings for which POMP algorithms are effective. However, standard Monte
Carlo statistical inference methods for nonlinear POMP models suffer from a curse of dimensional-
ity (Bengtsson et al., 2008). Extensions of these methods for situations with more than a few units
must, therefore, take advantage of the special structure of SpatPOMP models. Figure 1 illustrates
the use case of the spatPomp package relative to the pomp package and methods that use Gaussian
approximations to target models with massive dimensionality. Highly scalable methods, such as
the Kalman filter and ensemble Kalman filter, entail approximations that may be inappropriate for
nonlinear, non-Gaussian, count-valued models arising in metapopulation systems.

A SpatPOMP model is characterized by the transition density for the latent Markov process
and unit-specific measurement densities. Once these elements are specified, calculating and sim-
ulating from all joint and conditional densities are well defined operations. However, different
statistical methods vary in the operations they require. Some methods require only simulation
from the transition density whereas others require evaluation of this density. Some methods avoid
working with the model directly, replacing it by an approximation, such as a linearization. For a
given model, some operations may be considerably easier to implement and so it is useful to classify
inference methods according to the operations on which they depend. In particular, an algorithm
is said to be plug-and-play if it utilizes simulation of the latent process but not evaluation of tran-
sition densities (Bretó et al., 2009; He et al., 2010). Simulators are relatively easy to implement

2

pomp

spatPomp

Nonlinearity

D
im

en
si
on

KF
EnKF
PF

Figure 1 – The use case for the spatPomp package. For statistical inference of models that are
approximately linear and Gaussian, the Kalman Filter (KF) is an appropriate method. If the
nonlinearity in the problem increases moderately but the dimension of the problem is very large (e.g.
geophysical models), the ensemble Kalman Filter (EnKF) is useful. In low-dimensional but very
nonlinear settings, the particle filter (PF) is widely applicable and the pomp package targets such
problems. The spatPomp package and the methods implemented in it are intended for statistical
inference for nonlinear models that are of moderate dimension. The nonlinearity in these models
(e.g. epidemiological models) is problematic for Gaussian approximations and the dimensionality
is large enough to make the particle filter unstable.

for many SpatPOMP models, and so plug-and-play methodology facilitates the investigation of a
variety of models that may be scientifically interesting but mathematically inconvenient. Modern
plug-and-play algorithms can provide statistically efficient likelihood-based or Bayesian inference.
The computational cost of plug-and-play methods may be considerable, due to the large number of
simulations involved. Nevertheless, the practical utility of plug-and-play methods for POMP mod-
els has been amply demonstrated in scientific applications. In particular, plug-and-play methods
implemented using pomp have facilitated various scientific investigations (e.g., King et al., 2008;
Bhadra et al., 2011; Shrestha et al., 2011, 2013; Earn et al., 2012; Roy et al., 2013; Blackwood
et al., 2013a,b; He et al., 2013; Bretó, 2014; Blake et al., 2014; Martinez-Bakker et al., 2015; Bakker
et al., 2016; Becker et al., 2016; Buhnerkempe et al., 2017; Ranjeva et al., 2017; Marino et al.,
2019; Pons-Salort and Grassly, 2018; Becker et al., 2019; Kain et al., 2021; Stocks et al., 2020).
The spatPomp package has been used to develop and demonstrate plug-and-play methodology for
SpatPOMP models (Ionides et al., 2022, 2023; Ning and Ionides, 2023a). Scientific applications are
starting to emerge (Zhang et al., 2022; Wheeler et al., 2024; Li et al., 2024).

The remainder of this paper is organized as follows. Section 2 defines mathematical notation
for SpatPOMP models and relates this to their representation as objects of class 'spatPomp'
in the spatPomp package. Section 3 introduces likelihood evaluation via several spatiotemporal
filtering methods. Section 4 describes parameter estimation algorithms which build upon these
filtering techniques. Section 5 constructs a simple linear Gaussian SpatPOMP model and uses this
example to illustrate statistical inference. Section 6 presents the construction of spatially structured
compartment models for population dynamics, in the context of coupled measles dynamics in

3

UK cities; this demonstrates the kind of nonlinear stochastic system primarily motivating the
development of spatPomp. Section 7 is a concluding discussion.

2 SpatPOMP models and their representation in spatPomp

X1,0 · · · XU,0 X1,1 · · · XU,1

X0 X1

Y1,1 · · · YU,1

Y 1

· · ·

· · · X1,N · · · XU,N

XN

Y1,N · · · YU,N

Y N

· · ·

· · ·

Figure 2 – Conditional dependence diagram for a spatiotemporal partially observed Markov process
(SpatPOMP) model. The latent dynamic process is {X(t), t0 ≤ t ≤ tN}. At observation times
tn, the value of the latent process is denoted by Xn =

(
X1,n, . . . , XU,n

)
. The partial and noisy

observations at this times are modeled by Y n =
(
Y1,n, . . . , YU,n

)
.

We set up notation for SpatPOMP models extending the POMP notation of King et al. (2016).
A diagrammatic representation is given in Figure 2. Suppose there are U units labeled 1 :U =
{1, 2, . . . , U}. Let t1 < t2 < · · · < tN be a collection of times at which measurements are recorded on
one or more units, and let t0 be some time preceding t1 at which we initialize our model. We observe
a measurement y∗u,n on unit u at time tn, where y

∗
u,n could take the value NA if no measurement

was recorded. We postulate a latent stochastic process taking value Xn = (X1,n, . . . , XU,n) at time
tn, with boldface denoting a collection of random variables across units. The observation y∗u,n is
modeled as a realization of an observable random variable Yu,n, and we suppose that the collection
of observable random variables are conditionally independent given the collection of latent random
variables. The process X0:N = (X0,X1, . . . ,XN) is required to have the Markov property, i.e.,
X0:n−1 andXn+1:N are conditionally independent givenXn. Optionally, there may be a continuous
time process X(t) defined for t0 ≤ t ≤ tN such that Xn =X(tn).

Let fX0:N ,Y 1:N
(x0:N ,y1:N ; θ) be the joint density of X1:U,0:N and Y1:U,1:N evaluated at x1:U,0:N

and y1:U,1:N , depending on an unknown parameter vector, θ. We do not distinguish between contin-
uous and discrete spaces for the latent and observation processes, so the term density encompasses
probability mass functions. The SpatPOMP structure permits a factorization of the joint density
in terms of the initial density, fX0(x0; θ), the transition density, fXn|Xn−1

(xn |xn−1 ;θ), and the
unit measurement density, fYu,n|Xu,n

(yu,n|xu,n ;θ), given by

fX0:N ,Y 1:N
(x0:N ,y1:N ; θ) = fX0(x0; θ)

N∏

n=1

fXn|Xn−1
(xn|xn−1; θ)

U∏

u=1

fYu,n|Xu,n
(yu,n|xu,n ;θ).

4

Method Argument to Mathematical terminology
spatPomp()

dunit measure dunit measure Evaluate fYu,n|Xu,n
(yu,n |xu,n ;θ)

runit measure runit measure Simulate from fYu,n|Xu,n
(yu,n |xu,n ;θ)

eunit measure eunit measure Evaluate eu,n(x, θ) = E[Yu,n |Xu,n = x ;θ]
vunit measure vunit measure Evaluate vu,n(x, θ) = Var[Yu,n |Xu,n = x ;θ]
munit measure munit measure mu,n(x, V, θ) = ψ if vu,n(x,ψ) = V , eu,n(x,ψ) = eu,n(x, θ)
rprocess rprocess Simulate from fXn|Xn−1

(xn |xn−1 ;θ)

dprocess dprocess Evaluate fXn|Xn−1
(xn |xn−1 ;θ)

rmeasure rmeasure Simulate from fY n|Xn
(yn |xn ;θ)

dmeasure dmeasure Evaluate fY n|Xn
(yn |xn ;θ)

rprior rprior Simulate from the prior distribution π(θ)
dprior dprior Evaluate the prior density π(θ)
rinit rinit Simulate from fX0(x0 ;θ)
timezero t0 t0
time times t1:N
obs data y∗1:N
states — x0:N

coef params θ

Table 1 – Elementary methods for class 'spatPomp' objects, the argument used to assign them via
the spatPomp constructor function, and their definition in mathematical notation.

This notation allows fXn|Xn−1
and fYu,n|Xu,n

to depend on n and u, thereby permitting models for
temporally and spatially inhomogeneous systems.

2.1 Implementation of SpatPOMP models

A SpatPOMP model is represented in spatPomp by an object of class 'spatPomp'. Slots in this
object encode the components of the SpatPOMP model, and can be filled or changed using the
constructor function spatPomp() and various other convenience functions. Methods for the class
'spatPomp' (i.e., functions defined in the package which take a class 'spatPomp' object as their first
argument) use these components to carry out computations on the model. Table 1 lists elementary
methods for a class 'spatPomp' object, and their translations into mathematical notation.

Class 'spatPomp' inherits from the class 'pomp' defined by the pomp package. In particular,
spatPomp extends pomp by the addition of unit-level specification of the measurement model. This
reflects the modeling assumption that measurements are carried out independently in both space
and time, conditional on the value of the spatiotemporal latent process. There are five unit-
level functionalities of class 'spatPomp' objects: dunit measure, runit measure, eunit measure,
vunit measure and munit measure. These model components are specified by the user via an
argument to the spatPomp() constructor function of the same name.

All the model components of a class 'spatPomp' object are listed in Table 1. It is not necessary
to supply every component—only those that are required to run an algorithm of interest. For exam-
ple, the functions eunit measure and vunit measure, calculating the expectation and variance of

5

U6 U7 U8 U9 U10

U1 U2 U3 U4 U5

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

−5

0

5

10

−5

0

5

10

time

Y
+

1

Figure 3 – Result of executing plot(bm10), where bm10 is the class 'spatPomp' object representing
a simulation from a 10-dimensional correlated Brownian motions model with 20 observations that
are one unit time apart (see text).

the measurement model, are used by the ensemble Kalman filter (EnKF, Section 3.2) and iterated
EnKF (Section 4.2). The function munit measure returns a parameter vector corresponding to
given mean and variance, used by one of the options for a guided intermediate resampling filter
(GIRF, Section 3.1) and iterated GIRF (Section 4.1).

2.2 Examples included in the package

Though users can construct arbitrary class 'spatPomp' models, pre-built examples are available
via the functions bm(), bm2(), gbm(), he10(), lorenz(), and measles(). These create class
'spatPomp'models with user-specified dimensions for correlated Brownian motion models (bm, bm2,
gbm), the Lorenz-96 atmospheric model of (Lorenz, 1996) (lorenz), and spatiotemporal susceptible-
exposed-infected-recovered epidemiological models (he10, measles). Users may find the source code
for these examples useful as templates for the construction of custom models. In Section 6, we work
through the construction of a scientifically motivated class 'spatPomp' object.

Our first spatPomp example model is a simulation of U = 10 correlated Brownian motions
each with N = 20 measurements, constructed by executing bm10 <- bm(U = 10, N = 20). The
correlation structure and other model details are discussed in Section 5. We can view the data using
plot(bm10), shown in Figure 3. For customized plots using the many plotting options in R for
class 'data.frame' objects, the data in bm10 can be extracted using as.data.frame(bm10). The
accessor functions in Table 1 extract various components of bm10 via timezero(bm10), time(bm10),
obs(bm10), states(bm10), coef(bm10). The internal representation of all the components of the
object can be inspected via spy(bm10).

2.3 Data and observation times

The only mandatory arguments to the spatPomp() constructor are data, times, units and t0. The
data argument requests a class 'data.frame' object containing observations for each spatial unit

6

at each observation time. Missing data for some or all units at each observation time can be coded
as NA. It is the user’s responsibility to specify a measurement model that assigns an appropriate
probability to the value NA. The name of the data column containing observation times is supplied
to the times argument; the name of the column containing the unit names is supplied to the units
argument. The t0 argument supplies the initial time from which the dynamic system is modeled,
which should be no greater than the first observation time.

We may also wish to add parameter values, latent state values, and some or all of the model
components from Table 1. We need to define only those components necessary for operations we
wish to carry out. In particular, plug-and-play methodology by definition never uses dprocess.
An empty dprocess slot in a class 'spatPomp' object is therefore acceptable unless a non-plug-
and-play algorithm is attempted.

2.4 Initial conditions

The initial state of the latent process, X0 = X(t0; θ), is a draw from the initial distribution,
fX0(x0 ;θ). If the initial conditions are known, there is no dependence on θ. Alternatively, there
may be components of the θ having the sole function of specifying X0. These components are
called initial value parameters (IVPs). By contrast, parameters involved in the transition density
or measurement density are called regular parameters (RPs). This gives rise to a decomposition
of the parameter vector, θ = (θRP, θIVP). We may specify fX0(x0 ;θRP, θIVP) to be a point mass
at θIVP, in which case θIVP exactly corresponds to X0. The bm10 model has this structure, and
the initialization can be tested by rinit(bm10). The measles model of Section 6.2 specifies X0 as
a deterministic function of θIVP, but not an identity map since it is convenient to describe latent
states as counts and the corresponding IVPs as proportions. The RPs are provided to rinit so
they can also participate in the initialization.

For a stationary model, the initial state may be set at the stationary distribution by specifying
t0 sufficiently remote from t1 to allow the system to equilibrate. Stocks et al. (2020) provides an
example of this using pomp. When following this approach, the model is insensitive to the choice
of fX0(x0 ;θ).

2.5 Parameters

Many spatPomp methods require a named numeric vector to represent a parameter, θ. In addition
to the initial value parameters introduced in Section 2.4, a parameter can be unit-specific or shared.
A unit-specific parameter has a distinct value defined for each unit, and a shared parameter is one
without that structure. We can write θ = (ϕ, ψ1:U), where ϕ is the vector of shared parameters
and ψu is the vector of unit-specific parameters for unit u. The unit methods in Table 1 require
only ϕ and ψu when evaluated on unit u. A shared/unit-specific structure can be combined with
an RP/IVP decomposition to give

θ =
(
ϕRP, ϕIVP, ψRP,1:U , ψIVP,1:U

)
.

The bm10 and measles examples are coded with unit-specific IVPs and shared RPs. The dimension
of the parameter space can increase quickly with the number of unit-specific parameters. Shared
parameters provide a more parsimonious description of the system, which is desirable when it is
consistent with the data.

7

2.6 Covariates

Scientifically, one may be interested in the impact of a vector-valued covariate process, Z(t), on the
latent dynamic system. Our modeling framework allows the transition density, fXn|Xn−1

, and the
measurement density, fY n|Xn

, to depend arbitrarily on time, and this includes the possibility of de-
pendence on one or more covariates. A covariate process is called shared if, at each time, it takes sin-
gle value which influences all the units. A unit-specific covariate process, Z(t) = Z1:U (t), has a value,
Zu(t), for each unit, u. In spatPomp, covariate processes can be supplied as a class 'data.frame'
object to the covar argument of the spatPomp() constructor function. This data.frame requires
a column for time, spatial unit, and each of the covariates. If any of the variables in the covari-
ates data.frame is common among all units the user must supply the variable names as class
'character' vectors to the shared covarnames argument of the spatPomp() constructor func-
tion. All covariates not declared as shared are assumed to be unit-specific. spatPomp manages the
task of presenting interpolated values of the covariates to the elementary model functions at the
time they are called. An example implementing a SpatPOMP model with covariates is presented
in Section 6.

2.7 Specifying model components using C snippets

The spatPomp function spatPomp Csnippet extends the Csnippet facility in pomp which allows users
to specify the model components in Table 1 via fragments of C code. The use of Csnippets permits
computationally expensive calculations to take advantage of the performance of C. The Csnippets
are compiled in a suitable environment by a call to spatPomp(), however, spatPomp() needs some
help to determine which variables should be defined. In behavior inherited from pomp, the names
of the parameters and latent variables must be supplied to spatPomp using the paramnames and
unit statenames arguments, and the names of observed variables and covariates are extracted
from the supplied data. In spatPomp, unit-specific variable names can be supplied as needed via
arguments to spatPomp Csnippet. These can be used to specify the five unit measure model
components in Table 1 which specify properties of the spatially structured measurement model
characteristic of a SpatPOMP. For a unit measure Csnippet, automatically defined variables also
include the number of units, U, and an integer u corresponding to a numeric unit from 0 to U-1.

A Csnippet can look similar to a domain-specific language. For example, the unit measurement
density for the bm10 example is simply

spatPomp_Csnippet("lik = dnorm(Y,X,tau,give_log);")

Here, spatPomp makes all the required variables available to the Csnippet: the unit state name
variable, X; the unit measurement variable, Y; the parameter, tau; and a logical flag give log

indicating whether the desired output is on log scale, following a standard convention for the C
interface to R distribution functions (R Core Team, 2022b). For models of increasing complexity
the full potential of the C language is available. In particular, additional C variables can be defined
when needed, as demonstrated in Section 6.

Unlike the strict unit structure required for the measurement process, the latent process for
a SpatPOMP model can have arbitrary spatial dependence between units. We cannot in general
define the full coupled dynamics by a collection of runit process functions defined separately
for each unit. Therefore, spatPomp relies on a rprocess function defined exactly as for pomp. A

8

spatPomp Csnippet for rprocess will typically involve a computation looping through the units,
which requires access to location data used to specify the interaction between units. The location
data can be made available to the Csnippet using the globals argument. Further details on this
are postponed to Section 6.

2.8 Simulation

A first step to explore a SpatPOMP model is to simulate stochastic realizations of the latent process
and the resulting measurements. This is carried out by simulate() which requires specification of
rprocess and rmeasure. For example, simulate(bm10) produces a new object of class 'spatPomp'
for which the original data have been replaced with a simulation from the specified model. Unless
a params argument is supplied, the simulation will be carried out using the parameter vector
in coef(bm10). Optionally, simulate can be made to return a class 'data.frame' object by
supplying the argument format="data.frame" in the call to simulate.

3 Likelihood evaluation

We describe algorithms for likelihood evaluation in this section, followed by algorithms for likelihood
maximization in Section 4. These tools are subsequently demonstrated in Section 5.

Likelihood evaluation for SpatPOMP models is effected via a filtering calculation. The curse
of dimensionality associated with spatiotemporal models can make filtering for SpatPOMP models
computationally challenging, even though a single likelihood evaluation cannot be more than a small
step toward a complete likelihood-based inference workflow. A widely used time-series filtering
technique is the basic particle filter (PF) available as pfilter in the pomp package. However,
PF and many of its variations scale poorly with dimension (Bengtsson et al., 2008; Snyder et al.,
2015). Thus, in the spatiotemporal context, successful particle filtering requires state-of-the-art
algorithms. Below, we introduce four such algorithms implemented in the spatPomp package: a
guided intermediate resampling filter (GIRF) implemented as girf, an adapted bagged filter (ABF)
implemented as abf, an ensemble Kalman filter (EnKF) implemented as enkf, and a block particle
filter (BPF) implemented as bpfilter.

The filtering problem can be decomposed into two steps, prediction and filtering. For all the
filters we consider here, the prediction step involves simulating from the latent process model. The
algorithms differ primarily in their approaches to the filtering step, also known as the data assimila-
tion step or the analysis step. For PF, the filtering step is a weighted resampling from the prediction
particles, and the instability of these weights in high dimensions is the fundamental scalability is-
sue with the algorithm. GIRF carries out this resampling at many intermediate timepoints with
the goal of breaking an intractable resampling problem into a sequence of tractable ones. EnKF
estimates variances and covariances of the prediction simulations, and carries out an update rule
that would be exact for a Gaussian system. BPF carries out the resampling independently over a
partition of the units, aiming for an inexact but numerically tractable approximation. ABF com-
bines together many high-variance filters using local weights to beat the curse of dimensionality.
We proceed to describe these algorithms in more detail.

9

3.1 The guided intermediate resampling filter (GIRF)

The guided intermediate resampling filter (GIRF, Park and Ionides, 2020) is an extension of the
auxiliary particle filter (APF, Pitt and Shepard, 1999). GIRF is appropriate for moderately high-
dimensional SpatPOMP models with a continuous-time latent process. All particle filters compute
importance weights for proposed particles and carry out resampling to focus computational effort on
particles consistent with the data (see reviews by Arulampalam et al., 2002; Doucet and Johansen,
2011; Kantas et al., 2015). In the context of pomp, the pfilter function is discussed by King et al.
(2016). GIRF combines two techniques for improved scaling of particle filters: the use of a guide
function and intermediate resampling.

The guide function steers particles using importance weights that anticipate upcoming obser-
vations. Future measurements are considered up to a lookahead horizon, L. APF corresponds to a
lookahead horizon L = 2, and a basic particle filter has L = 1. Values L ≤ 3 are typical for GIRF.

Intermediate resampling breaks each observation interval into S sub-intervals, and carries out
reweighting and resampling on each sub-interval. Perhaps surprisingly, intermediate resampling
can facilitate some otherwise intractable importance sampling problems (Del Moral and Murray,
2015). APF and the basic particle filter correspond to S = 1, whereas choosing S = U gives
favorable scaling properties (Park and Ionides, 2020).

In Algorithm 1 the F , G and P superscripts indicate filtered, guide and proposal particles,
respectively. The goal for the pseudocode in Algorithm 1, and subsequent algorithms in this paper,
is a succinct description of the logic of the procedure rather than a complete recipe for efficient
coding. Therefore, the pseudocode does not focus on opportunities for memory overwriting and
vectorization, though these may be implemented in spatPomp code.

We call the guide in Algorithm 1 a bootstrap guide function since it is based on resampling the
Monte Carlo residuals calculated in step 5. Another option of a guide function in girf is the simu-
lated moment guide function developed by Park and Ionides (2020) which uses the eunit measure,
vunit measure and munit measure model components together with simulations to calculate the
guide. The expectation of Monte Carlo likelihood estimates does not depend on the guide function,
so an inexact guide approximation may lead to loss of numerical efficiency but does not affect the
consistency of the procedure.

The intermediate resampling is represented in Algorithm 1 by the loop of s = 1, . . . , S in step 6.
The intermediate times are defined by tn,s = tn + (tn+1 − tn) · s

/
S and we write Xn,s = X(tn,s).

The resampling weights (step 12) are defined in terms of guide function evaluations gP,jn,s . The only

requirement for the guide function to achieve unbiased estimates is that it satisfies gF,j0,0 = 1 and

gP,jN−1,S = fY N |XN

(
y∗N |XF,j

N−1,S ;θ
)
, which is the case in Algorithm 1. The particular guide function

calculated in step 11 evaluates particles using a prediction centered on a function

µ(x, s, t ;θ) ≈ E[X(t) |X(s) = x ;θ].

We call µ(x, s, t ;θ) a deterministic trajectory associated with X(t). For a continuous time Spat-
POMP model, this trajectory is typically the solution to a system of differential equations that
define a vector field called the skeleton (Tong, 1990). The skeleton is specified by a Csnippet filling
the skeleton argument to spatPomp(). The forecast spread around this deterministic prediction
is given by the simulated bootstrap residuals constructed in step 5.

10

Algorithm 1: girf(P,Np = J, Ninter =S, Nguide =K, Lookahead =L), using notation
from Table 1 where P is a ‘spatPomp’ object equipped with rprocess, dunit measure,
rinit, skeleton, obs, coef.

input: simulator for fXn|Xn−1
(xn |xn−1 ;θ) and fX0(x0 ;θ); evaluator for

fYu,n|Xu,n
(yu,n |xu,n ;θ), and µ(x, s, t ;θ); data, y∗1:N ; parameter, θ; number of

particles, J ; number of guide simulations, K; number of intermediate timesteps, S;
number of lookahead lags, L.

1 initialize: simulate XF,j
0,0 ∼ fX0(· ;θ) and set gF,j0,0 = 1 for j in 1 :J

2 for n in 0 :N − 1 do
3 sequence of guide forecast times, L = (n+ 1):min(n+ L,N)

4 guide simulations, XG,j,k
L ∼ fXL|Xn

(
· |XF,j

n,0 ;θ
)
for j in 1 :J , k in 1 :K

5 guide residuals, ϵj,k0,ℓ =X
G,j,k
ℓ − µ

(
XF,j

n , tn, tℓ ;θ
)
for j in 1 :J , k in 1 :K, ℓ in L

6 for s in 1 :S do

7 prediction simulations, XP,j
n,s ∼ fXn,s|Xn,s−1

(
· |XF,j

n,s−1 ;θ
)
for j in 1 :J

8 deterministic trajectory, µP,j
n,s,ℓ = µ

(
XP,j

n,s , tn,s, tℓ ;θ
)
for j in 1 :J , ℓ in L

9 pseudo guide simulations, X̂
j,k
n,s,ℓ = µ

P,j
n,s,ℓ + ϵ

j,k
s−1,ℓ − ϵ

j,k
s−1,n+1 +

√
tn+1−tn,s

tn+1−tn,0
ϵj,ks−1,n+1

for j in 1 :J , k in 1 :K, ℓ in L
10 discount factor, ηn,s,ℓ = 1− (tn+ℓ − tn,s)/{(tn+ℓ − tmax(n+ℓ−L,0)) · (1 + 1L=1)}

11 gP,jn,s =
∏

ℓ inL

U∏

u=1

[
1

K

K∑

k=1

fYu,ℓ|Xu,ℓ

(
y∗u,ℓ | X̂j,k

u,n,s,ℓ ;θ
)]ηn,s,ℓ

for j in 1 :J

12 for j in 1 :J , wj
n,s =




fY n|Xn

(
yn |XF,j

n,s−1 ;θ
)
gP,jn,s

/
gF,jn,s−1 if s = 1 and n ̸= 0

gP,jn,s

/
gF,jn,s−1 else

13 log-likelihood component, cn,s = log
(
J−1

∑J
q=1w

q
n,s

)

14 normalized weights, w̃j
n,s = wj

n,s

/∑J
q=1w

q
n,s for j in 1 :J

15 select resample indices, r1:J with P [rj = q] = w̃q
n,s for j in 1 :J

16 XF,j
n,s =X

P,rj
n,s , gF,jn,s = g

P,rj
n,s , ϵj,ks,ℓ = ϵ

rj ,k
s−1,ℓ for j in 1 :J , k in 1 :K, ℓ in L

17 end

18 set XF,j
n+1,0 =X

F,j
n,S and gFn+1,0,j = gFn,S,j for j in 1 :J

19 end

output: log-likelihood, λGIRF =
∑N−1

n=0

∑S
s=1 cn,s, and filter particles, XF,1:J

N,0

complexity: O
(
JLUN(K + S)

)

11

Algorithm 2: enkf(P,Np = J), using notation from Table 1 where P is a ‘spatPomp’ object
equipped with rprocess, eunit measure, vunit measure, rinit, coef, obs.

input: simulator for fXn|Xn−1
(xn |xn−1 ;θ) and fX0(x0 ;θ); evaluator for eu(Xu,n, θ) and

vu(Xu,n, θ); parameter, θ; data, y∗1:N ; number of particles, J .

1 initialize filter particles, XF,j
0 ∼ fX0 (· ;θ) for j in 1 :J

2 for n in 1 :N do

3 prediction ensemble, XP,j
n ∼ fXn|Xn−1

(
· |XF,j

n−1; θ
)
for j in 1 :J

4 centered prediction ensemble, X̃
P,j
n =XP,j

n − 1
J

∑J
q=1X

P,q
n for j in 1 :J

5 forecast ensemble, Ŷ
j
n = eu(X

P,j
u,n, θ) for j in 1 :J

6 forecast mean, Yn = 1
J

∑J
j=1 Ŷ

j
n

7 centered forecast ensemble, Ỹ
j
n = Ŷ

j
n − Yn for j in 1 :J

8 forecast measurement variance, Ru,ũ = 1u,ũ
1
J

∑J
j=1 vu

(
XP,j

u,n, θ
)

for u, ũ in 1 :U

9 forecast estimated covariance, ΣY = 1
J−1

∑J
j=1(Ỹ

j
n)(Ỹ

j
n)

T +R

10 prediction and forecast sample covariance, ΣXY = 1
J−1

∑J
j=1(X̃

P,j
n)(Ỹ

j
n)

T

11 Kalman gain, K = ΣXY Σ
−1
Y

12 artificial measurement noise, ϵjn ∼ Normal(0, R) for j in 1 :J

13 errors, rjn = Ŷ
j
n − y∗n for j in 1 :J

14 filter update, XF,j
n =XP,j

n +K
(
rjn + ϵjn

)
for j in 1 :J

15 λn = log
[
ϕ
(
y∗n ;Yn,ΣY

)]
where ϕ(· ;µ,Σ) is the Normal(µ,Σ) density.

16 end

output: filter sample, XF,1:J
n , for n in 1 :N ; log-likelihood estimate, λEnKF =

∑N
n=1 λn

complexity: O(JUN)

3.2 The ensemble Kalman filter (EnKF)

Ensemble Kalman filter (EnKF) algorithms use observations to update simulations from the latent
Markov model via an update rule based on a Gaussian conditional density (Evensen, 1994; Evensen
and van Leeuwen, 1996). The prediction step advances the Monte Carlo ensemble to the next
observation time by using simulations from the postulated model In the filtering step, the sample
estimate of the state covariance matrix and the measurement variance are combined to update each
ensemble member, using a rule that approximates the conditional distribution were the variables
jointly Gaussian.

The spatPomp implementation of EnKF is described in Algorithm 2. In step 8, the conditional
variance of the measurement at the current time step is approximated by constructing a diagonal
covariance matrix whose diagonal elements are the sample average of the theoretical unit measure-
ment variances at each unit. This is written using an indicator function 1u,ũ which takes value 1
if u = ũ and 0 otherwise. The vunit measure model component participates in this step whereas
eunit measure specifies how we can construct forecast data (step 5) that can be used to later
update our prediction particles in step 14. In step 12 we add artificial measurement error to arrive
at a consistent sample covariance for the filtering step (Evensen, 1994; Evensen and van Leeuwen,
1996), writing Normal(µ,Σ) for independent draws from a multivariate normal random variable

12

Algorithm 3: bpfilter(P,Np = J,block list =B) using notation from Table 1 where P

is a ‘spatPomp’ object equipped with rprocess, dunit measure, rinit, obs, coef.

input: simulator for fXn|Xn−1
(xn |xn−1 ;θ) and fX0(x0 ;θ); number of particles, J ;

evaluator for fYu,n|Xu,n
(yu,n |xu,n ;θ); data, y∗1:N ; parameter, θ; blocks, B1:K ;

1 initialization, XF,j
0 ∼ fX0 (· ;θ) for j in 1 :J

2 for n in 1 :N do

3 prediction, XP,j
n ∼ fXn|Xn−1

(
· |XF,j

n−1; θ
)
for j in 1 :J

4 block weights, wj
k,n =

∏

u∈Bk

fYu,n|Xu,n

(
y∗u,n |XP,j

u,n ;θ
)
for j in 1 :J , k in 1 :K

5 resampling indices, rjk,n with P
[
rjk,n = i

]
= wi

k,n

/∑J
q=1w

q
k,n for j in 1 :J , k in 1 :K

6 resample, XF,j
Bk,n

= X
P,rj,k
Bk,n

for j in 1 :J , k in 1 :K

7 end

output: log-likelihood, λBPF(θ) =
∑N

n=1

∑K
k=1 log

(
1
J

∑J
j=1w

j
k,n

)
, filter particles XF,1:J

1:N

complexity: O(JUN)

with mean µ and variance matrix Σ.
EnKF achieves good dimensional scaling relative to PF by replacing the resampling step with

an update rule inspired by a Gaussian approximation. If the number of units exceeds the number
of particles in the ensemble, regularization is required when estimating the covariance matrix.
Currently, spatPomp has focused on systems for which this issue does not arise.

Our EnKF implementation supposes we have access to the measurement mean function, eu,n(x, θ),
and the measurement variance, vu(x, θ), defined in Table 1. For common choices of measurement
model, such as Gaussian or negative binomial, eu,n and vu,n are readily available. Section 6 provides
an example of simple Csnippets for eunit measure and vunit measure. In general, the functional
forms of eu,n and vu,n may depend on u and n, or on covariate time series.

3.3 Block particle filter

Algorithm 3 is an implementation of the block particle filter (BPF Rebeschini and van Handel,
2015), also called the factored particle filter (Ng et al., 2002). BPF partitions the units into a
collection of blocks, B1, . . . ,BK , such that each unit is a member of exactly one block. BPF
generates proposal particles by simulating from the joint latent process across all blocks, exactly as
the particle filter does. However, the resampling in the filtering step is carried out independently for
each block, using weights corresponding only to the measurements in the block. Different proposal
particles may be successful for different blocks, and the block resampling allows the filter particles to
paste together these successful proposals. This avoids the curse of dimensionality, while introducing
an approximation error that may be large or small depending on the model under consideration.

The user has a choice of specifying the blocks using either the block list argument or block size,
but not both. block list takes a class 'list' object where each entry is a vector representing the
units in a block. block size takes an integer and evenly partitions 1 :U into blocks of size approx-
imately block size. For example, if there are 4 units, executing bpfilter with block size=2 is
equivalent to setting block list=list(c(1,2),c(3,4)).

13

3.4 Adapted bagged filter (ABF)

The adapted bagged filter (Ionides et al., 2023) combines many independent particle filters. This is
called bagging, (bootstrap aggregating), since a basic particle filter is also called a bootstrap filter.
The adapted distribution is the conditional distribution of the latent process given its current value
and the subsequent observation (Johansen and Doucet, 2008). In the adapted bagged filter, each
bootstrap replicate makes a Monte Carlo approximation to a draw from the adapted distribution.
Thus, in the pseudocode of Algorithm 4, XA,i

0:N is a Monte Carlo sample targeting the adapted
sampling distribution,

fX0(x0 ;θ)

N∏

n=1

fXn|Y n,Xn−1
(xn |y∗n,xn−1 ; θ). (1)

Each adapted simulation replicate is constructed by importance sampling using proposal particles
{XP,i,j

n }. The ensemble of adapted simulation replicates are then weighted using data in a spa-
tiotemporal neighborhood of each observation to obtain a locally combined Monte Carlo sample
targeting the filter distribution, with some approximation error due to the finite spatiotemporal
neighborhood used. This local aggregation of the bootstrap replicates also provides an evaluation
of the likelihood function.

On a given bootstrap replicate i at a given time n, all the adapted proposal particles XP,i,1:J
n

in step 3 are necessarily close to each other in state space because they share the parent particle
XA,i

n−1. This reduces imbalance in the adapted weights in step 5, which helps to battle the curse
of dimensionality that afflicts importance sampling. The combination of the replicates for the
filter estimate in step 11 is carried out using only weights in a spatiotemporal neighborhood, thus
avoiding the curse of dimensionality. For any point (u, n), the neighborhood Bu,n should be specified
as a subset of Au,n = {(ũ, ñ) : ñ < n or (ũ < u and ñ = n)}. If the model has a mixing property,
meaning that conditioning on the observations in the neighborhood Bu,n is negligibly different from
conditioning on the full set Au,n, then the approximation involved in this localization is adequate.

Steps 1 through 7 do not involve interaction between replicates and therefore iteration over i can
be carried out in parallel. If a parallel back-end has been set up by the user, the abf method will
parallelize computations over the replicates using multiple cores. The user can register a parallel
back-end using the doParallel package (Wallig and Weston, 2022b,a) prior to calling abf.

library("doParallel")

registerDoParallel(detectCores())

The neighborhood is supplied via the nbhd argument to abf as a function which takes a point in
space-time, (u, n), and returns a list of points in space-time which correspond to Bu,n. An example
with Bu,n = {(u− 1, n), (u, n− 1)} follows.

example_nbhd <- function(object, unit, time){

nbhd_list = list()

if(time>1) nbhd_list <- c(nbhd_list, list(c(unit, time-1)))

if(unit>1) nbhd_list <- c(nbhd_list, list(c(unit-1, time)))

return(nbhd_list)

}

ABF can be combined with the guided intermediate resampling technique used by GIRF to give
an algorithm called ABF-IR (Ionides et al., 2023) implemented as abfir.

14

Algorithm 4: abf(P,replicates = I,Np = J,nbhd=Bu,n), using notation from Table 1
where P is a ‘spatPomp’ object equipped with rprocess, dunit measure, rinit, obs,
coef.
input: simulator for fXn|Xn−1

(xn |xn−1 ;θ) and fX0(x0 ;θ); evaluator for
fYu,n|Xu,n

(yu,n |xu,n ;θ); data, y∗1:N ; parameter, θ; number of particles per replicate,
J ; number of replicates, I; neighborhood structure, Bu,n

1 initialize adapted simulation, XA,i
0 ∼ fX0(· ;θ) for i in 1 :I

2 for n in 1 :N do

3 proposals, XP,i,j
n ∼ fXn|Xn−1

(
· |XA,i

n−1 ;θ
)
for i in 1 :I, j in 1 :J

4 wi,j
u,n = fYu,n|Xu,n

(
y∗u,n |XP,i,j

u,n ;θ
)
for u in 1 :U , i in 1 :I, j in 1 :J

5 adapted resampling weights, wA,i,j
n =

∏U
u=1w

i,j
u,n for u in 1 :U , i in 1 :I, j in 1 :J

6 set XA,i
n =XP,i,j

n with probability wA,i,j
n

(∑J
q=1w

A,i,q
n

)−1
for i in 1 :I

7 wP,i,j
u,n =

n−1∏

ñ=1


 1

J

J∑

q=1

∏

(ũ,ñ)∈Bu,n

wi,q
ũ,ñ


 ∏

(ũ,n)∈Bu,n

wi,j
ũ,n for u in 1 :U , i in 1 :I, j in 1 :J

8 end

9 filter weights, wF,i,j
u,n =

wi,j
u,n w

P,i,j
u,n∑I

p=1

∑J
q=1w

P,p,q
u,n

for u in 1 :U , n in 1 :N , i in 1 :I, j in 1 :J

10 conditional log-likelihood, λu,n = log
(∑I

i=1

∑J
j=1w

F,i,j
u,n

)
for u in 1 :U , n in 1 :N

11 set XF,j
u,n = XP,i,k

u,n with probability wF,i,k
u,n e−λu,n for u in 1 :U , n in 1 :N , j in 1 :J

output: filter particles, XF,1:J
n , for n in 1 :N ; log-likelihood, λABF =

∑N
n=1

∑U
u=1 λu,n

complexity: O(IJUN)

3.5 Considerations for choosing a filter

Of the four filters described above, only GIRF provides an unbiased estimate of the likelihood.
However, GIRF has a relatively weak theoretical scaling support, beating the curse of dimensionality
only in the impractical situation of an ideal guide function (Park and Ionides, 2020). EnKF, ABF
and BPF gain scalability by making different approximations that may or may not be appropriate
for a given situation. The choice of filter in a particular application is primarily an empirical
question, and spatPomp facilitates a responsible approach of trying multiple options. Nevertheless,
we offer some broad guidance. EnKF has low variance but is relatively sensitive to deviations from
normality; in examples where this is not a concern, such as the example in Section 5, EnKF can
be expected to perform well. BPF can break conservation laws satisfied by the latent process, such
as a constraint on the total population in all units; ABF satisfies such constraints but has been
found to have higher variance than BPF on some benchmark problems (Ionides et al., 2023). For
the measles model built by measles(), BPF and ABF have been found to perform better than
EnKF and GIRF (Ionides et al., 2023). For the Lorenz-96 example built by lorenz(), GIRF and
BPF perform well (Ionides et al., 2023).

15

4 Inference for SpatPOMP models

We focus on iterated filtering methods (Ionides et al., 2015) which provide a relatively simple way
to coerce filtering algorithms to carry out parameter inference, applicable to the general class of
SpatPOMP models considered by spatPomp. The main idea of iterated filtering is to extend a
POMP model to include dynamic parameter perturbations. Repeated filtering, with parameter
perturbations of decreasing magnitude, approaches the maximum likelihood estimate. Here, we
present iterated versions of GIRF, EnKF, BPF, and the unadapted bagged filter (UBF), a version
of ABF with J = 1. These algorithms are known as IGIRF (Park and Ionides, 2020), IEnKF (Li
et al., 2020), IBPF (Ning and Ionides, 2023a; Ionides et al., 2022) and IUBF (Ionides et al., 2023)
respectively. SpatPOMP model estimation is an active area for research (for example, Katzfuss
et al., 2020) and spatPomp provides a platform for developing new statistical methods and testing
them on a range of models.

4.1 Iterated GIRF for parameter estimation

Algorithm 5 describes igirf(), the spatPomp implementation of IGIRF. This algorithm carries
out the IF2 algorithm of Ionides et al. (2015) with filtering carried out by GIRF, therefore its
implementation combines the mif2 function in pomp with girf (Algorithm 1). To unclutter the
pseudocode, in this section we use the convention that a free subscript or superscript indicates an
implicit ‘for’ loop over all values in the index range. Here, a numeric index is called “free” if its
value is not explicitly specified by the code. For example, in Line 3 of Algorithm 5 there is an
implicit loop over all values of j in 1 :J , but not over m since that was specified explicitly in Line 2.

The quantity ΘP,m,j
n,s gives a perturbed parameter vector for θ corresponding to particle j on

iteration m at the sth intermediate time between n and n + 1. The perturbations in Algorithm 5
are taken to follow a multivariate normal distribution, with a diagonal covariance matrix scaled by
σn,dθ . Normally distributed perturbations are not theoretically required, but are a common choice
in practice. The igirf function permits perturbations to be carried out on a transformed scale,
specified using the partrans argument, to accommodate situations where normally distributed per-
turbations are more natural on the log or logistic scale, or any other user-specified scale. For regular
parameters, i.e. parameters that are not related to the initial conditions of the dynamics, it may be
appropriate to set the perturbation scale independent of n. If parameters are transformed so that
a unit scale is relevant, for example using a logarithmic transform for non-negative parameters, an
appropriate default value is σn,dθ = 0.02. Initial value parameters (IVPs) are those that determine
only the latent state at time t0, and these should be perturbed only at the beginning of each iter-
ation m. The matrix σ0:N,1:Dθ

can be constructed using the rw sd function, which simplifies the
construction of the rw.sd argument for regular parameters and IVPs. The cooling.fraction.50
argument takes the fraction of rw.sd by which to perturb the parameters after 50 iterations of
igirf. If using the default geometric cooling schedule, a value of cooling.fraction.50=0.5

means that the perturbation standard deviation decreases roughly 1% per iteration.

4.2 Iterated EnKF for parameter estimation

Algorithm 6 describes enkf, an implementation of the iterated ensemble Kalman filter (IEnKF)
which extends the IF2 approach for parameter estimation by replacing a particle filter with an
ensemble Kalman filter. The pseudocode uses the free index notation described in Section 4.1. An

16

Algorithm 5: igirf(P,params = θ0,Ngirf =M,Np = J,Ninter =S,Nguide =K,Lookahead =L,
rw.sd = σ0:N,1:Dθ

,cooling.fraction.50 = a) using notation from Table 1 where P is a
‘spatPomp’ object equipped with rprocess, dunit measure, skeleton, rinit, obs.

input: simulator for fXn|Xn−1
(xn |xn−1 ;θ) and fX0(x0 ;θ); evaluator for

fYu,n|Xu,n
(yu,n |xu,n ;θ), and µ(x, s, t ;θ); data, y∗1:N ; starting parameter, θ0;

iterations, M ; particles, J ; lookahead lags, L; intermediate timesteps, S; random
walk intensities, σ0:N,1:Dθ

; cooling fraction in 50 iterations, a.
note: free indices are implicit ‘for’ loops, calculated for j in 1 :J , k in 1 :K,

ℓ in (n+ 1):min(n+ L,N), u in 1 :U , dθ, d
′
θ in 1 :Dθ.

1 initialize parameters, ΘF,0,j
N−1,S = θ0

2 for m in 1 :M do

3 initialize parameters, ΘF,m,j
0,0 ∼ Normal

(
ΘF,m−1,j

N−1,S , a2m/50Σivp

)
for[

Σivp

]
dθ,d

′
θ
= σ2ivp,dθ1dθ=d′θ

4 initialize filter particles, simulate XF,j
0,0 ∼ fX0

(
· ;ΘF,m,j

0,0

)
and set gF,jn,0 = 1

5 for n in 0 :N − 1 do

6 guide simulations, XG,j,k
ℓ ∼ fXℓ|Xn

(
· |XF,j

n,0 ;Θ
F,m,j
n,0

)

7 guide residuals, ϵj,k0,ℓ =X
G,j,k
ℓ − µ

(
XF,j

n,0, tn, tℓ ;Θ
F,m,j
n,0

)

8 for s in 1 :S do

9 perturb parameters, ΘP,m,j
n,s ∼ Normal

(
ΘF,m,j

n,s−1 , a
2m/50Σn

)
for[

Σn

]
dθ,d

′
θ
= σ2n,dθ1dθ=d′θ

/S

10 prediction simulations, XP,j
n,s ∼ fXn,s|Xn,s−1

(
· |XF,j

n,s−1 ;Θ
P,m,j
n,s

)

11 deterministic trajectory, µP,j
n,s,ℓ = µ

(
XP,j

n,s , tn,s, tℓ ;Θ
P,m,j
n,s

)

12 pseudo guide simulations,

X̂
j,k
n,s,ℓ = µ

P,j
n,s,ℓ + ϵ

j,k
s−1,ℓ − ϵ

j,k
s−1,n+1 +

√
tn+1−tn,s

tn+1−tn,0
ϵj,ks−1,n+1

13 discount factor, ηn,s,ℓ = 1− (tn+ℓ − tn,s)/{(tn+ℓ − tmax(n+ℓ−L,0)) · (1 + 1L=1)}

14 gP,jn,s =

min(n+L,N)∏

ℓ=n+1

U∏

u=1

[
1

K

K∑

k=1

fYu,ℓ|Xu,ℓ

(
y∗u,ℓ | X̂j,k

u,n,s,ℓ ;Θ
P,m,j
n,s

)]ηn,s,ℓ

15 wj
n,s =





fY n|Xn

(
yn |XF,j

n,s−1 ;Θ
F,m,j
n,s−1

)
gP,jn,s

/
gF,jn,s−1 if s = 1, n ̸= 0

gP,jn,s

/
gF,jn,s−1 else

16 normalized weights, w̃j
n,s = wj

n,s

/∑J
q=1w

q
n,s

17 resampling indices, r1:J with P [rj = q] = w̃q
n,s

18 set XF,j
n,s =X

P,rj
n,s , gF,jn,s = g

P,rj
n,s , ϵj,ks,ℓ = ϵ

rj ,k
s−1,ℓ, ΘF,m,j

n,s = Θ
P,m,rj
n,s

19 end

20 end

21 end

output: Iterated GIRF parameter swarm, ΘF,M,1:J
N−1,S

Monte Carlo maximum likelihood estimate: 1
J

∑J
j=1Θ

F,M,j
N−1,S

complexity: O
(
MJLUN(K + S)

)

17

Algorithm 6: ienkf(P,params = θ0,Nenkf =M,cooling.fraction.50 = a,rw.sd = σ0:N,1:Dθ
,

Np = J), using notation from Table 1 where P is a ‘spatPomp’ object equipped with
rprocess, eunit measure, vunit measure, rinit, and obs.

input: simulator for fXn|Xn−1
(xn |xn−1 ;θ) and fX0(x0 ;θ); evaluator for eu,n(x, θ) and

vu,n(x, θ); data, y
∗
1:N ; number of particles, J ; number of iterations, M ; starting

parameter, θ0; random walk intensities, σ0:N,1:Dθ
; cooling fraction in 50 iterations,

a.
note: free indices are implicit ‘for’ loops, calculated for j in 1 :J , u and ũ in 1 :U , dθ and

d′θ in 1 :Dθ.

1 initialize parameters, ΘF,0,j
N = θ0

2 for m in 1 :M do

3 initialize parameters, ΘF,m,j
0 ∼ Normal

(
ΘF,m−1,j

N , a2m/50Σ0

)
for[

Σn

]
dθ,d

′
θ
= σ2n,dθ1dθ=d′θ

4 initialize filter particles, simulate XF,j
0 ∼ fX0

(
· ;ΘF,m,j

0

)
.

5 for n in 1 :N do

6 perturb parameters, ΘP,m,j
n ∼ Normal

(
ΘF,m,j

n−1 , a2m/50Σn

)

7 prediction ensemble, XP,j
n ∼ fXn|Xn−1

(
· |XF,j

n−1; Θ
P,m,j
n

)

8 process and parameter ensemble, ZP,j
n =

(
XP,j

n

ΘP,m,j
n

)

9 centered process and parameter ensemble, Z̃
P,j
n = ZP,j

n − 1
J

∑J
q=1Z

P,q
n

10 forecast ensemble, Ŷ
j
n, defined by Ŷ j

u,n = eu(X
P,j
u,n,Θ

P,m,j
n)

11 centered forecast ensemble, Ỹ
j
n = Ŷ

j
n − 1

J

∑J
q=1 Ŷ

q
n

12 forecast measurement variance, Ru,ũ = 1u,ũ
1
J

∑J
j=1 vu(X

P,j
u,n,Θ

P,m,j
n)

13 forecast sample covariance, ΣY = 1
J−1

∑J
j=1(Ỹ

j
n)(Ỹ

j
n)

T +R

14 prediction and forecast sample covariance, ΣZY = 1
J−1

∑J
j=1(Z̃

P,j
n)(Ỹ

j
n)

T

15 Kalman gain: K = ΣZY Σ
−1
Y

16 artificial measurement noise, ϵjn ∼ Normal(0, R)

17 errors, rjn = Ŷ
j
n − y∗n

18 filter update: ZF,j
n =

(
XF,j

n

ΘF,m,j
n

)
= ZP,j

n +K
(
rjn + ϵjn

)

19 end

20 end

21 set θM = 1
J

∑J
j=1Θ

F,M,j
N

output: Monte Carlo maximum likelihood estimate, θM .
complexity: O(MJUN)

18

IEnKF algorithm was demonstrated by Li et al. (2020). Alternative inference approaches via EnKF
include using the EnKF likelihood within Markov chain Monte Carlo (Katzfuss et al., 2020).

IEnKF uses the data to update the estimates of the latent state and parameters via a linear
combination of the values in the ensemble (Line 18). This causes difficulty estimating parameters
which affect the spread of the ensemble distribution but not its center. In particular, it can fail
to estimate variance parameters. For example, consider estimation of the measurement variance
in the correlated Gaussian random walk model, bm10, with other parameters known. In this case,
the error vector rjn in Line 17 has zero expectation for any value of the measurement variance, τ .
Thus, the increment to the parameter estimate in Line 18 also has zero expectation for any value
of τ , and IEnKF fails. By contrast, for the geometric Brownian motion model generated by gbm()

corresponding to an exponentiation of this correlated Gaussian random walk model, IEnKF can

estimate τ because higher values of τ lead to higher expected values of Ŷ
j
n (Line 10). In this case,

if the average of the forecast ensemble is different from the observed data, the estimate of τ gets
updated to reduce this discrepancy. In summary, EnKF and IEnKF are numerically convenient
algorithms, but care is needed to check whether they are suitable when developing a new model.

4.3 Iterated block particle filter for parameter estimation

The success of bpfilter on a variety of spatiotemporal models (Ionides et al., 2023) raises the
question of how to extend a block particle filter for parameter estimation. An iterated filtering
algorithm accommodating the structure of the block particle filter was proposed by Ionides et al.
(2022). This generalizes the algorithm of Ning and Ionides (2023a) which addresses the special case
where all parameters are unit-specific. These algorithms are implemented by ibpf, which requires
a spatPomp model with the property that estimated parameters can be perturbed across units as
well as through time. Therefore, any estimated parameter (whether shared or unit-specific) must be
coded as a unit-specific parameter in order to apply this method. The spatiotemporal perturbations
are used only as an optimization tool for model parameters which are fixed though time and space
(for shared parameters) or just through time (for unit-specific parameters). The algorithm uses
decreasing perturbation magnitudes so that the perturbed model approaches the fixed parameter
model as the optimization proceeds.

An example model compatible with ibpf is constructed by the he10() function. This builds a
measles model similar to the measles() example discussed in Section 6, with the difference that
the user can select which parameters are unit-specific. For further discussion of ibpf, and related
questions about selecting shared versus unit-specific parameters, we refer the reader to Ionides et al.
(2022). A separate tutorial guide provides additional detail on the use of ibpf (Ning and Ionides,
2023b).

4.4 Iterated UBF for parameter estimation

Algorithm 7 describes the iubf function which carries out parameter estimation by iterating an
unadapted bagged filter (UBF) with perturbed parameters. Note that UBF is the special case
of ABF with J = 1. UBF and IUBF were found to be effective on the measles model (Ionides
et al., 2023) and iubf was developed with this application in mind. This algorithm makes with K
copies of the parameter set, and iteratively perturbs the parameter set while evaluate a conditional
likelihood at each observation time using UBF. In each observation time, IUBF selects perturbed
parameter sets yielding the top p quantile of the likelihoods.

19

Algorithm 7: iubf(P,params = θ0,Nubf =M,Nparam =K,Nrep per param = I,nbhd=Bu,n,

prop=p,cooling.fraction.50 = a,rw.sd = σ0:N,1:Dθ
), using notation from Table 1 where

P is a ‘spatPomp’ object equipped with rprocess, dunit measure, rinit, obs and coef.

input: simulator for fXn|Xn−1
(xn |xn−1 ;θ) and fX0(x0 ;θ); evaluator for

fYu,n|Xu,n
(yu,n |xu,n ;θ); data, y∗1:N ; starting parameter, θ0; number of parameter

vectors, K; number of replicates per parameter, I; neighborhood structure, Bu,n;
number of iterations, M ; resampling proportion, p; random walk intensities,
σ0:N,1:Dθ

; cooling fraction in 50 iterations, a.
note: free indices are implicit ‘for’ loops, calculated for i in 1 :I, k in 1 :K, u and ũ in

1 :U , dθ and d′θ in 1 :Dθ.

1 initialize parameters, ΘF,0,k
N = θ0

2 for m in 1 :M do

3 initialize parameters, ΘF,m,k
0 = ΘF,m−1,k

N

4 initialize filter particles, XF,m,k,i
0 ∼ fX0

(
· ;ΘF,m,k

0

)

5 for n in 1 :N do

6 perturb parameters, ΘP,m,k,i
n ∼ Normal

(
ΘF,m,k

n−1 , a2m/50Σn

)
, where[

Σn

]
dθ,d

′
θ
= σ2n,dθ1dθ=d′θ

7 proposals, XP,m,k,i
n ∼ fXn|Xn−1

(
· |XF,m,k,i

n−1 ;ΘP,m,k,i
n

)

8 unit measurement density, wk,i
u,n = fYu,n|Xu,n

(
y∗u,n |XP,m,k,i

u,n ;ΘP,m,k,i
n

)

9 local prediction weights, wP,k,i
u,n =

∏

(ũ,ñ)∈Bu,n

wk,i
ũ,ñ

10 parameter log-likelihoods, rkn =
U∑

u=1

log

(∑I
i=1w

k,i
u,n w

P,k,i
u,n

∑I
ĩ=1w

P,k,̃i
u,n

)
for k in 1 :K,

11 Select the highest pK weights: find s with

{s(1), . . . , s(pK)} =
{
k :
∑K

k̃=1
1{rk̃ > rk} < pK

}

12 Make 1/p copies of successful parameters, ΘF,m,k
n = Θ

F,m,s(⌈pk⌉)
n for k in 1 :K

13 Set XF,m,k,i
n =X

P,m,s(⌈pk⌉),i
n

14 end

15 end

output: Iterated UBF parameter swarm: ΘF,M,1:K
N

Monte Carlo maximum likelihood estimate: 1
K

∑K
k=1Θ

F,M,1:K
N .

complexity: O(MKIUN)

20

4.5 Inference algorithms inherited from pomp

Objects of class 'spatPomp' inherit methods for inference from class 'pomp' objects implemented
in the pomp package. As discussed earlier, the IF2 algorithm (Ionides et al., 2015) has been used for
maximum likelihood parameter estimation in numerous applications. IF2 can be used to check the
capabilities of newer and more scalable inference methods on smaller examples for which it is known
to be effective. Extensions for Bayesian inference of the currently implemented high-dimensional
particle filter methods (GIRF, ABF, EnKF, BPF) are not yet available. Bayesian inference is
available in spatPomp using the approximate Bayesian computing (ABC) method inherited from
pomp, abc(). ABC has previously been used for spatiotemporal inference (Brown et al., 2018) and
can also serve as a baseline method. A related approach is the synthetic likelihood method of Wood
(2010) which can be implemented using probe.match(). However, ABC and synthetic likelihood
are feature-based methods that may lose substantial information compared to full-information
methods that work with the likelihood function rather than a summary statistic (Fasiolo et al.,
2016).

5 Demonstrating data analysis tools on a toy model

We illustrate key capabilities of spatPomp using the bm10 model for correlated Brownian motion
introduced in Sec.2.2. This allows us to demonstrate a data analysis in a simple context where we
can compare results with a standard particle filter as well as validate all methods against the exact
solutions which are analytically available. To define the model mathematically, consider spatial
units 1, . . . , U located evenly around a circle, where dist(u, ũ) is the circle distance,

dist(u, ũ) = min
(
|u− ũ|, |u− ũ+ U |, |u− ũ− U |

)
.

The latent process is a U -dimensional Brownian motion X(t) having correlation that decays with
distance. Specifically,

dXu(t) =
U∑

ũ=1

ρdist(u,ũ) dWũ(t),

where W1(t), . . . ,WU (t) are independent Brownian motions with infinitesimal variance σ2, and
|ρ| < 1. Using the notation in Section 2, we suppose our measurement model for discrete-time
observations of the latent process is

Yu,n = Xu,n + ηu,n

where ηu,n
iid∼ Normal(0, τ2). The model is completed by providing the initial conditions, {Xu(0), u ∈

1 : U}, which are specified as parameters. The parameters for bm10 are

coef(bm10)

rho sigma tau X1_0 X2_0 X3_0 X4_0 X5_0 X6_0 X7_0 X8_0

0.4 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

X9_0 X10_0

0.0 0.0

21

−2.50

−2.25

−2.00

40302010
Number of spatial units

Lo
g−

lik
el

ih
oo

d
pe

r
un

it
pe

r
tim

e

method

ABF

BPF

EnKF

GIRF

KF

Particle Filter

Figure 4 – Log-likelihood estimates for 5 replications of ABF, BPF, EnKF, GIRF and particle filter
on correlated Brownian motions of various dimensions. The Kalman filter (KF) provides the exact
likelihood in this case.

5.1 Computing the likelihood

The bm10 object contains all necessary model components for likelihood evaluation using the four
algorithms described in Section 3. For example,

girf(bm10,Np=500,Nguide=50,Ninter=5,lookahead=1)

bpfilter(bm10, Np=2000, block_size=2)

enkf(bm10, Np=2000)

This generates objects of class ‘girfd spatPomp’, ‘bpfiltered spatPomp‘ and ‘enkfd spatPomp’
respectively. A plot method provides diagnostics, and the resulting log-likelihood estimate is
extracted by logLik.

Even for methods designed to be scalable, Monte Carlo variance can be expected to grow
with the size of the dataset, and approximations used to enhance scalability may result in bias.
Figure 4 investigates how the accuracy of the likelihood estimate scales with U for the bm model.
Since class 'spatPomp' inherits from class 'pomp', we can compare spatPomp methods against
the pfilter algorithm from pomp. We see that the performance of pfilter rapidly degrades as
dimension increases, whereas the spatPomp methods scale better. On this Gaussian problem, the
exact likelihood is available via the Kalman filter, and EnKF is almost exact since the Gaussian
approximation used to construct its update rule is correct.

Computing resources used by each algorithm for Figure 4 are given in Table 2. Each algorithm
was allowed to use 10 central processing unit (CPU) cores to evaluate all the likelihoods and
the algorithmic settings were fixed as shown in the table. CPU time is not necessarily the only
relevant consideration, for example, when applying pfilter with a large number of units and a
complex model, memory constraints rather than CPU requirements may limit the practical number
of particles. By contrast, ABF has a high CPU requirement but it parallelizes easily to take
advantage of distributed resources.

22

Table 2 – Comparison of computational resources of the filtering algorithms

Method Resources
(core-minutes)

Particles
(per replicate)

Replicates Guide
particles

Lookahead

Particle Filter 1.4 2000 - - -
ABF 53 100 500 - -
GIRF 12 500 - 50 1
EnKF 1.5 2000 - - -
BPF 2.0 2000 - - -

The time-complexity of GIRF is quadratic in U , due to the intermediate time step loop shown
in the pseudocode in Section 3.1, whereas the other algorithms scale linearly with U for a fixed
algorithmic setting. However, a positive feature of GIRF is that it shares with PF the property
that it targets the exact likelihood, i.e., it is consistent for the exact log-likelihood as the number of
particles grows and the Monte Carlo variance approaches zero. GIRF may be a practical algorithm
when the number of units prohibits PF but permits effective use of GIRF. EnKF and BPF generally
run the quickest and require the least memory. However, the Gaussian and independent blocks
assumptions, respectively, of the two algorithms must be reasonable to obtain likelihood estimates
with low bias. On a new problem, it is advantageous to compare various algorithms to reveal
unexpected limitations of the different approximations inherent in each algorithm.

5.2 Parameter inference

The correlated Brownian motions example also serves to illustrate parameter inference using IGIRF.
Suppose we have data from the correlated 10-dimensional Brownian motions model discussed above.
We consider estimation of the parameters σ, τ and ρ when that the initial conditions, {Xu(0), u ∈
1 :U}, are known to be zero. We demonstrate a search started at

start_params <- c(rho = 0.8, sigma = 0.4, tau = 0.2,

X1_0 = 0, X2_0 = 0, X3_0 = 0, X4_0 = 0, X5_0 = 0,

X6_0 = 0, X7_0 = 0, X8_0 = 0, X9_0 = 0, X10_0 = 0)

We start with a test of igirf, estimating the parameters ρ, σ and τ but not the initial value
parameters. We use a computational intensity variable, i, to switch between algorithmic parameter
settings. For debugging, testing and code development we use i=1. For a final version of the
manuscript, we use i=2.

i <- 2

ig1 <- igirf(

bm10,

params=start_params,

Ngirf=switch(i,2,50),

Np=switch(i,10,1000),

Ninter=switch(i,2,5),

lookahead=1,

23

sigma tau

loglik rho

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

0.5

0.6

0.7

0.8

0.5

1.0

1.5

2.0

−2500
−2000
−1500
−1000

−500

0.4
0.6
0.8
1.0
1.2

iteration

va
lu

e

Figure 5 – The output of the plot() method on the object of class 'igirfd spatPomp' that
encodes our model for correlated Brownian motions produces convergence traces for ρ, σ and τ ,
and the corresponding log-likelihoods. Over 50 iterations igirf() has allowed us to get within a
neighborhood of the maximum likelihood.

Nguide=switch(i,5,50),

rw.sd=rw_sd(rho=0.02,sigma=0.02,tau=0.02),

cooling.type = "geometric",

cooling.fraction.50=0.5

)

ig1 is an object of class 'igirfd spatpomp' which inherits from class 'girfd spatpomp'. A
useful diagnostic of the parameter search is a plot of the change of the parameter estimates during
the course of an igirf() run. Each iteration within an igirf run provides a parameter estimate
and a likelihood evaluation at that estimate. The convergence record of parameter estimates and
their likelihood evaluations is stored in the traces slot of the resulting class 'igirfd spatPomp'
object. The plot method for this class gives a graphical representation of the convergence traces,
as shown in Figure 5. We see that this igirf search has allowed us to explore the parameter space
and climb significantly up the likelihood surface to within a small neighborhood of the maximum
likelihood. The search took 12.8 minutes on one CPU core for this example with 10 spatial units.
Investigation of larger models may require multiple searches of the parameter space, started at
various points, implemented using parallel runs of igirf().

The log-likelihood plotted in Figure 5, and that computed by logLik(ig1), correspond to the
perturbed model. These should be recomputed to obtain a better estimate for the unperturbed
model. Different likelihood evaluation methods can be applied, as shown in Section 5.1, to investi-
gate their comparative strengths and weaknesses. For bm10. the model is linear and Gaussian and
so the maximum likelihood estimate of our model and the likelihood at this estimate can be found
numerically using the Kalman filter. The maximum log-likelihood is -373.0, whereas the likelihood
obtained by ig1 is -374.2. This shortfall is a reminder that Monte Carlo optimization algorithms
should usually be replicated, and should be used with inference methodology that accommodates
Monte Carlo error, as discussed in Section 5.3.

24

5.3 Monte Carlo profiles

Proper interpretation of a parameter estimate requires understanding its uncertainty. Here, we
construct a profile likelihood 95% confidence interval for the coupling parameter, ρ, in the bm10

model. This entails calculation of the maximized likelihood over all parameters excluding ρ, for a
range of fixed values of ρ. We use Monte Carlo adjusted profile (MCAP) methodology to accom-
modate Monte Carlo error in maximization and likelihood evaluation (Ionides et al., 2017; Ning
et al., 2021).

In practice, we carry out multiple searches for each value of ρ, with other parameters drawn
at random from a specified hyperbox. We build this box on a transformed scale suitable for
optimization, taking advantage of the partrans method. It is generally convenient to optimize
non-negative parameters on a log scale and (0, 1) valued parameter on a logit scale. We set this
up using the pomp function profile design, taking advantage of the partrans method defined by
the partrans argument to spatPomp, defined here as

bm10 <- spatPomp(bm10,

partrans = parameter_trans(log = c("sigma", "tau"), logit = c("rho")),

paramnames = c("sigma","tau","rho")

)

This provides access to the partrans method which we use when constructing starting points
for the search:

theta_lo_trans <- partrans(bm10,coef(bm10),dir="toEst") - log(2)

theta_hi_trans <- partrans(bm10,coef(bm10),dir="toEst") + log(2)

profile_design(

rho=seq(from=0.2,to=0.6,length=10),

lower=partrans(bm10,theta_lo_trans,dir="fromEst"),

upper=partrans(bm10,theta_hi_trans,dir="fromEst"),

nprof=switch(i,2,10)

) -> pd

The argument nprof sets the number of searches, each started at a random starting point, for
each value of the profiled parameter, rho. We can apply any of the methods of Section 4 for likeli-
hood maximization and any of the methods of Section 3 for likelihood evaluation. Experimentation
is recommended—here, we demonstrate using igirf and enkf. We run parallel searches using
foreach and %dopar% from the foreach package (Wallig and Weston, 2022b) and collecting all
the results together using bind rows from dplyr (Wickham et al., 2022). Multiple log-likelihood
evaluations are carried out on the parameter estimate resulting from each search, averaged using
logmeanexp which also provides a standard error.

foreach (p=iter(pd,"row"),.combine=dplyr::bind_rows) %dopar% {

library(spatPomp)

ig2 <- igirf(ig1,params=p,rw.sd=rw_sd(sigma=0.02,tau=0.02))

ef <- replicate(switch(i,2,10),enkf(ig2,Np=switch(i,50,2000)))

ll <- sapply(ef,logLik)

25

ll <- logmeanexp(ll,se=TRUE)

data.frame(as.list(coef(ig2)),loglik=ll[1],loglik.se=ll[2])

} -> rho_prof

Above, calling igirf on ig1 imports all the previous algorithmic settings except for those
that we explicitly modify. Each row of rho prof now contains a parameter estimate and its log-
likelihood, with ρ values fixed along a grid. The MCAP 95% confidence interval constructed by mcap
uses loess to obtain a smoothed estimate of the profile likelihood function and then determines
a confidence interval using by a cutoff based on the delta method applied to a local quadratic
regression. This cutoff is typically slightly larger than the asymptotic 1.92 cutoff for a standard
profile likelihood confidence interval constructed assuming error-free likelihood maximization and
evaluation.

rho_mcap <- mcap(rho_prof[,"loglik"],parameter=rho_prof[,"rho"])

rho_mcap$ci

[1] 0.2632633 0.5067067

Note that the data in bm10 are generated from a model with ρ = 0.4. Even for this toy
example, the profile likelihood confidence interval requires a non-trivial computational effort. This
calculation took 2.8 hours using 10 cores. As a side-effect, the many searches involved in obtaining
a profile likelihood ensure that the likelihood surface is extensively explored.

6 A spatiotemporal model of measles transmission

A spatPomp data analysis may consist of the following major steps: (i) obtain data, postulate a
class of models that could have generated the data and bring these two pieces together via a call to
spatPomp(); (ii) employ the tools of likelihood-based inference, evaluating the likelihood at specific
parameter sets, maximizing likelihoods under the postulated class of models, constructing Monte
Carlo adjusted confidence intervals, or performing likelihood ratio hypothesis tests of nested models;
(iii) criticize the model by comparing simulations to data, or by considering rival models. In this
section, we focus on step (i), showing how to bring data and models together via a metapopulation
compartment model for measles dynamics in the 6 largest cities in England in the pre-vaccine era.
Tools for step (ii) have been covered in Sections 3 and 4. Step (iii) benefits from the flexibility of
the large model class supported by spatPomp.

Compartment models for population dynamics partition the population into categories called
compartments. Individuals may move between compartments, and the rate of flow of individuals
between a pair of compartments may depend on the number of individuals in other compartments.
Compartment models have widespread scientific applications, especially in the biological and health
sciences (Bretó et al., 2009). Spatiotemporal compartment models can be called patch models or
metapopulation models in an ecological context, where each spatial unit is called a patch or a
sub-population. We present a spatiotemporal model for disease transmission dynamics of measles
within and between multiple cities, based on the model of Park and Ionides (2020) which adds
spatial interaction to the compartment model presented by He et al. (2010). We write equations
for a SpatPOMP model constructed by the measles() and he10 functions in spatPomp construct.
This illustrates how spatPomp can accommodate various model features that may be relevant for a

26

successful statistical description of epidemiological metapopulation dynamics. We then demonstrate
explicitly how to construct a simplified version of this model.

The measles() and he10() models are similar, but differ in details. For measles(), the data
consist of biweekly counts and parameters are all shared between units, matching the analysis of
Park and Ionides (2020) and Ionides et al. (2023). For he10(), data are weekly and parameters
can be shared or unit-specific, matching the analysis of He et al. (2010) and Ionides et al. (2022).
We write the model for the general case where all parameters are unit-specific, noting that it is a
relevant data analysis question to determine when parameter dependence on u can be omitted.

6.1 Mathematical model for the latent process

We first define the model mathematically, starting with a description of the coupling, corresponding
here to travel between cities. Let vuũ denote the number of travelers from city u to ũ. Here, vuũ
follows the gravity model of Xia et al. (2004), with vuũ = guVuũ where gu is called a gravitation
parameter and

Vuũ =
popu · popũ
dist(u, ũ)

× dist

pop2
.

Here, dist(u, ũ) denotes the distance between city u and city ũ, popu is the average across time
of the census population Pu(t) for city u, pop is the average of popu across cities, and dist is the
average of dist(u, ũ) across pairs of cities.

The measles model divides the population of each city into susceptible, S, exposed, E, infectious,
I, and recovered/removed, R, compartments. The number of individuals in each compartment
for city u at time t are denoted by Su(t), Eu(t), Iu(t), and Ru(t). The latent state is X(t) =(
X1(t), . . . , XU (t)

)
with Xu(t) =

(
Su(t), Eu(t), Iu(t), Ru(t)

)
. The dynamics of the latent state can

be written in terms of flows between compartments, together with flows into and out of the system,
as follows:

dSu(t) = dNBS,u(t) − dNSE,u(t) − dNSD,u(t)
dEu(t) = dNSE,u(t) − dNEI,u(t) − dNED,u(t)
dIu(t) = dNEI,u(t) − dNIR,u(t) − dNID,u(t)



 for u = 1, . . . , U .

Here, NSE,u(t), NEI,u(t), and NIR,u(t) are counting processes corresponding to the cumulative
number of individuals transitioning between the compartments identified by the subscripts. The
recruitment of susceptible individuals into city u is denoted by the counting process NBS,u(t),
primarily modeling births. Each compartment also has an outflow, written as a transition to D,
primarily representing death, which occurs at a constant per-capita rate µ. The number of recovered
individuals Ru(t) in city u is defined implicitly from Pu(t) = Su(t) + Eu(t) + Iu(t) + Ru(t). Ru(t)
plays no direct role in the dynamics, beyond accounting for individuals not in any of the other
classes.

To define the Markov model, we specify a rate for each counting process. Thus, µEI,u is
the rate at which an individual in E progresses to I in city u, and 1/µEI,u is called the mean
disease latency. Similarly, 1/µIR,u is the mean infectious period. The mortality rates are fixed at
µSD,u = µED,u = µID,u = µRD,u = µD, with life expectancy 1/µD = 50 yr. The rate of recruitment
of susceptible individuals, µBS,u(t), is treated as a covariate defined in terms of the birth rate, bu(t),
known from public records. Specifically,

µBS,u(t) = bu(t− tb)
[
(1− cu) + cu δ(t− ta)

]
,

27

where ta = ⌊t⌋+ 252/365 is the school admission date for the year containing t, tb = 4yr is a fixed
delay between birth and entry into the high-transmission community, cu is a fraction of the births
which join the S on their first day of school, and δ is the Dirac delta function. All rates other than
µBS,u are defined per capita. The disease transmission rate, µSE,u, is parameterized as

µSE,u(t) = βu seasu(t)



(
Iu(t) + ιu
Pu(t)

)αu

+
∑

ũ̸=u

vuũ
Pu(t)

{(
Iũ(t)

Pũ(t)

)αũ

−
(
Iu(t)

Pu(t)

)αu
}
 dΓSE,u

dt
,

where the mean transmission rate, βu, is parameterized as βu = R0,u(µIR,u + µD) with R0,u being
the basic reproduction rate; seasu(t) is a periodic step function taking value (1−Au) during school
vacations and (1 + 0.381Au) during school terms, defined so that the average value of seasu(t)
is 1; αu is an exponent describing non-homogeneous mixing of individuals; ιu describes infected
individuals arriving from outside the study population; the multiplicative white noise dΓSE,u/dt is
a derivative of a gamma process ΓSE,u(t) having independent gamma distributed increments with
E[ΓSE,u(t)] = t and Var[ΓSE,u(t)] = σ2SE,ut, where σ

2
SE,u is the infinitesimal variance of the noise.

The formal meaning of dΓSE,u/dt as white noise on the rate of a Markov chain was developed by
Bretó et al. (2009) and Bretó and Ionides (2011). In brief, an Euler numerical solution depends on
the rate function integrated over a small time interval of length ∆t. The integrated noise process
is an increment of the gamma process, and these increments are independent gamma random
variables. The continuous time Markov chain corresponding to this noisy rate is the limit of the
Euler solutions as ∆t→ 0, and so these Euler solutions provide a practical approach to working with
the model. A single Euler step is defined via the Csnippet for rprocess, below. This code involves
use of the reulermultinom function, which is the C interface to the R function reulermultinom

provided by pomp. It keeps track of all the rates for possible departures from a compartment. The
gamma white noise in these rates is added using the rgammawn function, which is also defined by
pomp in both C and R.

Multiplicative white noise provides a way to model over-dispersion, a phenomenon where data
variability is larger than can be explained by binomial or Poisson approximations. Over-dispersion
on a multiplicative scale is also called environmental stochasticity, or logarithmic noise, or extra-
demographic stochasticity. Over-dispersion is well established for generalized linear models (McCul-
lagh and Nelder, 1989) and has become increasingly apparent for compartment models as methods
have become available to address it Bjørnstad and Grenfell (2001); He et al. (2010); Stocks et al.
(2020).

Initial conditions for the latent state process at a time t0 are described in terms of initial value
parameters, Su,0, Eu,0 and Iu,0, defined as follows:

Su(t0) = round
(
Su,0 Pu(t0)

)
, Eu(t0) = round

(
Eu,0 Pu(t0)

)
,

Iu(t0) = round
(
Iu,0 Pu(t0)

)
, Ru(t0) = Pu(t0)− Su(t0)− Eu(t0)− Iu(t0).

The observations for city u are bi-weekly reports of new cases. We model the total new cases
in an interval by keeping track of transitions from I to R, since we expect that identified cases will
typically be isolated from susceptible individuals. Therefore, we introduce a new latent variable,
defined at observation times as

Cu,n = NIR,u(tn)−NIR,u(tn−1).

28

To work with Cu,n in the context of a SpatPOMP model, we note that this variable has Markovian
dynamics corresponding to a continuous time variable Cu(t) satisfying dCu(t) = dNIR,u(t) with
the additional property that we set Cu(t) = 0 immediately after an observation time. To model
the observation process, we define Yu,n as a normal approximation to an over-dispersed binomial
sample of Cu,n with reporting rate ρu. Specifically, conditional on Cu,n = cu,n,

Yu,n ∼ Normal
[
ρu cu,n, ρ (1− ρu) cu,n + τ2ρ2uc

2
un

]
,

where τ is a measurement overdispersion parameter.

6.2 Construction of a measles spatPomp object

We construct the model described in Section 6.1 for the simplified situation where αu = 1, ιu = 0
and cu = 0. All other parameters have shared value across units, except for the initial value
parameters. A complete spatPomp representation of the model is provided in the source code for
he10().

We use the bi-weekly measles case counts from U = 6 cities in England as reported by Dalziel
et al. (2016), provided in the object measles cases. Each city has about 15 years (391 bi-weeks)
of data, with no missing data. The first three rows of this data are shown below, with the year

column corresponding to the observation date in years.

year city cases

1950.000 LONDON 96

1950.000 BIRMINGHAM 179

1950.000 LIVERPOOL 533

1950.000 MANCHESTER 22

1950.000 LEEDS 17

1950.000 SHEFFIELD 48

1950.038 LONDON 60

1950.038 BIRMINGHAM 160

We can construct a spatPomp object by supplying three minimal requirements in addition to
our data above: the column names corresponding to the units labels (‘city’) and observation
times (‘year’) and the time at which the latent dynamics are initialized. Here we set this to two
weeks before the first recorded observations.

measles6 <- spatPomp(

data=measles_cases,

units='city',

times='year',

t0=min(measles_cases$year)-1/26

)

Internally, unit names are mapped to an index 1, . . . , U . The number assigned to each unit can
be checked by inspecting their position in unit names(measles). We proceed to collect together
further model components, which we will add to measles6 by a subsequent call to spatPomp().
First, we suppose that we have covariate time series, consisting of census population, Pu(t), and

29

lagged birthrate, bu(t − tb), in a class 'data.frame' object called measles covar. The required
format is similar to the data argument, though the times do not have to correspond to observation
times since spatPomp will interpolate the covariates as needed.

year city lag_birthrate P

1950 LONDON 66318.99 3389306.0

1950 BIRMINGHAM 22968.58 1117892.5

1950 LIVERPOOL 18732.87 802064.9

We now move on to specifying our model components as Csnippets. To get started, we define
the movement matrix

(
vu,ũ

)
u,ũ∈1 :U as a global variable in C that will be accessible to all model

components, via the globals argument to spatPomp().

measles_globals <- spatPomp_Csnippet("

const double V[6][6] = {

{0,2.42,0.950,0.919,0.659,0.786},

{2.42,0,0.731,0.722,0.412,0.590},

{0.950,0.731,0,1.229,0.415,0.432},

{0.919,0.722,1.229,0,0.638,0.708},

{0.659,0.412,0.415,0.638,0,0.593},

{0.786,0.590,0.432,0.708,0.593,0}

};

")

We now construct a Csnippet for initializing the latent process at time t0. This is done us-
ing unit-specific IVPs, as discussed in Sections 2.4 and 2.5. Here, the IVPs are S1 0, . . . ,S6 0,
E1 0,. . . ,E6 0, and I1 0,. . . ,I6 0. These code for the initial value of the corresponding states,
S1,. . . ,S6, E1,. . . ,E6, and I1,. . . ,I6. Additional book-keeping states, C1,. . . ,C6, count accumulated
cases during an observation interval and so are initialized to zero. The arguments unit ivpnames

= c('S','E', 'I') and unit statenames = c('S','E','I','C') enable spatPomp() to expect
these variables and define then as needed when compiling the Csnippets. Similarly, unit covarnames

= 'P' declares the corresponding unit-specific population covariate. This is demonstrated in the
following Csnippet specifying rinit.

measles_rinit <- spatPomp_Csnippet(

unit_statenames = c('S','E','I','C'),

unit_ivpnames = c('S','E','I'),

unit_covarnames = c('P'),

code = "

for (int u=0; u<U; u++) {

S[u] = round(P[u]*S_0[u]);

E[u] = round(P[u]*E_0[u]);

I[u] = round(P[u]*I_0[u]);

C[u] = 0;

}

"

)

30

The rprocess Csnippet has to encode only a rule for a single Euler increment from the process
model. C definitions are provided by spatPomp for all parameters, state variables, covariates, t, dt
and U. Any additional variables required must be declared as C variables within the Csnippet.

measles_rprocess <- spatPomp_Csnippet(

unit_statenames = c('S','E','I','C'),

unit_covarnames = c('P','lag_birthrate'),

code = "

double beta, seas, Ifrac, mu[7], dN[7];

int u, v;

int BS=0, SE=1, SD=2, EI=3, ED=4, IR=5, ID=6;

beta = R0*(muIR+muD);

t = (t-floor(t))*365.25;

seas = (t>=7&&t<=100)||(t>=115&&t<=199)||(t>=252&&t<=300)||(t>=308&&t<=356)

? 1.0 + A * 0.2411/0.7589 : 1.0 - A;

for (u = 0 ; u < U ; u++) {

Ifrac = I[u]/P[u];

for (v=0; v < U ; v++) if(v != u)

Ifrac += g * V[u][v]/P[u] * (I[v]/P[v] - I[u]/P[u]);

mu[BS] = lag_birthrate[u];

mu[SE] = beta*seas*Ifrac*rgammawn(sigmaSE,dt)/dt;

mu[SD] = muD;

mu[EI] = muEI;

mu[ED] = muD;

mu[IR] = muIR;

mu[ID] = muD;

dN[BS] = rpois(mu[BS]*dt);

reulermultinom(2,S[u],&mu[SE],dt,&dN[SE]);

reulermultinom(2,E[u],&mu[EI],dt,&dN[EI]);

reulermultinom(2,I[u],&mu[IR],dt,&dN[IR]);

S[u] += dN[BS] - dN[SE] - dN[SD];

E[u] += dN[SE] - dN[EI] - dN[ED];

I[u] += dN[EI] - dN[IR] - dN[ID];

C[u] += dN[EI];

}

"

)

The measurement model is chosen to allow for overdispersion relative to the binomial distribu-
tion with success probability ρ. Here, we show the Csnippet defining the unit measurement model.
The lik variable is pre-defined and is set to the evaluation of the unit measurement density in

31

either the log or natural scale depending on the value of give log.

measles_dunit_measure <- spatPomp_Csnippet("

double m = rho*C;

double v = m*(1.0-rho+psi*psi*m);

lik = dnorm(cases,m,sqrt(v),give_log);

")

The user may also directly supply dmeasure that returns the product of unit-specific measure-
ment densities. The latter is needed to apply pomp functions which require dmeasure rather than
dunit measure. We create the corresponding Csnippet in measles dmeasure, but do not display
the code here. Next, we construct a Csnippet to code runit measure,

measles_runit_measure <- spatPomp_Csnippet("

double cases;

double m = rho*C;

double v = m*(1.0-rho+psi*psi*m);

cases = rnorm(m,sqrt(v));

if (cases > 0.0) cases = nearbyint(cases);

else cases = 0.0;

")

We also construct, but do not display, a Csnippet measles rmeasure coding the class 'pomp'
version rmeasure. Next, we build Csnippets for eunit measure and vunit measure which are
required by EnKF and IEnKF. These have defined variables named ey and vc respectively, which
should return E[Yu,n |Xu,n] and Var[Yu,n |Xu,n]. For our measles model, we have

measles_eunit_measure <- spatPomp_Csnippet("ey = rho*C;")

measles_vunit_measure <- spatPomp_Csnippet("

double m = rho*C;

vc = m*(1.0-rho+psi*psi*m);

")

It is convenient (but not necessary) to supply a parameter vector for testing the model. Here,
we use a parameter vector with duration of infection and latent period both set equal to one week,
following Xia et al. (2004), and the basic reproduction number set to R0 = 30. The gravitational
constant, g = 1500, was picked by qualitative visual matching of simulations.

IVPs <- rep(c(0.032,0.00005,0.00004,0.96791),each=6)

names(IVPs) <- paste0(rep(c('S','E','I','R'),each=6),1:6,"_0")

measles_params <- c(R0=30,A=0.5,muEI=52,muIR=52,muD=0.02,

alpha=1,sigmaSE=0.01,rho=0.5,psi=0.1,g=1500,IVPs)

Special treatment is afforded to latent states that track accumulations of other latent states be-
tween observation times. These accumulator variables should be reset to zero at each observation
time. The unit accumvars argument provides a facility to specify the unit-level names of accu-
mulator variables, extending the accumvars argument to pomp(). Here, there is one accumulator

32

variable, C, which is needed since each case report corresponds to new reported infections accumu-
lated over a measurement interval. The pieces of the SpatPOMP are now added to measles6 via
a call to spatPomp:

measles6 <- spatPomp(

data = measles6,

covar = measles_covar,

unit_statenames = c('S','E','I','R','C'),

unit_accumvars = c('C'),

paramnames = names(measles_params),

rinit = measles_rinit,

rprocess = euler(measles_rprocess, delta.t=1/365),

dunit_measure = measles_dunit_measure,

eunit_measure = measles_eunit_measure,

vunit_measure = measles_vunit_measure,

runit_measure = measles_runit_measure,

dmeasure = measles_dmeasure,

rmeasure = measles_rmeasure,

globals = measles_globals

)

Here, we have not filled the skeleton and munit measure arguments, used by girf and abfir.
These can be found in the spatPomp package source code for measles().

In Figure 6, we compare a simulation from measles6 with the data. Epidemiological settings
may be clearer when looking on the log scale, and so we use the log=TRUE argument to plot(). This
figure shows some qualitative similarity between the simulations and the data, with opportunity
for future work to investigate discrepancies.

7 Conclusion

The spatPomp package is both a tool for data analysis based on SpatPOMP models and a prin-
cipled computational framework for the ongoing development of inference algorithms. Although
spatPomp development has focused on algorithms with the plug-and-play property, it supports the
development of new algorithms with and without this property. Current examples have emphasized
biological metapopulation dynamics, but diverse applications fit into the SpatPOMP model class.
Spatiotemporal data analysis using mechanistic models is a nascent topic, and future methodolog-
ical developments are anticipated.

Complex models and large datasets can challenge available computational resources. With this
in mind, key components of the spatPomp package and associated models are written in C. This
permits competitive performance on benchmarks (FitzJohn et al., 2020) within an R environment.
The use of multi-core computing is helpful for computationally intensive methods. Two common
computationally intensive tasks in spatPomp are the assessment of Monte Carlo variability and the
investigation of the roles of starting values and other algorithmic settings on optimization routines.
These tasks require only embarrassingly parallel computations and need no special discussion here.

Practical modeling and inference for metapopulation systems, capable of handling scientifically
motivated nonlinear, non-stationary stochastic models, is the last open problem of the challenges

33

MANCHESTER LEEDS SHEFFIELD

LONDON BIRMINGHAM LIVERPOOL

1950 1960 1950 1960 1950 1960

1

10

100

1000

10000

1

10

100

1000

10000

year

ca
se

s+
1

A

MANCHESTER LEEDS SHEFFIELD

LONDON BIRMINGHAM LIVERPOOL

1950 1960 1950 1960 1950 1960

1

10

100

1000

10000

1

10

100

1000

10000

year

B

Figure 6 – A: reported measles cases in two week intervals for the six largest cities in England,
plot(measles6,log=TRUE). B: simulated data, plot(simulate(measles6),log=TRUE). The ver-
tical scale is log10(cases+1).

raised by Bjørnstad and Grenfell (2001). Recent studies have reiterated the scientific need for such
methods (Becker et al., 2016; Li et al., 2020). Beyond the introduction provided by this tutorial, the
case studies of Wheeler et al. (2024) and Li et al. (2024) provide source code describing spatPomp

data analysis meeting this need.

Acknowledgments

This tutorial was supported by National Science Foundation grants DMS-1761603 and DMS-
1646108, and National Institutes of Health grants 1-U54-GM111274 and 1-U01-GM110712. We
recognize those who have participated in the development and testing of spatPomp, especially Al-
lister Ho, Zhuoxun Jiang, Jifan Li, Patricia Ning, Eduardo Ochoa, Rahul Subramanian and Jesse
Wheeler. Ben Bolker provided feedback incorporated into this version of the article.

References

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A. (2009). The
data assimilation research testbed: A community facility. Bulletin of the American Meteorological
Society, 90(9):1283–1296.

Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T. (2002). A tutorial on particle filters
for online nonlinear, non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing,
50:174–188.

Asfaw, K., Ionides, E. L., and King, A. A. (2023). spatPomp: Statistical Inference for Spatiotemporal
Partially Observed Markov Processes. R package version 0.31.0.0.

34

Bakker, K. M., Martinez-Bakker, M. E., Helm, B., and Stevenson, T. J. (2016). Digital epidemiology
reveals global childhood disease seasonality and the effects of immunization. Proceedings of the
National Academy of Sciences of the USA, 113(24):6689–6694.

Becker, A. D., Birger, R. B., Teillant, A., Gastanaduy, P. A., Wallace, G. S., and Grenfell, B. T.
(2016). Estimating enhanced prevaccination measles transmission hotspots in the context of
cross-scale dynamics. Proceedings of the National Academy of Sciences, 113(51):14595–14600.

Becker, A. D., Wesolowski, A., Bjørnstad, O. N., and Grenfell, B. T. (2019). Long-term dynamics
of measles in London: Titrating the impact of wars, the 1918 pandemic, and vaccination. PLOS
Computational Biology, 15(9):e1007305.

Bengtsson, T., Bickel, P., and Li, B. (2008). Curse-of-dimensionality revisited: Collapse of the
particle filter in very large scale systems. In Speed, T. and Nolan, D., editors, Probability and
Statistics: Essays in Honor of David A. Freedman, pages 316–334. Institute of Mathematical
Statistics, Beachwood, OH.

Bhadra, A., Ionides, E. L., Laneri, K., Pascual, M., Bouma, M., and Dhiman, R. C. (2011). Malaria
in northwest India: Data analysis via partially observed stochastic differential equation models
driven by Lévy noise. Journal of the American Statistical Association, 106:440–451.

Bjørnstad, O. N. and Grenfell, B. T. (2001). Noisy clockwork: Time series analysis of population
fluctuations in animals. Science, 293:638–643.

Blackwood, J. C., Cummings, D. A. T., Broutin, H., Iamsirithaworn, S., and Rohani, P. (2013a).
Deciphering the impacts of vaccination and immunity on pertussis epidemiology in Thailand.
Proceedings of the National Academy of Sciences of the USA, 110:9595–9600.

Blackwood, J. C., Streicker, D. G., Altizer, S., and Rohani, P. (2013b). Resolving the roles of
immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proceedings of
the National Academy of Sciences of the USA.

Blake, I. M., Martin, R., Goel, A., Khetsuriani, N., Everts, J., Wolff, C., Wassilak, S., Aylward,
R. B., and Grassly, N. C. (2014). The role of older children and adults in wild poliovirus
transmission. Proceedings of the National Academy of Sciences of the USA, 111(29):10604–10609.

Bretó, C. (2014). On idiosyncratic stochasticity of financial leverage effects. Statistics & Probability
Letters, 91:20–26.

Bretó, C., He, D., Ionides, E. L., and King, A. A. (2009). Time series analysis via mechanistic
models. Annals of Applied Statistics, 3:319–348.

Bretó, C. and Ionides, E. L. (2011). Compound Markov counting processes and their applications
to modeling infinitesimally over-dispersed systems. Stochastic Processes and their Applications,
121:2571–2591.

Brown, G. D., Porter, A. T., Oleson, J. J., and Hinman, J. A. (2018). Approximate Bayesian
computation for spatial SEIR(S) epidemic models. Spatial and Spatio-temporal Epidemiology,
24:27–37.

35

Buhnerkempe, M. G., Prager, K. C., Strelioff, C. C., Greig, D. J., Laake, J. L., Melin, S. R., DeLong,
R. L., Gulland, F., and Lloyd-Smith, J. O. (2017). Detecting signals of chronic shedding to explain
pathogen persistence: Leptospira interrogans in California sea lions. Journal of Animal Ecology,
86(3):460–472.

Cappello, C., De Iaco, S., and Posa, D. (2020). covatest: An R package for selecting a class of
space-time covariance functions. Journal of Statistical Software, 94(1):1–42.

Chambers, J. M. (1998). Programming with Data: A Guide to the S Language. Springer Science &
Business Media.

Dalziel, B. D., Bjørnstad, O. N., van Panhuis, W. G., Burke, D. S., Metcalf, C. J. E., and Grenfell,
B. T. (2016). Persistent chaos of measles epidemics in the prevaccination United States caused by
a small change in seasonal transmission patterns. PLoS Computational Biology, 12(2):e1004655.

Del Moral, P. and Murray, L. M. (2015). Sequential Monte Carlo with highly informative observa-
tions. Journal on Uncertainty Quantification, 3:969–997.

Doucet, A. and Johansen, A. (2011). A tutorial on particle filtering and smoothing: Fifteen years
later. In Crisan, D. and Rozovsky, B., editors, Oxford Handbook of Nonlinear Filtering. Oxford
University Press.

Earn, D. J., He, D., Loeb, M. B., Fonseca, K., Lee, B. E., and Dushoff, J. (2012). Effects of school
closure on incidence of pandemic influenza in Alberta, Canada. Annals of Internal Medicine,
156:173–181.

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model using
Monte Carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans,
99(C5):10143–10162.

Evensen, G. and van Leeuwen, P. J. (1996). Assimilation of geostat altimeter data for the Agulhas
Current using the ensemble Kalman filter with a quasigeostrophic model. Monthly Weather
Review, 124:58–96.

Fasiolo, M., Pya, N., and Wood, S. N. (2016). A comparison of inferential methods for highly
nonlinear state space models in ecology and epidemiology. Statistical Science, 31(1):96–118.

FitzJohn, R. G., Knock, E. S., Whittles, L. K., Perez-Guzman, P. N., Bhatia, S., Guntoro, F.,
Watson, O. J., Whittaker, C., Ferguson, N. M., Cori, A., Baguelin, M., and Lees, J. A. (2020).
Reproducible parallel inference and simulation of stochastic state space models using odin, dust,
and mcstate. Wellcome Open Research, 5.

Genolini, C. (2008). A (not so) short introduction to S4. Technical report, The R-Project for
Statistical Computing.

He, D., Dushoff, J., Day, T., Ma, J., and Earn, D. J. D. (2013). Inferring the causes of the three
waves of the 1918 influenza pandemic in England and Wales. Proceedings of the Royal Society
of London, Series B, 280:20131345.

36

He, D., Ionides, E. L., and King, A. A. (2010). Plug-and-play inference for disease dynamics:
Measles in large and small towns as a case study. Journal of the Royal Society Interface, 7:271–
283.

Ionides, E. L., Asfaw, K., Park, J., and King, A. A. (2023). Bagged filters for partially observed
interacting systems. Journal of the American Statistical Association, 118:1078–1089.

Ionides, E. L., Breto, C., Park, J., Smith, R. A., and King, A. A. (2017). Monte Carlo profile
confidence intervals for dynamic systems. Journal of the Royal Society Interface, 14:1–10.

Ionides, E. L., Nguyen, D., Atchadé, Y., Stoev, S., and King, A. A. (2015). Inference for dynamic
and latent variable models via iterated, perturbed Bayes maps. Proceedings of the National
Academy of Sciences of the USA, 112(3):719—-724.

Ionides, E. L., Ning, N., and Wheeler, J. (2022). An iterated block particle filter for inference
on coupled dynamic systems with shared and unit-specific parameters. Statistica Sinica, pre-
published online.

Johansen, A. M. and Doucet, A. (2008). A note on the auxiliary particle filter. Statistics &
Probability Letters, 78:1498–1504.

Kain, M. P., Childs, M. L., Becker, A. D., and Mordecai, E. A. (2021). Chopping the tail: How
preventing superspreading can help to maintain COVID-19 control. Epidemics, 31:100430.

Kantas, N., Doucet, A., Singh, S. S., Maciejowski, J., Chopin, N., et al. (2015). On particle methods
for parameter estimation in state-space models. Statistical Science, 30(3):328–351.

Katzfuss, M., Stroud, J. R., and Wikle, C. K. (2020). Ensemble Kalman methods for high-
dimensional hierarchical dynamic space-time models. Journal of the American Statistical As-
sociation, 115(530):866–885.

King, A. A., Ionides, E. L., Pascual, M., and Bouma, M. J. (2008). Inapparent infections and
cholera dynamics. Nature, 454:877–880.

King, A. A., Nguyen, D., and Ionides, E. L. (2016). Statistical inference for partially observed
Markov processes via the R package pomp. Journal of Statistical Software, 69:1–43.

Li, J., Ionides, E. L., King, A. A., Pascual, M., and Ning, N. (2024). Inference on spatiotem-
poral dynamics for networks of biological populations. Journal of the Royal Society Interface,
21(216):20240217.

Li, R., Pei, S., Chen, B., Song, Y., Zhang, T., Yang, W., and Shaman, J. (2020). Substantial
undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2).
Science, 368(6490):489–493.

Lorenz, E. N. (1996). Predictability: A problem partly solved. Proceedings of the Seminar on
Predictability, 1:1–18.

Marino, J. A., Peacor, S. D., Bunnell, D., Vanderploeg, H. A., Pothoven, S. A., Elgin, A. K., Bence,
J. R., Jiao, J., and Ionides, E. L. (2019). Evaluating consumptive and nonconsumptive predator
effects on prey density using field time-series data. Ecology, 100(3):e02583.

37

Martinez-Bakker, M., King, A. A., and Rohani, P. (2015). Unraveling the transmission ecology of
polio. PLOS Biology, 13(6):e1002172.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Chapman and Hall, London,
2nd edition.

Michaud, N., de Valpine, P., Turek, D., Paciorek, C. J., and Nguyen, D. (2021). Sequential Monte
Carlo methods in the nimble and nimbleSMC R packages. Journal of Statistical Software, 100:1–
39.

Murray, L. M. (2015). Bayesian state-space modelling on high-performance hardware using LibBi.
Journal of Statistical Software, 67(10):1–36.

Ng, B., Peshkin, L., and Pfeffer, A. (2002). Factored particles for scalable monitoring. Proceedings
of the 18th Conference on Uncertainty and Artificial Intelligence, pages 370–377.

Ning, N. and Ionides, E. L. (2023a). Iterated block particle filter for high-dimensional parameter
learning: Beating the curse of dimensionality. Journal of Machine Learning Research, 24(82):1–
76.

Ning, N. and Ionides, E. L. (2023b). Using an iterated block particle filter via spatpomp.
https://kidusasfaw.github.io/spatPomp/vignettes/ibpf.pdf.

Ning, N., Ionides, E. L., and Ritov, Y. (2021). Scalable Monte Carlo inference and rescaled local
asymptotic normality. Bernoulli, 27:2532–2555.

Park, J. and Ionides, E. L. (2020). Inference on high-dimensional implicit dynamic models using a
guided intermediate resampling filter. Statistics & Computing, 30:1497–1522.

Pitt, M. K. and Shepard, N. (1999). Filtering via simulation: Auxillary particle filters. Journal of
the American Statistical Association, 94:590–599.

Pons-Salort, M. and Grassly, N. C. (2018). Serotype-specific immunity explains the incidence of
diseases caused by human enteroviruses. Science, 361(6404):800–803.

R Core Team (2022a). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria.

R Core Team (2022b). Writing R extensions. R Foundation for Statistical Computing, Vienna,
Austria.

Ranjeva, S. L., Baskerville, E. B., Dukic, V., Villa, L. L., Lazcano-Ponce, E., Giuliano, A. R.,
Dwyer, G., and Cobey, S. (2017). Recurring infection with ecologically distinct HPV types can
explain high prevalence and diversity. Proceedings of the National Academy of Sciences, page
201714712.

Rebeschini, P. and van Handel, R. (2015). Can local particle filters beat the curse of dimensionality?
The Annals of Applied Probability, 25(5):2809–2866.

Roy, M., Bouma, M. J., Ionides, E. L., Dhiman, R. C., and Pascual, M. (2013). The potential
elimination of Plasmodium vivax malaria by relapse treatment: Insights from a transmission
model and surveillance data from NW India. PLOS Neglected Tropical Diseases, 7:e1979.

38

Shrestha, S., Foxman, B., Weinberger, D. M., Steiner, C., Viboud, C., and Rohani, P. (2013).
Identifying the interaction between influenza and pneumococcal pneumonia using incidence data.
Science Translational Medicine, 5:191ra84.

Shrestha, S., King, A. A., and Rohani, P. (2011). Statistical inference for multi-pathogen systems.
PLOS Computational Biology, 7:e1002135.

Sigrist, F., Kunsch, H. R., and Stahel, W. A. (2015). spate: An R package for spatio-temporal
modeling with a stochastic advection-diffusion process. Journal of Statistical Software, 63(14):1–
23.

Snyder, C., Bengtsson, T., and Morzfeld, M. (2015). Performance bounds for particle filters using
the optimal proposal. Monthly Weather Review, 143(11):4750–4761.

Stocks, T., Britton, T., and Höhle, M. (2020). Model selection and parameter estimation for
dynamic epidemic models via iterated filtering: application to rotavirus in germany. Biostatistics,
21(3):400–416.

Tong, H. (1990). Non-linear Time Series: A Dynamical System Approach. Oxford Science Publ.,
Oxford.

Wallig, M. and Weston, S. (2022a). doParallel: Foreach parallel adaptor for the ’parallel’ package.
R package version 1.0.17.

Wallig, M. and Weston, S. (2022b). foreach: Provides foreach looping construct. R package version
1.5.2.

Wheeler, J., Rosengart, A., Jiang, Z., Tan, K., Treutle, N., and Ionides, j. (2024). Informing policy
via dynamic models: Cholera in Haiti. PLOS Computational Biology, 20:e1012032.

Wickham, H. (2019). Advanced R. CRC press.

Wickham, H., François, R., Henry, L., and Müller, K. (2022). dplyr: A Grammar of Data Manip-
ulation. R package version 1.0.10.

Wikle, C. K., Zammit-Mangion, A., and Cressie, N. (2019). Spatio-temporal Statistics with R. CRC
Press.

Wood, S. N. (2010). Statistical inference for noisy nonlinear ecological dynamic systems. Nature,
466:1102–1104.

Xia, Y., Bjørnstad, O. N., and Grenfell, B. T. (2004). Measles metapopulation dynamics: A gravity
model for epidemiological coupling and dynamics. American Naturalist, 164(2):267–281.

Zhang, B., Huang, W., Pei, S., Zeng, J., Shen, W., Wang, D., Wang, G., Chen, T., Yang, L.,
Cheng, P., Wang, D., Shu, Y., and Du, X. (2022). Mechanisms for the circulation of influenza A
(H3N2) in China: A spatiotemporal modelling study. PLOS Pathogens, 18(12):e1011046.

39

